JP2007130019A - Support for immobilizing dna - Google Patents

Support for immobilizing dna Download PDF

Info

Publication number
JP2007130019A
JP2007130019A JP2006324417A JP2006324417A JP2007130019A JP 2007130019 A JP2007130019 A JP 2007130019A JP 2006324417 A JP2006324417 A JP 2006324417A JP 2006324417 A JP2006324417 A JP 2006324417A JP 2007130019 A JP2007130019 A JP 2007130019A
Authority
JP
Japan
Prior art keywords
group
dna
substrate
sample
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006324417A
Other languages
Japanese (ja)
Inventor
Michifumi Nika
通文 丹花
Kojiro Takahashi
浩二郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2006324417A priority Critical patent/JP2007130019A/en
Publication of JP2007130019A publication Critical patent/JP2007130019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support used as a DNA library by immobilizing a DNA, and particularly a support suitable for reproducing a DNA by DNA amplification reaction. <P>SOLUTION: The DNA is immobilized on the surface of the support made of one kind or more of materials selected from constituent elements including amorphous carbon and graphite. A hydroxyl group may be bonded to the surface of the support or a group obtained by bonding a hydrocarbon group to a carboxyl group and having the carboxy group at its terminal end may be bonded to the surface of the support through an ester bond or a peptide bond. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、DNAを固定化するための基体に関し、より詳しくは、化学修飾された基体に関し、さらに詳しくは、末端に水酸基、カルボキシル基等を有する化学修飾された基体に関する。 The present invention relates to a substrate for immobilizing DNA, more particularly to a chemically modified substrate, and more particularly to a chemically modified substrate having a hydroxyl group, a carboxyl group or the like at its terminal.

従来、DNAの増幅反応等においては、目的とするDNAを特定量得るために、
1)二本鎖DNAの水素結合をほどくために試料の温度を95℃に上昇させる、
2)次いでDNAを複製するためのプライマーと再結合させるために試料の温度を45℃に下降させる、
3)さらに耐熱性ポリメラーゼによりプライマーを伸長させてDNAを複製させるために試料の温度を74℃に上昇させる、
といった1)〜3)のヒートサイクルを幾度も繰り返す必要があった。
このようなDNAの増幅反応では、試料を合成樹脂の容器などに入れ、この容器をアルミニウムブロックに収容し前記ヒートサイクルを行っていた。
Conventionally, in a DNA amplification reaction or the like, in order to obtain a specific amount of target DNA,
1) Increase the temperature of the sample to 95 ° C. in order to undo the hydrogen bond of the double-stranded DNA.
2) The sample temperature is then lowered to 45 ° C. to recombine with primers for replicating DNA.
3) The temperature of the sample is raised to 74 ° C. in order to further replicate the DNA by extending the primer with a thermostable polymerase.
It was necessary to repeat the heat cycle of 1) to 3).
In such a DNA amplification reaction, a sample is placed in a synthetic resin container or the like, and the container is accommodated in an aluminum block to perform the heat cycle.

しかし、前記ヒートサイクルは多大な時間がかかり、目的とする量のDNAを得るには数時間を要していた。また、温度制御の精度が低いために、目的とする以外のDNAも複製されるという問題点もあった。
本発明は、このような問題点に鑑み、DNAを容易に固定化できて、DNA増幅反応によりDNAを複製するために最適な基体を提供することを技術的課題とする。
However, the heat cycle takes a lot of time, and it takes several hours to obtain the target amount of DNA. In addition, since the temperature control accuracy is low, DNA other than the target DNA is also replicated.
In view of such problems, it is a technical object of the present invention to provide an optimum substrate that can easily immobilize DNA and replicate DNA by a DNA amplification reaction.

本発明の基体は、DNAを固定化するための基体であり、非晶質炭素、無定形炭素、グラファイトからなる構成要素のうち、1つ又は複数からなることを特徴とする。
上記基体は、末端に極性基、水酸基又はカルボキシル基を有する化学修飾されていることが望ましい。また、前記カルボキシル基が、エステル結合を介して基体表面に結合していることも望ましく、前記カルボキシル基が、ペプチド結合を介して基体表面に結合していることも望ましい。
The substrate of the present invention is a substrate for immobilizing DNA, and is characterized by comprising one or a plurality of constituent elements composed of amorphous carbon, amorphous carbon, and graphite.
The substrate is desirably chemically modified having a polar group, a hydroxyl group or a carboxyl group at the terminal. It is also desirable that the carboxyl group is bonded to the substrate surface via an ester bond, and it is also desirable that the carboxyl group is bonded to the substrate surface via a peptide bond.

本発明のDNAを固定化するための基体は、非晶質炭素、無定形炭素、グラファイト等の炭素物質からなり、炭素が表層に存在するので、表面を水酸基やカルボキシル基等で化学修飾しやすく、DNAの固定化を容易に行え、DNA増幅反応によりDNAを複製するためのチップなどに最適である。また、本発明の基体は、表面が汚染された場合に、加水分解させて化学修飾を再生させることができる。 The substrate for immobilizing the DNA of the present invention is made of a carbon material such as amorphous carbon, amorphous carbon, graphite, etc., and since carbon is present on the surface layer, the surface is easily chemically modified with a hydroxyl group, a carboxyl group, or the like. The DNA can be easily immobilized and is optimal for a chip for replicating DNA by a DNA amplification reaction. Further, when the surface of the substrate of the present invention is contaminated, it can be hydrolyzed to regenerate the chemical modification.

