JP2007131682A - Electroconductive polymer film and circuit substrate - Google Patents

Electroconductive polymer film and circuit substrate Download PDF

Info

Publication number
JP2007131682A
JP2007131682A JP2005324046A JP2005324046A JP2007131682A JP 2007131682 A JP2007131682 A JP 2007131682A JP 2005324046 A JP2005324046 A JP 2005324046A JP 2005324046 A JP2005324046 A JP 2005324046A JP 2007131682 A JP2007131682 A JP 2007131682A
Authority
JP
Japan
Prior art keywords
polymer film
carbonate
conductive polymer
pattern
polythiophene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005324046A
Other languages
Japanese (ja)
Inventor
Masaru Onishi
賢 大西
Hiroyo Saeki
寛世 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2005324046A priority Critical patent/JP2007131682A/en
Publication of JP2007131682A publication Critical patent/JP2007131682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive polymer film having a high safety, electrochemically stable and having a good electroconductivity. <P>SOLUTION: This electroconductive polymer film contains a compound containing a polythiophene or a polythiophene derivative, and a compound containing at least ≥1 kind of a carbonate or a cyclic ester. By adding the carbonate or cyclic ester, the ionic conductivity of the polythiophene, which has conventionally been neither recognized nor examined, can be increases, and thereby, its electroconductivity can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は導電性高分子膜に関し、さらにその導電性高分子膜によって回路パターンが形成されている回路基板に関する。   The present invention relates to a conductive polymer film, and further relates to a circuit board on which a circuit pattern is formed by the conductive polymer film.

導電性高分子はその伝導機構からイオン伝導性の導電性高分子と、電子伝導性の導電性高分子の2つに分けることができる。イオン伝導性の導電性高分子はイオンが移動することにより伝導度がでるものであり、電子伝導性の導電性高分子は別名π共役系高分子ともいい、高分子中の二重結合がつながっている部分で伝導度がでるものである。
一般に導電性高分子と言われているのは電子伝導性の導電性高分子であり、この電子伝導性の導電性高分子として、例えばポリアニリン、ポリアセチレン、ポリチオフェン、ポリピロール等があげられる。
Conductive polymers can be classified into two types according to their conduction mechanisms: ion-conductive conductive polymers and electron-conductive conductive polymers. An ion conductive conductive polymer has conductivity due to the movement of ions, and an electron conductive conductive polymer is also known as a π-conjugated polymer, and double bonds in the polymer are connected. The conductivity appears in the part where it is.
In general, what is referred to as a conductive polymer is an electron-conductive conductive polymer. Examples of the electron-conductive polymer include polyaniline, polyacetylene, polythiophene, and polypyrrole.

ポリチオフェン誘導体、特にポリ(3,4−エチレンジオキシチオフェン)(PEDOT)は優れた導電性高分子及びホール移動体として知られており、バイエル社よりPEDOTをポリスチレンスルホン酸(PSS)の存在下で重合することにより水溶性にして使用しやすくしたものが商品名Baytronとして販売されている。
特許文献1にはPEDOT/PSS水溶液に非プロトン性化合物を溶媒として添加することにより、高温のアニーリングを不要とし、かつ導電性を向上させることが記載されている。非プロトン性化合物はスルホン、スルホキシド、有機リン酸エステル、有機ホスホネート、有機ホスファミド、尿素、尿素の誘導体及びそれらの混合物から選択することが記載されており、具体的な例として例えばN−メチルピロリドン等が示されている。
Polythiophene derivatives, especially poly (3,4-ethylenedioxythiophene) (PEDOT), is known as an excellent conductive polymer and hole transporter. PEDOT is obtained from Bayer in the presence of polystyrene sulfonic acid (PSS). A product that is made water-soluble by polymerization and easy to use is sold under the trade name Baytron.
Patent Document 1 describes that by adding an aprotic compound to a PEDOT / PSS aqueous solution as a solvent, high-temperature annealing is not required and conductivity is improved. It is described that the aprotic compound is selected from sulfone, sulfoxide, organic phosphate ester, organic phosphonate, organic phosphamide, urea, urea derivatives, and mixtures thereof. Specific examples include N-methylpyrrolidone and the like. It is shown.

