JP2007132790A - Quantitative analysis method of selenium by flame atomic absorption method - Google Patents

Quantitative analysis method of selenium by flame atomic absorption method Download PDF

Info

Publication number
JP2007132790A
JP2007132790A JP2005325970A JP2005325970A JP2007132790A JP 2007132790 A JP2007132790 A JP 2007132790A JP 2005325970 A JP2005325970 A JP 2005325970A JP 2005325970 A JP2005325970 A JP 2005325970A JP 2007132790 A JP2007132790 A JP 2007132790A
Authority
JP
Japan
Prior art keywords
selenium
phosphate
quantitative analysis
phosphoric acid
atomic absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005325970A
Other languages
Japanese (ja)
Inventor
Takekane Kubota
剛包 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005325970A priority Critical patent/JP2007132790A/en
Publication of JP2007132790A publication Critical patent/JP2007132790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantitative analysis method of selenium capable of suppressing interference by a coexistent element by adding a third material (phosphoric acid or a phosphate) having an effect for suppressing a composite oxide production of selenium in a flame. <P>SOLUTION: In this quantitative analysis method of selenium using a flame atomic absorption method, in order to remove an influence of a coexistent element, measurement is performed after adding phosphoric acid or a phosphate to a measuring liquid. The coexistent element includes at least one of Al, Ca, Cd, Co, Cr, Fe, Mg, Mn, Mo, Ni, Si, V and Zn. The phosphate ion concentration based on the phosphoric acid or the phosphate added into the measuring liquid is preferably in the range of 100-20,000 mg/l. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フレーム原子吸光法によるセレンの定量分析方法に関する。   The present invention relates to a method for quantitative analysis of selenium by flame atomic absorption spectrometry.

セレンは有害物質として排水や土壌に対して規制の対象になっている。セレンの分析は原子吸光法やICP発光分析法が一般的である。装置への試料導入は、水溶液をネブライザー(噴霧器)で噴霧して原子吸光分析装置のフレーム(炎)やICP発光分析装置のプラズマに導入する方法と、セレンを還元して気体状の水素化物としてこれらに導入する方法がある。前者は簡便であるが感度が低いという問題があり、後者は高感度であるが予備還元等の前処理操作が伴い現場で簡単には実施しずらいという問題がある。セレンを取り扱う工程や、排水処理において簡便な分析方法があれば工程管理上大変役に立つ。   Selenium is regulated for wastewater and soil as a hazardous substance. The selenium is generally analyzed by atomic absorption or ICP emission analysis. Samples are introduced into the apparatus by spraying an aqueous solution with a nebulizer (atomizer) and introducing it into the flame of an atomic absorption spectrometer or the plasma of an ICP emission spectrometer, and reducing selenium as a gaseous hydride There are methods to introduce them. The former has a problem that it is simple but has low sensitivity, and the latter has high sensitivity, but it involves a pretreatment operation such as preliminary reduction and is difficult to carry out easily on site. A process that handles selenium and a simple analysis method for wastewater treatment can be very useful in process management.

原子吸光分析装置はICP発光分析装置に比べ安価で、操作も簡便で現場分析に適している。原子吸光分析装置を用いて簡便に濃度0.5mg/l程度まで分析できれば工程管理に大変役立つ。原子吸光法ではフレームは空気−アセチレンフレームが一般的であるがこれはセレンに対しては感度が不十分でこのような低濃度まで分析することは困難である。また、アルゴン−水素フレームを用いればこの濃度での分析が可能であるが、フレームの温度が低いので共存元素による化学干渉を受けやすいという問題がある。   An atomic absorption spectrometer is less expensive than an ICP emission spectrometer, is easy to operate, and is suitable for on-site analysis. If it can be easily analyzed to a concentration of about 0.5 mg / l using an atomic absorption analyzer, it will be very useful for process control. In the atomic absorption method, the flame is generally an air-acetylene flame, which is insufficiently sensitive to selenium and is difficult to analyze to such a low concentration. Further, if an argon-hydrogen flame is used, analysis at this concentration is possible. However, since the flame temperature is low, there is a problem that it is susceptible to chemical interference by coexisting elements.

