JP2007130671A - Program for twist determination and correction in pressing, and its method - Google Patents

Program for twist determination and correction in pressing, and its method Download PDF

Info

Publication number
JP2007130671A
JP2007130671A JP2005326837A JP2005326837A JP2007130671A JP 2007130671 A JP2007130671 A JP 2007130671A JP 2005326837 A JP2005326837 A JP 2005326837A JP 2005326837 A JP2005326837 A JP 2005326837A JP 2007130671 A JP2007130671 A JP 2007130671A
Authority
JP
Japan
Prior art keywords
evaluation
torsion
setting
section line
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005326837A
Other languages
Japanese (ja)
Inventor
Tetsuya Kondo
哲也 近藤
Naotatsu Mori
尚達 森
Kouichi Ito
耿一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M & M Res Kk
M & M Research kk
Original Assignee
M & M Res Kk
M & M Research kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M & M Res Kk, M & M Research kk filed Critical M & M Res Kk
Priority to JP2005326837A priority Critical patent/JP2007130671A/en
Publication of JP2007130671A publication Critical patent/JP2007130671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control supporting means capable of reliably determining whether or not any twist is generated in a pressed article in the pressing simulation using a computer, and obtaining the specific numeral values forming a guideline for controlling the pressing condition for eliminating the twist if any twist is generated, and to control the pressing condition by using the supporting means. <P>SOLUTION: The control supporting means obtains the specific numerical value by the operation through the pressing simulation using a computer while paying attention to the fact that the case for generating the twist is a part of the internal stress exerted in a pressed article before the spring back. The formula T=(q×r)+(Q×r)-M for the operation, where T denotes a part of the internal stress, q denotes the in-plane shearing force, r denotes the distance to the point of evaluation from the center of the evaluation sectional line of the pressed article, Q denotes the shearing force in the thickness direction, and M denotes the torsional moment, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

プレス加工において、加工品を製造する際、一般的に、少しでもねじれが発生しては困る箇所例えば、面や方向(以後、「要測定箇所」という。)と、多少のねじれが発生しても容認できる箇所とが存在するのが普通である。
そこで、本発明は、コンピュータを用いた加工材(金属板材)のプレス加工シミュレーションにおいて、金型の形状や、被加工品押え力、カウンター力、金型移動量などのプレス加工条件を入力し、前記要測定箇所にねじれが発生しているか否かを判定し、ねじれが発生している場合にはそのねじれを解消するための修正作業、例えば、加工条件を制御する際に役立つ支援手段と、該支援手段を用いて加工条件を制御する技術に関するものである。
In press processing, when manufacturing a processed product, in general, it is difficult to twist even a little, for example, the surface or direction (hereinafter referred to as “measurement point required”) and some twist. There is usually an acceptable place.
Therefore, the present invention inputs press processing conditions such as mold shape, workpiece pressing force, counter force, mold movement amount, etc. in press processing simulation of a processed material (metal plate material) using a computer, It is determined whether or not torsion has occurred at the measurement required location, and if twist has occurred, correction work for eliminating the twist, for example, assisting means useful in controlling processing conditions; The present invention relates to a technique for controlling machining conditions using the support means.

従来は、加工品の要測定箇所にねじれが発生しているか否かを判定するには、コンピュータを用いた加工材(金属板材)のプレス加工シミュレーションを行い、図2にしめすように、加工品を金型から取り出して加工品に作用していた内部応力が消滅した時(以下、「スプリングバック後」または「SB後」という。)の形状と、最終的に得ようとしている理想的な製品形状、即ち、設計された製品の形状(以後、「設計形状」という。)とをコンピュータの仮想空間で重ね合わせ、両形状の直線部の傾き角度21を測定しねじれの発生の判定と、ねじれがある場合は、そのねじれ方向やねじれ角度を求めている。
しかし、このような手段では、要測定箇所に必ずしも直線部が存在するとは限らず判定手段としては不確実なものであった。
また、図6に示すように、プレス加工では加工品を金型から取り出す時に弾性変形、所謂スプリングバック変形が起こるために、金型への押込作業が終了し、且つ、加工品を金型から取り出す直前で加工品に内部応力がまだ作用している時(以下、「スプリングバック前」または「SB前」という。)の形状と、SB後の形状とは異っている。
このため、前述のように解消すべきねじれの方向や角度のデータが得られても、該データがねじれを解消するために加工条件を如何に制御すべきかの直接的指針とはなり得ず、以下に例示するように前記加工条件の制御作業を経験と勘に頼った試行錯誤の繰り返しとなっていた。
加工品にねじれが発生した場合、従来では以下に示す方法によってねじれを解消するための修正作業をしていた。
Conventionally, in order to determine whether or not torsion has occurred at a point requiring measurement of a processed product, a press processing simulation of a processed material (metal plate material) using a computer is performed, and as shown in FIG. The shape when the internal stress acting on the processed product disappears from the mold (hereinafter referred to as “after springback” or “after SB”) and the ideal product to be finally obtained The shape, that is, the shape of the designed product (hereinafter referred to as “design shape”) is overlapped in the virtual space of the computer, and the inclination angle 21 of the linear portion of both shapes is measured to determine the occurrence of twist and twist. If there is, the twist direction and twist angle are obtained.
However, with such a means, a straight line portion does not always exist at a measurement-required location, and the determination means is uncertain.
In addition, as shown in FIG. 6, in the press working, when the processed product is taken out from the mold, elastic deformation, so-called spring back deformation occurs, so that the pressing operation into the mold is completed, and the processed product is removed from the mold. The shape when the internal stress is still acting on the processed product immediately before removal (hereinafter referred to as “before springback” or “before SB”) is different from the shape after SB.
For this reason, even if the data of the direction and angle of the twist to be eliminated as described above is obtained, the data cannot be a direct guide on how to control the processing conditions in order to eliminate the twist. As exemplified below, the control of the machining conditions has been repeated trial and error relying on experience and intuition.
When twisting occurs in a processed product, conventionally, correction work for eliminating the twisting has been performed by the following method.