一方、特許文献2には用途を有機EL用としているが、PEDOT/PSS水溶液に低級アルコールを添加することにより、導電性を向上させる効果があることが記載されている。
特開2000−153229号公報 国際公開WO2004/063277号明細書
On the other hand, Patent Document 2 describes a use for organic EL, but it is described that there is an effect of improving conductivity by adding a lower alcohol to a PEDOT / PSS aqueous solution.
JP 2000-153229 A International Publication No. WO2004 / 063277 Specification

ところで、電子伝導性の導電性高分子そのものは通常、半導体程度の導電性しか示さず、少量のドーパントを添加することにより導電性が大幅に向上する。ドーパントは導電性高分子に対して、電子供与もしくは電子吸引をより強力に起こさせるものほど効果が大きく、導電性が向上する。そのため、極性(電子供与もしくは電子吸引の度合い)が高い溶媒を添加したほど導電性が向上するのは理論にかなっている。
しかしながら、ポリチオフェンは電子伝導性の導電性高分子と一般に言われているものの、それとは反する挙動を示す。例えば、有機半導体のポリチオフェンにおいて、大気中に暴露すると電子伝導であれば移動度(半導体の導電性)が低下するはずなのに、なぜか移動度が上昇する。また、極性の高い溶媒ほど導電性が向上するのであるならば、非常に高い極性をもつ酸では導電性が著しく向上するはずなのに、そのようにならないと報告されている。
By the way, the electron conductive conductive polymer itself usually exhibits only a conductivity equivalent to that of a semiconductor, and the conductivity is greatly improved by adding a small amount of dopant. The more effective the dopant is, the more effective the electron donation or electron attraction with respect to the conductive polymer, and the higher the conductivity. For this reason, it is logical that the conductivity improves as the solvent having a higher polarity (degree of electron donation or electron attraction) is added.
However, although polythiophene is generally referred to as an electron-conductive conductive polymer, it exhibits a behavior contrary to that. For example, in an organic semiconductor polythiophene, when exposed to the atmosphere, the mobility (semiconductor conductivity) should decrease if it is electronically conductive, but the mobility increases for some reason. Further, if the conductivity of a solvent having a higher polarity is improved, it has been reported that an acid having a very high polarity should remarkably improve the conductivity, but not so.

さらに、溶媒によりポリチオフェンの溶解性(分散性)を高め、できあがった膜が緻密になるため、導電性が向上するという説明であれば、ポリチオフェンがほとんど溶解しない低級アルコール、水では導電性が向上する効果は低いはずであるが、それに反する結果となっている。
以上の結果をふまえ、ポリチオフェンにおいて溶媒添加によりなぜ導電性が向上するのかについて考えてみると、ポリチオフェンの挙動は電子伝導性だけでなく、イオン伝導性も関与している可能性が高いことになる。そうであるならば、イオン伝導性を高めることができる構造にすれば、導電性を向上させることができることになる。
In addition, the solubility (dispersibility) of polythiophene is increased by the solvent, and the resulting film becomes dense, so that the conductivity is improved. For example, the conductivity is improved in lower alcohol and water in which polythiophene is hardly dissolved. The effect should be low, but the result is contrary.
Based on the above results, when considering why the conductivity of polythiophene is improved by adding a solvent, the behavior of polythiophene is likely to involve not only electronic conductivity but also ionic conductivity. . If so, the conductivity can be improved by adopting a structure capable of increasing the ion conductivity.

この発明の目的はこのような観点に鑑み、ポリチオフェンにおいてイオン伝導性を高められるようにし、それにより導電性を向上させた導電性高分子膜を提供することにあり、さらにそれを用いて回路パターンが形成された回路基板を提供することにある。   In view of such a viewpoint, an object of the present invention is to provide a conductive polymer film in which ion conductivity can be increased in polythiophene, thereby improving conductivity, and further using this, a circuit pattern is provided. It is to provide a circuit board on which is formed.