本発明に用いる基体は、非晶質炭素、無定形炭素、グラファイト等の炭素物質を構成要素とし、これらの形成方法は適宜選択できるが、好適には、マイクロ波プラズマCVD法、ECRCVD法、高周波プラズマCVD法、IPC法、直流スパッタリング法、ECRスパッタリング法、イオンプレーティング法、アークイオンプレーティング法、EB蒸着法、抵抗加熱蒸着法などである。また、たとえば、ポリイミド系材料からなるレジスト膜を蒸し焼きにして得られる水素を含有した非晶質炭素であってもよい。さらに、グラファイト粉末を樹脂を混合してスラリー状にして焼き固めたもの等でもよい。本発明では、上記の構成要素を1つ又は複数を組み合わせたものでもよい。 The substrate used in the present invention has a carbon material such as amorphous carbon, amorphous carbon, graphite, or the like as a constituent element, and the formation method thereof can be selected as appropriate. Preferably, the microwave plasma CVD method, ECRCVD method, high frequency Plasma CVD, IPC, DC sputtering, ECR sputtering, ion plating, arc ion plating, EB vapor deposition, resistance heating vapor deposition, and the like. For example, amorphous carbon containing hydrogen obtained by steaming a resist film made of a polyimide-based material may be used. Further, graphite powder mixed with a resin to be a slurry and baked and hardened may be used. In the present invention, one or a combination of the above components may be used.

また、本発明の基体表面は、意図的に粗面にされていることも望ましい。このような粗面表面は表面積が増えて多量のDNAを固定化させることができるからである。また、基体の形状は、平板状、球状、多角形状など特に問わない。さらにこれらの基体と他の物質との合成体であってもよい。本発明の基体が表層に存在すればよい。 It is also desirable that the surface of the substrate of the present invention is intentionally roughened. This is because such a rough surface can increase the surface area and immobilize a large amount of DNA. The shape of the substrate is not particularly limited, such as a flat plate shape, a spherical shape, or a polygonal shape. Further, it may be a composite of these substrates and other substances. The substrate of the present invention may be present on the surface layer.

次に、上記の基体の表面に特定の基を付加(化学修飾)させる。この化学修飾によって、DNAが基体の表面に固定化されやすくなる。基体表面に付加(化学修飾)され、末端に極性基を有する特定の基としては、水酸基、カルボキシル基、硫酸基、シアノ基、ニトロ基、チオル基、アミノ基などの基が該当する。また、この他、有機カルボン酸も含まれる。
また、カルボキシル基は、基体との間に他の炭化水素基を介し、末端にカルボキシル基を有する基としてもよい。ここで、炭化水素基は炭素数0〜10のものが、DNAの固定化にあたって好ましい。炭化水素基となりうるような酸は、蟻酸、酢酸、プロピオン酸などのモノカルボン酸や、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、フタル酸などのジカルボン酸や、トリメリット酸などの多価カルボン酸などがあげられる。
Next, a specific group is added (chemical modification) to the surface of the substrate. This chemical modification facilitates the immobilization of DNA on the surface of the substrate. Specific groups added (chemically modified) to the substrate surface and having a polar group at the terminal include groups such as a hydroxyl group, a carboxyl group, a sulfate group, a cyano group, a nitro group, a thiol group, and an amino group. In addition, organic carboxylic acids are also included.
Moreover, a carboxyl group is good also as a group which has a carboxyl group at the terminal through another hydrocarbon group between base | substrates. Here, the hydrocarbon group having 0 to 10 carbon atoms is preferable for immobilizing DNA. Acids that can become hydrocarbon groups include monocarboxylic acids such as formic acid, acetic acid, and propionic acid, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, and phthalic acid, and trimellitic acid. And polyvalent carboxylic acids.

DNA増幅反応に本発明の基体を適用する場合、耐加水分解性が必要とされる場合と、加水分解させて化学修飾を再生させる必要がある場合との2通りの適用ケースがある。
耐加水分解性が必要とされる場合は、耐アルカリ性を付与するために、上記の炭化水素基の末端にカルボキシル基が結合した基を、ペプチド結合を介して基体表面に結合させることが好ましい。
When the substrate of the present invention is applied to a DNA amplification reaction, there are two application cases: hydrolysis resistance is required and hydrolysis needs to be regenerated by chemical modification.
When hydrolysis resistance is required, it is preferable to bond a group having a carboxyl group bonded to the end of the hydrocarbon group to the substrate surface via a peptide bond in order to impart alkali resistance.

一方、生成した化学修飾を加水分解させて除去し再生させる必要がある場合は、アルカリ溶液で加水分解可能とするために、上記の炭化水素基の末端にカルボキシル基が結合した基を、エステル結合を介して基体表面に結合させることが好ましい。 On the other hand, when it is necessary to hydrolyze the generated chemical modification and regenerate it, the group having a carboxyl group bonded to the end of the above-mentioned hydrocarbon group is converted to an ester bond so that it can be hydrolyzed with an alkaline solution. It is preferable to bond to the substrate surface via

炭化水素基の末端に水酸基を基体表面に結合させる方法としては、基体表面を酸素プラズマで酸化し、次いで水蒸気処理する方法、または塩素ガス中で紫外線照射して基体表面を塩素化した後アルカリ溶液中で加水分解してヒドロキシル化する方法、さらに基体表面を酸素プラズマで酸化し、次いで塩素化した後アルカリ溶液中で加水分解してヒドロキシル化する方法を挙げることができる。 As a method of bonding the hydroxyl group to the substrate surface at the end of the hydrocarbon group, the substrate surface is oxidized with oxygen plasma and then treated with water vapor, or the substrate surface is chlorinated by irradiating with ultraviolet light in chlorine gas and then an alkaline solution. Examples of the method include hydrolyzing and hydroxylating in the substrate, and a method of oxidizing the substrate surface with oxygen plasma and then chlorinating and then hydrolyzing and hydroxylating in an alkaline solution.