[加工条件を制御する方法]
この方法は、加工条件例えば、絞りビードや、板押え力などの加工材を金型内に移動させる条件を制御して加工品のねじれを解消する修正方法である。
しかし、前述したように加工条件を制御する具体的指針がないので、経験と勘に頼った試行錯誤の繰り返しとなっていた。
[Method of controlling machining conditions]
This method is a correction method for eliminating the twist of the processed product by controlling the processing conditions, for example, the conditions for moving the processing material such as the drawing bead and the plate pressing force into the mold.
However, as described above, since there is no specific guideline for controlling the processing conditions, it has been repeated trial and error relying on experience and intuition.

[金型を修正する方法]
金型の形状を、加工品に発生したねじれの角度と逆の方向に角度をつけて修正する方法(特開平2001−252721号参照)である。
しかしこの方法も、前述したスプリングバック変形の問題があるため、発生するねじれ角度と逆方向に同角度金型の形状を修正したとしても、発生したねじれが必ず解消できるとは限らず、やはり、金型の修正角度を適宜微調整(変更)するという、試行錯誤を繰り返すものとなっていた。
さらに、金型に角度をつける修正作業は困難であり、且つ、金型の強度不足を招くとの問題もあった。
特開平2001−252721号 特願2005-142116号
[How to modify the mold]
This is a method for correcting the shape of a mold by making an angle in a direction opposite to the twist angle generated in the processed product (see JP-A-2001-252721).
However, this method also has the problem of the spring back deformation described above, so even if the shape of the same angle mold is corrected in the opposite direction to the generated twist angle, the generated twist cannot always be solved. The trial and error was repeated to finely adjust (change) the correction angle of the mold appropriately.
Furthermore, there is a problem that correction work for making an angle on the mold is difficult and the strength of the mold is insufficient.
JP 2001-252721 A Japanese Patent Application No. 2005-142116

〔発明の課題〕
本発明の課題は、前述した2つの従来の方法の欠点を改善することであり、より詳しくは、コンピュータを用いたプレス加工シミュレーションにおいて、加工品の要測定箇所にねじれが発生しているか否かを確実に判定し、且つ、ねじれが発生している場合はそのねじれを解消するための修正作業、例えば、加工条件を制御する指針となる具体的数値を演算により求め、該制御の支援手段を提供すること、及び、該支援手段(具体的数値)を用いて加工条件を制御することである。
このようにすることにより、要測定箇所におけるねじれの発生の有無を確実に判定でき、且つ、ねじれが発生している場合はそのねじれを解消するための修正作業、例えば、加工条件を制御する際に、従来の方法のような経験と勘に頼った試行錯誤の繰り返しや、正確性が担保されない金型形状を苦労して修正する等の欠点を改善できる。
[Problems of the Invention]
An object of the present invention is to improve the disadvantages of the above-described two conventional methods. More specifically, whether or not a twist is generated at a measurement target point of a processed product in a press processing simulation using a computer. If there is a twist, corrective work for eliminating the twist, for example, a specific numerical value that serves as a guideline for controlling the processing conditions is obtained by calculation, and a support means for the control is obtained. Providing and controlling processing conditions using the support means (specific numerical values).
In this way, it is possible to reliably determine whether or not torsion has occurred at the measurement required location, and when the torsion has occurred, correction work for eliminating the torsion, for example, when controlling processing conditions In addition, it is possible to improve drawbacks such as repeated trial and error relying on experience and intuition as in the conventional method, and difficult correction of mold shapes for which accuracy is not ensured.