請求項1の発明によれば、導電性高分子膜はポリチオフェン又はポリチオフェン誘導体を含む化合物と、少なくとも1種類以上のカーボネート又は環状エステルを含む化合物とを含有するものとされる。
請求項2の発明では請求項1の発明において、ポリチオフェン誘導体が3,4−エチレンジオキシチオフェン骨格を含むものとされる。
請求項3の発明によれば、回路基板は請求項1又は2の導電性高分子膜によって回路パターンが形成されているものとされる。
According to the first aspect of the present invention, the conductive polymer film contains a compound containing polythiophene or a polythiophene derivative and a compound containing at least one kind of carbonate or cyclic ester.
In the invention of claim 2, in the invention of claim 1, the polythiophene derivative includes a 3,4-ethylenedioxythiophene skeleton.
According to the invention of claim 3, the circuit pattern is formed by the conductive polymer film of claim 1 or 2 on the circuit board.

請求項4の発明によれば、導体パターンとその導体パターンに接続されている抵抗体パターンとが基板上に形成されている回路基板は、導体パターンが請求項1又は2の導電性高分子膜によって形成され、抵抗体パターンがポリチオフェン誘導体よりなる膜によって形成されているものとされる。
請求項5の発明によれば、導体パターンとその導体パターンに接続されている抵抗体パターンとが基板上に形成されている回路基板は、導体パターン及び抵抗体パターンが共に請求項1又は2の導電性高分子膜よりなり、それら導体パターン及び抵抗体パターンは少なくとも1種類以上のカーボネート又は環状エステルを含む化合物の混合比を変えることによって形成されているものとされる。
According to the invention of claim 4, the conductive polymer film according to claim 1 or 2 is provided on the circuit board in which the conductor pattern and the resistor pattern connected to the conductor pattern are formed on the substrate. The resistor pattern is formed by a film made of a polythiophene derivative.
According to the invention of claim 5, the circuit pattern in which the conductor pattern and the resistor pattern connected to the conductor pattern are formed on the substrate has both the conductor pattern and the resistor pattern of claim 1 or 2. It consists of a conductive polymer film, and the conductor pattern and resistor pattern are formed by changing the mixing ratio of the compound containing at least one kind of carbonate or cyclic ester.

この発明ではポリチオフェンのイオン伝導性に着目し、イオン伝導性を高めるべく、カーボネートや環状エステルを添加するものであって、これにより優れた導電性を有する導電性高分子膜を得ることができる。なお、添加するカーボネートや環状エステルは安全性が高く、電気化学的にも安定なものであって、従来の例えば窒素原子を含む溶媒を添加するものに比し、取り扱いやすく、実用に供しやすいものであり、例えば回路基板の回路パターンの形成に用いて好適なものとなる。   In the present invention, attention is paid to the ionic conductivity of polythiophene, and carbonate or cyclic ester is added to increase the ionic conductivity, whereby a conductive polymer film having excellent conductivity can be obtained. The carbonates and cyclic esters to be added are highly safe and electrochemically stable, and are easier to handle and put to practical use than conventional ones that contain, for example, a nitrogen atom-containing solvent. For example, it is suitable for use in forming a circuit pattern on a circuit board.

以下、この発明の実施形態を説明する。
導電性高分子膜の形成はポリチオフェン又はポリチオフェン誘導体を含む化合物と、少なくとも1種類以上のカーボネート(炭酸エステル)又は環状エステルを含む化合物とが混合されてなる溶液を使用して行われる。
導電性高分子としてポリチオフェンを含有していればよく、可溶化するためにポリスチレンスルホン酸(PSS)等のアニオン性高分子電解質を混ぜたものが簡便に用いられる。特に、ポリチオフェン誘導体であるポリ(3,4−エチレンジオキシチオフェン)(PEDOT)及びその誘導体が水性分散液として販売されており、簡便に利用できる。
Embodiments of the present invention will be described below.
The conductive polymer film is formed using a solution in which a compound containing polythiophene or a polythiophene derivative and a compound containing at least one carbonate (carbonate ester) or cyclic ester are mixed.
What is necessary is just to contain polythiophene as a conductive polymer, and what mixed anionic polymer electrolytes, such as polystyrene sulfonic acid (PSS), in order to solubilize is used conveniently. In particular, poly (3,4-ethylenedioxythiophene) (PEDOT), which is a polythiophene derivative, and its derivatives are sold as aqueous dispersions and can be easily used.

