JP2007130685A - Method for enhancing fatigue strength of spot welded joint of high-strength steel plate - Google Patents

Method for enhancing fatigue strength of spot welded joint of high-strength steel plate Download PDF

Info

Publication number
JP2007130685A
JP2007130685A JP2005329026A JP2005329026A JP2007130685A JP 2007130685 A JP2007130685 A JP 2007130685A JP 2005329026 A JP2005329026 A JP 2005329026A JP 2005329026 A JP2005329026 A JP 2005329026A JP 2007130685 A JP2007130685 A JP 2007130685A
Authority
JP
Japan
Prior art keywords
strength
steel plate
punch
fatigue strength
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005329026A
Other languages
Japanese (ja)
Other versions
JP4724535B2 (en
Inventor
Hatsuhiko Oikawa
初彦 及川
Tadashi Ishikawa
忠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005329026A priority Critical patent/JP4724535B2/en
Publication of JP2007130685A publication Critical patent/JP2007130685A/en
Application granted granted Critical
Publication of JP4724535B2 publication Critical patent/JP4724535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of enhancing the fatigue strength of a weld joint while ensuring the excellent workability in a spot welded joint of a high-strength steel plate. <P>SOLUTION: In the method for enhancing the fatigue strength of a spot welded joint of a high-strength steel plate having the tensile strength of 260-1,570 MPa and the thickness of 0.6-3.3 mm, after the temperature of the surface of a weld part is dropped to ≤ 300°C after finishing the spot welding, a center of a columnar punch is set to a center of a weld part by using the columnar punch having the fore-end radius of curvature of 50-120 mm, the weld part is pressed from both sides of upper and lower steel plates so that the pressure P of the columnar punch satisfies inequalities (1) 0.0314×t×TS≤P≤0.1571×t×TS in terms of the relationship between the tensile strength TS of the high-strength steel plate, and the thickness t, where t : the thickness (mm) of the high-strength steel plate, TS : tensile strength (MPa) of the high-strength steel plate, and P: the pressure (kN) by the columnar punch. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主に自動車用部品の取付けおよび車体の組立てなどに適用される高強度鋼板のスポット溶接方法に関し、特に、高い継手疲労強度特性が要求される高強度鋼板のスポット溶接方法に関するものである。   The present invention relates to a spot-welding method for high-strength steel sheets mainly applied to mounting of automobile parts and assembling of a vehicle body, and more particularly to a spot-welding method for high-strength steel sheets that require high joint fatigue strength characteristics. is there.

近年、自動車の低燃費化、CO2排出量削減および衝突安全性向上等の対策のため、自動車分野では、車体や部品などに、薄肉の高強度鋼板を使用するニーズが高まっている。 In recent years, in the automobile field, there is a growing need for using thin high-strength steel sheets for car bodies and parts in order to reduce automobile fuel consumption, reduce CO 2 emissions, and improve collision safety.

車体の組立てや部品の取付けなどでは、スポット溶接方法が主に用いられているが、高強度鋼板をスポット溶接する場合には、以下のような問題がある。   A spot welding method is mainly used for assembling a vehicle body or attaching parts, but there are the following problems when spot-welding a high-strength steel plate.

スポット溶接部(溶接継手)の品質指標としては、引張強さとともに疲労強度が重要となる。通常、溶接継手のせん断方向の引張強さは、鋼板の引張強さとともに増加するが、溶接継手のせん断方向の疲労強度は、鋼板の引張強さが増加してもほとんど増加しない。   Fatigue strength is important as well as tensile strength as a quality index of spot welds (welded joints). Normally, the tensile strength in the shear direction of the welded joint increases with the tensile strength of the steel sheet, but the fatigue strength in the shear direction of the welded joint hardly increases even if the tensile strength of the steel sheet increases.

例えば、引張強さが290MPaの軟鋼板の代わりに、引張強さが590MPaの高強度鋼板を用いれば、スポット溶接継手の引張せん断強さ(溶接継手のせん断方向に引張荷重を負荷した場合の引張強さ)はほぼ2倍になるが、溶接継手のせん断方向に繰り返し荷重を負荷した場合の疲労強度、例えば、応力負荷の回数が2×106回における荷重を疲労強度と定義すると、疲労強度は増加せず、軟鋼板の場合とほぼ同じ値を示す。 For example, if a high strength steel plate with a tensile strength of 590 MPa is used instead of a mild steel plate with a tensile strength of 290 MPa, the tensile shear strength of the spot welded joint (the tensile strength when a tensile load is applied in the shear direction of the weld joint) Strength) is almost doubled, but fatigue strength when a repeated load is applied in the shear direction of a welded joint, for example, a load at a stress load of 2 × 10 6 times is defined as fatigue strength. Does not increase and shows almost the same value as in the case of mild steel plate.

このように、疲労強度が低い値を示す原因としては、従来報告されているように、スポット溶接部のノッチ形状が考えられる。すなわち、図1で示したように、鋼板1の間に存在するナゲット2の端部3がノッチ形状になっているため、引張せん断方向(矢印方向)4に荷重を負荷して疲労試験を行った場合、引張強さが高い鋼板を用いても、このノッチ効果によって疲労強度が向上しないと考えられる。   As described above, the cause of the low fatigue strength may be the notch shape of the spot welded portion, as reported conventionally. That is, as shown in FIG. 1, since the end 3 of the nugget 2 existing between the steel plates 1 has a notch shape, a fatigue test is performed by applying a load in the tensile shear direction (arrow direction) 4. In this case, it is considered that the fatigue strength is not improved by the notch effect even when a steel plate having a high tensile strength is used.

特に、高強度鋼板を用いた場合には、軟鋼板を用いた場合に比べて、ナゲット部の硬さが増加するため、このノッチ効果は顕著になる。一方、溶接継手の剥離方向(引張せん断方向(矢印方向)4と垂直な方向)に荷重を負荷して疲労試験を行った場合にも、高強度鋼板の溶接継手の疲労強度は増加せず、軟鋼と同じである。   In particular, when a high-strength steel plate is used, the notch effect becomes significant because the hardness of the nugget portion increases as compared with the case where a mild steel plate is used. On the other hand, even when a fatigue test was performed by applying a load in the peeling direction of the welded joint (the direction perpendicular to the tensile shear direction (arrow direction) 4), the fatigue strength of the welded joint of the high-strength steel sheet did not increase. Same as mild steel.

この場合には、ナゲット周辺部での応力集中が顕著であり、局部の応力負荷が高まり、そこでクラックが発生し易くなるため、引張せん断方向に繰り返し荷重を負荷した場合に比べて、疲労強度は一桁程度低下する。   In this case, the stress concentration in the nugget periphery is remarkable, and the stress load in the local area increases, and cracks are likely to occur there. Therefore, compared with the case where repeated loads are applied in the tensile shear direction, the fatigue strength is Decrease by an order of magnitude.

一般に、鋼板の引張強さが増加するほど、下記式で示される溶接部の靭性に関係する炭素当量Ceqの値が高くなる傾向にあり、高強度鋼板のCeqの値は、0.2を超えることが知られている。
Ceq=C+Si/30+Mn/20+2P+4S
なお、上記式中、C、Si、Mn、P、および、Sは、それぞれ、鋼中の炭素、珪素、マンガン、リン、硫黄の各含有量(質量%)を示す。
In general, as the tensile strength of a steel plate increases, the value of the carbon equivalent Ceq related to the toughness of the weld indicated by the following formula tends to increase, and the value of Ceq of the high strength steel plate exceeds 0.2. It is known.
Ceq = C + Si / 30 + Mn / 20 + 2P + 4S
In addition, in said formula, C, Si, Mn, P, and S show each content (mass%) of carbon in a steel, silicon, manganese, phosphorus, and sulfur, respectively.

このように、高強度鋼板の引張強さが増加する程、その鋼板の炭素当量Ceqが高くなるため、引張強さが高い高強度鋼板ほど、スポット溶接部(ナゲット部)と熱影響部の硬さが増加し、その結果、靱性が低下して破壊が容易に起こり易くなる。   Thus, since the carbon equivalent Ceq of the steel plate increases as the tensile strength of the high-strength steel plate increases, the higher the strength of the steel plate, the higher the strength of the spot welded portion (nugget portion) and the heat-affected zone. As a result, the toughness is lowered and the fracture is easily caused.

また、高強度鋼板では、軟鋼板に比べて、溶接時にスプリングバックが起こり易いため、スポット溶接部には引張の残留応力が発生して疲労強度が低下し易くなったり、また、割れが発生して疲労強度や静的強度が低下し易くなったりする。   Also, high strength steel plates are more susceptible to springback during welding than soft steel plates, so tensile residual stress occurs in spot welds and fatigue strength tends to decrease, and cracks occur. As a result, fatigue strength and static strength tend to decrease.

以上の理由で、高強度鋼板スポット溶接部の疲労強度は、高強度鋼板の引張強さが増加しても増加せず、軟鋼板と同程度になると考えられる。   For the above reasons, it is considered that the fatigue strength of the spot welded portion of the high-strength steel plate does not increase even when the tensile strength of the high-strength steel plate increases, and is comparable to that of the mild steel plate.

従来、スポット溶接継手の疲労強度を向上させる手段としては、継手疲労強度特性が優れた鋼板を用いてスポット溶接する方法が知られている(例えば、特許文献1〜6、参照)。しかし、これらの方法は、軟鋼板のスポット溶接継手に関するものであり、高強度鋼板のスポット溶接部の疲労強度を向上させる方法ではない。   Conventionally, as means for improving the fatigue strength of a spot welded joint, a method of spot welding using a steel plate having excellent joint fatigue strength characteristics is known (for example, see Patent Documents 1 to 6). However, these methods relate to spot welded joints of mild steel plates and are not methods for improving the fatigue strength of spot welded portions of high strength steel plates.

高強度鋼板のスポット溶接において、溶接継手の疲労強度を向上させる手段としては、スポット溶接の際の通電が完了した後、一定時間非通電状態で冷却し、その後、テンパー通電を行い、スポット溶接部(ナゲット部)と熱影響部を焼鈍して硬さを低下させ、残留応力を変化させる方法が知られている(例えば、非特許文献1、参照)。   In spot welding of high-strength steel plates, as a means to improve the fatigue strength of welded joints, after energization at the time of spot welding is completed, cool in a non-energized state for a certain period of time, and then perform temper energization, A method is known in which the nugget portion and the heat-affected zone are annealed to reduce the hardness and change the residual stress (for example, see Non-Patent Document 1).

しかし、この方法は、テンパー通電の適正な条件範囲の幅が非常に狭く、また、操業条件の変化により再現性が乏しいという実用上の問題がある。特に、めっき鋼板を連続的に打点してスポット溶接する場合には、打点数の増加とともに、電極先端がめっきとの合金化反応によって劣化し、電極先端径が増大して電流密度が低下し、最適なテンパー通電条件から外れるため、安定的に継手の疲労強度を向上させることが困難となる。   However, this method has a practical problem that the appropriate condition range of the temper energization is very narrow, and the reproducibility is poor due to a change in operating conditions. In particular, when spot welding is performed by continuously spotting a plated steel sheet, the electrode tip deteriorates due to an alloying reaction with the plating as the number of hit points increases, the electrode tip diameter increases, and the current density decreases, Since it deviates from the optimum temper energization condition, it is difficult to stably improve the fatigue strength of the joint.

高強度鋼板のスポット溶接において、溶接継手の疲労強度を向上させる別の手段としては、電極による加圧下で高強度鋼板同士をスポット溶接するとともに、スポット溶接後の電極に対する一時的通電(後通電)で、スポット溶接部を発熱させて焼き戻し、かつ、スポット溶接部の周囲の引張残留応力を、電極による加圧力の増加で減少させ、スポット溶接継手の疲労強度を増加させる方法が知られている(例えば、特許文献7、参照)。   In spot welding of high-strength steel plates, as another means to improve the fatigue strength of welded joints, high-strength steel plates are spot-welded to each other under pressure by electrodes, and temporary energization to the electrodes after spot welding (post-energization) A method is known in which the spot welded portion is heated and tempered, and the tensile residual stress around the spot welded portion is reduced by increasing the pressure applied by the electrode to increase the fatigue strength of the spot welded joint. (For example, refer to Patent Document 7).

しかし、この方法も、上記方法と同様で、テンパー通電の適正な条件範囲の幅が非常に狭く、また、操業条件の変化により再現性が乏しいという実用上の問題がある。また、巻き戻し後の加圧力が非常に高いため、電極寿命が非常に短くなり、また、溶接部の凹みが大きくなるという問題も生じる。   However, this method is also similar to the above method, and there is a practical problem that the range of the appropriate condition range for energizing the temper is very narrow, and the reproducibility is poor due to changes in the operating conditions. Further, since the applied pressure after rewinding is very high, there is a problem that the electrode life is very short and the dent of the welded portion becomes large.