〔発明の構成〕
本発明は、上記課題を解決するために、ねじれを発生させる原因がSB前の加工品に作用している内部応力の一部(以下、「ねじれトルク」という。)であることに着目し、これをコンピュータを用いたプレス加工シミュレーションによって具体的数値を演算して求め、要測定箇所におけるねじれの発生の有無を判定し(ねじれトルクが零のときはねじれなし)、且つ、ねじれが発生している場合はそのねじれを解消する修正作業、例えば、加工条件を制御する際の指針として利用するねじれ修正支援手段と、この支援手段を用いてねじれトルクをなくす(零とする)ように加工条件を制御する手段に関するものである。
なお、前記演算にはT=(q×r)+(Q×r)−Mなる関係式を用いる。
但し、Tはねじれトルク、qは面内せん断力、rはSB前の評価断面線の中心から評価点までの距離、Qは板厚方向のせん断力、Mはねじりモーメントである。
ところで、SB後の加工品が設計形状と異なる原因は、形状変形と、ねじれの発生の二つがあるが、本発明は、後者のみ、即ち、加工品にねじれが発生しこれを解消するための修正技術に関する発明であり、形状変形の修正技術については取扱わない。
なお、形状変形を修正する技術については、以前出願した特願2005-142116号を参照されたい。
[Configuration of the Invention]
In order to solve the above problems, the present invention pays attention to the fact that the cause of torsion is a part of internal stress (hereinafter referred to as “twist torque”) acting on the workpiece before SB, This is obtained by calculating a specific numerical value by a press working simulation using a computer to determine whether or not torsion has occurred at the point where measurement is required (no torsion when the torsion torque is zero), and torsion has occurred. If there is a correction work for eliminating the twist, for example, a twist correction support means used as a guideline for controlling the processing conditions, and using this support means, the processing conditions are set so as to eliminate the twist torque (to zero). It relates to means for controlling.
In the calculation, a relational expression T = (q × r) + (Q × r) −M is used.
Where T is the torsional torque, q is the in-plane shearing force, r is the distance from the center of the evaluation section line before SB to the evaluation point, Q is the shearing force in the thickness direction, and M is the torsional moment.
By the way, there are two reasons why the processed product after the SB is different from the design shape, that is, deformation of shape and occurrence of twist. However, the present invention is only for the latter, that is, the processed product is twisted to eliminate this. The invention relates to a correction technique, and does not deal with a correction technique for shape deformation.
For the technology for correcting the shape deformation, refer to Japanese Patent Application No. 2005-142116 filed earlier.

本発明のねじれ発生の有無の判定手順と、ねじれが発生している場合にそのねじれを解消する加工条件の制御の支援手順と、該支援手順を用いた加工条件の制御手順は、図1に示すようなフロー(手順)であるが、各手順を以下に詳説する。   FIG. 1 shows a procedure for determining whether or not torsion has occurred according to the present invention, a support procedure for controlling machining conditions to eliminate the twist when twist has occurred, and a control procedure for machining conditions using the assist procedure. Although the flow (procedure) is as shown, each procedure will be described in detail below.

1.判定方向設定手順
加工品のねじれ発生の有無を判定したい方向(要測定箇所)に、判定方向を設定する手順。
1. Judgment direction setting procedure The procedure for setting the judgment direction in the direction (measurement required) where you want to judge the presence or absence of torsion of the workpiece.

2.評価断面線設定手順
図3にしめすように、SB前の加工品の判定方向に垂直な評価断面線Vを設定する評価断面線設定手順。
なお、設定する箇所は判定方向に垂直なであれば何れでも良い。
また図3には、評価断面線Vが一つしか示されていないが、これは説明を簡単にするためであり、実際には、加工品に発生するねじれは、ねじれ方向に次第にねじれ角度が増大する場合や、複数のねじれ状態が存在することもあるので、これらの場合には、評価断面線を複数設定し、各評価断面線毎にねじれトルクを演算することになる。
なお、加工品全体のねじれトルクを表現する方法としては、例えば、横軸にねじれ方向に垂直な断面の位置、縦軸にねじれトルクの大きさをプロットした分布グラフや、ねじれ角度の大きさとねじれの方向とを加工品の三次元的な位置で矢印の長さと向きを用いて示す立体的なグラフなどが考えられる。
このようにすれば、加工品全体のねじれトルクの変化を視覚的に把握できる。
2. Evaluation Section Line Setting Procedure An evaluation section line setting procedure for setting an evaluation section line V perpendicular to the determination direction of the processed product before SB as shown in FIG.
Note that the location to be set may be any as long as it is perpendicular to the determination direction.
Further, FIG. 3 shows only one evaluation cross section line V, but this is for the sake of simplification. In practice, the twist generated in the processed product gradually increases in the twist direction. In such cases, a plurality of evaluation cross section lines are set, and the torsion torque is calculated for each evaluation cross section line.
In addition, as a method of expressing the torsion torque of the entire workpiece, for example, a distribution graph in which the horizontal axis indicates the position of the cross section perpendicular to the torsion direction and the vertical axis indicates the torsion torque, or the torsion angle magnitude and torsion A three-dimensional graph or the like that indicates the direction of the object at the three-dimensional position of the processed product using the length and direction of the arrow may be considered.
In this way, it is possible to visually grasp the change in torsion torque of the entire processed product.