イオン伝導性を高めるために用いるカーボネートや環状エステルは安全性や耐久性に優れ、電気化学的に安定であり、また電位窓が広く、使いやすいものであって、具体的に言えばカーボネートはエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等とされる。また、環状エステルとしてはγ−ブチロラクトン等が用いられる。
混合溶液を用いた導電性高分子膜の形成にはスピンコート、ディップコート、インクジェット、ディスペンサ、スクリーン印刷等、各種方法を用いることができる。
実施例1
バイエル社より販売されているPEDOT/PSSコロイド分散型水溶液(Baytron P)を予めよく攪拌し、分散させた上で、所定量のカーボネート又は環状エステルを少量ずつ添加し、十分に分散させた。カーボネートにはエチレンカーボネート及びプロピレンカーボネートを用い、環状エステルにはγ−ブチロラクトンを用いた。
Carbonates and cyclic esters used to increase ionic conductivity are excellent in safety and durability, are electrochemically stable, have a wide potential window, and are easy to use. Carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like. Further, γ-butyrolactone or the like is used as the cyclic ester.
Various methods such as spin coating, dip coating, inkjet, dispenser, and screen printing can be used to form the conductive polymer film using the mixed solution.
Example 1
A PEDOT / PSS colloid-dispersed aqueous solution (Baytron P) sold by Bayer was well stirred and dispersed in advance, and then a predetermined amount of carbonate or cyclic ester was added little by little to fully disperse. Ethylene carbonate and propylene carbonate were used for the carbonate, and γ-butyrolactone was used for the cyclic ester.

この混合溶液を用い、スピンコートによって基板上に薄膜を形成した。形成した薄膜を80℃、30分加熱することにより乾燥させ、常温になった後、直流4端子法で導電率を測定した。そして、薄膜の膜厚を測定し、体積抵抗率を算出した。結果を以下に示す。なお、濃度はBaytron Pに対する重量分率である。
γ−ブチロラクトン 1wt% γ−ブチロラクトン 10wt%
体積抵抗率 0.11Ω・cm 体積抵抗率 0.014Ω・cm
エチレンカーボネート 1wt% エチレンカーボネート 10wt%
体積抵抗率 0.083Ω・cm 体積抵抗率 0.02Ω・cm
プロピレンカーボネート 1wt% プロピレンカーボネート 10wt%
体積抵抗率 0.39Ω・cm 体積抵抗率 0.023Ω・cm
同様の方法によりBaytron Pのみによって形成した薄膜の体積抵抗率を算出したところ、13.9Ω・cmとなった。よって、カーボネートや環状エステルを添加することにより、導電性が向上していることが確認できた。
Using this mixed solution, a thin film was formed on the substrate by spin coating. The formed thin film was dried by heating at 80 ° C. for 30 minutes, and after reaching room temperature, the conductivity was measured by a direct current four-terminal method. And the film thickness of the thin film was measured and the volume resistivity was computed. The results are shown below. The concentration is a weight fraction with respect to Baytron P.
γ-butyrolactone 1wt% γ-butyrolactone 10wt%
Volume resistivity 0.11Ω ・ cm Volume resistivity 0.014Ω ・ cm
Ethylene carbonate 1wt% Ethylene carbonate 10wt%
Volume resistivity 0.083Ω ・ cm Volume resistivity 0.02Ω ・ cm
Propylene carbonate 1wt% Propylene carbonate 10wt%
Volume resistivity 0.39Ω ・ cm Volume resistivity 0.023Ω ・ cm
When the volume resistivity of the thin film formed only by Baytron P was calculated by the same method, it was 13.9 Ω · cm. Therefore, it was confirmed that the conductivity was improved by adding carbonate or cyclic ester.