高強度鋼板スポット溶接部の疲労強度を向上させる方法としては、これ以外にも、スポット溶接後に、溶接部を非通電・非加圧で放置した後、さらに非通電で加圧して、スポット溶接部の疲労強度を向上させる方法が知られている(例えば、特許文献8、参照)。   As another method for improving the fatigue strength of spot welded parts of high-strength steel plates, after spot welding, leave the welded part unenergized / non-pressurized and then pressurize it with non-energized spot welded part. There is known a method for improving the fatigue strength (for example, see Patent Document 8).

しかし、この方法では、最適加圧条件が提示されておらず、引張強さの異なる各種高強度鋼板に対して、どのような加圧力で処理をすべきかが不明である。   However, in this method, the optimum pressing conditions are not presented, and it is unclear what pressure should be applied to various high-strength steel plates having different tensile strengths.

また、高強度鋼板スポット溶接部の疲労強度を向上させる方法として、スポット溶接後に、スポット溶接部を加圧して、スポット溶接部の疲労強度を上げる方法が知られている(例えば、非特許文献2、参照)。   Further, as a method for improving the fatigue strength of a spot welded portion of a high-strength steel plate, a method of increasing the fatigue strength of a spot welded portion by pressurizing the spot welded portion after spot welding is known (for example, Non-Patent Document 2). ,reference).

しかし、この方法は、軟鋼板スポット溶接継手の疲労強度向上法に関するものであり、高強度鋼板スポット溶接継手の疲労強度向上法に関するものではない。また、スポット溶接部の加圧において、先端形状がどのようなツールを用い、強度が異なる各種高強度鋼板に対して、どのような加圧力で加圧するのかの検討は十分にされていない。   However, this method relates to a method for improving the fatigue strength of a spot welded joint of mild steel plate, and is not related to a method for improving the fatigue strength of a spot welded joint of high strength steel plate. In addition, in the pressurization of the spot welded portion, there has not been sufficiently studied what kind of tool is used at the tip shape and what pressure is applied to various high-strength steel plates having different strengths.

この他にも、抵抗スポット溶接部の疲労強度を向上させる方法として、抵抗スポット溶接部に超音波衝撃処理を施す方法が知られている(例えば、特許文献9、参照)。しかし、この方法は、溶接終了後に後処理行程が必要となり、その分、作業工程が増えて、経済的負荷も増加するので、作業性や経済性の点で好ましい方法ではない。   In addition to this, as a method of improving the fatigue strength of the resistance spot welded portion, a method of applying an ultrasonic impact treatment to the resistance spot welded portion is known (for example, see Patent Document 9). However, this method is not a preferable method in terms of workability and economy because it requires a post-treatment process after the end of welding, which increases the number of work steps and the economic load.

また、従来、溶接継手の疲労強度を向上させるために抵抗スポット溶接打点数(ナゲット数)を増やす方法も知られている。しかし、この方法は、溶接作業効率の低下、溶接施工コストの上昇、および、設計自由度の制約等の問題を抱えている。また、この方法は、抵抗スポット溶接打点数(ナゲット数)を増やすことで、継手における1個当たりのナゲット周辺部の応力集中を軽減することを狙うものである。   Conventionally, a method of increasing the number of resistance spot welding points (number of nuggets) in order to improve the fatigue strength of the welded joint is also known. However, this method has problems such as a decrease in welding work efficiency, an increase in welding construction cost, and a restriction on design freedom. Moreover, this method aims at reducing the stress concentration of the nugget periphery part per joint in a joint by increasing the number of resistance spot welding points (number of nuggets).

しかし、継手に応力が負荷された場合、各溶接点(ナゲット)に必ずしも均等に応力がかからないため、応力分散効果が十分発揮されず、どちらかの溶接点に応力が集中する。その結果、溶接打点数を、例えば、1点から2点、3点と増やしたとしても、継手の疲労強度は、必ずしも2倍、3倍にはならない。   However, when stress is applied to the joint, the stress is not necessarily applied evenly to each welding point (nugget), so that the stress dispersion effect is not sufficiently exhibited, and the stress concentrates on one of the welding points. As a result, even if the number of welding points is increased from 1 point to 2 points or 3 points, for example, the fatigue strength of the joint is not necessarily doubled or tripled.

特開昭63−317625号公報Japanese Unexamined Patent Publication No. Sho 63-317625 特開平2−163323号公報JP-A-2-163323 特開平5−263184号公報JP-A-5-263184 特開平9−268346号公報JP-A-9-268346 特開平10−8187号公報Japanese Patent Laid-Open No. 10-8187 特開平11−279689号公報Japanese Patent Laid-Open No. 11-279589 特開2001−170776号公報JP 2001-170776 A 特開2001−321953号公報Japanese Patent Laid-Open No. 2001-321593 特開2004−122152号公報JP 2004-122152 A 「鉄と鋼」第68巻(1982年)第9号、第1444〜1451頁"Iron and Steel" Vol. 68 (1982) No. 9, pp. 1444-1451 R. Spitsen, D. Kim, M. Ramulu, B. Flinn and E. T. Easterbrook, “THE EFFECTS OF POST-WELD COLD WORKING PROCESSES ON THE FATIGUE STRENGTH OF LOW CARBON STEEL RESISTANCE SPOT WELDS”, Proceedings of IMECE: 2004 ASME International Mechanical Engineering Congress & Exposition.R. Spitsen, D. Kim, M. Ramulu, B. Flinn and ET Easterbrook, “THE EFFECTS OF POST-WELD COLD WORKING PROCESSES ON THE FATIGUE STRENGTH OF LOW CARBON STEEL RESISTANCE SPOT WELDS”, Proceedings of IMECE: 2004 ASME International Mechanical Engineering Congress & Exposition.

前述のように、従来の高強度鋼板のスポット溶接方法では、継手疲労強度は、軟鋼板をスポット溶接した場合の継手疲労強度と変わらないため、鋼板板厚により継手疲労強度を確保せざるを得ず、自動車分野において、高強度鋼板を用いることによる安全性向上や、軽量化による低燃費化、CO2排出量削減のメリットを十分に享受することができない。 As described above, in the conventional spot-welding method for high-strength steel sheets, the joint fatigue strength is the same as the joint fatigue strength when spot-welding mild steel sheets, so the joint fatigue strength must be ensured by the steel sheet thickness. In the automotive field, it is not possible to fully enjoy the merits of improving safety by using high-strength steel sheets, reducing fuel consumption by reducing weight, and reducing CO 2 emissions.

本発明は、これらの従来技術における問題を解決するために、高強度鋼板のスポット溶接において、良好な溶接作業性を確保しつつ、溶接継手の疲労強度を向上することができるスポット溶接方法を提供することを目的とする。   The present invention provides a spot welding method capable of improving the fatigue strength of a welded joint while ensuring good welding workability in spot welding of a high-strength steel sheet in order to solve these problems in the prior art. The purpose is to do.

本発明者らは、高強度鋼板のスポット溶接継手の疲労強度が低下する要因の一つであるナゲット周辺の残留応力状態を引張側から圧縮側にし、応力集中部となるナゲット周辺の残留応力状態を改善する手法について鋭意検討した。   The present inventors changed the residual stress state around the nugget, which is one of the factors that decrease the fatigue strength of the spot welded joint of the high-strength steel plate, from the tension side to the compression side, and the residual stress state around the nugget that becomes the stress concentration part We have intensively studied how to improve the above.

その結果、スポット溶接部との接触状態が良好に維持される先端形状を有するポンチを用い、各高強度鋼板の引張強さおよび板厚に応じて最適な加圧力でナゲット周辺部に効率的に圧縮残留応力を導入することにより、高強度鋼板溶接継手の疲労強度を効果的に高め得ることを見出した。   As a result, using a punch with a tip shape that maintains good contact with the spot welded part, it is possible to efficiently apply to the nugget periphery with the optimum pressure according to the tensile strength and thickness of each high-strength steel sheet. It has been found that the fatigue strength of a high-strength steel plate welded joint can be effectively increased by introducing compressive residual stress.

本発明は、これらの知見に基づきなされたものであり、その要旨とするところは、以下の通りである。   This invention is made | formed based on these knowledge, The place made into the summary is as follows.

(1)引張強さが260〜1570MPa、板厚が0.6〜3.3mmの高強度鋼板スポット溶接継手の疲労強度向上方法において、スポット溶接後、溶接部表面の温度が300℃以下に低下した後、先端の曲率半径が50〜120mmの円柱型ポンチを用い、該円柱型ポンチの中心を溶接部の中心に合わせ、溶接部上下の鋼板両面から、該円柱型ポンチの加圧力Pが前記高強度鋼板の引張強さTSおよび板厚tとの関係で下記(1)式を満たすように加圧することを特徴とする高強度鋼板スポット溶接継手の疲労強度向上方法。   (1) In a method for improving the fatigue strength of a spot-welded joint of high-strength steel sheet having a tensile strength of 260 to 1570 MPa and a plate thickness of 0.6 to 3.3 mm, the temperature of the welded surface decreases to 300 ° C. or less after spot welding. After that, using a cylindrical punch having a radius of curvature at the tip of 50 to 120 mm, the center of the cylindrical punch is aligned with the center of the welded portion, and the pressure P of the cylindrical punch is applied from both the upper and lower steel plates above and below the welded portion. A method for improving the fatigue strength of a spot welded joint of high strength steel plate, wherein pressurization is performed so as to satisfy the following formula (1) in relation to tensile strength TS and thickness t of the high strength steel plate.

0.0314×t×TS≦P≦0.1571×t×TS ・・・・・(1)
ただし、
t :高強度鋼板の板厚(mm)
TS:高強度鋼板の引張強さ(MPa)
P :円柱型ポンチでの加圧力(kN)
0.0314 × t × TS ≦ P ≦ 0.1571 × t × TS (1)
However,
t: Thickness (mm) of high-strength steel plate
TS: Tensile strength (MPa) of high-strength steel sheet
P: Pressurizing force with cylindrical punch (kN)

(2)引張強さが260〜1570MPa、板厚が0.6〜3.3mmの高強度鋼板スポット溶接継手の疲労強度向上方法において、スポット溶接後、溶接部表面の温度が300℃以下に低下した後、突起先端の曲率半径が2.0〜7.0mm、突起高さが1.0〜3.0mmのリング状突起を先端部に有し、該リング状突起の直径Dがナゲット径NDとの関係で下記(2)を満たす突起型ポンチを用い、該突起型ポンチの中心を溶接部の中心に合わせ、溶接部上下の鋼板両面から、該突起型ポンチの加圧力Pが前記高強度鋼板の引張強さTSおよび板厚tとの関係で下記(3)式を満たすように加圧することを特徴とする高強度鋼板スポット溶接継手の疲労強度向上方法。   (2) In a method for improving the fatigue strength of a spot-welded joint of high-strength steel sheets having a tensile strength of 260 to 1570 MPa and a plate thickness of 0.6 to 3.3 mm, the temperature of the surface of the welded portion decreases to 300 ° C. or less after spot welding. After that, the tip end has a ring-shaped projection having a radius of curvature of the projection of 2.0 to 7.0 mm and a projection height of 1.0 to 3.0 mm, and the diameter D of the ring-shaped projection is the nugget diameter ND. The projecting punch satisfying the following (2) is used, the center of the projecting punch is aligned with the center of the welded portion, and the pressure P of the projecting punch is applied to the high strength from both the upper and lower steel plates. A method for improving the fatigue strength of a high-strength steel spot welded joint, wherein pressurization is performed so as to satisfy the following expression (3) in relation to the tensile strength TS and the thickness t of the steel plate.

0.70×ND≦D≦1.30×ND ・・・・・(2)
0.0157×t×TS≦P≦0.0786×t×TS ・・・・・(3)
ただし、
ND:ナゲット径(mm)
D:リング状突起の直径(mm)
t :高強度鋼板の板厚(mm)
TS:高強度鋼板の引張強さ(MPa)
P :突起型ポンチでの加圧力(kN)
0.70 × ND ≦ D ≦ 1.30 × ND (2)
0.0157 × t × TS ≦ P ≦ 0.0786 × t × TS (3)
However,
ND: Nugget diameter (mm)
D: Ring-shaped protrusion diameter (mm)
t: Thickness (mm) of high-strength steel plate
TS: Tensile strength (MPa) of high-strength steel sheet
P: Pressurizing force with protrusion type punch (kN)

本発明によれば、自動車用部品の取付けおよび車体の組立てなどで用いる高強度鋼板のスポット溶接において、良好な溶接作業性を確保しつつ溶接継手の疲労強度を向上させることができる。したがって、本発明の適用により、自動車分野などで、高強度鋼板適用による安全性向上や、軽量化による低燃料費、CO2排出量削減のメリットなどを十分に享受でき、社会的な貢献は多大である。 ADVANTAGE OF THE INVENTION According to this invention, the fatigue strength of a welded joint can be improved, ensuring favorable welding workability | operativity in the spot welding of the high-strength steel plate used for the attachment of the components for motor vehicles, the assembly of a vehicle body, etc. Therefore, by applying the present invention, in the automotive field, etc., it is possible to fully enjoy the benefits of improving safety by applying high-strength steel sheets, reducing fuel costs by reducing weight, reducing CO 2 emissions, etc. It is.