また、炭化水素基の末端にカルボキシル基が結合した基をペプチド結合を介して基体表面に結合させる方法としては、塩素ガス中で紫外線照射して基体表面を塩素化し、次いでアンモニアガス中で紫外線照射してアミノ化した後、非水溶媒中でカルボン酸クロライドと反応させ、次いで弱アルカリ溶液中で中和させる方法を挙げることができる。 In addition, as a method of bonding a carboxyl group-bonded group to the end of a hydrocarbon group to the substrate surface via a peptide bond, the substrate surface is chlorinated by irradiating with ultraviolet light in chlorine gas, and then irradiated with ultraviolet light in ammonia gas. Then, after amination, a method of reacting with carboxylic acid chloride in a non-aqueous solvent and then neutralizing in a weak alkaline solution can be mentioned.

また、炭化水素基の末端にカルボキシル基が結合した基をエステル結合を介して基体表面に結合させる方法としては、塩素ガス中で紫外線照射して基体表面を塩素化し、次いで非水溶媒中でカルボン酸ソーダと反応させ、次いで弱酸溶液中で中和させる方法、または、基体表面を酸素プラズマで酸化し、次いで塩素化した後アルカリ溶液中で加水分解してヒドロキシル化した後、非水溶媒中でカルボン酸クロライドと反応させ、次いで弱アルカリ溶液中で中和させる方法を挙げることができる。 In addition, as a method of bonding a group having a carboxyl group bonded to the terminal of a hydrocarbon group to the substrate surface via an ester bond, the substrate surface is chlorinated by irradiating with ultraviolet light in chlorine gas and then carboxylic in a non-aqueous solvent. A method of reacting with acid soda and then neutralizing in a weak acid solution, or oxidizing the substrate surface with oxygen plasma, then chlorinating, hydrolyzing in an alkaline solution and hydroxylating, and then in a non-aqueous solvent A method of reacting with carboxylic acid chloride and then neutralizing in a weak alkaline solution can be mentioned.

以下、実施例にて本発明を詳細に説明する。
(実施例1)
マイクロ波プラズマCVD法を用いて、直径が64mm、厚さが0.1mmの表面粗さがRaで0.5mmの非ダイヤモンド炭素を含有したダイヤモンド円板を気相合成した。この円板を、10mm×10mmの面積において、ラマン分光分析法により分析した結果、ダイヤモンド炭素(完全ダイヤモンド)と非ダイヤモンド炭素(不完全ダイヤモンド)とのピーク比を調査したところ、非ダイヤモンド炭素の存在が確認できた。この非ダイヤモンド炭素を含む円板からレーザーにより10mm角の試料を切り出した。
実施例1においては、マイクロ波により励起した酸素プラズマで試料表面を酸化した後、セパラブルフラスコ中に配置し、フラスコ中の雰囲気を水蒸気で置換した後、水蒸気を流入させながら400℃に加熱し30分間保持した後放冷した。次いで試料を取り出し乾燥し、末端に水酸基を有する基体を得た。
また、SIMSにより、試料切り出し後、酸素プラズマ処理後、および水蒸気処理後の水素及び水酸基のピーク強度を測定したところ、水素のピーク強度を1とした場合の、水酸基のピーク強度比は下記の表1に示す値となった。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
Using a microwave plasma CVD method, a diamond disk containing non-diamond carbon having a diameter of 64 mm, a thickness of 0.1 mm, and a surface roughness Ra of 0.5 mm was vapor-phase synthesized. As a result of analyzing this disk in an area of 10 mm × 10 mm by Raman spectroscopy, the peak ratio of diamond carbon (complete diamond) and non-diamond carbon (incomplete diamond) was investigated. Was confirmed. A 10 mm square sample was cut out from the disk containing non-diamond carbon by laser.
In Example 1, after oxidizing the sample surface with oxygen plasma excited by microwaves, placing the sample in a separable flask, substituting the atmosphere in the flask with water vapor, and heating to 400 ° C. while flowing water vapor. After holding for 30 minutes, it was allowed to cool. Next, the sample was taken out and dried to obtain a substrate having a hydroxyl group at the terminal.
Moreover, when the peak intensity of hydrogen and hydroxyl groups after sample cutting, oxygen plasma treatment, and steam treatment was measured by SIMS, the peak intensity ratio of hydroxyl groups when the hydrogen peak intensity was 1 was as shown in the following table. The value shown in FIG.

表1
−−−−−−−−−−−−−−−−−−−−−−−
水酸基のピーク強度比
−−−−−−−−−−−−−−−−−−−−−−−
試料切り出し後 0.11
酸素プラズマ処理後 0.61
水蒸気処理後 1.09

上記に示すように、水酸基のピーク強度比は、酸素プラズマ処理、それに続く水蒸気処理により増加しており、基体表面が水酸基により化学修飾されていることが確認された。
Table 1
-----------------------
Peak intensity ratio of hydroxyl group -----------------------
0.11 after cutting out the sample
After oxygen plasma treatment 0.61
After steaming 1.09

As shown above, the peak intensity ratio of the hydroxyl group was increased by the oxygen plasma treatment and the subsequent steam treatment, and it was confirmed that the substrate surface was chemically modified with the hydroxyl group.