次に、添加したカーボネートや環状エステルが形成した薄膜に含有されているかを調べるために熱分析を行った。熱分析には熱重量測定(Tg/dTA)や示差走査熱量測定(DSC)を用いた。分析した結果、それぞれ添加したカーボネートもしくは環状エステルの沸点付近にピークが観測され、カーボネートや環状エステルが薄膜に含まれていることが確認できた。従って、カーボネートや環状エステルが薄膜中に存在することにより、導電性が向上していることが確認できた。
なお、上記においては添加するカーボネートや環状エステルの濃度は10wt%までとしているが、これは10wt%を超えると、上記の方法では混合が困難となることによる。これに対し、例えば自転と公転を使用した攪拌方法や超音波を利用した攪拌方法、機械的な攪拌方法など適切な攪拌方法を用いることにより、あるいは塩、界面活性剤を添加することにより、10wt%を超えても良好に混合することが可能となる。
実施例2
Baytron Pにエチレンカーボネート1wt%を混合した混合溶液を使用し、市販のインクジェット装置を用いて基板上に配線パターンを印刷形成した。形成後、実施例1と同様に加熱乾燥させた。配線パターンの厚さは約0.1μmであった。Baytron Pのみの場合と比較して導電性は向上した。
Next, thermal analysis was performed to examine whether the added carbonate or cyclic ester was contained in the formed thin film. Thermogravimetry (Tg / dTA) and differential scanning calorimetry (DSC) were used for thermal analysis. As a result of analysis, a peak was observed near the boiling point of the added carbonate or cyclic ester, and it was confirmed that the carbonate or cyclic ester was contained in the thin film. Therefore, it was confirmed that the conductivity was improved by the presence of carbonate or cyclic ester in the thin film.
In addition, although the density | concentration of the carbonate and cyclic ester to add is made into 10 wt% in the above, when this exceeds 10 wt%, it will become difficult to mix by said method. On the other hand, for example, by using an appropriate stirring method such as a stirring method using rotation and revolution, a stirring method using ultrasonic waves, a mechanical stirring method, or by adding a salt or a surfactant, 10 wt. Even if it exceeds%, it becomes possible to mix well.
Example 2
A wiring solution in which 1 wt% of ethylene carbonate was mixed with Baytron P was used, and a wiring pattern was printed on the substrate using a commercially available inkjet apparatus. After formation, it was dried by heating in the same manner as in Example 1. The thickness of the wiring pattern was about 0.1 μm. Compared with the case of Baytron P alone, the conductivity was improved.

さらに、上記と同様にインクジェット装置を用いてOHPシート全面に薄膜を印刷形成した。良好な透明性を示し、透明電極や電磁シールドとして使用できることが確認できた。
実施例3
Baytron Pにエチレンカーボネート1wt%を混合した混合溶液を使用し、インクジェット装置を用いて基板上に配線パターン(導体パターン)を印刷形成し、さらにBaytron Pのみで抵抗体パターンを同様に印刷形成して、印刷抵抗付きの回路パターンを形成した。加熱乾燥は実施例1と同様に行った。同種材料であるため、導体パターンと抵抗体パターンとの接続部でのはがれ等の問題も生じず、良好に回路パターンを形成することができた。
実施例4
ITO膜よりなる透明電極をガラス基板上に形成し、その透明電極上にBaytron Pにエチレンカーボネート0.1wt%を混合した混合溶液を用いて薄膜を形成した。実施例1と同様に加熱乾燥後、その薄膜上に発光層としてAlq3(キノリン金属錯体)を蒸着し、さらにその上に電極としてAl(アルミニウム)を蒸着し、ヘテロ構造の有機ELを作製した。発光を確認でき、混合溶液により形成した薄膜は有機半導体として、つまりホール移動体として機能していることを確認した。
Further, a thin film was printed and formed on the entire surface of the OHP sheet using an ink jet apparatus in the same manner as described above. It showed good transparency and was confirmed to be usable as a transparent electrode or electromagnetic shield.
Example 3
Using a mixed solution of Baytron P mixed with 1% by weight of ethylene carbonate, an ink jet device is used to print and form a wiring pattern (conductor pattern) on the substrate. A circuit pattern with printing resistance was formed. Heat drying was performed in the same manner as in Example 1. Since they are the same material, problems such as peeling at the connection portion between the conductor pattern and the resistor pattern did not occur, and a circuit pattern could be formed satisfactorily.
Example 4
A transparent electrode made of an ITO film was formed on a glass substrate, and a thin film was formed on the transparent electrode using a mixed solution in which 0.1 wt% ethylene carbonate was mixed with Baytron P. After heating and drying in the same manner as in Example 1, Alq3 (quinoline metal complex) was vapor-deposited on the thin film as a light-emitting layer, and Al (aluminum) was vapor-deposited thereon as an electrode to produce a heterostructure organic EL. It was confirmed that the thin film formed from the mixed solution functions as an organic semiconductor, that is, as a hole moving body.