3.評価点設定手順
図4にしめすように、前記評価断面線Vをm個の微小線分に分割し、微小線分毎にねじれトルクを演算する際の基準となる点(以後、「評価点」という。)を各微小線分の中央、即ち、中点に設定する評価点設定手順。
なお分割する理由は、複雑な形状を微小線分に分割することによって、個々の計算が容易になり、また計算精度の向上が期待できるからである。
3. Evaluation Point Setting Procedure As shown in FIG. 4, the evaluation cross section line V is divided into m minute line segments, and a reference point for calculating the torsion torque for each minute line segment (hereinafter referred to as “evaluation point”). The evaluation point setting procedure for setting the center of each minute line segment, that is, the middle point.
The reason for dividing is that by dividing a complicated shape into minute line segments, individual calculations can be facilitated, and improvement in calculation accuracy can be expected.

4.作用力演算手順
コンピュータを用いたプレス加工シミュレーションで金型の形状や、被加工品押え力、カウンター力、金型移動量などのプレス加工条件を入力して、図5にしめすように、評価点毎、例えば、評価点Pに作用する、301方向(評価断面線Vの存在する断面の法線方向)に沿ったねじりモーメントM、302方向(評価断面線Vの接線方向)に沿った面内せん断力q、303方向(301方向軸、302方向軸の単位ベクトルの外積によって求められる方向)に沿った板厚方向のせん断力Q、を演算する手順。
前記シミュレーションでは、弾塑性有限要素法を用いて該作用力q、Q、Mを演算する。
なお、有限要素法とは、近似数値解法の一種類であり、板材などの物体の領域をその力学的ふるまいがすぐに理解できる個々の要素に分解し、個々の要素から全体の組み立てその挙動を解く方法であり、工学的シミュレーションでは多くの分野で用いられている。
その方法の1種である弾塑性有限要素法とは、物体の弾性変形と塑性変形とを同時に解く方法であり、プレス加工など金属の板材の塑性加工に関するシミュレーションに使われている。
詳細は、前述の特願2005-142116号を参照されたい。
4). Action force calculation procedure In the press processing simulation using a computer, press conditions such as mold shape, workpiece pressing force, counter force, mold movement amount, etc. are input, and the evaluation points shown in Fig. 5 For example, the torsional moment M acting on the evaluation point P along the 301 direction (the normal direction of the cross section where the evaluation cross section line V exists) and the in-plane along the 302 direction (the tangential direction of the evaluation cross section line V) A procedure for calculating the shearing force q and the shearing force Q in the plate thickness direction along the 303 direction (the direction obtained by the outer product of the unit vectors of the 301 direction axis and the 302 direction axis).
In the simulation, the acting forces q, Q, and M are calculated using an elastoplastic finite element method.
Note that the finite element method is a kind of approximate numerical solution method, in which the area of an object such as a plate material is broken down into individual elements whose mechanical behavior can be readily understood, and the entire assembly and behavior of each element is analyzed. This method is used in many fields in engineering simulation.
The elasto-plastic finite element method, which is one of the methods, is a method for solving elastic deformation and plastic deformation of an object at the same time, and is used for simulation related to plastic working of a metal plate material such as press working.
For details, refer to the aforementioned Japanese Patent Application No. 2005-142116.

5.ねじれ軸設定手順
ねじれ発生の有無を判定するには、ねじれ方向(判定方向)を設定すれば十分であるが、ねじれトルクを演算するにこれだけでは不十分で、ねじれトルクが作用する軸(以下「ねじれ軸」という。)を設定(特定)する必要がある。
ところで一般的に、加工品にねじれが発生する時は、加工品の中心軸に沿って回転する力(ねじれトルク)が発生し、その結果ねじれが生じことが多い。
そこで本発明では、評価断面線Vの中心(以下、「図心」という。)を通る軸を、ねじれ軸として設定する手順を採用した。
なお、図心の座標値は、前記評価点全ての座標値を平均することで求めることが出来る。
5. Torsional axis setting procedure To determine the occurrence of torsion, it is sufficient to set the torsional direction (judgment direction), but this is not sufficient to calculate the torsional torque. It is necessary to set (specify) the "twist axis".
In general, when a workpiece is twisted, a force (twisting torque) that rotates along the central axis of the workpiece is generated, and as a result, twisting often occurs.
Therefore, in the present invention, a procedure is adopted in which an axis passing through the center of the evaluation section line V (hereinafter referred to as “centroid”) is set as a torsion axis.
The coordinate value of the centroid can be obtained by averaging the coordinate values of all the evaluation points.