以下に、本発明の詳細を説明する。
まず、高強度鋼板のスポット溶接継手の疲労強度を向上させる方法として、
(a)溶接金属(ナゲット)端部のノッチ形状を変えて、応力集中が起こり難くする方法、
(b)溶接金属(ナゲット)部とその周辺の熱影響部(HAZ)の硬さを低下させる方法、および、
(c)溶接金属(ナゲット)部周囲に圧縮残留応力を導入して、相対的に引張残留応力を低減させる方法、
の大きく3つの方法が考えられる。
Details of the present invention will be described below.
First, as a method of improving the fatigue strength of spot welded joints of high-strength steel plates,
(A) A method of making stress concentration difficult to occur by changing the notch shape at the end of the weld metal (nugget),
(B) a method of reducing the hardness of the weld metal (nugget) portion and the surrounding heat-affected zone (HAZ), and
(C) a method of introducing compressive residual stress around the weld metal (nugget) portion to relatively reduce tensile residual stress,
There are three possible methods.

(a)の方法については、例えば、非特許文献1に記載されているように、意図的に、溶接中に散り(通電中、鋼板間に生成された溶融部の直径が銅電極の先端直径より大きくなって、鋼板の隙間から溶融金属が飛散する現象)を発生させて、溶接金属(ナゲット)部の端部形状を変化させる方法が知られているが、この方法では、溶接金属(ナゲット)部の端部形状がばらつき、実際、疲労強度もかなりばらつくため、安定して継手疲労強度特性を向上させる手法として好ましくない。   As for the method of (a), for example, as described in Non-Patent Document 1, it is intentionally scattered during welding (the diameter of the molten part generated between the steel plates during energization is the tip diameter of the copper electrode). There is a known method of changing the shape of the end of the weld metal (nugget) by generating a phenomenon in which the molten metal scatters from the gap between the steel plates, but this method uses a weld metal (nugget). ) Portion end shape varies, and in fact, the fatigue strength varies considerably, which is not preferable as a method for stably improving joint fatigue strength characteristics.

(b)の方法としては、非特許文献1や特許文献7に記載されているように、溶接終了後に一定時間非通電状態で冷却し、その後、再度、溶接部に一定時間通電(後通電)して、溶接部をテンパー処理する方法が知られている。しかし、この方法は、既に述べたように、溶接部のテンパー処理のための最適通電条件範囲が非常に狭く、また、操業条件の変化などにより再現性が乏しいという問題を抱えている。   As a method of (b), as described in Non-Patent Document 1 and Patent Document 7, cooling is performed in a non-energized state for a certain period of time after the end of welding, and then the welding part is energized again for a certain period of time (post-energization). A method of tempering the welded portion is known. However, as described above, this method has a problem that the optimum energization condition range for the temper treatment of the welded portion is very narrow, and the reproducibility is poor due to a change in operating conditions.

また、(c)の方法としては、特許文献8に記載されているように、スポット溶接後、所定時間経過した後に、非通電状態の電極で溶接部を加圧する方法、また、非特許文献2に記載されているように、スポット溶接後に電極以外の加圧治具で溶接部を加圧する方法が知られている。しかし、この方法では、高強度鋼板の継手疲労強度の向上に有効な加圧治具の先端形状や加圧条件を提示するものではなく、その効果は不十分であった。   Further, as described in Patent Document 8, as a method of (c), after spot welding, after a predetermined time has passed, a method of pressurizing the welded portion with a non-energized electrode, Non-Patent Document 2 As described in, there is known a method of pressurizing a welded portion with a pressurizing jig other than an electrode after spot welding. However, this method does not present the tip shape or pressurizing condition of the pressurizing jig effective for improving the joint fatigue strength of the high-strength steel sheet, and its effect is insufficient.

また、特許文献9に記載されているように、スポット溶接継手の溶接部に超音波衝撃処理を施す方法も知られているが、後処理を前提とするため、作業性や製造コストの点で実用的な方法といて好ましくない。   In addition, as described in Patent Document 9, a method of performing ultrasonic impact treatment on a welded portion of a spot welded joint is also known. However, since post-processing is assumed, in terms of workability and manufacturing cost. A practical method is not preferable.

本発明者らは、(c)の方法として、スポット溶接部との接触状態が良好に維持される先端形状を有するポンチを用い、各高強度鋼板の引張強さおよび板厚に応じて、最適な加圧力でナゲット周辺部に、効率的に圧縮残留応力を導入することにより、高強度鋼板溶接継手の疲労強度を効果的に高め得ることを見出した。   As a method of (c), the present inventors use a punch having a tip shape that maintains a good contact state with a spot welded portion, and is optimal according to the tensile strength and thickness of each high-strength steel plate. It has been found that the fatigue strength of a high-strength steel plate welded joint can be effectively increased by efficiently introducing compressive residual stress into the periphery of the nugget with a moderate pressure.

本発明は、前述したように上記知見に基づいてなされたものである。以下、詳細に説明する。   The present invention has been made based on the above findings as described above. Details will be described below.

図2は、本発明によるスポット溶接を説明するための図である。スポット溶接では、被接合材である2枚の高強度鋼板1同士を重ね合わせ、その重ね合わせ部を上下2つの銅製の溶接電極5を用いて、所定の加圧力6で加圧しながら上下方向に通電し、2枚の高強度鋼板1の間に溶融金属部を形成させる。   FIG. 2 is a view for explaining spot welding according to the present invention. In spot welding, two high-strength steel plates 1 that are materials to be joined are overlapped with each other, and the overlapped portion is vertically moved while pressing with a predetermined pressure 6 using two upper and lower copper welding electrodes 5. Energization is performed to form a molten metal portion between the two high-strength steel plates 1.

この溶融金属部は、溶接通電終了後、水冷された電極と接触した状態で、電極による抜熱や鋼板への熱伝導により冷却されて凝固し、2枚の高強度鋼板1の間にナゲット(溶接金属)2が形成される。   This molten metal portion is cooled and solidified by heat removal by the electrode or heat conduction to the steel sheet in contact with the water-cooled electrode after the welding energization is completed, and a nugget between two high-strength steel sheets 1 ( Weld metal) 2 is formed.

図3に、通電・冷却後のスポット溶接部を示す。2枚の高強度鋼板1の間には、ナゲット2の形成とともにその周囲に溶接入熱に起因した熱影響部(以下、ナゲットとその周囲の熱影響部を合わせて溶接部ということもある)が形成される。また、高強度鋼板1の上下の表裏面では、上下溶接電極による加圧によって溶接部が高温で塑性変形し、溶接部で窪み7が形成される。   FIG. 3 shows the spot weld after energization / cooling. Between the two high-strength steel sheets 1, the nugget 2 is formed and the heat affected zone caused by welding heat input around the nugget 2 (hereinafter, the nugget and the surrounding heat affected zone may be collectively referred to as a weld zone). Is formed. In addition, on the upper and lower front and back surfaces of the high-strength steel plate 1, the welded portion is plastically deformed at a high temperature by pressurization by the upper and lower welding electrodes, and the recess 7 is formed at the welded portion.

スポット溶接により2枚の高強度鋼板1の間に形成された溶融金属は、凝固後の冷却過程でマルテンサイト変態により体積膨張を生じるが、その後、さらに室温までの冷却過程で熱収縮が起き、最終的に形成されたナゲット2の周辺8の残留応力は、引張の残留応力状態になる。このナゲット2の周辺8に導入された引張残留応力が、ナゲット端部のノッチ形状とともに、高強度鋼板のスポット溶接における継手疲労強度特性低下の主な原因となる。   The molten metal formed between the two high-strength steel plates 1 by spot welding causes volume expansion due to martensitic transformation in the cooling process after solidification, and then heat shrinkage occurs in the cooling process to room temperature. The residual stress in the periphery 8 of the finally formed nugget 2 becomes a tensile residual stress state. The tensile residual stress introduced into the periphery 8 of the nugget 2 together with the notch shape at the end of the nugget becomes a main cause of the joint fatigue strength characteristic deterioration in spot welding of the high strength steel plate.

本発明の第1の実施形態は、被溶接材(図2に示す高強度鋼板1)として、引張強さTSが260〜1570MPa、板厚tが0.6〜3.3mmの範囲内の高強度鋼板を用い、スポット溶接後、溶接部表面の温度が300℃以下に低下した後(冷却後)に、図4の(a)で示す、先端の曲率半径R1が50〜120mmの円柱型ポンチを用い、図5の(a)で示すように、該円柱型ポンチの中心を溶接部の中心に合わせ、スポット溶接部(ナゲット2)上下の高強度鋼板1の両面から該円柱型ポンチの加圧力P(10)が、前記高強度鋼板の引張強さTSおよび板厚tとの関係で下記(1)式の条件を満足するように加圧を行い、ナゲット周囲に圧縮残留応力を導入して、溶接継手の疲労強度を向上させる。   In the first embodiment of the present invention, the material to be welded (high-strength steel plate 1 shown in FIG. 2) has a tensile strength TS of 260 to 1570 MPa and a thickness t in the range of 0.6 to 3.3 mm. After spot welding using a high-strength steel plate, the temperature of the weld surface decreases to 300 ° C. or less (after cooling), and then a cylindrical punch having a tip radius of curvature R1 of 50 to 120 mm shown in FIG. As shown in FIG. 5 (a), the center of the cylindrical punch is aligned with the center of the welded portion, and the cylindrical punch is added from both sides of the high strength steel plate 1 above and below the spot welded portion (nugget 2). Pressure is applied so that the pressure P (10) satisfies the condition of the following formula (1) in relation to the tensile strength TS and the thickness t of the high-strength steel plate, and compressive residual stress is introduced around the nugget. And improving the fatigue strength of the welded joint.

0.0314×t×TS≦P≦0.1571×t×TS ・・・・・(1)
ただし、
t :高強度鋼板の板厚(mm)
TS:高強度鋼板の引張強さ(MPa)
P :ポンチでの加圧力(kN)
0.0314 × t × TS ≦ P ≦ 0.1571 × t × TS (1)
However,
t: Thickness (mm) of high-strength steel plate
TS: Tensile strength (MPa) of high-strength steel sheet
P: Pressurizing force at punch (kN)

以下、第1の発明の実施形態における、高強度鋼板の引張強さTS、板厚t、溶接後、ポンチで加圧する際の溶接部表面温度、ポンチの先端形状および加圧力の限定理由を説明する。   Hereinafter, in the embodiment of the first invention, the tensile strength TS of the high-strength steel plate, the thickness t, the surface temperature of the welded portion when pressurizing with a punch after welding, the tip shape of the punch, and the reasons for limitation of the pressurizing force will be described. To do.

(高強度鋼板の引張強さTS)
本発明では、被溶接材として用いる高強度鋼板の引張強さTSを260〜1570MPaの範囲に規定した。引張強さTSの下限を260MPaとしたのは、自動車用鋼板の引張強さの下限が、軟鋼板の260MPaであるからであり、また、軟鋼板の溶接継手であっても本発明により疲労強度が向上するからである。
(Tensile strength TS of high-strength steel sheet)
In the present invention, the tensile strength TS of the high-strength steel plate used as the material to be welded is defined in the range of 260 to 1570 MPa. The reason why the lower limit of the tensile strength TS is 260 MPa is that the lower limit of the tensile strength of the steel plate for automobiles is 260 MPa of the mild steel plate. This is because it improves.

引張強さTSの上限を1570MPaとしたのは、引張強さが1570MPaより高い高強度鋼板を用いてスポット溶接すると、炭素当量Ceqの増加に起因した溶接部の硬さ上昇により、本発明の適用によっても継手疲労強度向上の十分な効果が得られないからである。また、ポンチでの加圧に高い加圧力を必要とするため、加圧設備が大がかりになるというデメリットも生じる。   The upper limit of the tensile strength TS is set to 1570 MPa because, when spot welding is performed using a high-strength steel plate having a tensile strength higher than 1570 MPa, the hardness of the weld due to an increase in the carbon equivalent Ceq increases the application of the present invention. This is because a sufficient effect of improving the joint fatigue strength cannot be obtained. Moreover, since a high pressurizing force is required for pressurization with the punch, there is a demerit that the pressurization equipment becomes large.

なお、上記引張強さTSの下限を440MPaとすれば、鋼板の降伏応力が増加して、十分な圧縮残留応力が導入されるようになるため、溶接継手において、良好な引張強さの向上と疲労強度の改善を図ることができる。また、引張強さの上限を980MPaとすれば、溶接継手で、より良好な引張強さ向上と疲労強度向上効果を得ることができる。   If the lower limit of the tensile strength TS is 440 MPa, the yield stress of the steel sheet increases and sufficient compressive residual stress is introduced. The fatigue strength can be improved. Further, if the upper limit of the tensile strength is 980 MPa, a better tensile strength improvement and fatigue strength improvement effect can be obtained with a welded joint.