(実施例2)
マイクロ波プラズマCVD法を用いて、直径が64mm、厚さが0.1mmの表面粗さがRaで0.3mmの非ダイヤモンド炭素を含むダイヤモンド円板を気相合成した。この円板を、10mm×10mmの面積において、ラマン分光分析法により分析した結果、全部が非ダイヤモンド炭素(不完全ダイヤモンド)であった。この円板をレーザーにより10mm角の試料を切り出した。
この試料をセパラブルフラスコ中に配置し、フラスコ中の雰囲気をアルゴンガスで置換した後、塩素ガスを1SCCMの流量で流入させながらHg−Xeランプを用い、主波長が3600オングストロームの紫外線を60分間照射して試料表面を塩素化した。雰囲気をアルゴンガスで置換した後試料を取り出し、10重量%の水酸化ナトリウム水溶液中で15分間煮沸し、さらに水洗した後乾燥し、末端に水酸基を有する基体を得た。
また、SIMSにより、塩素化の前後および水酸化ナトリウム処理後の、水素、水酸基および塩素基のピーク強度を測定したところ、水素のピーク強度を1とした場合の、水酸基、塩素基のピーク強度比は下記表2に示す値となった。
(Example 2)
Using a microwave plasma CVD method, a diamond disk containing non-diamond carbon having a diameter of 64 mm, a thickness of 0.1 mm and a surface roughness Ra of 0.3 mm was vapor-phase synthesized. As a result of analyzing this disc by an Raman spectroscopic analysis method in an area of 10 mm × 10 mm, all were non-diamond carbon (incomplete diamond). A 10 mm square sample was cut out from this disk by laser.
This sample was placed in a separable flask, and the atmosphere in the flask was replaced with argon gas. Then, an Hg-Xe lamp was used while flowing chlorine gas at a flow rate of 1 SCCM, and ultraviolet light having a main wavelength of 3600 angstroms was applied for 60 minutes. Irradiated to chlorinate the sample surface. After replacing the atmosphere with argon gas, a sample was taken out, boiled in a 10% by weight aqueous sodium hydroxide solution for 15 minutes, further washed with water and dried to obtain a substrate having a hydroxyl group at the end.
Moreover, when the peak intensity of hydrogen, hydroxyl group and chlorine group was measured by SIMS before and after chlorination and after sodium hydroxide treatment, the peak intensity ratio of hydroxyl group and chlorine group when the hydrogen peak intensity was set to 1. The values shown in Table 2 below were obtained.

表2
−−−−−−−−−−−−−−−−−−−−−−−
ピーク強度比
−−−−−−−−−−−−−−−−−−−−−−−
水酸基 塩素基
−−−−−−−−−−−−−−−−−−−−−−−
塩素化前 0.11 −
塩素化後 0.17 0.47
水酸化ナトリウム処理後 0.45 0.31

上記に示すように、水酸基のピーク強度比は、塩素化処理、それに続く水酸化ナトリウム処理により増加しており、基体表面が水酸基により化学修飾されていることが確認された。また、塩素基が減少していることから水酸基により置換されたことが確認された。
Table 2
-----------------------
Peak intensity ratio -----------------------
Hydroxyl group Chlorine group -----------------------
Before chlorination 0.11 −
After chlorination 0.17 0.47
After sodium hydroxide treatment 0.45 0.31

As shown above, the peak intensity ratio of the hydroxyl group was increased by the chlorination treatment and the subsequent sodium hydroxide treatment, and it was confirmed that the substrate surface was chemically modified with the hydroxyl group. Moreover, since the chlorine group was reducing, it was confirmed that it was substituted with a hydroxyl group.

(実施例3)
マイクロ波プラズマCVD法を用いて、直径が64mm、厚さが0.1mmの表面粗さがRaで0.5mmの完全及び不完全ダイヤモンドが混在したダイヤモンド円板を気相合成した。この円板を、10mm×10mmの面積において、ラマン分光分析法により分析した結果、ダイヤモンド炭素と非ダイヤモンド炭素(不完全ダイヤモンド)とのピーク比を調査したところ、非ダイヤモンド炭素の存在が確認できた。この非ダイヤモンド炭素を含むダイヤモンド円板からレーザーにより10mm角の試料を切り出し、マイクロ波により励起した酸素プラズマで表面を酸化した後、試料表面を塩素化した。雰囲気をアルゴンガスで置換した後試料を取り出し、10重量%の水酸化ナトリウム水溶液中で15分間煮沸し、さらに水洗した後乾燥し、末端に水酸基を有する基体を得た。
また、SIMSにより、表面研磨後、酸素プラズマ処理後、塩素化後、および水酸化ナトリウム処理後の水素、水酸基、塩素基のピーク強度を測定したところ、水素のピーク強度を1とした場合の、水酸基、塩素基のピーク強度比は、下記表3に示す値となった。
(Example 3)
Using a microwave plasma CVD method, a diamond disk having a diameter of 64 mm, a thickness of 0.1 mm and a surface roughness Ra of 0.5 mm and a mixture of complete and incomplete diamond was vapor-phase synthesized. As a result of analyzing this disc by Raman spectroscopy in an area of 10 mm × 10 mm, the peak ratio of diamond carbon to non-diamond carbon (incomplete diamond) was investigated, and the presence of non-diamond carbon could be confirmed. . A 10 mm square sample was cut out from the diamond disk containing non-diamond carbon by laser, the surface was oxidized with oxygen plasma excited by microwaves, and then the sample surface was chlorinated. After replacing the atmosphere with argon gas, a sample was taken out, boiled in a 10% by weight aqueous sodium hydroxide solution for 15 minutes, further washed with water and dried to obtain a substrate having a hydroxyl group at the end.
Moreover, when the peak intensity of hydrogen, hydroxyl group, and chlorine group after surface polishing, after oxygen plasma treatment, after chlorination, and after sodium hydroxide treatment was measured by SIMS, the peak intensity of hydrogen was set to 1. The peak intensity ratio between the hydroxyl group and the chlorine group was as shown in Table 3 below.