以上説明したように、この発明によるポリチオフェン又はポリチオフェン誘導体を含む化合物と、少なくとも1種類以上のカーボネート又は環状エステルを含む化合物とを含有する導電性高分子膜によれば優れた導電性を得ることができる。
また、実施例3に示したように、導体パターンとその導体パターンに接続されている抵抗体パターンとが基板上に形成されているような回路基板において、導体パターンをこの発明による導電性高分子膜で形成し、抵抗体パターンをカーボネートや環状エステルを含まないポリチオフェン誘導体よりなる膜によって形成すれば、導体パターンと同種の材料によって抵抗体パターンを形成することができ、接続部でのはがれ等も生じず、良好な接続状態を得ることができる。
As described above, according to the conductive polymer film containing the compound containing polythiophene or polythiophene derivative according to the present invention and the compound containing at least one kind of carbonate or cyclic ester, excellent conductivity can be obtained. it can.
Further, as shown in Example 3, in a circuit board in which a conductor pattern and a resistor pattern connected to the conductor pattern are formed on the substrate, the conductor pattern is formed of the conductive polymer according to the present invention. If the resistor pattern is formed of a film made of a polythiophene derivative containing no carbonate or cyclic ester, the resistor pattern can be formed of the same kind of material as the conductor pattern, and the peeling at the connection portion, etc. It does not occur and a good connection state can be obtained.

なお、導体パターンと抵抗体パターンとをいずれもこの発明による導電性高分子膜よりなるものとし、カーボネート又は環状エステルを含む化合物の混合比を変えることによって、それら導体パターンと抵抗体パターンとを形成することも可能である。
添加するカーボネート又は環状エステルは前述した例では1種類としているが、1種類に限定する必要はなく、複数種類添加するようにしてもよい。
上述したこの発明による導電性高分子膜は各種分野において使用することができる。導電体として、配線、電磁波シールド、透明電極等に用いることができる。また、抵抗体としての使用も可能である。さらに、有機半導体として使用することも有効であり、有機EL構成部材、有機FET、太陽電池等に用いることができる。
Both the conductor pattern and the resistor pattern are made of the conductive polymer film according to the present invention, and the conductor pattern and the resistor pattern are formed by changing the mixing ratio of the compound containing carbonate or cyclic ester. It is also possible to do.
The carbonate or cyclic ester to be added is one kind in the above-described example, but it is not necessary to limit to one kind, and a plurality of kinds may be added.
The above-described conductive polymer film according to the present invention can be used in various fields. As a conductor, it can be used for wiring, electromagnetic wave shields, transparent electrodes, and the like. Further, it can be used as a resistor. Furthermore, it is also effective to use it as an organic semiconductor, and it can be used for organic EL constituent members, organic FETs, solar cells and the like.

一方、この発明による導電性高分子膜は電子伝導体とイオン伝導体の両方の特性を兼ね備えているため、電子伝導体とイオン伝導体とが接する部分で使用するのに適している。通常、電子伝導体とイオン伝導体とをそのまま接触させると、界面に絶縁膜が生成し、界面インピーダンスが大きくなる。これに対し、この発明による導電性高分子膜ではイオン伝導性を有するため、そのような絶縁膜の生成が抑えられ、界面インピーダンスを下げることができる。このような界面に使用できる例として、電気化学を利用する電池、キャパシタ等があげられる。   On the other hand, the conductive polymer film according to the present invention has characteristics of both an electron conductor and an ionic conductor, and is therefore suitable for use in a portion where the electron conductor and the ionic conductor are in contact with each other. Usually, when an electron conductor and an ionic conductor are brought into contact with each other as they are, an insulating film is generated at the interface, and the interface impedance increases. On the other hand, since the conductive polymer film according to the present invention has ionic conductivity, the generation of such an insulating film can be suppressed and the interface impedance can be lowered. Examples that can be used for such interfaces include batteries, capacitors, and the like that utilize electrochemistry.