(高強度鋼板の板厚t)
本発明では、被溶接材として用いる高強度鋼板の板厚tを0.6〜3.3mmの範囲に規定した。板厚tの下限を0.6mmとしたのは、自動車用鋼板の板厚の下限が0.6mmであるからであり、また、これより板厚が薄い鋼板をポンチで加圧すると、鋼板全体の変形が大きくなるからである。
(Thickness t of high-strength steel sheet)
In the present invention, the thickness t of the high-strength steel plate used as the material to be welded is defined in the range of 0.6 to 3.3 mm. The reason why the lower limit of the plate thickness t is 0.6 mm is that the lower limit of the plate thickness of the steel plate for automobiles is 0.6 mm. This is because the deformation of.

板厚tの上限を3.3mmとしたのは、自動車用鋼板の板厚の上限が3.3mmであるからであり、また、これより板厚が厚い鋼板をポンチで加圧すると、ポンチでの加圧に高い加圧力を必要とするため、加圧設備が大がかりになるというデメリットが生じるからである。   The upper limit of the plate thickness t is set to 3.3 mm because the upper limit of the plate thickness of the steel plate for automobiles is 3.3 mm. This is because a high pressurizing force is required for pressurizing, and therefore a demerit that the pressurizing equipment becomes large is generated.

なお、上記板厚tの下限を1.0mmとすれば、鋼板全体の変形が少ない状態で、溶接継手において、良好な引張強さの向上と疲労強度の改善を図ることができる。また、板厚の上限を2.0mmとすれば、適正なポンチによる加圧力で、溶接継手において、良好な疲労強度向上効果を得ることができる。   If the lower limit of the plate thickness t is 1.0 mm, it is possible to improve the tensile strength and the fatigue strength of the welded joint with little deformation of the entire steel plate. Further, if the upper limit of the plate thickness is set to 2.0 mm, a good fatigue strength improvement effect can be obtained in the welded joint with a pressure applied by an appropriate punch.

(溶接後、ポンチで加圧する際の溶接部表面温度)
本発明では、ポンチで加圧する際の溶接部表面温度を300℃以下の範囲に規定した。溶接部表面温度を300℃以下に規定したのは、溶接部の温度が高温になる程、図3のナゲット周辺8の温度が上昇してその部分の降伏応力が低下し、加圧によって圧縮残留応力が導入されにくくなるからである。
(Surface temperature of weld when pressurizing with punch after welding)
In the present invention, the surface temperature of the welded portion when pressurizing with a punch is defined within a range of 300 ° C. or less. The reason why the surface temperature of the welded part is defined as 300 ° C. or lower is that the higher the temperature of the welded part, the higher the temperature around the nugget 8 in FIG. This is because stress is hardly introduced.

鋼板の降伏応力は400℃を超えると急激に低下するため、出来るだけ低い温度で溶接部を加圧することが重要である。可能ならば、ポンチで加圧する際の溶接部の表面温度は、100℃以下であることが望ましい。   Since the yield stress of a steel sheet rapidly decreases when it exceeds 400 ° C., it is important to pressurize the weld at a temperature as low as possible. If possible, it is desirable that the surface temperature of the welded part when pressurizing with a punch is 100 ° C. or less.

(ポンチの先端形状)
通常のスポット溶接では、被溶接部は溶接時に電極により加圧されながら加熱されるため塑性変形し、図3で示すように、溶接部上下の高強度鋼板1両面には、窪み7が形成される。したがって、引張残留応力が生じやすいナゲット2の周囲8に効率的に圧縮残留応力を導入するためには、溶接部上下の高強度鋼板1両面に形成された窪み7の端部と良好な接触状態を保つことが可能な先端形状を有する円柱型ポンチを用いて加圧する必要性がある。
(Punch tip shape)
In normal spot welding, the welded part is heated while being pressurized by the electrode during welding, so that it is plastically deformed. As shown in FIG. 3, depressions 7 are formed on both surfaces of the high-strength steel plate 1 above and below the welded part. The Therefore, in order to efficiently introduce the compressive residual stress around the nugget 2 where the tensile residual stress is likely to occur, a good contact state with the ends of the recesses 7 formed on both surfaces of the high strength steel plate 1 above and below the welded portion. There is a need to pressurize using a cylindrical punch having a tip shape capable of maintaining the pressure.

また、円柱型ポンチで加圧する際には、ポンチの中心を溶接部の中心に合わせることが必要である。なぜなら、中心がずれることにより、窪み7の端部と円柱型ポンチとの良好な接触状態を保つことが不可能になるからである。したがって、実際には、窪み7の中心とポンチの中心を合わせて加圧することが必要となる。この際、位置がずれることも考えられるが、窪み7の径に対して20%程度のずれであれば問題はない。   Further, when pressurizing with a cylindrical punch, it is necessary to align the center of the punch with the center of the weld. This is because it becomes impossible to maintain a good contact state between the end of the depression 7 and the cylindrical punch due to the deviation of the center. Therefore, in practice, it is necessary to pressurize the center of the depression 7 and the center of the punch. At this time, the position may be displaced, but there is no problem if the displacement is about 20% with respect to the diameter of the recess 7.

本発明者らは、引張強さ:780MPa、板厚:1.2mmの高強度鋼板(2相複合組織鋼)を用い、円柱型ポンチの先端形状と加圧力を様々に変化させて、上下鋼板表面の窪みの周囲9での塑性変形状態を目視で調べた。また、スポット溶接継手にせん断方向の荷重を負荷し、疲労強度(繰返し数が2×106回における荷重範囲)を調べ、軟鋼板の場合と比較した。 The present inventors have used a high strength steel plate (dual-phase composite steel) having a tensile strength of 780 MPa and a plate thickness of 1.2 mm, and variously changing the tip shape and the applied pressure of the cylindrical punch, so that the upper and lower steel plates The state of plastic deformation around the surface depression 9 was examined visually. Further, a load in the shear direction was applied to the spot welded joint, and the fatigue strength (the load range when the number of repetitions was 2 × 10 6 times) was examined, and compared with the case of a mild steel plate.

その結果、図4の(a)で示す、先端の曲率半径R1が50〜120mmである円柱型ポンチを用い、所定加圧力以上で加圧する場合に、図3で示す上下鋼板表面の窪みの周囲9(溶接部の周囲)の塑性変形が顕著になり、軟鋼板に比べ継手疲労強度が10%以上向上することを見出した。   As a result, when a cylindrical punch having a tip radius of curvature R1 of 50 to 120 mm as shown in FIG. 4A is used to pressurize at a predetermined pressure or more, around the depressions on the upper and lower steel plate surfaces shown in FIG. It was found that the plastic deformation of 9 (around the welded portion) became prominent, and the joint fatigue strength was improved by 10% or more compared to the mild steel plate.

つまり、本発明者らの検討によれば、先端の曲率半径R1が50〜120mmである円柱型ポンチ用いて上下鋼板表面の窪みの周囲9を加圧する場合にのみ、ポンチ先端と上下鋼板表面の窪みの周囲9との接触状態を良好に維持しつつ加圧力を十分にかけることができるため、上下鋼板表面の窪みの周囲9に顕著な塑性変形が認められ、疲労強度が著しく向上した。   That is, according to the study by the present inventors, only when the periphery 9 of the depression on the upper and lower steel plate surfaces is pressurized using a cylindrical punch having a radius of curvature R1 of the tip of 50 to 120 mm, Since sufficient pressurizing force can be applied while maintaining a good contact state with the periphery 9 of the recess, remarkable plastic deformation was observed in the periphery 9 of the recess on the upper and lower steel plate surfaces, and the fatigue strength was remarkably improved.

これは、上下鋼板表面の窪みの周囲9に加圧力が加わることによって塑性変形が起こり、間接的に、ナゲット2の周囲8に有効に圧縮残留応力が導入されたためと考えられる。   This is thought to be because plastic deformation occurred by applying pressure to the periphery 9 of the depressions on the upper and lower steel plate surfaces, and the compressive residual stress was effectively introduced into the periphery 8 of the nugget 2 indirectly.

先端の曲率半径R1が50mm未満では、円柱型ポンチの先端が上下鋼板表面の窪みと接触するようになって、上下鋼板表面の窪みの周囲9とポンチとが接触しなくなるため、円柱型ポンチの加圧力が上下鋼板表面の窪みの周囲9に十分に導入されず、上下鋼板表面の窪みの周囲9に顕著な塑性変形が認められなくなる。   When the curvature radius R1 of the tip is less than 50 mm, the tip of the cylindrical punch comes into contact with the depression on the upper and lower steel sheet surfaces, and the periphery 9 of the depression on the upper and lower steel sheet surface does not come into contact with the punch. The applied pressure is not sufficiently introduced into the periphery 9 of the depression on the upper and lower steel plates, and no significant plastic deformation is observed in the periphery 9 of the depression on the upper and lower steel plates.

また、先端の曲率半径R1が120mmを超える場合には、円柱型ポンチの先端がほぼ平坦な形状になって、上下鋼板表面の窪みの周囲9とポンチとが接触しなくなるため、上下鋼板表面の窪みの周囲9で顕著な塑性変形が認められなくなる。   Further, when the radius of curvature R1 of the tip exceeds 120 mm, the tip of the cylindrical punch becomes a substantially flat shape, and the periphery 9 of the depression on the upper and lower steel plate surfaces does not come into contact with the punch. Significant plastic deformation is not recognized around the depression 9.

したがって、本発明では、円柱型ポンチの加圧力が上下鋼板表面の窪みの周囲9に十分に作用し、上下鋼板表面の窪みの周囲9で顕著な塑性変形が起こることにより、継手疲労強度を向上させるため、円柱型ポンチの先端の曲率半径R1が50〜120mmの範囲を満足するように規定する。   Therefore, in the present invention, the pressurizing force of the cylindrical punch sufficiently acts on the periphery 9 of the depression on the upper and lower steel sheet surfaces, and significant plastic deformation occurs in the periphery 9 on the upper and lower steel sheet surface, thereby improving the joint fatigue strength. Therefore, the curvature radius R1 of the tip of the cylindrical punch is defined to satisfy the range of 50 to 120 mm.

(ポンチの加圧力)
本発明者らは、板厚:1.2〜2.0mm、引張強さ:440〜1180MPaの高強度鋼板(2相複合組織鋼)を用い、先端の曲率径R1が100mmの円柱型ポンチで加圧力を変化させて、上記と同様に、上下鋼板表面の窪みの周囲9での塑性変形状態を目視で調べ、また、継手の疲労強度を調べた。
(Punch pressure)
The present inventors use a cylindrical punch having a thickness of 1.2 to 2.0 mm and a tensile strength of 440 to 1180 MPa (double-phase composite steel) and having a tip radius of curvature R1 of 100 mm. By changing the applied pressure, the plastic deformation state around the depression 9 on the upper and lower steel plate surfaces was visually examined in the same manner as described above, and the fatigue strength of the joint was examined.

その結果、円柱型ポンチの加圧力Pが下記(1)式を満たす場合には、上下鋼板表面の窪みの周囲9で顕著な塑性変形が認められ、継手の疲労強度が10%以上向上することがわかった。   As a result, when the pressure P of the cylindrical punch satisfies the following formula (1), significant plastic deformation is recognized around the depression 9 on the upper and lower steel sheet surfaces, and the fatigue strength of the joint is improved by 10% or more. I understood.

0.0314×t×TS≦P≦0.1571×t×TS ・・・・・(1)
ただし、
t :高強度鋼板の板厚(mm)
TS:高強度鋼板の引張強さ(MPa)
P :円柱型ポンチでの加圧力(kN)
0.0314 × t × TS ≦ P ≦ 0.1571 × t × TS (1)
However,
t: Thickness (mm) of high-strength steel plate
TS: Tensile strength (MPa) of high-strength steel sheet
P: Pressurizing force with cylindrical punch (kN)

本発明において、円柱型ポンチの加圧力を規定する上記(1)式は、以下のように決められる。   In the present invention, the above equation (1) that defines the pressure applied to the cylindrical punch is determined as follows.

図6と図7に、上記(1)式導出の根拠となった継手の疲労強度評価の例を示す。   FIG. 6 and FIG. 7 show examples of the fatigue strength evaluation of joints that are the basis for deriving the above equation (1).

図6は、板厚を1.2mmに固定し、鋼板の強度を変化させて疲労強度を調べた例であり、図7は、鋼板の強度を780MPaに固定し、鋼板の板厚を変化させて疲労強度を調べた例である。図中では、鋼板の強度と疲労強度評価結果との関係および鋼板の板厚と疲労強度評価結果との関係(図中の○印および×印)を示している。   FIG. 6 is an example in which the plate thickness is fixed to 1.2 mm and the strength of the steel plate is changed to examine the fatigue strength. FIG. 7 is a diagram in which the strength of the steel plate is fixed to 780 MPa and the plate thickness of the steel plate is changed. This is an example of examining the fatigue strength. In the figure, the relationship between the strength of the steel plate and the fatigue strength evaluation result and the relationship between the plate thickness of the steel plate and the fatigue strength evaluation result (◯ mark and X mark in the drawing) are shown.

