JP2007127565A - Spectrum forcible polarization survey device - Google Patents

Spectrum forcible polarization survey device Download PDF

Info

Publication number
JP2007127565A
JP2007127565A JP2005321714A JP2005321714A JP2007127565A JP 2007127565 A JP2007127565 A JP 2007127565A JP 2005321714 A JP2005321714 A JP 2005321714A JP 2005321714 A JP2005321714 A JP 2005321714A JP 2007127565 A JP2007127565 A JP 2007127565A
Authority
JP
Japan
Prior art keywords
phase
potential
polarization
impedance
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321714A
Other languages
Japanese (ja)
Other versions
JP4538608B2 (en
Inventor
Motoharu Jinguji
元治 神宮司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005321714A priority Critical patent/JP4538608B2/en
Publication of JP2007127565A publication Critical patent/JP2007127565A/en
Application granted granted Critical
Publication of JP4538608B2 publication Critical patent/JP4538608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To correct a phase generated by a mechanical characteristic of an isolation amplifier or the like used for detecting a potential, and to allow accurate measurements, by controlling mutually an amplitude and a phase between two direct digital synthesizers (DDSs) to bring the potential in a reference potential point to a minimum, using the two direct digital synthesizers (DDSs), in a spectrum forcible polarization survey device. <P>SOLUTION: In this spectrum forcible polarization survey device, with an impedance measuring object connected between a pair of coaxial cables in the four coaxial cables connected in parallel, and using a 4-terminal pair method for inputting a sine wave signal from one side thereof to measure an impedance, electromagnetic induction and electrostatic induction in the cable are active-controlled by digital-controlling the amplitude mutually and the phase between the DDSs, to minimize the potential in the reference potential point, using the two direct digital synthesizers, and the phase lag in circuit is controlled by utilizing the potential difference between the two direct digital synthesizers. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤や岩盤に特有であるインピーダンスや位相スペクトルを計測するスペクトル強制分極に関する技術であり、特に、電磁誘導アクティブ制御によるスペクトル強制分極探査装置に関する。   The present invention relates to a technique for spectral forced polarization that measures impedance and phase spectrum peculiar to the ground and rock, and more particularly, to a spectral forced polarization exploration apparatus using electromagnetic induction active control.

電気探査は、地盤に電流を流した際の「比抵抗(電気の流れにくさ)」や電気化学的な「分極現象」を測定し、地盤物性を把握する物理探査法である。   Electrical exploration is a physical exploration method that measures the “specific resistance (electricity flow difficulty)” and electrochemical “polarization phenomenon” when an electric current is passed through the ground to grasp the physical properties of the ground.

従来、地質等の物理探査に比抵抗法が利用されていることは知られている(特許文献1参照)。比抵抗法は、地盤に直流電流(あるいは交替電流)を流し、電流の流れにくさの分布状況から地盤性状を把握する電気探査法である。   Conventionally, it is known that the resistivity method is used for geophysical exploration (see Patent Document 1). The specific resistance method is an electric exploration method in which a direct current (or alternating current) is passed through the ground and the ground properties are grasped from the distribution of the difficulty of the current flow.

即ち、地下水の分布している地盤や、風化岩と基盤岩あるいは堆積層と基盤岩の境界、さらに良好な岩盤と断層破砕帯では、電流の流れ方に大きな違いがあり、地盤に電流を流して電流の流れ方の違いを測定すれば、地下水の有無、地すべり面の形状、さらにトンネルやダム等の施工面における地山状況を事前に推定することができる。   In other words, there is a big difference in the current flow in the ground where groundwater is distributed, the boundary between weathered rock and basement rock, or between the sedimentary layer and basement rock, and the better rock and fault fracture zone. By measuring the difference in current flow, it is possible to estimate in advance the presence of groundwater, the shape of the landslide surface, and the ground conditions on construction surfaces such as tunnels and dams.

強制分極法(IP法:induced polarization 法)は、大地に電流を流したときに様々な電気化学的な分極現象が生じ、電圧の観測波形に過度現象が認められるが、この現象を応用した地質の探査方法である。   The forced polarization method (IP method: induced polarization method) causes various electrochemical polarization phenomena when a current is passed through the ground, and transient phenomena are observed in the observed waveform of the voltage. This is an exploration method.