6.評価点ねじれトルク演算手順
ねじれトルクを求めるために必要な図心Cから評価点Pまでの距離rを図心Cの座標位置と評価点Pの座標位置から算出し、評価点PのねじれトルクTを下記式(以下、「関係式1」という。)を用いて演算する評価点ねじれトルク演算手順。
T=(q×r)+(Q×r)−M
但し、qは面内せん断力
rは図心から評価点までの距離
Qは板厚方向のせん断力
Mはねじりモーメント
6). Evaluation point torsion torque calculation procedure The distance r from the centroid C to the evaluation point P necessary for obtaining the torsion torque is calculated from the coordinate position of the centroid C and the evaluation point P, and the torsion torque T of the evaluation point P is calculated. Is an evaluation point torsion torque calculation procedure using the following equation (hereinafter referred to as “relational equation 1”).
T = (q × r) + (Q × r) −M
Where q is the in-plane shear force r is the distance from the centroid to the evaluation point Q is the shear force in the thickness direction M is the torsional moment

7.全体のねじれトルク演算手順
前項4から6の手順を前記評価断面線V上のすべての評価点で行い演算したすべての評価点でのねじれトルクを合計して、前記評価断面線V全体のねじれトルクを演算する全体のねじれトルク演算手順。
7). Overall Torsion Torque Calculation Procedure The torsional torque of the entire evaluation section line V is obtained by summing up the torsional torques at all the evaluation points calculated by performing the procedures in 4 to 6 above on all evaluation points on the evaluation section line V. Total torsion torque calculation procedure to calculate

8.加工条件制御手順
前述したようにねじれを解消する修正作業のためには、ねじれを発生させる原因である前項6で演算したねじれトルクTをなくす(零とする)ように加工条件を制御すればよい。
ところで、関係式1によれば、ねじれトルクTをなくす(零とする)ためには、面内せん断力q、板厚方向のせん断力Q、ねじりモーメントMTSの総和をなくす(零とする)ような加工条件の修正を行えばよいことになる。
なお、ねじれトルクTを主に支配しているのは面内せん断力qであることが実験等で明らかであるので、面内せん断力qだけをなくす(零とする)ことでも実用上の効果は期待できる。
例えば、面内せん断力qをなくす(零とする)ためには、面内せん断力qと面内方向の張力の釣り合い関係を利用して、直接、面内せん断力qの変更を行うのではなく、加工条件に直結することが可能な面内方向の張力がSB前の加工品全体に一様な分布になるように修正することなどが考えられる。
面内方向の張力であれば、絞りビードや板押え圧などの加工条件に直接反映させることも可能になる。
8). Machining condition control procedure As described above, in order to correct the twist, the machining condition may be controlled so as to eliminate (set to zero) the twist torque T calculated in the preceding item 6 that is the cause of the twist. .
By the way, according to the relational expression 1, in order to eliminate the torsional torque T (set to zero), the sum of the in-plane shearing force q, the shearing force Q in the thickness direction, and the torsional moment MTS is eliminated (set to zero). It is only necessary to correct the machining conditions.
Since it is clear from experiments and the like that it is the in-plane shear force q that mainly controls the torsional torque T. Therefore, even if only the in-plane shear force q is eliminated (set to zero), a practical effect is obtained. Can be expected.
For example, in order to eliminate the in-plane shearing force q (set it to zero), the in-plane shearing force q should be changed directly using the balance between the in-plane shearing force q and the in-plane tension. In other words, it is conceivable to correct the in-plane tension that can be directly connected to the processing conditions so as to have a uniform distribution over the entire processed product before SB.
If the tension is in the in-plane direction, it can be directly reflected in the processing conditions such as squeeze bead and plate pressing pressure.

本発明の処理手順Procedure of the present invention 従来のSB後の加工品のねじれ判定例Example of twist determination of a processed product after conventional SB 評価断面線上の評価点Evaluation point on evaluation section line SB前の加工品での評価断面線Evaluation cross section line for processed product before SB 評価点のねじれトルクの定義Definition of evaluation point torsion torque 成形シミュレーション例Molding simulation example

符号の説明Explanation of symbols

V 評価断面線
k 基準断面線の微小線分
P 評価点
C 評価断面線の図心
T ねじれ軸周りのねじれトルク
r 評価点から図心までの距離
V Evaluation section line k Fine line segment of reference section line P Evaluation point C Centroid of evaluation section line
T Torsion torque around torsion axis r Distance from evaluation point to centroid

Claims (4)