セレンは水溶液中では酸素と化合して亜セレン酸イオン又はセレン酸イオンとして存在しているが、フレーム原子吸光法でセレンを分析する場合に鉄等の共存元素が存在すると、フレーム中でセレンがこれらと複合酸化物を生成して原子状セレンへの解離が抑えられるために原子吸収が弱くなり分析感度が低下する。   Selenium combines with oxygen in aqueous solution and exists as selenite ion or selenate ion, but when selenium is analyzed by flame atomic absorption method, if there is a coexisting element such as iron, selenium is formed in the flame. Since complex oxides with these are generated and dissociation into atomic selenium is suppressed, atomic absorption is weakened and analytical sensitivity is lowered.

そこで、本発明は、フレーム中でのセレンの複合酸化物生成を抑制する効果のある第三の物質(リン酸、又はリン酸塩)を添加することにより、共存元素による干渉を抑制することが出来るセレンの定量分析方法を提供するものである。   Therefore, the present invention can suppress interference due to coexisting elements by adding a third substance (phosphoric acid or phosphate) that has the effect of suppressing the generation of selenium complex oxide in the flame. The present invention provides a method for quantitative analysis of selenium.

上記課題を解決するために、本発明の方法はフレーム原子吸光法を用いるセレンの定量分析方法において、共存元素の影響を除去するために、測定液にリン酸又はリン酸塩を加えて測定することを特徴とする。更に、上記のセレンの定量分析方法において、前記共存元素は、Al、Ca、Cd、Co、Cr、Fe、Mg、Mn、Mo、Ni、Si、V、Znの少なくとも1を含むことを特徴とする。更に、上記測定液中に加えられるリン酸又はリン酸塩に基づくリン酸イオン濃度が100mg/lから20,000mg/lの範囲であることを特徴とする。   In order to solve the above-mentioned problems, the method of the present invention is a method for quantitative analysis of selenium using flame atomic absorption spectrometry, in which phosphoric acid or phosphate is added to the measurement solution in order to eliminate the influence of coexisting elements. It is characterized by that. Furthermore, in the quantitative analysis method of selenium, the coexisting element includes at least one of Al, Ca, Cd, Co, Cr, Fe, Mg, Mn, Mo, Ni, Si, V, and Zn. To do. Furthermore, the phosphate ion concentration based on phosphoric acid or phosphate added to the measurement solution is in the range of 100 mg / l to 20,000 mg / l.

測定液に添加する干渉抑制剤について調査した結果、リン酸イオンを添加することにより、Al、Ca、Cd、Co、Cr、Fe、Mg、Mn、Mo、Ni、Si、V、Znその他多くの共存元素の干渉を抑制できることを見出した。干渉抑制のメカニズムは、リン酸イオンが存在するとフレーム中で鉄等の共存元素がリンと複合酸化物を生成するために、セレンと鉄等の共存元素との複合酸化物生成が抑えられ分析感度の低下が抑えられるためであると考えられる。   As a result of investigating the interference inhibitor added to the measurement solution, by adding phosphate ions, Al, Ca, Cd, Co, Cr, Fe, Mg, Mn, Mo, Ni, Si, V, Zn and many others It was found that interference of coexisting elements can be suppressed. The mechanism of interference suppression is that in the presence of phosphate ions, coexisting elements such as iron generate phosphorus and complex oxides in the frame, so the formation of complex oxides between selenium and coexisting elements such as iron is suppressed, and the analytical sensitivity This is thought to be due to the reduction of the decrease.

本発明による方法を用いれば、現場にて工程試料中のセレン濃度を分析感度の低下を招くことなく簡便且つ迅速に分析することが出来る。   By using the method according to the present invention, selenium concentration in a process sample can be easily and quickly analyzed on site without causing a decrease in analysis sensitivity.

添加するリン酸イオンはリン酸及びリン酸塩のいずれでも良い。リン酸塩としてはリン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸三アンモニウム、 リン酸水素二アンモニウム、リン酸二水素アンモニウム等を挙げることができる。好ましいのはリン酸である。   The phosphate ion to be added may be either phosphoric acid or phosphate. As phosphates, trisodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, tripotassium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, triammonium phosphate, diammonium hydrogen phosphate, Examples thereof include ammonium dihydrogen phosphate. Preference is given to phosphoric acid.