表3
−−−−−−−−−−−−−−−−−−−−−−−
ピーク強度比
−−−−−−−−−−−−−−−−−−−−−−−
水酸基 塩素基
−−−−−−−−−−−−−−−−−−−−−−−
酸素プラズマ処理前 0.11 −
酸素プラズマ処理後 0.67 −
塩素化後 0.19 0.44
水酸化ナトリウム処理後 0.50 0.30

上記に示すように、水酸基のピーク強度比は、酸素プラズマ処理、それに続く塩素化、さらにそれに続く水酸化ナトリウム処理により増加しており、基体表面が水酸基により化学修飾されていることが確認された。また、塩素基が減少していることから水酸基により置換されたことが確認された。
Table 3
-----------------------
Peak intensity ratio -----------------------
Hydroxyl group Chlorine group -----------------------
Before oxygen plasma treatment 0.11 −
After oxygen plasma treatment 0.67 −
After chlorination 0.19 0.44
After sodium hydroxide treatment 0.50 0.30

As shown above, the peak intensity ratio of hydroxyl groups was increased by oxygen plasma treatment, subsequent chlorination, and subsequent sodium hydroxide treatment, confirming that the substrate surface was chemically modified with hydroxyl groups. . Moreover, since the chlorine group was reducing, it was confirmed that it was substituted with a hydroxyl group.

(実施例4)
スパッタ法によりグラファイト円板を形成し、この円板をレーザーにより10mm角の試料を切り出し、セパラブルフラスコ中に配置し、フラスコ中の雰囲気をアルゴンガスで置換した後、塩素ガスを1SCCMの流量で流入させながらHg−Xeランプを用い、主波長が3600オングストロームの紫外線を60分間照射して試料表面を塩素化した。再びフラスコ中の雰囲気をアルゴンガスで置換した後、1重量%のセバシン酸ソーダのN,N−ジメチルホルムアミド溶液100mlを添加し、セパラブルフラスコにコンデンサを設置し、2時間還流した。次いで試料を取り出し、1重量%の酢酸水溶液で洗浄し、さらにアセトンで洗浄した後乾燥し、セバシン酸がエステル結合を介して結合した、末端にカルボキシル基を有する基体を得た。
また、SIMSにより、塩素化の前後、およびセバシン酸ソーダ処理後の水素、水酸基、塩素基のピーク強度を測定したところ、水素のピーク強度を1とした場合の、水酸基、塩素基のピーク強度比は、下記表4に示す値となった。
Example 4
A graphite disk is formed by sputtering, and a 10 mm square sample is cut out with a laser and placed in a separable flask. The atmosphere in the flask is replaced with argon gas, and then chlorine gas is supplied at a flow rate of 1 SCCM. The sample surface was chlorinated by irradiating it with ultraviolet light having a dominant wavelength of 3600 angstroms for 60 minutes while using an Hg-Xe lamp. After the atmosphere in the flask was again replaced with argon gas, 100 ml of a 1% by weight sodium sebacate N, N-dimethylformamide solution was added, a condenser was placed in the separable flask, and the mixture was refluxed for 2 hours. Next, the sample was taken out, washed with a 1% by weight acetic acid aqueous solution, further washed with acetone, and then dried to obtain a substrate having a carboxyl group at the terminal to which sebacic acid was bonded via an ester bond.
In addition, when the peak intensity of hydrogen, hydroxyl group and chlorine group before and after chlorination and after treatment with sodium sebacate was measured by SIMS, the peak intensity ratio of hydroxyl group and chlorine group when the hydrogen peak intensity was 1. The values shown in Table 4 below were obtained.

表4
−−−−−−−−−−−−−−−−−−−−−−−
ピーク強度比
−−−−−−−−−−−−−−−−−−−−−−−
水酸基 塩素基
−−−−−−−−−−−−−−−−−−−−−−−
塩素化前 0.11 −
塩素化後 0.17 0.47
セバシン酸ソーダ処理後 0.35 0.31

上記に示すように、水酸基のピーク強度比は、塩素化、さらにそれに続くセバシン酸ソーダ処理により増加していること、またFTIR法を用いてで試料表面の炭素−水素の伸縮振動に由来する吸収強度、および炭素−酸素の伸縮振動に由来する吸収強度を測定したところ、いずれの吸収強度も増大していた(試料の表面ブランクに対する吸収強度の増大率は約30%であった)。このことから、基体表面がセバシン酸の炭化水素基の末端にカルボキシル基が結合した基により化学修飾されていることが確認された。また、塩素基が減少していることから水酸基により置換されたことが確認された。
Table 4
-----------------------
Peak intensity ratio -----------------------
Hydroxyl group Chlorine group -----------------------
Before chlorination 0.11 −
After chlorination 0.17 0.47
After treatment with sodium sebacate 0.35 0.31

As shown above, the peak intensity ratio of the hydroxyl group is increased by chlorination followed by treatment with sodium sebacate, and absorption derived from carbon-hydrogen stretching vibration on the sample surface using the FTIR method. When the strength and the absorption strength derived from the carbon-oxygen stretching vibration were measured, all the absorption strengths were increased (the increase rate of the absorption strength of the sample with respect to the surface blank was about 30%). From this, it was confirmed that the substrate surface was chemically modified with a group in which a carboxyl group was bonded to the end of the hydrocarbon group of sebacic acid. Moreover, since the chlorine group was reducing, it was confirmed that it was substituted with a hydroxyl group.