加工品のねじれ発生の有無を判定し、且つ、ねじれが発生している場合はそのねじれを解消するための加工条件修正作業の支援に用いるスプリングバック前の加工品に作用しているねじれトルクを演算するために、
前記加工品のねじれ発生の有無を判定したい方向に判定方向を設定する手順と、
スプリングバック前の加工品の前記判定方向に垂直な評価断面線Vをすくなくとも一つ設定する評価断面線設定手順と、
前記評価断面線Vを微小線分に分割し、該微少線分毎にねじれトルクTを演算する際の基準となる評価点を設定する評価点設定手順と、
前記評価点毎に作用する面内せん断力q、板厚方向のせん断力Q、ねじりモーメントMを演算する作用力演算手順と、
前記ねじれトルクTが作用するねじれ軸を、前記評価断面線Vの中心を通る軸に設定するねじれ軸設定手順と、
前記評価点のねじれトルクTを下記式を用いて演算する評価点ねじれトルク演算手順と、
T=(q×r)+(Q×r)−M
但し、qは面内せん断力、rは前記評価断面線の中心から前記評価点までの距離、Qは板厚方向のせん断力、Mはねじりモーメント、
前記作用力演算手順と、前記ねじれ軸設定手順と、前記評価点ねじれトルク演算手順とを前記評価断面線V上のすべての評価点で行い演算したすべての評価点でのねじれトルクを合計して、前記評価断面線V全体のねじれトルクを演算する全体のねじれトルク演算手順とを、
コンピユータに実行させるプレス加工におけるねじれ判定とその修正支援プログラム。
The torsional torque acting on the workpiece before spring-back is used to determine whether the workpiece has been twisted and, if twisting has occurred, to support the machining condition correction work to eliminate the twist. To calculate
A procedure for setting a determination direction in a direction in which it is desired to determine whether or not torsion of the processed product occurs,
An evaluation cross-section line setting procedure for setting at least one evaluation cross-section line V perpendicular to the determination direction of the processed product before springback;
An evaluation point setting procedure for dividing the evaluation section line V into minute line segments and setting an evaluation point serving as a reference when calculating the torsion torque T for each minute line segment;
An acting force calculation procedure for calculating an in-plane shearing force q acting on each evaluation point, a shearing force Q in the thickness direction, and a torsional moment M;
A torsional axis setting procedure for setting the torsional axis on which the torsional torque T acts as an axis passing through the center of the evaluation section line V;
An evaluation point torsion torque calculation procedure for calculating the torsion torque T of the evaluation point using the following equation;
T = (q × r) + (Q × r) −M
Where q is the in-plane shear force, r is the distance from the center of the evaluation section line to the evaluation point, Q is the shear force in the thickness direction, M is the torsional moment,
The torsional torques at all evaluation points calculated by performing the acting force calculation procedure, the torsion axis setting procedure, and the evaluation point torsion torque calculation procedure at all evaluation points on the evaluation section line V are summed up. And an overall torsion torque calculation procedure for calculating the torsion torque of the entire evaluation section line V,
Twist judgment and correction support program in press working to be executed by computer.
請求項1記載のプログラムに、該プログラムで求めたねじれトルクをなくすように加工条件を制御する加工条件制御手順を加えてコンピユータに実行させるプレス加工におけるねじれ判定とその修正プログラム。   A twist determination in press working and a correction program for causing the computer to execute a processing condition control procedure for controlling the processing conditions so as to eliminate the twist torque obtained by the program in the program according to claim 1. 加工品のねじれ発生の有無を判定し、且つ、ねじれが発生している場合はそのねじれを解消するための加工条件修正作業の支援に用いるスプリングバック前の加工品に作用しているねじれトルクを演算するために、
前記加工品のねじれ発生の有無を判定したい方向に判定方向を設定する手順と、
スプリングバック前の加工品の前記判定方向に垂直な評価断面線Vをすくなくとも一つ設定する評価断面線設定手順と、
前記評価断面線Vを微小線分に分割し、該微少線分毎にねじれトルクTを演算する際の基準となる評価点を各微小線分の中央に設定する評価点設定手順と、
前記評価点毎に作用する面内せん断力q、板厚方向のせん断力Q、ねじりモーメントMをコンピュータを用いたプレス加工シミュレーションに金型の形状や、被加工品押え力、カウンター力、金型移動量などのプレス加工条件を入力して演算する作用力演算手順と、
前記ねじれトルクTが作用するねじれ軸を、評価点全ての座標値を平均することで求めた前記評価断面線Vの中心を通る軸に設定するねじれ軸設定手順と、
前記評価点のねじれトルクTを下記式を用いて演算する評価点ねじれトルク演算手順と、
T=(q×r)+(Q×r)−M
但し、qは面内せん断力、rは前記評価断面線の中心から前記評価点までの距離、Qは板厚方向のせん断力、Mはねじりモーメント、
前記作用力演算手順と、前記ねじれ軸設定手順と、前記評価点ねじれトルク演算手順とを前記評価断面線V上のすべての評価点で行い演算したすべての評価点でのねじれトルクを合計して、前記評価断面線V全体のねじれトルクを演算する全体のねじれトルク演算手順と、
前記全体のねじれトルク演算手順で求めたねじれトルクをなくすように加工条件を制御する加工条件制御手順とを、
コンピユータに実行させるプレス加工におけるねじれ判定とその修正プログラム。
The torsional torque acting on the workpiece before spring-back is used to determine whether the workpiece has been twisted and, if twisting has occurred, to support the machining condition correction work to eliminate the twist. To calculate
A procedure for setting a determination direction in a direction in which it is desired to determine whether or not torsion of the processed product occurs,
An evaluation cross-section line setting procedure for setting at least one evaluation cross-section line V perpendicular to the determination direction of the processed product before springback;
An evaluation point setting procedure for dividing the evaluation cross-section line V into minute line segments and setting an evaluation point serving as a reference for calculating the torsion torque T for each minute line segment at the center of each minute line segment;