特に、スペクトル強制分極法(SIP:Special Induced Polarization 法)は、地盤や岩盤の複素比抵抗(インピーダンスおよび位相)を周波数毎に測定することによって、地盤や岩盤に特有であるインピーダンスや位相スペクトルを計測する技術である。地盤や岩盤は、内部に含まれる導電性鉱物粒子による分極や岩石内の微細孔性膜を介して生じる膜分極による特徴的なインピーダンススペクトルを持つ。   In particular, Spectral Forced Polarization (SIP) measures the impedance and phase spectrum peculiar to the ground and rock by measuring the complex resistivity (impedance and phase) of the ground and rock for each frequency. Technology. The ground and rock mass have characteristic impedance spectra due to polarization caused by conductive mineral particles contained in the interior and membrane polarization generated through a microporous membrane in the rock.

これらのインピーダンスのスペクトルを取得することにより、その岩石や地盤の分類や性状を把握することが可能になると考えられ、従来からさまざまな取り組みがなされてきた。しかしながら、測定器と電極間に用いられる計測ケーブルの電磁カップリングの影響や静電誘導の影響により、その利用範囲が数Hz以下という低周波に限定され、その応用が限定されてきた。
特開2001−337175号公報
By acquiring these impedance spectra, it is considered possible to grasp the classification and properties of the rocks and ground, and various efforts have been made in the past. However, due to the influence of electromagnetic coupling of the measurement cable used between the measuring instrument and the electrode and the influence of electrostatic induction, the use range is limited to a low frequency of several Hz or less, and its application has been limited.
JP 2001-337175 A

従来の技術では、測定器と電極間に用いられる計測ケーブルの電磁カップリングや静電誘導の影響により、利用できる周波数の帯域が低周波に限定されている。この周波数領域では、IPの全スペクトルを取得することができず、また、低周波を利用することで測定時間が長くなるという欠点がある。   In the conventional technology, the frequency band that can be used is limited to a low frequency due to the influence of electromagnetic coupling or electrostatic induction of a measurement cable used between the measuring instrument and the electrode. In this frequency domain, the entire spectrum of IP cannot be acquired, and there is a disadvantage that the measurement time becomes long by using a low frequency.

これらの問題を解決するためには、測定器と電極間に用いられる計測ケーブルの電磁誘導と静電誘導の影響をいかに防ぐかが重要となる。本発明では、電磁誘導や静電誘導の影響を制御するため、電流・電位ケーブルに同軸ケーブルを用いて誘導電磁場のアクティブ制御を行ってそのうち消しを行う手段を採用する。   In order to solve these problems, it is important how to prevent the influence of electromagnetic induction and electrostatic induction of the measurement cable used between the measuring instrument and the electrode. In the present invention, in order to control the influence of electromagnetic induction or electrostatic induction, a means for performing active control of the induction electromagnetic field using a coaxial cable as the current / potential cable and canceling out of it is adopted.

従来、スペクトル強制分極法は、4端子対法として用いられてきた技術であるが、4端子法では対になる発信器として逆位相のフィードバックを行うことで誘導電磁場の打ち消しを行うのに対し、本発明では、二つのDDS(ダイレクトデジタルシンセサイザ)を用い、基準電位点の電位が最小になるように、DDS間の振幅と位相を相互に制御することによりケーブル内の電磁誘導、キャパシタンス及び回路内での位相遅れの影響を含んだ制御を行えるようにすることを課題とする。   Conventionally, the spectral compulsory polarization method is a technique that has been used as a four-terminal pair method, whereas the four-terminal method cancels the induced electromagnetic field by performing antiphase feedback as a pair of transmitters. In the present invention, two DDSs (direct digital synthesizers) are used, and the amplitude and phase between the DDSs are mutually controlled so that the potential at the reference potential point is minimized. It is an object of the present invention to enable control including the influence of phase lag in the case.