Claims (5)

ポリチオフェン又はポリチオフェン誘導体を含む化合物と、少なくとも1種類以上のカーボネート又は環状エステルを含む化合物とを含有することを特徴とする導電性高分子膜。   A conductive polymer film comprising a compound containing polythiophene or a polythiophene derivative and a compound containing at least one kind of carbonate or cyclic ester. 請求項1記載の導電性高分子膜において、
上記ポリチオフェン誘導体は3,4−エチレンジオキシチオフェン骨格を含むことを特徴とする導電性高分子膜。
The conductive polymer film according to claim 1,
The polythiophene derivative contains a 3,4-ethylenedioxythiophene skeleton, and is a conductive polymer film.
請求項1又は2記載の導電性高分子膜によって回路パターンが形成されていることを特徴とする回路基板。   A circuit board having a circuit pattern formed of the conductive polymer film according to claim 1. 導体パターンとその導体パターンに接続されている抵抗体パターンとが基板上に形成されている回路基板であって、
上記導体パターンが請求項1又は2記載の導電性高分子膜によって形成され、
上記抵抗体パターンがポリチオフェン誘導体よりなる膜によって形成されていることを特徴とする回路基板。
A circuit board in which a conductor pattern and a resistor pattern connected to the conductor pattern are formed on the board,
The conductive pattern is formed by the conductive polymer film according to claim 1 or 2,
A circuit board, wherein the resistor pattern is formed of a film made of a polythiophene derivative.
導体パターンとその導体パターンに接続されている抵抗体パターンとが基板上に形成されている回路基板であって、
上記導体パターン及び抵抗体パターンが共に請求項1又は2記載の導電性高分子膜よりなり、それら導体パターン及び抵抗体パターンは上記少なくとも1種類以上のカーボネート又は環状エステルを含む化合物の混合比を変えることによって形成されていることを特徴とする回路基板。
A circuit board in which a conductor pattern and a resistor pattern connected to the conductor pattern are formed on the board,
The conductor pattern and the resistor pattern are both made of the conductive polymer film according to claim 1, and the conductor pattern and the resistor pattern change a mixing ratio of the compound containing at least one kind of carbonate or cyclic ester. A circuit board characterized by being formed.
JP2005324046A 2005-11-08 2005-11-08 Electroconductive polymer film and circuit substrate Pending JP2007131682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324046A JP2007131682A (en) 2005-11-08 2005-11-08 Electroconductive polymer film and circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324046A JP2007131682A (en) 2005-11-08 2005-11-08 Electroconductive polymer film and circuit substrate

Publications (1)

Publication Number Publication Date
JP2007131682A true JP2007131682A (en) 2007-05-31

Family

ID=38153601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324046A Pending JP2007131682A (en) 2005-11-08 2005-11-08 Electroconductive polymer film and circuit substrate

Country Status (1)