In-plane shearing force q acting on each evaluation point, sheet thickness direction shearing force Q, and torsional moment M are used in the press processing simulation using a computer to determine the shape of the mold, work piece pressing force, counter force, die An action force calculation procedure to calculate by inputting press working conditions such as travel distance,
A torsion axis setting procedure for setting the torsion axis on which the torsion torque T acts on an axis passing through the center of the evaluation section line V obtained by averaging the coordinate values of all evaluation points;
An evaluation point torsion torque calculation procedure for calculating the torsion torque T of the evaluation point using the following equation;
T = (q × r) + (Q × r) −M
Where q is the in-plane shear force, r is the distance from the center of the evaluation section line to the evaluation point, Q is the shear force in the thickness direction, M is the torsional moment,
The torsional torques at all evaluation points calculated by performing the acting force calculation procedure, the torsion axis setting procedure, and the evaluation point torsion torque calculation procedure at all evaluation points on the evaluation section line V are summed up. , An overall torsion torque calculation procedure for calculating the torsion torque of the entire evaluation section line V;
A machining condition control procedure for controlling the machining conditions so as to eliminate the torsion torque obtained in the overall torsion torque calculation procedure,
Twist judgment and correction program in press working to be executed by computer.
加工品のねじれ発生の有無を判定し、且つ、ねじれが発生している場合はそのねじれを解消するための加工条件修正作業の支援に用いるスプリングバック前の加工品に作用しているねじれトルクを演算するために、
前記加工品のねじれ発生の有無を判定したい方向に判定方向を設定する工程と、
スプリングバック前の加工品の前記判定方向に垂直な評価断面線Vをすくなくとも一つ設定する評価断面線設定工程と、
前記評価断面線Vを微小線分に分割し、該微少線分毎にねじれトルクTを演算する際の基準となる評価点を設定する評価点設定工程と、
前記評価点毎に作用する面内せん断力q、板厚方向のせん断力Q、ねじりモーメントMを演算する作用力演算工程と、
前記ねじれトルクTが作用するねじれ軸を、前記評価断面線Vの中心を通る軸に設定するねじれ軸設定工程と、&nbsp; 前記評価点のねじれトルクTを下記式を用いて演算する評価点ねじれトルク演算手順と、
T=(q×r)+(Q×r)−M
但し、qは面内せん断力、rは前記評価断面線の中心から前記評価点までの距離、Qは板厚方向のせん断力、Mはねじりモーメント、
前記作用力演算工程と、前記ねじれ軸設定工程と、前記評価点ねじれトルク演算工程とを前記評価断面線V上のすべての評価点で行い演算したすべての評価点でのねじれトルクを合計して、前記評価断面線V全体のねじれトルクを演算する全体のねじれトルク演算工程とを、コンピユータを用いて行うプレス加工におけるねじれ判定とその修正支援方法。
The torsional torque acting on the workpiece before spring-back is used to determine whether the workpiece has been twisted and, if twisting has occurred, to support the machining condition correction work to eliminate the twist. To calculate
Setting a determination direction in a direction in which it is desired to determine whether or not torsion of the processed product has occurred; and
An evaluation cross-section line setting step for setting at least one evaluation cross-section line V perpendicular to the determination direction of the processed product before the spring back;
An evaluation point setting step of dividing the evaluation cross section line V into minute line segments and setting an evaluation point serving as a reference for calculating the torsion torque T for each minute line segment;
An acting force calculating step for calculating an in-plane shearing force q acting on each evaluation point, a shearing force Q in the thickness direction, and a torsional moment M;
A torsional axis setting step for setting the torsional axis on which the torsional torque T acts as an axis passing through the center of the evaluation section line V; and an evaluation point torsion for calculating the torsional torque T at the evaluation point using the following equation: Torque calculation procedure,
T = (q × r) + (Q × r) −M
Where q is the in-plane shear force, r is the distance from the center of the evaluation section line to the evaluation point, Q is the shear force in the thickness direction, M is the torsional moment,
Summing the torsion torques at all evaluation points calculated by performing the acting force calculation step, the torsion axis setting step, and the evaluation point torsion torque calculation step at all evaluation points on the evaluation section line V A torsion determination and a correction support method for press working in which a whole torsion torque calculating step for calculating the torsion torque of the entire evaluation section line V is performed using a computer.
JP2005326837A 2005-11-11 2005-11-11 Program for twist determination and correction in pressing, and its method Pending JP2007130671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326837A JP2007130671A (en) 2005-11-11 2005-11-11 Program for twist determination and correction in pressing, and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326837A JP2007130671A (en) 2005-11-11 2005-11-11 Program for twist determination and correction in pressing, and its method