また、同時にDDS間の位相差を測定し、その位相差を用いて電流−電位の位相差の補正を行う。この補正により、電位検出のため用いたアイソレーションアンプ等の機械的特性によって生じた位相の補正を可能とするとともに、高精度な計測を可能とすることを課題とする。   At the same time, the phase difference between the DDSs is measured, and the phase difference between the current and the potential is corrected using the phase difference. This correction makes it possible to correct a phase caused by mechanical characteristics of an isolation amplifier or the like used for potential detection, and to enable highly accurate measurement.

本発明は上記課題を解決するために、並列して接続された4本の同軸ケーブルにおける1対の同軸ケーブル間にインピーダンス測定対象物を接続し、その一方から正弦波の信号を入力してインピーダンスを測定する4端子対法を利用したスペクトル強制分極探査装置において、2つのダイレクトデジタルシンセサイザを用い、基準電位点の電位が最小になるように、DDS間の振幅と位相を相互にデジタル制御することにより、ケーブル内の電磁誘導及び静電誘導のアクティブ制御を可能とすることを特徴とするスペクトル強制分極探査装置を提供する。   In order to solve the above-mentioned problem, the present invention connects an impedance measurement object between a pair of coaxial cables of four coaxial cables connected in parallel, and inputs a sine wave signal from one of the impedance cables. In the spectral forced polarization probe using the four-terminal-pair method for measuring the signal, the amplitude and phase between the DDSs are digitally controlled to each other so that the potential at the reference potential point is minimized using two direct digital synthesizers. Thus, an active control of electromagnetic induction and electrostatic induction in a cable is possible, and a spectral compulsory polarization exploration device is provided.

前記2つのダイレクトデジタルシンセサイザ間の電位の位相差を利用して回路内での位相遅れの制御を行うような構成としてもよい。   The phase delay in the circuit may be controlled using the phase difference in potential between the two direct digital synthesizers.

以上のような構成から成る本発明に係るスペクトル強制分極探査装置によれば、次のような効果が生じる。
(1)従来適用が困難であった検層分野や貫入試験、トモグラフィー探査にフルカラーの地質断面図ならびに地質柱状図を提供することが可能になり、より詳細な地質分類や地盤汚染の状況などを把握することが可能となる。
According to the spectral forced polarization exploration apparatus according to the present invention having the above-described configuration, the following effects are produced.
(1) It is possible to provide full-color geological section maps and geological columnar charts for logging fields, penetration tests, and tomographic exploration, which had previously been difficult to apply. It becomes possible to grasp.

(2)二つのDDS(ダイレクトデジタルシンセサイザ)を用い、基準電位点の電位が最小になるように、DDS間の振幅と位相を相互に制御するので、ケーブル内の電磁誘導・キャパシタンスおよび回路内での位相遅れの影響を含んだ制御が可能である。 (2) Since two DDSs (direct digital synthesizers) are used and the amplitude and phase between the DDSs are mutually controlled so that the potential of the reference potential point is minimized, electromagnetic induction and capacitance in the cable and in the circuit It is possible to perform control including the effect of the phase delay.

(3)また、同時にDDS間の位相差を測定し、その位相差を用いて電流−電位の位相差の補正を行うので、電位検出のため用いたアイソレーションアンプ等の機械的特性によって生じた位相の補正を可能とするとともに、高精度な計測を可能とする。 (3) Also, the phase difference between the DDSs is measured at the same time, and the phase difference between the current and the potential is corrected using the phase difference. This is caused by the mechanical characteristics of the isolation amplifier used for detecting the potential. It enables phase correction and high-precision measurement.

本発明に係るスペクトル強制分極探査装置の実施の形態を実施例に基づいて図面を参照して、以下に説明する。   Embodiments of a spectrally compulsory polarization exploration apparatus according to the present invention will be described below with reference to the drawings based on examples.

(原理)
IP現象と電磁カップリングの影響は、図1に示されるように、1Hz以上の高周波で顕著となり、それ以上の周波数帯において測定が困難となる。そのため、測定できる周波数領域が低周波に限定されてきた。
(principle)
As shown in FIG. 1, the influence of the IP phenomenon and the electromagnetic coupling becomes significant at a high frequency of 1 Hz or higher, and measurement becomes difficult in a frequency band higher than that. Therefore, the frequency region that can be measured has been limited to a low frequency.