図中において、溶接継手の疲労強度が引張強さ290MPaの軟鋼板を溶接した時の疲労強度に対して10%以上向上したものを○、向上しないものを×で示した。   In the figure, the case where the fatigue strength of the welded joint is improved by 10% or more with respect to the fatigue strength when welding a mild steel plate having a tensile strength of 290 MPa is indicated by ○, and the case where the fatigue strength is not improved is indicated by ×.

図6から、鋼板の板厚を一定とした時の最適加圧力と鋼板の引張強さとの関係式を求め、また、図7から、鋼板の引張強さを一定とした時の最適加圧力と鋼板の板厚との関係式を求めて(1)式を導出した。   From FIG. 6, a relational expression between the optimum pressing force when the plate thickness of the steel plate is constant and the tensile strength of the steel plate is obtained, and from FIG. 7, the optimum pressing force when the tensile strength of the steel plate is constant and Equation (1) was derived by obtaining a relational expression with the thickness of the steel sheet.

図6と図7から、円柱型ポンチの加圧力Pを上記(1)式の関係を満足するように設定すれば、疲労強度が良好な溶接継手を形成させることが可能となる。   From FIG. 6 and FIG. 7, if the pressure P of the cylindrical punch is set so as to satisfy the relationship of the above formula (1), it is possible to form a welded joint with good fatigue strength.

上記(1)式で規定する円柱型ポンチの加圧力Pの下限(0.0314×t×TS)より低い加圧力Pでは、上下鋼板表面の窪みの周囲9で顕著な塑性変形が認められず、図3で示すナゲットの周囲8で十分な圧縮残留応力が導入されないため、疲労強度も向上しない。   When the pressure P is lower than the lower limit (0.0314 × t × TS) of the pressure P of the cylindrical punch defined by the above formula (1), no significant plastic deformation is observed around the depression 9 on the upper and lower steel sheet surfaces. Since sufficient compressive residual stress is not introduced around the nugget 8 shown in FIG. 3, the fatigue strength is not improved.

一方、上記(1)式で規定する円柱型ポンチの加圧力Pの上限(0.1571×t×TS)より高い加圧力の場合には、優れた継手疲労強度は確保できるものの、加圧力による圧縮残留応力の導入量が飽和し、継手疲労強度の向上量が飽和するだけでなく、さらに加圧力を増加させた場合には、上下鋼板表面の窪みが塑性変形量によって大きくなり板厚が薄くなるため、溶接部の継手の疲労強度は低下する傾向を示す。   On the other hand, when the pressing force is higher than the upper limit (0.1571 × t × TS) of the pressing force P of the cylindrical punch specified by the above formula (1), excellent joint fatigue strength can be secured, but depending on the pressing force. Not only is the amount of compressive residual stress introduced saturated and the joint fatigue strength improved, but when the applied pressure is further increased, the depressions on the upper and lower steel sheet surfaces become larger due to the amount of plastic deformation and the plate thickness becomes thinner. Therefore, the fatigue strength of the welded joint tends to decrease.

また、大きな圧痕が生じて継手の外観形状を悪化させ、さらに、継手の静的強度も低下するため望ましくない。これに加え、溶接部でクラックが発生するなどの問題も生じやすくなる。   In addition, a large indentation is generated to deteriorate the external shape of the joint, and the static strength of the joint is also lowered, which is not desirable. In addition to this, problems such as occurrence of cracks in the welded portion are likely to occur.

円柱型ポンチの加圧力Pが上記(1)式を満たす場合には、上下鋼板表面の窪みの周囲9に適正な加圧力が負荷され、上下鋼板表面の窪みの周囲9で適正な塑性変形が起こり、その結果、ナゲットの周囲8に十分な圧縮残留応力が導入されるため、疲労強度を著しく向上させることが可能となる。   When the pressure P of the cylindrical punch satisfies the above equation (1), an appropriate pressure is applied to the periphery 9 of the depression on the upper and lower steel sheet surfaces, and proper plastic deformation occurs at the periphery 9 of the depression on the upper and lower steel sheet surfaces. As a result, a sufficient compressive residual stress is introduced around the nugget 8 so that the fatigue strength can be significantly improved.

したがって、本発明では、高強度鋼板のスポット溶接方法において、円柱型ポンチの加圧力Pが上記(1)式を満たすように加圧することとする。   Therefore, in the present invention, in the spot welding method of the high-strength steel plate, pressurization is performed so that the pressure P of the cylindrical punch satisfies the above formula (1).

次に、第2の発明の実施形態におけるポンチの先端形状と加圧力の限定理由を説明する。なお、高強度鋼板の引張強さTS、板厚t、溶接後、ポンチで加圧する際の溶接部表面温度を限定する理由は、第1の発明の実施形態で述べた理由と同じである。   Next, the reason for limiting the shape of the tip of the punch and the applied pressure in the embodiment of the second invention will be described. The reason why the tensile strength TS of the high-strength steel plate, the thickness t, and the surface temperature of the welded portion when pressurizing with a punch after welding is limited is the same as the reason described in the embodiment of the first invention.

(ポンチの先端形状)
上記で述べたように、スポット溶接継手の疲労強度を向上させるためには、図3で示す、引張残留応力が生じやすいナゲットの周囲8に、効率的に圧縮残留応力を導入する必要がある。
(Punch tip shape)
As described above, in order to improve the fatigue strength of the spot welded joint, it is necessary to efficiently introduce compressive residual stress around the nugget 8 shown in FIG. 3 where tensile residual stress is likely to occur.

そこで、本発明者らは、第1の発明の実施形態で用いた円柱型ポンチの先端部にリング状突起を設けた突起型ポンチを用い、さらに、上下鋼板表面の窪みの周囲9と良好な接触状態を保ちながら加圧することで、ナゲットの周囲8により効率的に圧縮残留応力を導入するためのポンチの先端形状について検討した。   Therefore, the present inventors use a projecting punch in which a ring-shaped projection is provided at the tip of the cylindrical punch used in the first embodiment of the present invention. The tip shape of the punch for efficiently introducing compressive residual stress to the periphery 8 of the nugget by applying pressure while maintaining the contact state was examined.

本発明者らは、上記第1の発明の実施形態と同様に、引張強さ:780MPa、板厚:1.2mmの高強度鋼板(2相複合組織鋼)を用い、突起型ポンチの先端形状と加圧力を様々に変化させて、上下鋼板表面の窪みの周囲9での塑性変形状態を目視で調べた。   The present inventors use a high-strength steel plate (dual-phase composite steel) with a tensile strength of 780 MPa and a plate thickness of 1.2 mm as in the first embodiment of the invention, and the tip shape of the protruding punch. The plastic deformation state around the depression 9 on the upper and lower steel plate surfaces was visually examined by changing the pressure force in various ways.

また、スポット溶接継手にせん断方向の荷重を負荷し、疲労強度(繰返し数が2×106回における荷重範囲)を調べ、軟鋼板の場合と比較した。 Further, a load in the shear direction was applied to the spot welded joint, and the fatigue strength (the load range when the number of repetitions was 2 × 10 6 times) was examined, and compared with the case of a mild steel plate.

その結果、図4の(b)で示した、円柱型ポンチの先端部に設けた突起先端の曲率半径R2が2.0〜7.0mm、突起高さHが1.0〜3.0mm、突起位置がリング状突起の直径Dがナゲット径に対して下記(2)式を満たす突起型ポンチを用い、所定加圧力以上で加圧する場合に、上下鋼板表面の窪みの周囲9における塑性変形が顕著になり、軟鋼板に比べ、継手疲労強度が10%以上向上することを見出した。   As a result, as shown in FIG. 4B, the radius of curvature R2 of the projection provided at the tip of the cylindrical punch is 2.0 to 7.0 mm, the projection height H is 1.0 to 3.0 mm, When the projection position is a ring-shaped projection with a diameter D of the ring-shaped projection satisfying the following formula (2) with respect to the nugget diameter, and pressurizing at a predetermined pressure or more, plastic deformation around the depression 9 on the upper and lower steel sheet surfaces It became remarkable and it discovered that joint fatigue strength improved 10% or more compared with a mild steel plate.

0.70×ND≦D≦1.30×ND ・・・・・(2)
ただし、
ND:ナゲット径(mm)
D:リング状突起の直径(mm)
0.70 × ND ≦ D ≦ 1.30 × ND (2)
However,
ND: Nugget diameter (mm)
D: Ring-shaped protrusion diameter (mm)

なお、本発明において、リング状突起の直径Dは、リング状突起の頂点位置で測定される平均直径である。   In the present invention, the diameter D of the ring-shaped protrusion is an average diameter measured at the apex position of the ring-shaped protrusion.

図4の(b)で示すリング状突起の先端曲率半径R2を2.0〜7.0mmに限定したのは、下記の理由による。すなわち、突起先端の曲率半径R2が2.0mmより小さくなると、突起と上下鋼板表面の窪みの周囲9との接触が局部的になり、その部分の塑性変形が起こり難くくなって、ナゲットの周囲8に有効に圧縮残留応力が導入されにくくなり、その結果、疲労強度が向上しなくなるからである。   The reason why the radius of curvature R2 of the tip of the ring-shaped protrusion shown in FIG. 4B is limited to 2.0 to 7.0 mm is as follows. That is, when the radius of curvature R2 of the tip of the protrusion is smaller than 2.0 mm, the contact between the protrusion and the periphery 9 of the depression on the surface of the upper and lower steel plates becomes local, and the plastic deformation of the portion is less likely to occur. This is because it is difficult to effectively introduce compressive residual stress into 8, and as a result, fatigue strength is not improved.

一方、突起先端の曲率半径R2が7.0mmより大きくなると、突起と上下鋼板表面の窪みの周囲9との接触部が大きくなって、その部分での面圧が低下し、その部分の塑性変形量が低下して、ナゲットの周囲8に有効に圧縮残留応力が導入されにくくなり、その結果、疲労強度が向上しなくなるからである。   On the other hand, when the radius of curvature R2 of the tip of the protrusion is larger than 7.0 mm, the contact portion between the protrusion and the periphery 9 of the depression on the upper and lower steel plate surfaces becomes large, the surface pressure at that portion decreases, and plastic deformation of that portion occurs. This is because the amount is reduced and it becomes difficult to effectively introduce compressive residual stress around the nugget 8 and as a result, the fatigue strength is not improved.

図4の(b)で示すリング状突起の高さHを1.0〜3.0mmに限定したのは、下記の理由による。すなわち、突起高さが1.0mmより低くなると、上下鋼板表面の窪みの周囲9に集中的に加圧力を付加する作用効果が得られず、ナゲットの周囲8に効率良く圧縮残留応力を導入させることが困難となり、その結果、疲労強度を十分に向上させることが困難になるからである。   The reason why the height H of the ring-shaped protrusion shown in FIG. 4B is limited to 1.0 to 3.0 mm is as follows. That is, when the height of the protrusion is lower than 1.0 mm, the effect of intensively applying pressure to the periphery 9 of the depression on the upper and lower steel plate surfaces cannot be obtained, and the compressive residual stress is efficiently introduced into the periphery 8 of the nugget. This is because it becomes difficult to sufficiently improve the fatigue strength.

一方、突起高さHが3.0mmを超えて高くなり過ぎると、加圧時に安定感がなくなり、突起を破損する等の問題が生じるからである。   On the other hand, if the projection height H exceeds 3.0 mm and becomes too high, a sense of stability is lost during pressurization, causing problems such as damage to the projection.

また、円柱型ポンチの先端部に設けたリング状突起の直径Dを上記(2)式で規定するのは、下記の理由による。   The reason why the diameter D of the ring-shaped protrusion provided at the tip of the cylindrical punch is defined by the above equation (2) is as follows.

すなわち、リング状突起の直径Dが上記(2)式で規定する下限(0.70×ND)より小さいまたは大きい場合には、位置ずれによって、リング状突起と上下鋼板表面の窪みの周囲9との接触が局部的になり、その部分で応力が集中しにくくなって、その部分で塑性変形が起こりにくくなり、ナゲットの周囲8で有効に圧縮残留応力が導入されにくくなるため、その結果、疲労強度を十分に向上させることが困難になるからである。   That is, when the diameter D of the ring-shaped protrusion is smaller or larger than the lower limit (0.70 × ND) defined by the above formula (2), the ring-shaped protrusion and the periphery 9 of the depression on the upper and lower steel sheet surfaces are caused by the positional deviation. Contact is localized, stress is less likely to concentrate at that portion, plastic deformation is less likely to occur at that portion, and compressive residual stress is less likely to be effectively introduced around the nugget 8, resulting in fatigue. This is because it is difficult to sufficiently improve the strength.