Publications (1)

Publication Number Publication Date
JP2007130671A true JP2007130671A (en) 2007-05-31

Family

ID=38152746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326837A Pending JP2007130671A (en) 2005-11-11 2005-11-11 Program for twist determination and correction in pressing, and its method

Country Status (1)

Country Link
JP (1) JP2007130671A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811156A (en) * 2009-02-25 2010-08-25 江苏卡明模具有限公司 Method for obtaining molding resilience value of plate based on CAE (Computer Aided Engineering) analysis method
JP2014078121A (en) * 2012-10-10 2014-05-01 Jsol Corp Corresponding-point calculation system and program, and die shape production system and program
JP2014241129A (en) * 2013-05-16 2014-12-25 Jfeスチール株式会社 Spring-back amount evaluation method
JP2015072634A (en) * 2013-10-03 2015-04-16 Jfeスチール株式会社 Spring back amount evaluation method
US9868145B2 (en) 2008-09-30 2018-01-16 Nippon Steel & Sumitomo Metal Corporation Forming simulation method, forming simulator, program and recording medium therefor, and simulation-based forming method
CN109614765A (en) * 2019-02-13 2019-04-12 上汽大众汽车有限公司 Automobile panel surface quality evaluation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868145B2 (en) 2008-09-30 2018-01-16 Nippon Steel & Sumitomo Metal Corporation Forming simulation method, forming simulator, program and recording medium therefor, and simulation-based forming method
CN101811156A (en) * 2009-02-25 2010-08-25 江苏卡明模具有限公司 Method for obtaining molding resilience value of plate based on CAE (Computer Aided Engineering) analysis method
JP2014078121A (en) * 2012-10-10 2014-05-01 Jsol Corp Corresponding-point calculation system and program, and die shape production system and program
JP2014241129A (en) * 2013-05-16 2014-12-25 Jfeスチール株式会社 Spring-back amount evaluation method
JP2015072634A (en) * 2013-10-03 2015-04-16 Jfeスチール株式会社 Spring back amount evaluation method
CN109614765A (en) * 2019-02-13 2019-04-12 上汽大众汽车有限公司 Automobile panel surface quality evaluation method
CN109614765B (en) * 2019-02-13 2023-06-20 上汽大众汽车有限公司 Method for evaluating surface quality of automobile panel

Similar Documents

Publication Publication Date Title
JP2007130671A (en) Program for twist determination and correction in pressing, and its method
JP4716171B2 (en) Die design support program and method for press working
JP5435135B2 (en) Material testing machine
Wang et al. Investigation of material deformation in multi-pass conventional metal spinning
JP4739147B2 (en) Shape defect factor identification method, apparatus and program
JP6070066B2 (en) Springback amount evaluation method
US20100030362A1 (en) Curved surface forming method of a metal plate
WO2010122769A1 (en) Molding simulation method, molding simulation device, molding simulation program, and recording medium therefor
Zhao et al. Preform die shape design for uniformity of deformation in forging based on preform sensitivity analysis
JPH07265964A (en) Method of designing binder ring for sheet metal
JP4879860B2 (en) Method for calculating friction coefficient of metal plate and forming simulation method
US7130714B1 (en) Method of predicting springback in hydroforming
Cha et al. Adaptive wear model for shear-cutting simulation with open cutting line
JP2007152407A (en) Method and apparatus for predicting forming breakage during press forming
JP2007130670A (en) Twist correcting program in pressing, and its method
CN103747890A (en) Method and device for confirming press molded product springback countermeasure effect
JP6044606B2 (en) Expected mold shape creation method and apparatus
JP5210085B2 (en) Deformation forecasting method
JP5987852B2 (en) Springback amount evaluation method
De-Carvalho et al. Blank optimization in a stamping process—Influence of the geometry definition
JP2013193119A (en) Press molding analysis system and program of the same
Toan et al. Comparative Analysis of Simulated and Experimental Results for SUS-304 Sheet Material in Incremental Sheet Metal Forming Process
Del Pozo et al. Machining of large dies based on the prediction of the press/die deformation
JP3899549B2 (en) Method for predicting welding position of blank material
JP6375963B2 (en) Structure design support device that can detect mechanical weak points of structures