従来、高周波インピーダンス計測法として、4端子対法と呼ばれる手段があり、実験室レベルの高周波インピーダンスの計測法として用いられてきた。   Conventionally, as a high-frequency impedance measurement method, there is a means called a four-terminal pair method, which has been used as a measurement method for high-frequency impedance at a laboratory level.

図2は、本発明に係るスペクトル強制分極探査装置の基本的な構成であり、図3は本発明の実施例の構成を示す図である。図2において、4端子対法の原理を説明する。発信器1から送信された正弦波の信号が同軸ケーブル10を通り、同軸ケーブル10の電極2から送信され、インピーダンス測定対象物3から同軸ケーブル7の電極4を通過し、同軸ケーブル7の内芯を通って、発信器1と対になる電流制御回路6に至る。   FIG. 2 shows a basic configuration of the spectrally compulsory polarization exploration apparatus according to the present invention, and FIG. 3 shows a configuration of an embodiment of the present invention. In FIG. 2, the principle of the four-terminal pair method will be described. The sinusoidal signal transmitted from the transmitter 1 passes through the coaxial cable 10, is transmitted from the electrode 2 of the coaxial cable 10, passes through the electrode 4 of the coaxial cable 7 from the impedance measurement object 3, and the inner core of the coaxial cable 7. The current control circuit 6 paired with the transmitter 1 is passed through.

ここで、P2電極5と同軸ケーブル10のシールド間の電位差が0Vとなるように、電流制御回路6から位相を反転させた電流を同軸ケーブル7の外部シールドに供給する。   Here, a current whose phase is inverted is supplied from the current control circuit 6 to the outer shield of the coaxial cable 7 so that the potential difference between the P2 electrode 5 and the shield of the coaxial cable 10 becomes 0V.

同軸ケーブル7の外部シールドに流れ 電極2の信号と正反対の位相を持つ信号は、同軸ケーブル8、9、10のそれぞれの外部シールドの外端を通り、最終的に発信器1に到達する。この過程において、同軸ケーブル8、9はそれぞれ高インピーダンスであるため、電流は流れずに外部シールドに流れる電流は、同軸ケーブル7、10に流れる。この電流は、同軸ケーブル10、7の電極2、4の心線に流れる電流と逆位相で振幅もほぼ等しくなるため、電磁誘導が抑制される。   A signal that flows through the outer shield of the coaxial cable 7 and has a phase opposite to that of the signal of the electrode 2 passes through the outer ends of the outer shields of the coaxial cables 8, 9, and 10 and finally reaches the transmitter 1. In this process, since the coaxial cables 8 and 9 have high impedance, current does not flow and current flowing through the outer shield flows through the coaxial cables 7 and 10. Since this current has an opposite phase to the current flowing through the cores of the electrodes 2 and 4 of the coaxial cables 10 and 7 and an amplitude that is substantially equal, electromagnetic induction is suppressed.

以上が、4端子対法の原理であるが、図2において、ここで接続される配線や同軸ケーブルが非常に長い場合、また、電極C1、C2が接地インピーダンスやキャパシタンスを持つ場合には、この4端子対法の回路をそのまま適用することが困難である。   The above is the principle of the four-terminal pair method. In FIG. 2, when the wiring or coaxial cable connected here is very long, or when the electrodes C1 and C2 have ground impedance or capacitance, It is difficult to apply the four-terminal pair circuit as it is.

すなわち、4端子対法では、同軸ケーブル8について、P2電極5接続されているケーブルの心線と外部シールドの電位差が0Vになるように、電極4から入る信号の振幅をコントロールしているが、その前提は電極4、5の位相が等しいことである。   That is, in the four-terminal pair method, for the coaxial cable 8, the amplitude of the signal entering from the electrode 4 is controlled so that the potential difference between the cable core connected to the P2 electrode 5 and the external shield becomes 0V. The premise is that the phases of the electrodes 4 and 5 are equal.