したがって、本発明では、引張残留応力が生じやすい、ナゲットの周囲8に効率的に圧縮残留応力を導入し、上下鋼板表面の窪みの周囲9で適正な塑性変形を生じさせ、疲労強度を効率的に向上させるために、円柱型ポンチの先端部に設けられた、リング状突起先端の曲率半径R2が2.0〜7.0mm、突起高さHが1.0〜3.0mm、突起位置がリング状の突起の直径Dがナゲット径NDとの関係で上記(2)式を満たす突起型ポンチとした。   Therefore, in the present invention, compressive residual stress is efficiently introduced into the periphery 8 of the nugget, where tensile residual stress is likely to occur, and appropriate plastic deformation is generated in the periphery 9 of the depressions on the upper and lower steel plates, thereby efficiently increasing the fatigue strength. In order to improve this, the radius of curvature R2 of the tip of the ring-shaped protrusion provided at the tip of the cylindrical punch is 2.0 to 7.0 mm, the protrusion height H is 1.0 to 3.0 mm, and the protrusion position is A protrusion-type punch satisfying the above expression (2) in relation to the diameter D of the ring-shaped protrusion and the nugget diameter ND.

(ポンチの加圧力)
本発明者らは、板厚:1.2〜2.0mm、引張強さ:440〜1180MPaの高強度鋼板(2相複合組織鋼)を用い、図4の(b)で示す、円柱型ポンチの先端部に突起先端の曲率半径R2が5.0mm、高さHが2.0mmのリング状突起を設けた突起型ポンチの加圧力を変化させて、上記と同様に、上下鋼板表面の窪みの周囲9での塑性変形状態を目視で調べ、また、継手の疲労強度を調べた。
(Punch pressure)
The present inventors use a high-strength steel plate (duplex steel) having a plate thickness of 1.2 to 2.0 mm and a tensile strength of 440 to 1180 MPa, and a cylindrical punch shown in FIG. In the same manner as described above, the depressions on the surfaces of the upper and lower steel plates are changed by changing the pressing force of the protruding punch provided with a ring-shaped protrusion having a curvature radius R2 of the protrusion tip of 5.0 mm and a height H of 2.0 mm at the tip end of The state of plastic deformation at the periphery 9 was visually examined, and the fatigue strength of the joint was examined.

その結果、突起型ポンチの加圧力Pが下記(3)式を満たす場合には、上下鋼板表面の窪みの周囲9で顕著な塑性変形が認められ、継手の疲労強度が10%以上向上することがわかった。したがって、下記(3)式に従って加圧力を設定すれば、疲労強度が良好な溶接継手を形成させることが可能である。   As a result, when the pressure P of the projecting punch satisfies the following expression (3), remarkable plastic deformation is recognized around the depression 9 on the upper and lower steel sheet surfaces, and the fatigue strength of the joint is improved by 10% or more. I understood. Therefore, if the applied pressure is set according to the following equation (3), a welded joint with good fatigue strength can be formed.

0.0157×t×TS≦P≦0.0786×t×TS ・・・・・(3)
ただし、
t :高強度鋼板の板厚(mm)
TS:高強度鋼板の引張強さ(MPa)
P :突起型ポンチでの加圧力(kN)
0.0157 × t × TS ≦ P ≦ 0.0786 × t × TS (3)
However,
t: Thickness (mm) of high-strength steel plate
TS: Tensile strength (MPa) of high-strength steel sheet
P: Pressurizing force with protrusion type punch (kN)

上記(3)式を第1の発明の実施形態における(1)式と比較すればわかるように、第2の発明の実施形態における上記突起型ポンチを用いて加圧する場合には、第1の発明の実施形態における約半分の加圧力で、ナゲットの周囲8に圧縮残留応力を導入させ、十分に継手の疲労強度を向上させることが可能となる。   As can be seen by comparing the above expression (3) with the expression (1) in the embodiment of the first invention, when pressurization is performed using the protruding punch in the embodiment of the second invention, the first With about half the applied pressure in the embodiment of the invention, it is possible to introduce a compressive residual stress around the nugget 8 and sufficiently improve the fatigue strength of the joint.

これは、図4の(b)に示す突起型ポンチを使用して加圧すると、上下鋼板表面の窪みの周囲9で応力集中を高めることが可能となり、その結果、比較的低い加圧力で上下鋼板表面の窪みの周囲9を塑性変形させることができるようになるため、ナゲットの周囲8に圧縮残留応力が効率的に導入され、スポット溶接継手の疲労強度を向上させることが可能となることを意味している。   This is because when stress is applied using the projecting punch shown in FIG. 4 (b), it is possible to increase the stress concentration around the depression 9 on the upper and lower steel sheet surfaces. Since the periphery 9 of the depression on the steel plate surface can be plastically deformed, the compressive residual stress is efficiently introduced into the periphery 8 of the nugget, and the fatigue strength of the spot welded joint can be improved. I mean.

上記(3)式で規定する突起型ポンチの加圧力Pの下限(0.0157×t×TS)より低い加圧力Pでは、加圧力が低すぎて、上下鋼板表面の窪みの周囲9で十分な塑性変形が起こらず、ナゲットの周囲8で十分な圧縮残留応力が導入されないため、疲労強度も向上しない。   When the pressure P is lower than the lower limit (0.0157 × t × TS) of the pressure P of the protruding punch defined by the above equation (3), the pressure is too low, and the area around the depression 9 on the upper and lower steel plates is sufficient. Since the plastic deformation does not occur and sufficient compressive residual stress is not introduced around the nugget 8, the fatigue strength is not improved.

一方、上記(3)式で規定する突起型ポンチの加圧力Pの上限(0.0786×t×TS)より高い加圧力の場合には、優れた継手疲労強度は確保できるものの、加圧力による圧縮残留応力の導入量が飽和し、継手疲労強度の向上量が飽和するだけでなく、さらに加圧力を増加させた場合には、上下鋼板表面の窪みが塑性変形量によって大きくなり板厚が薄くなるため、溶接部の継手の疲労強度は低下する傾向を示す。   On the other hand, when the pressing force is higher than the upper limit (0.0786 × t × TS) of the pressing force P of the protruding punch defined by the above formula (3), excellent joint fatigue strength can be secured, but depending on the pressing force. Not only is the amount of compressive residual stress introduced saturated and the joint fatigue strength improved, but when the applied pressure is further increased, the depressions on the upper and lower steel sheet surfaces become larger due to the amount of plastic deformation and the plate thickness becomes thinner. Therefore, the fatigue strength of the welded joint tends to decrease.

また、大きな圧痕が生じて継手の外観形状を悪化させ、さらに、継手の静的強度も低下するため望ましくない。これに加え、溶接部でクラックが発生するなどの問題も生じやすくなる。   In addition, a large indentation is generated to deteriorate the external shape of the joint, and the static strength of the joint is also lowered, which is not desirable. In addition to this, problems such as occurrence of cracks in the welded portion are likely to occur.

突起型ポンチの加圧力Pが上記(3)式を満たす場合には、上下鋼板表面の窪みの周囲9に適正な加圧力が負荷され、上下鋼板表面の窪みの周囲9で適正な塑性変形が起こり、その結果、ナゲットの周囲8に十分な圧縮残留応力が導入されるため、疲労強度を著しく向上させることが可能となる。   When the pressing force P of the protruding punch satisfies the above formula (3), an appropriate pressing force is applied to the periphery 9 of the depression on the upper and lower steel sheet surfaces, and proper plastic deformation occurs at the periphery 9 of the depression on the upper and lower steel sheet surfaces. As a result, a sufficient compressive residual stress is introduced around the nugget 8 so that the fatigue strength can be significantly improved.

したがって、本発明では、高強度鋼板のスポット溶接方法において、突起型ポンチの加圧力Pが上記(3)式を満たすように加圧することとする。   Therefore, in the present invention, in the spot welding method for high-strength steel sheets, pressurization is performed so that the pressing force P of the protruding punch satisfies the above-described expression (3).

なお、上記で述べたように、本形状のポンチを用いて加圧を行う場合には、ポンチの中心と溶接部の中心を合わせる必要性がある。なぜなら、これを行わないと、折角突起間の距離が上記(2)式で規定されたポンチを用いても、溶接部の周囲で適正な接触状態にならないからである。   As described above, when pressurization is performed using a punch having this shape, it is necessary to align the center of the punch with the center of the weld. This is because, if this is not done, even if the punches defined by the above formula (2) are used as the distance between the folding projections, an appropriate contact state cannot be obtained around the welded portion.

したがって、実際には、窪み7の中心とポンチの中心を合わせて加圧することが必要となる。この際、位置がずれることも考えられるが、窪み7の径に対して10%以下のずれで設定するのが望ましい。   Therefore, in practice, it is necessary to pressurize the center of the depression 7 and the center of the punch. At this time, the position may be displaced, but it is desirable to set the displacement by 10% or less with respect to the diameter of the recess 7.

加圧に使うポンチの直径については特に規定しないが、効率よく残留応力を導入するためには、電極径と同等程度のものがよい。ポンチの材質についても特に規定しないが、加圧力に耐えることが可能なように、工具鋼等を用いるとよい。   The diameter of the punch used for pressurization is not particularly specified, but in order to efficiently introduce the residual stress, a diameter equivalent to the electrode diameter is preferable. The material of the punch is not particularly defined, but tool steel or the like may be used so that it can withstand the applied pressure.

なお、電極形状としては、JIS C 9304に規定されている、F型、R型、D型、DR型、CF型、CR型、EF型、ER型、P型のどれでもよいが、ポンチと溶接部の接触状態を良好にするため、可能であれば、DR型、CF型、CR型等が望ましい。   The electrode shape may be any of F type, R type, D type, DR type, CF type, CR type, EF type, ER type, and P type defined in JIS C 9304. In order to improve the contact state of the welded portion, DR type, CF type, CR type and the like are desirable if possible.

電極先端径についても特に規定しないが、通常、板厚をt(mm)とした時に、5√t〜6√t(mm)のものが用いられており、本発明でも、この範囲の先端径を有する電極を使用することが望ましい。   The tip diameter of the electrode is not particularly specified, but normally, a thickness of 5√t to 6√t (mm) is used when the plate thickness is t (mm), and the tip diameter within this range is also used in the present invention. It is desirable to use an electrode having

スポット溶接条件、すなわち、溶接時の溶接電流、溶接時間や、溶接後の電極保持時間などは、通常の溶接条件に準ずればよく、特に規定する必要はない。ナゲット径についても、特に規定しないが、通常のスポット溶接では、板厚をt(mm)とすると、3√t〜6√t(mm)にナゲット径が設定されており、これらのナゲット径を有するスポット溶接継手に本発明を適用するのが望ましい。   The spot welding conditions, that is, the welding current at the time of welding, the welding time, the electrode holding time after welding, and the like may be in accordance with normal welding conditions and need not be specified. The nugget diameter is not particularly specified, but in normal spot welding, if the plate thickness is t (mm), the nugget diameter is set to 3√t to 6√t (mm). It is desirable to apply the present invention to a spot welded joint.

鋼板の種類についても特に限定する必要がない。固溶型、析出型(例えば、Ti析出型、Nb析出型)、2相組織型(例えば、フェライト中にマルテンサイトを含む組織、フェライト中にベイナイトを含む組織)、加工誘起変態型(フェライト中に残留オーステナイトを含む組織)など、いずれの種類の鋼板にも本発明を適用できる。鋼板の製造方法は、熱間圧延法でも冷間圧延法でもよい。   There is no particular limitation on the type of the steel plate. Solid solution type, precipitation type (for example, Ti precipitation type, Nb precipitation type), two-phase structure type (for example, structure containing martensite in ferrite, structure containing bainite in ferrite), work-induced transformation type (in ferrite) The present invention can be applied to any type of steel sheet such as a structure containing residual austenite. The manufacturing method of the steel sheet may be a hot rolling method or a cold rolling method.

また、上記鋼板表層にめっきを施した高強度めっき鋼板を本発明法によりスポット溶接する場合も、高強度めっき鋼板の特性を損なうことなく、優れた疲労強度を有する継手を実現することができる。被覆するめっきの種類は、導伝性のものならいずれの種類(例えば、Zn、Zn−Fe、Zn−Ni、Zn−Al、Sn−Zn、など)であってもよいが、目付量は両面で100/100g/m2以下のものが望ましい。 Moreover, also when spot-welding the high-strength plated steel plate with the steel plate surface layer plated by the method of the present invention, a joint having excellent fatigue strength can be realized without impairing the properties of the high-strength plated steel plate. The type of plating to be coated may be any type as long as it is conductive (for example, Zn, Zn—Fe, Zn—Ni, Zn—Al, Sn—Zn, etc.). And 100/100 g / m 2 or less is desirable.

また、本発明の方法は、同種同厚鋼板の組合せに限定されるものではなく、規定を満たしているのであれば、同種異厚、異種同厚、異種異厚組合せであってもよい。   Further, the method of the present invention is not limited to the combination of the same type and the same thickness steel plate, and may be the same type of different thickness, different types of same thickness, and different types of different thickness combinations as long as the specification is satisfied.