Country Link
JP (1) JP2007131682A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054572A1 (en) * 2007-10-23 2009-04-30 Skc Co., Ltd. Polythiophene-based conductive polymer membrane
JP2011060749A (en) * 2009-09-07 2011-03-24 Samsung Electro-Mechanics Co Ltd Method for forming organic electrode for transparent electrode
JP2011108425A (en) * 2009-11-13 2011-06-02 Japan Aviation Electronics Industry Ltd Transparent electrode structure and touch panel using the same
KR101440859B1 (en) 2013-06-04 2014-09-17 에스케이씨 주식회사 Conductivity reducing agent for conductive polymer film and patterning process using same
CN107735718A (en) * 2015-06-26 2018-02-23 株式会社电装 Head-up display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153516A (en) * 1988-12-05 1990-06-13 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacture thereof
WO2004106404A1 (en) * 2003-05-27 2004-12-09 Fujitsu Limited Organic conductive polymer composition, transparent conductive film and transparent conductor both comprising the composition, and input device comprising the transparent conductor and its manufacturing method
JP2005068166A (en) * 2003-06-30 2005-03-17 Tomiyama Pure Chemical Industries Ltd Organic solvent dispersion of electroconductive polymeric substance and its manufacturing method
JP2005243645A (en) * 2004-02-27 2005-09-08 Hc Starck Gmbh Shapable electroluminescent device
JP2006104471A (en) * 2004-10-04 2006-04-20 Air Products & Chemicals Inc Substituted thienothiophene monomer and conductive polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153516A (en) * 1988-12-05 1990-06-13 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacture thereof
WO2004106404A1 (en) * 2003-05-27 2004-12-09 Fujitsu Limited Organic conductive polymer composition, transparent conductive film and transparent conductor both comprising the composition, and input device comprising the transparent conductor and its manufacturing method
JP2005068166A (en) * 2003-06-30 2005-03-17 Tomiyama Pure Chemical Industries Ltd Organic solvent dispersion of electroconductive polymeric substance and its manufacturing method
JP2005243645A (en) * 2004-02-27 2005-09-08 Hc Starck Gmbh Shapable electroluminescent device
JP2006104471A (en) * 2004-10-04 2006-04-20 Air Products & Chemicals Inc Substituted thienothiophene monomer and conductive polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054572A1 (en) * 2007-10-23 2009-04-30 Skc Co., Ltd. Polythiophene-based conductive polymer membrane
KR100917709B1 (en) * 2007-10-23 2009-09-21 에스케이씨 주식회사 Membrane using composition of conductive polymers
JP2011060749A (en) * 2009-09-07 2011-03-24 Samsung Electro-Mechanics Co Ltd Method for forming organic electrode for transparent electrode
JP2011061200A (en) * 2009-09-07 2011-03-24 Samsung Electro-Mechanics Co Ltd Method for forming transparent organic electrode
JP2011108425A (en) * 2009-11-13 2011-06-02 Japan Aviation Electronics Industry Ltd Transparent electrode structure and touch panel using the same
KR101440859B1 (en) 2013-06-04 2014-09-17 에스케이씨 주식회사 Conductivity reducing agent for conductive polymer film and patterning process using same
CN107735718A (en) * 2015-06-26 2018-02-23 株式会社电装 Head-up display

Similar Documents

Publication Publication Date Title
JP5185615B2 (en) Non-aqueous dispersion comprising doped conductive polymer and colloid-forming polymeric acid
KR101804000B1 (en) Complexes comprising a polythiophene and a sulphonated synthetic rubber and the preparation method thereof
JP5918236B2 (en) Polymer composition, polymer film, polymer gel, polymer foam, and electronic device containing the film, gel and foam
EP1798785B1 (en) Transparent Polymer Electrode for Electro-Optical Devices
JP5794640B2 (en) Polymerization solution and production method thereof, transparent film and transparent electrode obtained from this polymerization solution
US20050224788A1 (en) Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids
WO2005098872A2 (en) Aqueous electrically doped conductive polymers and polymeric acid colloids
TW201229159A (en) Layer compositions with improved electrical parameters comprising PEDOT/PSS and a stabilizer
EP1456856B1 (en) Material for making a conductive pattern
KR20090007242A (en) Selenium containing electrically conductive polymers and method of making electrically conductive polymers
JP5987843B2 (en) Composition for forming transparent electrode, transparent electrode, organic electronic device, and method for producing transparent electrode
CN103210451A (en) Method for producing layer structures by treatment with organic etchants and layer structures obtainable therefrom
EP2547737A1 (en) Sulphonated polyketones as a counter-ion of conductive polymers
JP2007131682A (en) Electroconductive polymer film and circuit substrate
US6887556B2 (en) Material for making a conductive pattern
JP6287845B2 (en) Organic thin film solar cell
US20130092878A1 (en) Thermoplastic based electronic conductive inks and method of making the same
KR101163940B1 (en) Method for forming conducting polymer electrode containing metal nano particle and the electrode material
JP4614445B2 (en) Conductive thin film, flexible member using the same, transparent electrode member, and electromagnetic shielding coating film
EP2449028A1 (en) New polyelectrolyte complexes and the use thereof
KR20120086208A (en) Method for forming conducting polymer electrode and the electrode material
WO2004019348A1 (en) Layer configuration comprising an electron-blocking element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110208

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Effective date: 20110415

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20111227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Effective date: 20130326

Free format text: JAPANESE INTERMEDIATE CODE: A02