添加するリン酸の量は、共存元素の量が少ない場合には少なくても良いが、共存元素の量が多くなるとリン酸の量も増加させる必要がある。リン酸イオンの添加量は、多いほど干渉抑制の効果は増すが、一方で溶液の粘性が増加してフレームへの導入効率が低下する。このため、上記の理由から一般的には測定液中のリン酸イオン濃度は100から20、000mg/lの範囲が適当である。好ましくは、1,000mg/lから15,000mg/lである。
原子吸光分析で用いるフレームはアルゴン−水素フレーム以外に窒素−水素フレームでも良い。
(実施例1)
本発明のリン酸イオン添加による共存元素の干渉抑制の効果を示すために、リン酸イオン添加なしとリン酸イオン添加ありの場合を実施した。これらを比較した結果を下記の表1に示す。
The amount of phosphoric acid to be added may be small when the amount of coexisting elements is small, but the amount of phosphoric acid needs to be increased as the amount of coexisting elements increases. The greater the amount of phosphate ion added, the greater the effect of interference suppression. On the other hand, the viscosity of the solution increases and the introduction efficiency into the frame decreases. For this reason, generally, the phosphate ion concentration in the measurement solution is suitably in the range of 100 to 20,000 mg / l. Preferably, it is 1,000 mg / l to 15,000 mg / l.
The flame used in the atomic absorption analysis may be a nitrogen-hydrogen flame other than the argon-hydrogen flame.
Example 1
In order to show the effect of suppressing interference of coexisting elements by the addition of phosphate ions according to the present invention, the cases where phosphate ions were not added and phosphate ions were added were carried out. The results of comparing these are shown in Table 1 below.

ここで、セレンの濃度は20mg/l、共存元素の濃度は200mg/lで、リン酸イオン添加量は3,000mg/lである。   Here, the concentration of selenium is 20 mg / l, the concentration of coexisting elements is 200 mg / l, and the amount of phosphate ion added is 3,000 mg / l.

表1から明らかなように、リン酸イオン添加なしの場合には、感度の低下が見られたが、リン酸イオン添加の場合には、共存元素の影響はほとんどなく、感度の低下はほとんど見られなかった。
(実施例2)
工程試料(セレン及び鉄を含む酸性溶液)の分析方法を以下に示す。2種類の試料溶液の一定量をそれぞれ100mlメスフラスコに分取し、リン酸(85%)を1ml添加した後、純水で標線まで希釈し(リン酸:14,400mg/l)、この溶液を原子吸光光度計のアルゴン−水素フレーム中に噴霧して波長196.0nmにおける吸光度を測定し、あらかじめ作成した検量線からセレン濃度を求めた。
As is apparent from Table 1, the sensitivity decreased when no phosphate ion was added, but when the phosphate ion was added, there was almost no influence of coexisting elements, and almost no decrease in sensitivity was observed. I couldn't.
(Example 2)
An analysis method of the process sample (an acidic solution containing selenium and iron) is shown below. Aliquots of the two sample solutions were each dispensed into 100 ml volumetric flasks, and after adding 1 ml of phosphoric acid (85%), diluted to the marked line with pure water (phosphoric acid: 14,400 mg / l) The solution was sprayed into an argon-hydrogen flame of an atomic absorption photometer to measure the absorbance at a wavelength of 196.0 nm, and the selenium concentration was determined from a calibration curve prepared in advance.

検量線作成は、セレン0mg,0.5mg,1mg,1.5mg及び2.0mgを夫々100mlメスフラスコに分取し、夫々にリン酸1mlを加え、純水で標線まで希釈し、この溶液の一部を原子吸光光度計のアルゴン−水素フレーム中に噴霧して波長196.0nmにおける吸光度を測定し、セレン量と吸光度との関係線を作成した。   The calibration curve was prepared by separating selenium 0 mg, 0.5 mg, 1 mg, 1.5 mg and 2.0 mg into 100 ml volumetric flasks, adding 1 ml of phosphoric acid to each and diluting to the marked line with pure water. A portion of the sample was sprayed into an argon-hydrogen flame of an atomic absorption photometer, and the absorbance at a wavelength of 196.0 nm was measured to create a relationship line between the amount of selenium and the absorbance.

本発明の方法による分析結果とJIS K0102 工場廃水試験方法による結果の比較を下記の表2に示す。両者一致した結果が得られた。   Table 2 below shows a comparison between the analysis results obtained by the method of the present invention and the results obtained by the JIS K0102 factory wastewater test method. Both agreed results were obtained.