(実施例5)
ポリイミド系材料からなるレジスト膜を蒸し焼きにして水素を含有する非晶質炭素からなる薄板を形成した。この薄板をレーザーにより10mm角の試料を切り出し、マイクロ波により励起した酸素プラズマで表面を酸化した後、試料表面を塩素化した。雰囲気をアルゴンガスで置換した後試料を取り出し、10重量%の水酸化カリウム水溶液中で15分間煮沸して試料表面をヒドロキシル基で置換した。乾燥した後、上部に塩化カルシウム乾燥管を備えたコンデンサを設置したセパラブルフラスコ中に試料を配置し、クロロホルム50mlとトリエチルアミン1gを添加し、フラスコ中の雰囲気をアルゴンガスで置換した。次いで、セパラブルフラスコを氷冷しながら、クロロホルム50mlに塩化スクシニル10gを溶解させた溶液を徐々に添加した。その後4時間還流した後試料を取り出し、10重量%の炭酸カリウム水溶液で洗浄し、さらにアセトンで洗浄した後乾燥し、マロン酸がエステル結合を介して結合した、末端にカルボキシル基を有する基体を得た。
また、SIMSにより、酸素プラズマ処理の前後、塩素化後、ヒドロキシル化後、および塩化スクシニル処理後の水素、水酸基のピーク強度を測定したところ、水素のピーク強度を1とした場合の水酸基のピーク強度比は、下記表5に示す値となった。
(Example 5)
A resist film made of a polyimide material was steamed and baked to form a thin plate made of amorphous carbon containing hydrogen. A 10 mm square sample was cut from the thin plate with a laser, and the surface was oxidized with oxygen plasma excited by microwaves, and then the sample surface was chlorinated. After substituting the atmosphere with argon gas, the sample was taken out and boiled in a 10% by weight aqueous potassium hydroxide solution for 15 minutes to replace the sample surface with hydroxyl groups. After drying, the sample was placed in a separable flask equipped with a condenser equipped with a calcium chloride drying tube at the top, 50 ml of chloroform and 1 g of triethylamine were added, and the atmosphere in the flask was replaced with argon gas. Subsequently, a solution prepared by dissolving 10 g of succinyl chloride in 50 ml of chloroform was gradually added while cooling the separable flask with ice. After refluxing for 4 hours, the sample was taken out, washed with a 10% by weight aqueous potassium carbonate solution, further washed with acetone, and dried to obtain a substrate having a carboxyl group at the end, to which malonic acid was bonded via an ester bond. It was.
In addition, the peak intensity of hydrogen and hydroxyl groups before and after oxygen plasma treatment, after chlorination, after hydroxylation, and after succinyl chloride treatment was measured by SIMS. The ratio was a value shown in Table 5 below.

表5
−−−−−−−−−−−−−−−−−−−−−−−
水酸基のピーク強度比
−−−−−−−−−−−−−−−−−−−−−−−
酸素プラズマ処理前 0.11
酸素プラズマ処理後 0.66
塩素化後 0.19
ヒドロキシル化後 0.65
塩化スクシニル処理後 0.46

上記に示すように、水酸基のピーク強度比は、酸素プラズマ処理、それに続く塩素化、さらにそれに続くヒドロキル化、さらにそれに続く塩化スクシニル処理により増加していること、またFTIR法を用いて試料表面の炭素−水素の伸縮振動に由来する吸収強度、および炭素−酸素の伸縮振動に由来する吸収強度を測定したところ、いずれの吸収強度も増大していた(試料の表面ブランクに対する吸収強度の増大率は約25%であった)。このことから、基体表面がマロン酸の炭化水素基の末端にカルボキシル基が結合した基により化学修飾されていることが確認された。
Table 5
-----------------------
Peak intensity ratio of hydroxyl group -----------------------
Before oxygen plasma treatment 0.11
After oxygen plasma treatment 0.66
0.19 after chlorination
0.65 after hydroxylation
0.46 after succinyl chloride treatment

As shown above, the peak intensity ratio of the hydroxyl group is increased by the oxygen plasma treatment, the subsequent chlorination, the subsequent hydroxylation, and the subsequent succinyl chloride treatment, and the FTIR method is used to When the absorption intensity derived from the carbon-hydrogen stretching vibration and the absorption intensity derived from the carbon-oxygen stretching vibration were measured, both absorption strengths were increased (the rate of increase of the absorption intensity with respect to the surface blank of the sample was About 25%). From this, it was confirmed that the surface of the substrate was chemically modified with a group in which a carboxyl group was bonded to the end of the hydrocarbon group of malonic acid.