以下に実施例により本発明の効果を説明するが、本発明は、実施例で用いた条件に限定されるものではない。   The effects of the present invention will be described below with reference to examples, but the present invention is not limited to the conditions used in the examples.

(実施例1)
表1に示す板厚:1.2、1.6mm、引張強さ:295〜1475MPaの鋼板から、スポット溶接継手の疲れ試験方法(JIS Z3138)に基づく引張せん断疲労試験片を作製した。
Example 1
A tensile shear fatigue test piece based on a fatigue test method for spot welded joints (JIS Z3138) was prepared from steel plates having thicknesses of 1.2 and 1.6 mm and tensile strengths of 295 to 1475 MPa shown in Table 1.

鋼板の種類は、軟鋼(記号:270S)、固溶強化型高強度鋼(記号:440S)、析出強化型高強度鋼(記号:590P)、2相複合組織型高強度鋼(記号:590D、780D、980D、1180D)、加工誘起変態型複合組織高強度鋼(記号:590T、780T)、焼入れ強化型高強度鋼(記号:1470H)である。鋼板は全て裸鋼板であった。   The types of steel plates are mild steel (symbol: 270S), solid solution strengthened high strength steel (symbol: 440S), precipitation strengthened high strength steel (symbol: 590P), and dual-phase composite structure type high strength steel (symbol: 590D, 780D, 980D, 1180D), work-induced transformation type composite structure high strength steel (symbol: 590T, 780T), and quenching strengthened high strength steel (symbol: 1470H). All the steel plates were bare steel plates.

これらの試験片を、同鋼種・同板厚の組み合わせで重ね合わせ、図2に示すナゲット2の直径が、表1および表2に示す直径になるような溶接条件でスポット溶接を実施して、溶接継手を作製した。   These test pieces are overlapped with a combination of the same steel type and the same plate thickness, and spot welding is performed under welding conditions such that the diameter of the nugget 2 shown in FIG. 2 is the diameter shown in Table 1 and Table 2. A welded joint was produced.

次に、一部の試験片に対して、油圧プレス機を用い、溶接部にポンチで両面から加圧を加えた。   Next, pressure was applied to both of the test pieces from both sides with a punch using a hydraulic press.

得られた溶接継手について、スポット溶接継手の疲れ試験方法(JIS Z3138)に基づき、せん断方向に負荷して疲労試験を実施した。表1および表2に、その結果を示す。表1および表2に示す疲労強度は、応力比:0.05、周波数:30Hzの条件で片振りの疲労試験を行った際の2×106回における疲労強度である。 About the obtained welded joint, based on the fatigue test method (JIS Z3138) of a spot welded joint, it applied to the shear direction and the fatigue test was implemented. Tables 1 and 2 show the results. The fatigue strengths shown in Tables 1 and 2 are fatigue strengths at 2 × 10 6 times when a one-way swing fatigue test is performed under the conditions of stress ratio: 0.05 and frequency: 30 Hz.

まず、板厚:1.2mmの各種高強度鋼板継手を用いて、本発明の効果を検証した。表1に示すように、ポンチ先端の曲率半径が請求項1で規定する範囲内にあり、請求項1で規定する範囲内で上記ポンチを用い溶接部を加圧した場合には、ポンチ先端の曲率半径を変化させても(No.1〜No.3)、また、様々な鋼種の継手で加圧力を変化させても(No.4〜No.12)、加圧を実施しない軟鋼板継手(No.26)や高強度鋼板継手(No.29、No.31、No.33)の場合に比べて、継手の疲労強度は著しく向上していた。   First, the effect of the present invention was verified using various high-strength steel plate joints having a plate thickness of 1.2 mm. As shown in Table 1, the radius of curvature of the punch tip is within the range defined in claim 1. When the weld is pressurized using the punch within the range defined in claim 1, Even if the radius of curvature is changed (No. 1 to No. 3), or even if the pressing force is changed by a joint of various steel types (No. 4 to No. 12), the mild steel plate joint that does not perform pressurization (No. 26) and the high strength steel plate joints (No. 29, No. 31, No. 33), the fatigue strength of the joints was remarkably improved.

次に、板厚:1.6mmの高強度鋼板継手を用いて疲労強度を調査したが(No.13〜No.18)、いずれの場合も、著しい疲労強度の向上が認められた。さらに、板厚:1.2mmの軟鋼板継手(No.19)、様々な高強度鋼板継手(No.20〜No.25)を用いて疲労強度を調査したが、いずれの場合も、加圧を実施しない軟鋼板継手(No.26)や高強度鋼板継手(No.27、No.28、No.30、No.32、No.34〜No.35)に比べて、継手の疲労強度は著しく向上していた。   Next, the fatigue strength was investigated using a high-strength steel plate joint having a plate thickness of 1.6 mm (No. 13 to No. 18), and in all cases, a significant improvement in fatigue strength was observed. Furthermore, the fatigue strength was investigated using a mild steel plate joint (No. 19) having a thickness of 1.2 mm and various high-strength steel plate joints (No. 20 to No. 25). Compared with mild steel plate joints (No. 26) and high-strength steel plate joints (No. 27, No. 28, No. 30, No. 32, Nos. 34 to No. 35), the fatigue strength of the joints is It was remarkably improved.

一方、請求項1で規定する加圧力で加圧を実施したが、ポンチ先端での曲率半径が請求項1で規定する範囲外である場合(No.36〜No.37)には、疲労強度の向上は認められなかった。   On the other hand, when pressurization was performed with the pressurizing force defined in claim 1, but the radius of curvature at the punch tip was outside the range defined in claim 1 (No. 36 to No. 37), the fatigue strength The improvement of was not recognized.

また、ポンチ先端での曲率半径は請求項1で規定する範囲内であるが、加圧力が請求項1で規定する値より低い場合(No.38、No.40、No.42、No.44)には、板厚:1.2mm、1.6mmの場合とも、疲労強度の向上は認められなかった。   Further, the radius of curvature at the punch tip is within the range defined in claim 1, but when the applied pressure is lower than the value defined in claim 1 (No. 38, No. 40, No. 42, No. 44). ), No improvement in fatigue strength was observed in the case of plate thicknesses of 1.2 mm and 1.6 mm.

さらに、ポンチ先端での曲率半径は請求項1で規定する範囲内であるが、加圧力が請求項1で規定する値より高い場合(No.39、No.41、No.43、No.45)には、板厚:1.2mm、1.6mmの場合とも、疲労強度の向上は認められるが、溶接部表面の窪みが大きくなっており、それより加圧力が低い場合(No.6、No.12、No.15、No.18)に比べて、疲労強度の向上率も低い値を示した。また、表面では、一部割れの発生も観察された。   Further, the radius of curvature at the tip of the punch is within the range defined in claim 1, but the pressure is higher than the value defined in claim 1 (No. 39, No. 41, No. 43, No. 45). In the case of plate thickness: 1.2 mm and 1.6 mm, the fatigue strength is improved, but the dent on the surface of the welded portion is large and the applied pressure is lower than that (No. 6, No.12, No.15, No.18) The improvement rate of fatigue strength also showed a low value. Moreover, generation | occurrence | production of the partial crack was observed on the surface.

Figure 2007130685
Figure 2007130685

次に、上記と同様に、板厚:1.2mmの各種高強度鋼板継手を用いて、本発明の効果を検証した。   Next, in the same manner as described above, the effects of the present invention were verified using various high-strength steel plate joints having a plate thickness of 1.2 mm.

表2で示すように、突起先端の曲率半径、突起の高さ、突起間の距離が請求項2で規定する範囲内にあり、請求項2で規定する範囲内で上記ポンチを用い溶接部を加圧した場合には、突起先端の曲率半径を変化させても(No.1〜No.3)、突起の高さを変化させても(No.4〜No.5)、突起間の距離を変化させても(No.6〜No.7)、また、様々な鋼種の継手で加圧力を変化させても(No.8〜No.13)、加圧を実施しない軟鋼板継手(No.27)や高強度鋼板継手(No.30、No.32、No.34)の場合に比べて、継手の疲労強度は著しく向上していた。   As shown in Table 2, the radius of curvature of the tip of the protrusion, the height of the protrusion, and the distance between the protrusions are within the range defined in claim 2, and within the range defined in claim 2, using the punch, When pressure is applied, even if the radius of curvature of the protrusion tip is changed (No. 1 to No. 3) or the height of the protrusion is changed (No. 4 to No. 5), the distance between the protrusions Even if the pressure is changed (No. 6 to No. 7), or even if the pressing force is changed with the joints of various steel types (No. 8 to No. 13), the mild steel plate joint (No. .27) and high strength steel plate joints (No. 30, No. 32, No. 34), the fatigue strength of the joints was significantly improved.

次に、板厚:1.6mmの高強度鋼板継手を用いて疲労強度を調査したが(No.14〜No.19)、いずれの場合も著しい疲労強度の向上が認められた。   Next, the fatigue strength was investigated using a high-strength steel plate joint having a thickness of 1.6 mm (No. 14 to No. 19), and in all cases, a significant improvement in fatigue strength was observed.

さらに、板厚:1.2mmの軟鋼板継手(No.20)、様々な高強度鋼板継手(No.21〜No.26)を用いて疲労強度を調査したが、いずれの場合も、加圧を実施しない軟鋼板継手(No.27)や高強度鋼板継手(No.28、No.29、No.31、No.33、No.35〜No.36)に比べて、継手の疲労強度は著しく向上していた。   Further, the fatigue strength was investigated using a mild steel plate joint (No. 20) having a thickness of 1.2 mm and various high-strength steel plate joints (No. 21 to No. 26). Compared with mild steel plate joints (No. 27) and high-strength steel plate joints (No. 28, No. 29, No. 31, No. 33, No. 35 to No. 36), the fatigue strength of the joints is It was remarkably improved.

一方、請求項2で規定する加圧力で加圧を実施したが、突起先端の曲率半径が請求項2で規定する範囲外である場合(No.37〜No.38)や、突起の高さが請求項2で規定する範囲外である場合(No.39〜No.40)、突起間の距離が請求項2で規定する範囲外である場合(No.41〜No.42)には、疲労強度の向上は認められなかった。   On the other hand, when pressurization was performed with the pressurizing force defined in claim 2, but the radius of curvature of the protrusion tip is outside the range defined in claim 2 (No. 37 to No. 38), or the height of the protrusion Is outside the range specified in claim 2 (No. 39 to No. 40), and when the distance between the protrusions is outside the range specified in claim 2 (No. 41 to No. 42), No improvement in fatigue strength was observed.

また、突起先端の曲率半径、突起の高さ、突起間の距離は請求項2で規定する範囲内であるが、加圧力が請求項2で規定する値より低い場合(No.43、No.45、No.47、No.49)には、板厚:1.2mm、1.6mmの場合とも、疲労強度の向上は認められなかった。   Further, the radius of curvature at the tip of the protrusion, the height of the protrusion, and the distance between the protrusions are within the range defined in claim 2, but the pressure is lower than the value defined in claim 2 (No. 43, No. 4). 45, No. 47, No. 49), no improvement in fatigue strength was observed even when the plate thickness was 1.2 mm or 1.6 mm.

さらに、ポンチ先端での曲率半径は請求項2で規定する範囲内であるが、加圧力が請求項2で規定する値より高い場合(No.44、No.46、No.48、No.50)には、板厚:1.2mm、1.6mmの場合とも、疲労強度の向上は認められるが、溶接部表面の窪みが大きくなっており、それより加圧力が低い場合(No.10、No.13、No.16、No.19)に比べて、疲労強度の向上率も低い値を示した。また、表面では、一部割れの発生も観察された。   Further, the radius of curvature at the tip of the punch is within the range defined in claim 2, but when the applied pressure is higher than the value defined in claim 2 (No. 44, No. 46, No. 48, No. 50). In the case of plate thickness: 1.2 mm and 1.6 mm, an improvement in fatigue strength is observed, but the dent on the surface of the welded portion is large, and the applied pressure is lower (No. 10, No. 13, No. 16, No. 19), the fatigue strength improvement rate was also low. Moreover, generation | occurrence | production of the partial crack was observed on the surface.

Figure 2007130685
Figure 2007130685

さらに、様々な鋼種を用いても、鋼板の板厚を変化させても、結果は同様であった。さらに、めっき鋼板を用いても、また、めっき種、目付量等を変えて実験を実施しても、結果は同様であった。   Furthermore, even if various steel types were used or the thickness of the steel sheet was changed, the results were the same. Furthermore, the results were the same even when the plated steel sheet was used, and even when the experiment was carried out by changing the plating type and the basis weight.