実施例1と2の結果から、添加するリン酸の量は、共存元素の量が少ない場合には少なくても良いが、共存元素の量が多くなるとリン酸の量も増加させる必要があることが分かった。リン酸イオンの添加量は、多いほど干渉抑制の効果は増すが、一方で溶液の粘性が増加してフレームへの導入効率が低下する。このため、測定液中のリン酸イオン濃度は100mg/lから20,000mg/lの範囲内が適当であるが、好ましくは、1,000mg/lから15,000mg/lの範囲内にあることが適当であることが推測される。
From the results of Examples 1 and 2, the amount of phosphoric acid to be added may be small when the amount of coexisting elements is small, but it is necessary to increase the amount of phosphoric acid as the amount of coexisting elements increases. I understood. The greater the amount of phosphate ion added, the greater the effect of interference suppression. On the other hand, the viscosity of the solution increases and the introduction efficiency into the frame decreases. Therefore, the phosphate ion concentration in the measurement solution is suitably in the range of 100 mg / l to 20,000 mg / l, but preferably in the range of 1,000 mg / l to 15,000 mg / l. Is presumed to be appropriate.

Claims (3)

フレーム原子吸光法を用いてセレンを定量分析方法において、共存元素の影響を除去するために、測定液にリン酸又はリン酸塩を加えて測定することを特徴とするセレンの定量分析方法。 In the quantitative analysis method of selenium using flame atomic absorption spectrometry, in order to remove the influence of coexisting elements, a quantitative analysis method of selenium, wherein phosphoric acid or phosphate is added to the measurement solution for measurement. 請求項1記載のセレンの定量分析方法において、前記共存元素は、Al、Ca、Cd、Co、Cr、Fe、Mg、Mn、Mo、Ni、Si、V、Znの少なくとも1を含むことを特徴とするセレンの定量分析方法。 2. The method for quantitative analysis of selenium according to claim 1, wherein the coexisting element includes at least one of Al, Ca, Cd, Co, Cr, Fe, Mg, Mn, Mo, Ni, Si, V, and Zn. Quantitative analysis method of selenium. 請求項1記載のセレンの定量分析方法において、測定液中に加えられるリン酸又はリン酸塩に基づくリン酸イオン濃度が100mg/lから20,000mg/lの範囲であることを特徴とするセレンの定量分析方法。
2. The method for quantitative analysis of selenium according to claim 1, wherein the phosphate ion concentration based on phosphoric acid or phosphate added to the measurement solution is in the range of 100 mg / l to 20,000 mg / l. Quantitative analysis method.
JP2005325970A 2005-11-10 2005-11-10 Quantitative analysis method of selenium by flame atomic absorption method Pending JP2007132790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325970A JP2007132790A (en) 2005-11-10 2005-11-10 Quantitative analysis method of selenium by flame atomic absorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325970A JP2007132790A (en) 2005-11-10 2005-11-10 Quantitative analysis method of selenium by flame atomic absorption method

Publications (1)

Publication Number Publication Date
JP2007132790A true JP2007132790A (en) 2007-05-31

Family

ID=38154579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325970A Pending JP2007132790A (en) 2005-11-10 2005-11-10 Quantitative analysis method of selenium by flame atomic absorption method

Country Status (1)