しかしながら、実際には電極4、5は、C2の接地インピーダンスやケーブルの持つキャパシタンスのため位相差が生じており、電極5の信号を使ったコントロールは困難である。さらに、この位相差は周波数依存性を持つことから補正が困難である。   However, in reality, the electrodes 4 and 5 have a phase difference due to the ground impedance of C2 and the capacitance of the cable, and it is difficult to control using the signal of the electrode 5. Furthermore, since this phase difference has frequency dependence, it is difficult to correct.

電子回路等のインピーダンス測定で用いられる4端子対法を用いた測定器では、あらかじめ特定のケーブルを用意して、それに併せてチューニングしているが、地層における物理探査や検層にように、ケーブルやプローブが長く、計測するたびに接地インピーダンスが異なるインピーダンス対象を計測するシステムにおいては、そのような4端子対法を用いた測定器手法は適用できない。   In the measuring device using the 4-terminal pair method used for impedance measurement of electronic circuits, etc., a specific cable is prepared in advance and tuned accordingly. However, as in physical exploration and logging in the formation, Such a measuring instrument method using the four-terminal pair method cannot be applied to a system that measures an impedance object having a long grounding probe and a different ground impedance every time it is measured.

そこで、本発明に係るスペクトル強制分極探査装置では、送信対1、6のフィードバックによる電流反転手段を行わず、独立した二つの発信器を使い、コンピュータによる位相および振幅の最適制御を行う手段を適用する。   Therefore, in the spectral forced polarization exploration device according to the present invention, the current inversion means by feedback of the transmission pairs 1 and 6 is not used, but two independent transmitters are used and the means for optimal control of the phase and amplitude by the computer is applied. To do.

本発明に係るスペクトル強制分極探査装置20の実施例において、本発明の具体的な構成を作用をまじえて詳細に説明する。図3において、探査装置の4つの電極C1、P1、P2、C2のそれぞれに、同軸ケーブル10、9、8、7の心線が接続される。また、同軸ケーブルの外部シールドは、互いに電極近傍でシールド接続線24により、相互に接続されている。   In the embodiment of the spectral compulsory polarization exploration apparatus 20 according to the present invention, the specific configuration of the present invention will be described in detail with the operation. In FIG. 3, the core wires of the coaxial cables 10, 9, 8, and 7 are connected to the four electrodes C1, P1, P2, and C2, respectively, of the exploration device. Further, the outer shields of the coaxial cables are connected to each other by shield connection lines 24 in the vicinity of the electrodes.

CPU14は、主DDS16への周波数をセットすることができ、主DDS16から設定された周波数の正弦波が発信される。その後、正弦波はCPU14により出力電圧が調整され、送信電極C1に接続された電流ケーブルの心線をとおり、送信電極C1から地層に送信される。送信された信号は、C2電極をとおり、C2電極に接続された電流ケーブルを通って、副送信器12に至る。   The CPU 14 can set a frequency to the main DDS 16, and a sine wave having a set frequency is transmitted from the main DDS 16. Thereafter, the output voltage of the sine wave is adjusted by the CPU 14, and the sine wave is transmitted from the transmission electrode C1 to the formation through the core of the current cable connected to the transmission electrode C1. The transmitted signal passes through the C2 electrode, passes through the current cable connected to the C2 electrode, and reaches the sub-transmitter 12.

一方、電位電極P2と外部シールド間の電位差として検出された電位信号は、絶縁アンプ21および絶対値整流器22をとおって、実効値に変化させ、A/D変換器23を通してCPU14に送られる。ここで、CPU14は、このP2の心線と外部シールドの間の電位差が0Vになるように、副DDS17の発信周波数、位相を変化させる。   On the other hand, a potential signal detected as a potential difference between the potential electrode P2 and the external shield is changed to an effective value through the insulation amplifier 21 and the absolute value rectifier 22, and sent to the CPU 14 through the A / D converter 23. Here, the CPU 14 changes the transmission frequency and phase of the sub DDS 17 so that the potential difference between the P2 core and the external shield becomes 0V.