本発明によれば、自動車用部品の取付けおよび車体の組立てなどで用いる高強度鋼板のスポット溶接において、良好な溶接作業性を確保しつつ溶接継手の疲労強度を向上させることができる。したがって、これにより、自動車分野などで高強度鋼板適用による安全性向上や軽量化による低燃料費、CO2排出量削減のメリットなどを十分に享受でき、社会的な貢献は多大である。 ADVANTAGE OF THE INVENTION According to this invention, the fatigue strength of a welded joint can be improved, ensuring favorable welding workability | operativity in the spot welding of the high-strength steel plate used for the attachment of the components for motor vehicles, the assembly of a vehicle body, etc. Therefore, this makes it possible to fully enjoy the benefits of improving safety by applying high-strength steel sheets, reducing fuel costs by reducing weight, and reducing CO 2 emissions in the automotive field and the like.

スポット溶接継手の疲労試験を説明するための断面図である。It is sectional drawing for demonstrating the fatigue test of a spot welded joint. スポット溶接を説明するための断面図である。It is sectional drawing for demonstrating spot welding. スポット溶接部を説明するための断面図である。It is sectional drawing for demonstrating a spot weld part. 本発明のポンチ形状を説明するための断面図である。It is sectional drawing for demonstrating the punch shape of this invention. 本発明のポンチによる加圧方法を説明するための断面図である。It is sectional drawing for demonstrating the pressurization method by the punch of this invention. 高強度鋼板(板厚t:1.2mm)のスポット溶接継手(ナゲット径ND:5.5mm)を加圧した際におけるポンチの加圧力Pおよび鋼板の引張強さTSと、溶接継手の疲労強度の評価結果(○、×)との関係を示す図である。Punch pressure P and tensile strength TS of the steel plate when a spot welded joint (nugget diameter ND: 5.5 mm) of a high-strength steel plate (thickness t: 1.2 mm) is pressed, and fatigue strength of the welded joint It is a figure which shows the relationship with evaluation result ((circle), *) of this. 高強度鋼板(引張強さTS:780MPa)のスポット溶接継手(ナゲット径ND:5.5mm)を加圧した際におけるポンチの加圧力Pおよび鋼板の板厚tと、溶接継手の疲労強度の評価結果(○、×)との関係を示す図である。Evaluation of punch pressure P and steel plate thickness t, and fatigue strength of welded joints when a spot welded joint (nugget diameter ND: 5.5 mm) of a high strength steel sheet (tensile strength TS: 780 MPa) is pressed It is a figure which shows the relationship with a result ((circle), x).

符号の説明Explanation of symbols

1 高強度鋼板
2 ナゲット
3 ナゲットの端部
4 疲労試験での負荷方向
5 溶接電極
6 電極の加圧力
7 溶接部表面の窪み
8 ナゲットの周囲
9 溶接部の周囲
10 ポンチの加圧力
DESCRIPTION OF SYMBOLS 1 High-strength steel plate 2 Nugget 3 End part of nugget 4 Load direction in fatigue test 5 Welding electrode 6 Electrode pressure 7 Depression on weld surface 8 Nugget circumference 9 Weld area 10 Punch pressure

Claims (2)

引張強さが260〜1570MPa、板厚が0.6〜3.3mmの高強度鋼板スポット溶接継手の疲労強度向上方法において、スポット溶接後、溶接部表面の温度が300℃以下に低下した後、先端の曲率半径が50〜120mmの円柱型ポンチを用い、該円柱型ポンチの中心を溶接部の中心に合わせ、溶接部上下の鋼板両面から、該円柱型ポンチの加圧力Pが前記高強度鋼板の引張強さTSおよび板厚tとの関係で下記(1)式を満たすように加圧することを特徴とする高強度鋼板スポット溶接継手の疲労強度向上方法。
0.0314×t×TS≦P≦0.1571×t×TS ・・・・・(1)
ただし、
t :高強度鋼板の板厚(mm)
TS:高強度鋼板の引張強さ(MPa)
P :円柱型ポンチでの加圧力(kN)
In the fatigue strength improving method of a high strength steel plate spot welded joint with a tensile strength of 260 to 1570 MPa and a plate thickness of 0.6 to 3.3 mm, after spot welding, the surface temperature of the welded portion is reduced to 300 ° C. or lower, Using a cylindrical punch having a radius of curvature of 50 to 120 mm at the tip, the center of the cylindrical punch is aligned with the center of the welded portion, and the pressure P of the cylindrical punch is applied to the high strength steel plate from both sides of the steel plate above and below the welded portion. A method for improving the fatigue strength of a spot-welded joint of high-strength steel sheets, wherein pressurization is performed so as to satisfy the following formula (1) in relation to the tensile strength TS and the sheet thickness t.
0.0314 × t × TS ≦ P ≦ 0.1571 × t × TS (1)
However,
t: Thickness (mm) of high-strength steel plate
TS: Tensile strength (MPa) of high-strength steel sheet
P: Pressurizing force with cylindrical punch (kN)
引張強さが260〜1570MPa、板厚が0.6〜3.3mmの高強度鋼板スポット溶接継手の疲労強度向上方法において、スポット溶接後、溶接部表面の温度が300℃以下に低下した後、突起先端の曲率半径が2.0〜7.0mm、突起高さが1.0〜3.0mmのリング状突起を先端部に有し、該リング状突起の直径Dがナゲット径NDとの関係で下記(2)を満たす突起型ポンチを用い、該突起型ポンチの中心を溶接部の中心に合わせ、溶接部上下の鋼板両面から、該突起型ポンチの加圧力Pが前記高強度鋼板の引張強さTSおよび板厚tとの関係で下記(3)式を満たすように加圧することを特徴とする高強度鋼板スポット溶接継手の疲労強度向上方法。
0.70×ND≦D≦1.30×ND ・・・・・(2)
0.0157×t×TS≦P≦0.0786×t×TS ・・・・・(3)
ただし、
ND:ナゲット径(mm)
D:リング状突起の直径(mm)
t :高強度鋼板の板厚(mm)
TS:高強度鋼板の引張強さ(MPa)
P :突起型ポンチでの加圧力(kN)
In the fatigue strength improving method of a high strength steel plate spot welded joint with a tensile strength of 260 to 1570 MPa and a plate thickness of 0.6 to 3.3 mm, after spot welding, the surface temperature of the welded portion is reduced to 300 ° C. or lower, The tip has a ring-shaped protrusion with a curvature radius of 2.0-7.0 mm and a protrusion height of 1.0-3.0 mm, and the diameter D of the ring-shaped protrusion is related to the nugget diameter ND. The projecting punch satisfying the following (2) is used, the center of the projecting punch is aligned with the center of the welded portion, and the pressure P of the projecting punch is applied to the tensile strength of the high-strength steel plate from both the upper and lower steel plates. A method for improving the fatigue strength of a high-strength steel plate spot welded joint, wherein pressure is applied so as to satisfy the following expression (3) in relation to the strength TS and the plate thickness t.
0.70 × ND ≦ D ≦ 1.30 × ND (2)
0.0157 × t × TS ≦ P ≦ 0.0786 × t × TS (3)
However,
ND: Nugget diameter (mm)
D: Ring-shaped protrusion diameter (mm)
t: Thickness (mm) of high-strength steel plate
TS: Tensile strength (MPa) of high-strength steel sheet
P: Pressurizing force with protrusion type punch (kN)
JP2005329026A 2005-11-14 2005-11-14 Fatigue strength improvement method for high strength steel spot welded joint Active JP4724535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329026A JP4724535B2 (en) 2005-11-14 2005-11-14 Fatigue strength improvement method for high strength steel spot welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329026A JP4724535B2 (en) 2005-11-14 2005-11-14 Fatigue strength improvement method for high strength steel spot welded joint

Publications (2)

Publication Number Publication Date
JP2007130685A true JP2007130685A (en) 2007-05-31
JP4724535B2 JP4724535B2 (en) 2011-07-13

Family

ID=38152761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329026A Active JP4724535B2 (en) 2005-11-14 2005-11-14 Fatigue strength improvement method for high strength steel spot welded joint

Country Status (1)

Country Link
JP (1) JP4724535B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072303A1 (en) * 2007-12-05 2009-06-11 Honda Motor Co., Ltd. High-strength steel sheet, automotive strengthening member comprising the same, and process for producing automotive strengthening member
JP2011005544A (en) * 2009-05-27 2011-01-13 Nippon Steel Corp Spot welding method for high-strength steel sheet
JP2012206168A (en) * 2011-03-11 2012-10-25 Toyota Central R&D Labs Inc Resistance welding member, and method and device for processing the same
CN104245215A (en) * 2012-04-25 2014-12-24 新日铁住金株式会社 Spot-welding joint
WO2016208238A1 (en) * 2015-06-25 2016-12-29 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device
CN110595919A (en) * 2019-07-19 2019-12-20 江阴市建鑫金属有限公司 Method for testing fatigue strength of steel bar welded mesh
WO2024041463A1 (en) * 2022-08-22 2024-02-29 中国科学院上海光学精密机械研究所 Spot-welded joint and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219576A (en) * 2000-11-22 2002-08-06 Nippon Steel Corp Spot welding method for high strength steel sheet excellent in fatigue strength property of welding part
JP2004122153A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp The method for enhancing fatigue strength of spot welded joint of high strength steel sheet
JP2004330300A (en) * 2003-04-16 2004-11-25 Ihi Marine United Inc Welding method and welding equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219576A (en) * 2000-11-22 2002-08-06 Nippon Steel Corp Spot welding method for high strength steel sheet excellent in fatigue strength property of welding part
JP2004122153A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp The method for enhancing fatigue strength of spot welded joint of high strength steel sheet
JP2004330300A (en) * 2003-04-16 2004-11-25 Ihi Marine United Inc Welding method and welding equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072303A1 (en) * 2007-12-05 2009-06-11 Honda Motor Co., Ltd. High-strength steel sheet, automotive strengthening member comprising the same, and process for producing automotive strengthening member
US8263234B2 (en) 2007-12-05 2012-09-11 Honda Motor Co., Ltd. High-strength steel sheet, strength member for vehicles using the same, and method for producing strength member for vehicles
JP2011005544A (en) * 2009-05-27 2011-01-13 Nippon Steel Corp Spot welding method for high-strength steel sheet
JP2012206168A (en) * 2011-03-11 2012-10-25 Toyota Central R&D Labs Inc Resistance welding member, and method and device for processing the same
CN104245215A (en) * 2012-04-25 2014-12-24 新日铁住金株式会社 Spot-welding joint
US10081073B2 (en) 2012-04-25 2018-09-25 Nippon Steel & Sumitomo Metal Corporation Spot welded joint
WO2016208238A1 (en) * 2015-06-25 2016-12-29 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device
JPWO2016208238A1 (en) * 2015-06-25 2018-04-12 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device
CN110595919A (en) * 2019-07-19 2019-12-20 江阴市建鑫金属有限公司 Method for testing fatigue strength of steel bar welded mesh
WO2024041463A1 (en) * 2022-08-22 2024-02-29 中国科学院上海光学精密机械研究所 Spot-welded joint and manufacturing method therefor

Also Published As

Publication number Publication date
JP4724535B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP6194765B2 (en) Spot welding method for high strength steel sheet
RU2633409C2 (en) Method of resistance spot welding
KR101588257B1 (en) Method of resistance spot welding of high-tensile strength steel sheet and welding joint manufactured by the method
JP6447752B2 (en) Automotive parts having resistance welds
JP5151615B2 (en) Spot welding method for high strength steel sheet
US20100143747A1 (en) Liquid phase diffusion bonding method of metal machine part and such metal machine part
JP4724535B2 (en) Fatigue strength improvement method for high strength steel spot welded joint
JP5429327B2 (en) Spot welding method for high strength steel sheet
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP5168204B2 (en) Spot welding method for steel sheet
JP6379819B2 (en) Lap welding member, lap resistance seam welding method of lap welding member, and lap welding member for automobile having lap welding part
JP3944046B2 (en) Fatigue strength improvement method of spot welded joint by ultrasonic impact treatment
JP4753368B2 (en) High-tensile steel pipe for automobile high-pressure piping
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
JP3875878B2 (en) Spot-welding method for high-strength steel sheets with excellent fatigue strength characteristics of welds
JP2005103608A (en) Method of improving corrosion resistance, tensile strength and fatigue strength of joint obtained by applying spot welding to high strength plated steel sheet
Hou Resistance spot welding and in-process heat treatment of hot stamped boron steel
JP3828855B2 (en) Method for improving tensile strength of spot welded joints by ultrasonic impact treatment
JP2020082102A (en) Joint structure and joint structure manufacturing method
CN114007796B (en) Spot welded joint and method for manufacturing spot welded joint
JP5429326B2 (en) Spot welding method for high strength steel sheet
JP2004122153A (en) The method for enhancing fatigue strength of spot welded joint of high strength steel sheet
Furusako et al. Assembly Technology of Welding and Joining for Ultra-high Strength Steel Sheets for Automobiles—Spot Welding
JP7151762B2 (en) SPOT WELD JOINTS, MOTOR VEHICLE STRUCTURE COMPONENTS WITH SPOT WELD JOINTS, AND METHOD FOR MANUFACTURING THE SPOT WELD JOINTS
US20230105155A1 (en) Welded member having excellent fatigue strength of welded portion and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4724535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350