Country Link
JP (1) JP2007132790A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393366A (en) * 2011-09-14 2012-03-28 上海德诺产品检测有限公司 Method for indirectly measuring silicon content in defoaming agent through flame atomic absorption
CN102854156A (en) * 2011-06-28 2013-01-02 鞍钢股份有限公司 Method for determining vanadium in slag
CN102928372A (en) * 2012-11-11 2013-02-13 山东师范大学 Measurement method for whole vanadium in soil
CN102967564A (en) * 2012-08-28 2013-03-13 贵州航天精工制造有限公司 Rapid determination method of molybdenum content in iron and alloys
CN103776810A (en) * 2014-01-28 2014-05-07 白银有色集团股份有限公司 Method for determining trace selenium in copper smelting byproduct copper sulfate by atomic fluorescence spectrometry
CN104964941A (en) * 2015-06-29 2015-10-07 浙江大学 Method and separating and collecting device for detecting elemental selenium quickly and quantitatively
CN110333340A (en) * 2019-07-31 2019-10-15 招商局生态环保科技有限公司 The analysis method of Cr VI form in a kind of improved soil
CN114062089A (en) * 2021-11-12 2022-02-18 上海太洋科技有限公司 Method for measuring content of impurity elements in crystal-grade potassium dihydrogen phosphate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854156A (en) * 2011-06-28 2013-01-02 鞍钢股份有限公司 Method for determining vanadium in slag
CN102393366A (en) * 2011-09-14 2012-03-28 上海德诺产品检测有限公司 Method for indirectly measuring silicon content in defoaming agent through flame atomic absorption
CN102967564A (en) * 2012-08-28 2013-03-13 贵州航天精工制造有限公司 Rapid determination method of molybdenum content in iron and alloys
CN102928372A (en) * 2012-11-11 2013-02-13 山东师范大学 Measurement method for whole vanadium in soil
CN103776810A (en) * 2014-01-28 2014-05-07 白银有色集团股份有限公司 Method for determining trace selenium in copper smelting byproduct copper sulfate by atomic fluorescence spectrometry
CN104964941A (en) * 2015-06-29 2015-10-07 浙江大学 Method and separating and collecting device for detecting elemental selenium quickly and quantitatively
CN110333340A (en) * 2019-07-31 2019-10-15 招商局生态环保科技有限公司 The analysis method of Cr VI form in a kind of improved soil
CN114062089A (en) * 2021-11-12 2022-02-18 上海太洋科技有限公司 Method for measuring content of impurity elements in crystal-grade potassium dihydrogen phosphate
CN114062089B (en) * 2021-11-12 2023-08-18 上海太洋科技有限公司 Method for measuring impurity element content in crystal grade potassium dihydrogen phosphate

Similar Documents

Publication Publication Date Title
JP2007132790A (en) Quantitative analysis method of selenium by flame atomic absorption method
Takano et al. A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange
Peters et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices
Todolí et al. Elemental matrix effects in ICP-AES
Wang et al. Ferric ion induced enhancement of ultraviolet vapour generation coupled with atomic fluorescence spectrometry for the determination of ultratrace inorganic arsenic in surface water
Grindlay et al. Carbon-related matrix effects in inductively coupled plasma atomic emission spectrometry
Gimeno et al. A potentiometric titration for H 2 O 2 determination in the presence of organic compounds
CN104267026A (en) Mercury-ion detection method simulating peroxidase based on nano platinum and kit
CN108206125B (en) Determination of isobaric interferences in mass spectrometers
Pardo et al. Characterisation, validation and comparison of three methods for the extraction of phosphate from sediments
Čmelík et al. Contribution to vapor generation-inductively coupled plasma spectrometric techniques for determination of sulfide in water samples
JP5522584B2 (en) ICP emission spectroscopy method
Polgári et al. Microanalytical method development for Fe, Cu and Zn determination in colorectal cancer cells
Rua-Ibarz et al. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry
Baranyai et al. Elemental analysis of human blood serum by microwave plasma—investigation of the matrix effects caused by sodium using model solutions
Gaines ICP operations guide
Welna et al. Ultrasound-and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples
Yilmaz et al. Cyanovanadate (III) complexes as novel additives for efficient generation of volatile cadmium species in complex samples prior to determinations by inductively coupled plasma mass spectrometry (ICP-MS)
Miravet et al. Comparison of pre-reducing agents for antimony determination by hydride generation atomic fluorescence spectrometry
Pohl et al. Analytical features of Au, Pd and Pt chemical vapour generation inductively coupled plasma atomic emission spectrometry
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
Liang et al. A new resonance Rayleigh scattering method for trace Pb, coupling the hydride generation reaction with nanogold formation
Liu et al. In situ preconcentration of lead by dielectric barrier discharge and its application to high sensitivity surface water analysis
Huang et al. The influence of calcium and magnesium on the phosphorus monoxide molecular absorption signal in the determination of phosphorus using a continuum source absorption spectrometer and an air–acetylene flame
Vrijens et al. Spectral interferences in the analysis of cadmium in human blood by ICP-MS: comparison between high resolution sector field ICP-MS and quadrupole ICP-MS