副DDS17から送信された信号は、さらにCPU14からの指令により振幅がコントロールされ、副送信機12に送られる。副送信機12から出力された信号は、C2に接続された同軸ケーブル7の外部シールドを通り、電極近傍で接続された同軸ケーブルのシールド接続線24からC1の外部シールドを通して主送信機11に至る。   The amplitude of the signal transmitted from the sub DDS 17 is further controlled by a command from the CPU 14 and sent to the sub transmitter 12. The signal output from the sub-transmitter 12 passes through the outer shield of the coaxial cable 7 connected to C2, and reaches the main transmitter 11 from the shield connection line 24 of the coaxial cable connected near the electrode through the outer shield of C1. .

なお、ここでの副DDS17の周波数・位相および正弦波D/Aによる振幅制御は、P2に接続された同軸ケーブル8の心線と外部シールドの間の電圧が0Vに調整されるまで続くように構成されている。また、P1と外部シールド間の電位差は、絶縁アンプ21を通した後、絶対値整流器22により実効値に変換された後にA/D変換され、CPU14に記録される。   The frequency control and phase control of the sub DDS 17 and the amplitude control by the sine wave D / A are continued until the voltage between the core wire of the coaxial cable 8 connected to P2 and the external shield is adjusted to 0V. It is configured. The potential difference between P1 and the external shield passes through the insulation amplifier 21, is converted to an effective value by the absolute value rectifier 22, is A / D converted, and is recorded in the CPU.

また、電流については、副送信機12からの出力を無誘導抵抗で電流センス15で測定し、その電流値を実効値に変換し。A/D変換を通してCPU14に記録される。ここで得られたP1の電位差と電流値からCPU14でインピーダンスが計算され、コンソール25に表示される。   As for the current, the output from the sub-transmitter 12 is measured by the current sense 15 with a non-inductive resistor, and the current value is converted into an effective value. It is recorded in the CPU 14 through A / D conversion. The impedance is calculated by the CPU 14 from the potential difference and current value of P1 obtained here and displayed on the console 25.

また、P1から得られた信号と電流検出器15(図中の「電流センス15」)から得られた信号は、位相検出回路26に送られ、ここで位相差の計測を行う。電位計測と同様に位相差についてもA/D変換により実効値に変換され、CPU14に送られる。   Further, the signal obtained from P1 and the signal obtained from the current detector 15 ("current sense 15" in the figure) are sent to the phase detection circuit 26, where the phase difference is measured. Similar to the potential measurement, the phase difference is also converted to an effective value by A / D conversion and sent to the CPU 14.

CPU14では、これらのインピーダンスおよび位相差をコンソール25に表示する。また、CPU14はコンソール25からのマニュアル設定およびパソコンからの自動コントロールの両方が可能である。   The CPU 14 displays these impedance and phase difference on the console 25. The CPU 14 can perform both manual setting from the console 25 and automatic control from the personal computer.

なお、このスペクトル強制分極探査装置20は、12VバッテリーからのDC入力で稼働する。このように、本スペクトル強制分極探査装置20は、CPU14によって全てコントロールされ、主DDS16及び副DDS17の制御をデジタル制御で行っているところに特徴がある。   The spectral compulsory polarization exploration device 20 operates with DC input from a 12V battery. As described above, the spectrum forced polarization exploration device 20 is controlled by the CPU 14 and is characterized in that the main DDS 16 and the sub DDS 17 are controlled by digital control.

本発明の特徴をさらに、説明する。本発明に係るスペクトル強制分極探査装置では、主送信機11および副送信機12に示される二つの送信機用いて、振幅および位相を交互に切り替え、シールドケーブル8の心線と外部シールドの電位差が0Vに近くなるように、CPU14の指令により副送信機12の振幅と位相を変化させていく。最終的に、シールドケーブル8の心線と外部シールドの電位差を0V近くに調整した時点で終了する。   The features of the present invention will be further described. In the spectral forced polarization exploration device according to the present invention, the amplitude and the phase are alternately switched using the two transmitters shown in the main transmitter 11 and the sub-transmitter 12, and the potential difference between the core of the shielded cable 8 and the external shield is changed. The amplitude and phase of the sub-transmitter 12 are changed by a command from the CPU 14 so as to be close to 0V. Finally, the process ends when the potential difference between the core of the shielded cable 8 and the external shield is adjusted to be close to 0V.