(実施例6)
グラファイト粉末に樹脂粉末を混合し溶剤を加えてスラリー状にし、溶剤を気化させて、直径が64mm、厚さが0.1mmの表面粗さがRaで0.3mmのグラファイト円板を気相合成した。この円板を、10mm×10mmの面積において、ラマン分光分析法により分析した結果、全部が非ダイヤモンド炭素(非晶質ダイヤモンド)であった。この円板をレーザーにより10mm角の試料を切り出した。この試料をマイクロ波により励起した水素プラズマで表面を水素化した後試料表面を塩素化した。試料が配置されたセパラブルフラスコ中の雰囲気をアルゴンガスで置換した後、アンモニアガスを1SCCMの流量で流入させながらHg−Xeランプを用い、主波長が3600オングストロームの紫外線を60分間照射して試料表面をアミノ化した。雰囲気をアルゴンガスで置換した後、セパラブルフラスコ上部に塩化カルシウム乾燥管をそなえたコンデンサを設置し、クロロホルム50mlを添加し、再び雰囲気をアルゴンガスで置換した。
(Example 6)
Mixing resin powder with graphite powder and adding a solvent to form a slurry, vaporizing the solvent, gas phase synthesis of a graphite disk with a diameter of 64 mm, a thickness of 0.1 mm and a surface roughness Ra of 0.3 mm did. As a result of analyzing this disc by an Raman spectroscopic analysis method in an area of 10 mm × 10 mm, all were non-diamond carbon (amorphous diamond). A 10 mm square sample was cut out from this disk by laser. The surface of the sample was hydrogenated with hydrogen plasma excited by microwaves, and then the sample surface was chlorinated. After replacing the atmosphere in the separable flask in which the sample is placed with argon gas, the sample was irradiated with ultraviolet light having a dominant wavelength of 3600 angstroms for 60 minutes using an Hg-Xe lamp while flowing ammonia gas at a flow rate of 1 SCCM. The surface was aminated. After the atmosphere was replaced with argon gas, a condenser having a calcium chloride drying tube was placed on the top of the separable flask, 50 ml of chloroform was added, and the atmosphere was again replaced with argon gas.

次いで、セパラブルフラスコを氷冷しながら、クロロホルム50mlに塩化スクシニル10gを溶解させた溶液を徐々に添加した。その後4時間還流した後試料を取り出し、10重量%の炭酸カリウム水溶液で洗浄し、さらにアセトンで洗浄した後乾燥し、マロン酸がペプチド結合を介して結合した、末端にカルボキシル基を有する基体を得た。
また、SIMSにより、塩素化の前後、アミノ化後、および塩化スクシニル処理後の水素、水酸基、塩素基のピーク強度を測定したところ、水素のピーク強度を1とした場合の水酸基、塩素基のピーク強度比は、下記表6に示す値となった。
Subsequently, a solution prepared by dissolving 10 g of succinyl chloride in 50 ml of chloroform was gradually added while cooling the separable flask with ice. After refluxing for 4 hours, the sample was taken out, washed with a 10% by weight aqueous potassium carbonate solution, further washed with acetone, and then dried to obtain a substrate having malonic acid bonded via a peptide bond and having a carboxyl group at the terminal. It was.
In addition, the peak intensity of hydrogen, hydroxyl group, and chlorine group before and after chlorination, after amination, and after succinyl chloride treatment was measured by SIMS. The intensity ratio was a value shown in Table 6 below.

表6
−−−−−−−−−−−−−−−−−−−−−−−
ピーク強度比
−−−−−−−−−−−−−−−−−−−−−−−
水酸基 塩素基
−−−−−−−−−−−−−−−−−−−−−−−
塩素化前 0.11 −
塩素化後 0.19 0.45
アミノ化後 0.16 0.10
塩化スクシニル処理後 0.55 0.10

上記に示すように、水酸基のピーク強度比は、水素プラズマ処理、それに続く塩素化、さらにそれに続くヒドロキル化、さらにそれに続く塩化スクシニル処理により増加していること、またFTIR法を用いて試料表面の炭素−水素の伸縮振動に由来する吸収強度、および炭素−酸素の伸縮振動に由来する吸収強度を測定したところ、いずれの吸収強度も増大していた(試料の表面ブランクに対する吸収強度の増大率は約25%であった)。
このことから、基体表面がマロン酸の炭化水素基の末端にカルボキシル基が結合した基により化学修飾されていることが確認された。
実施例1〜6のようにして得られた末端にカルボキシル基を有する化学修飾された基体を用いてDNAの増幅反応を実施したところ、約1時間で目的とする量のDNAを得ることができた。
Table 6
-----------------------
Peak intensity ratio -----------------------
Hydroxyl group Chlorine group -----------------------
Before chlorination 0.11 −
After chlorination 0.19 0.45
After amination 0.16 0.10
After succinyl chloride treatment 0.55 0.10

As shown above, the peak intensity ratio of the hydroxyl group is increased by the hydrogen plasma treatment, the subsequent chlorination, the subsequent hydroxylation, and the subsequent succinyl chloride treatment, and the FTIR method is used to When the absorption intensity derived from the carbon-hydrogen stretching vibration and the absorption intensity derived from the carbon-oxygen stretching vibration were measured, both absorption strengths were increased (the rate of increase of the absorption strength relative to the surface blank of the sample was About 25%).
From this, it was confirmed that the substrate surface was chemically modified with a group in which a carboxyl group was bonded to the end of the hydrocarbon group of malonic acid.
When a DNA amplification reaction was carried out using a chemically modified substrate having a carboxyl group at the end obtained as in Examples 1 to 6, a target amount of DNA could be obtained in about 1 hour. It was.

さらに本発明の化学修飾された基体を用い、末端水酸基または末端カルボキシル基に、水素結合でオリゴ核酸の末端塩基を固定化し、さらに、このオリゴ核酸と相補的塩基配列を有するDNAを固定して、DNAライブラリチップとして用いることもできる。また、DNAのかわりに、ヌクレオチド、オリゴヌクレオチド、DNAフラグメント等を、ダイヤモンド表面に固定化して、ライブラリーとすることもできる。 Furthermore, using the chemically modified substrate of the present invention, the terminal base of the oligonucleic acid was fixed to the terminal hydroxyl group or terminal carboxyl group by hydrogen bonding, and further, DNA having a complementary base sequence to this oligonucleic acid was fixed, It can also be used as a DNA library chip. Further, instead of DNA, nucleotides, oligonucleotides, DNA fragments and the like can be immobilized on the diamond surface to form a library.

本発明の基体は、炭素素材を用いたことにより、基体上にDNAを固定化しやすく、たとえばDNA増幅反応操作の作業をきわめて容易にできる。
また、本発明の基体は、表面を水酸基やカルボキシル基等で化学修飾してあるので、DNAの固定化の安定化を図れ、DNA増幅反応によりDNAを複製するためのチップなどに最適である。
また、本発明の基体は、表面が汚染された場合に、加水分解させて化学修飾を再生させることができ、高価なDNAチップを節約できる。
Since the substrate of the present invention uses a carbon material, it is easy to immobilize DNA on the substrate. For example, the DNA amplification reaction operation can be extremely facilitated.
Further, since the surface of the substrate of the present invention is chemically modified with a hydroxyl group, a carboxyl group or the like, it is possible to stabilize the immobilization of DNA and is optimal for a chip for replicating DNA by a DNA amplification reaction.
In addition, when the surface of the substrate of the present invention is contaminated, it can be hydrolyzed to regenerate the chemical modification, thereby saving an expensive DNA chip.

Claims (4)

非晶質炭素、無定形炭素、グラファイトからなる構成要素のうち、1つ又は複数からなるDNAを固定化するための基体。 A substrate for immobilizing DNA consisting of one or a plurality of constituent elements composed of amorphous carbon, amorphous carbon, and graphite. 末端に極性基、水酸基又はカルボキシル基を有する化学修飾された請求項1記載の基体。 2. The substrate according to claim 1, which is chemically modified having a polar group, a hydroxyl group or a carboxyl group at its terminal. 前記カルボキシル基が、エステル結合を介して基体表面に結合している請求項2記載の基体。 The substrate according to claim 2, wherein the carboxyl group is bonded to the surface of the substrate through an ester bond. 前記カルボキシル基が、ペプチド結合を介して基体表面に結合している請求項2記載の基体。 The substrate according to claim 2, wherein the carboxyl group is bonded to the surface of the substrate through a peptide bond.
JP2006324417A 1998-10-15 2006-11-30 Support for immobilizing dna Pending JP2007130019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324417A JP2007130019A (en) 1998-10-15 2006-11-30 Support for immobilizing dna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29348098 1998-10-15
JP2006324417A JP2007130019A (en) 1998-10-15 2006-11-30 Support for immobilizing dna

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000575999A Division JP3907411B2 (en) 1998-10-15 1999-10-15 Method for producing substrate for immobilizing DNA

Publications (1)

Publication Number Publication Date
JP2007130019A true JP2007130019A (en) 2007-05-31

Family

ID=38152195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324417A Pending JP2007130019A (en) 1998-10-15 2006-11-30 Support for immobilizing dna

Country Status (1)

Country Link
JP (1) JP2007130019A (en)

Similar Documents

Publication Publication Date Title
JP3907411B2 (en) Method for producing substrate for immobilizing DNA
JP3607199B2 (en) Solid substrate for DNA immobilization, DNA immobilization chip on which DNA is immobilized, and method for amplifying DNA
EP1342502A1 (en) Particulate support for separation/purification or extraction and process for producing the same
US20090111113A1 (en) Solid support having electrostatic layer and use thereof
CN1729237A (en) Method for forming reactive coatings
Tan et al. Photoinduced Chemo‐, Site‐and Stereoselective α‐C (sp3)− H Functionalization of Sulfides
US8455400B2 (en) Substrate for biochip and biochip
JP2007130019A (en) Support for immobilizing dna
JP2001031410A (en) Method for purifying carbon nanotube by thermal treatment in diffusion oven
György et al. Biomolecular urease thin films grown by laser techniques for blood diagnostic applications
JP5041680B2 (en) Biochip substrate and biochip
WO2022082723A1 (en) Method for synthesizing n,n&#39;-diisopropylcarbodiimide by using oxygen as oxidizing agent
CN1164619C (en) Process for preparing microspheres of molecular blot polymer in water medium
CN108421423A (en) A kind of preparation method of photocatalysis sewage processing composite membrane
CN108129308A (en) A kind of method that nontransition metal visible light catalytic halogenated aryl hydrocarbon and carbonyl source prepare ester
JP2004299998A (en) Recycling method for titanium metal-containing waste, titanium oxide coating liquid and its preparation method, and titanium oxide member
Tang et al. Hydrolysis of microporous polyamide-6 membranes as substrate for in situ synthesis of oligonucleotides
JP2004037128A (en) Method for analyzing matter on substrate by matrix assisted laser desorption/ionization time-of-flight mass spectrometry
JP2004099982A (en) Process for synthesizing carbon nitride
Chen et al. Biofilm deposited by the atmospheric plasma liquid sputtering
JP2005351758A (en) 2h diamond thin film, carboxylated thin film thereof, and amino group containing substance chip using thin film
US20070225157A1 (en) Method for Producing Asymmetric Alkyl Compound Using Alkali-Treated Solid SAupport, and Alkali-Treated Solid Support Used in this Method
JP2006306728A (en) Method for producing amino acid
NL1005028C2 (en) Controlling enzyme reactions in polar solvent
CN1650002A (en) Simple efficient and accelerated method for enzyme-catalyzed in vitro modification and synthesis of nucleic acid using microwave irradiation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071107