ここで、P1電極とP2電極の電位差は、P2電極を基準としてとられる電位差が計測される。また、電流値は、電流検出器15(図3中の「出力電流センス」)から出力される電流をモニターする。そして、電流検出器15で計測される電流の位相は、P2電極に接続されたシールドケーブル8の心線と外部シールドの電位差が0vになるように、副送信機12からの位相の調整がされているので、C2電極の電流線のキャパシタンスや接地インピーダンスによって生じた位相差は、副送信機12の位相調整によりキャンセルされており、図4に示すような等価回路で表現することができる。   Here, the potential difference between the P1 electrode and the P2 electrode is measured by taking the P2 electrode as a reference. The current value monitors the current output from the current detector 15 (“output current sense” in FIG. 3). The phase of the current measured by the current detector 15 is adjusted from the sub-transmitter 12 so that the potential difference between the core wire of the shielded cable 8 connected to the P2 electrode and the external shield becomes 0v. Therefore, the phase difference caused by the capacitance of the current line of the C2 electrode and the ground impedance is canceled by the phase adjustment of the sub-transmitter 12, and can be expressed by an equivalent circuit as shown in FIG.

このように、本発明では、C2電極の接地インピーダンスやケーブルのキャパシタンスの影響を考慮することなく正確に測定対象を流れる電流の位相を計測することが可能である。また、本発明では主送信機11および副送信機12の二つの送信機の位相差を計測することにより、電流値の変化に伴う位相差の補正を行っている。すなわち、主送信機11と副送信機12に使われている回路がほぼ同じであるため、本位相差がこれらの回路の位相差の2倍となる特性を利用している。   Thus, in the present invention, it is possible to accurately measure the phase of the current flowing through the measurement object without considering the influence of the ground impedance of the C2 electrode and the capacitance of the cable. Further, in the present invention, the phase difference associated with the change in the current value is corrected by measuring the phase difference between the two transmitters of the main transmitter 11 and the sub-transmitter 12. That is, since the circuits used for the main transmitter 11 and the sub-transmitter 12 are substantially the same, the characteristic that this phase difference is twice the phase difference of these circuits is used.

本発明に係るスペクトル強制分極探査装置では、主DDS16および副DDS17に示される二つのDDSを用いて制御を行う。即ち、CPU14からの指令により、主DDS16から特定の周波数を持つ正弦波が発信される、本送信源に対し、CPU14は副DDS17の周波数および位相を、P2電極に接続されたシールドケーブル8の心線と外部シールドの間の電位差が0Vになるように変えていく。   In the spectral compulsory polarization exploration apparatus according to the present invention, control is performed using two DDSs indicated by the main DDS 16 and the sub DDS 17. That is, in response to a command from the CPU 14, a sine wave having a specific frequency is transmitted from the main DDS 16, and the CPU 14 sets the frequency and phase of the sub DDS 17 to the core of the shielded cable 8 connected to the P2 electrode. The potential difference between the line and the outer shield is changed to 0V.

ここで、P2電極に接続されたシールドケーブル8の心線と外部シールド間の電位差が0Vになった時点で、ほぼ逆位相の電流がC1電極およびC2電極のそれぞれのケーブルの心線と外部シールドに流れているために電磁誘導が発生しない。また、P1電極に接続されたシールドケーブル9の内芯とP2電極に接続されたシールドケーブル8の内芯の間の電位差と、電流検出器15で測定された値を用いて、位相および電位差を検出してインピーダンスおよび位相差を出力する。   Here, when the potential difference between the core wire of the shielded cable 8 connected to the P2 electrode and the external shield becomes 0V, the currents of substantially opposite phases are applied to the cable core and the external shield of the respective cables of the C1 electrode and the C2 electrode. Electromagnetic induction does not occur. Further, using the potential difference between the inner core of the shielded cable 9 connected to the P1 electrode and the inner core of the shielded cable 8 connected to the P2 electrode, and the value measured by the current detector 15, the phase and potential difference are calculated. Detect and output impedance and phase difference.

(実験例)
本発明者は、本発明に係る強制分極探査装置を製作し(図5の写真参照)、これに100m長の6芯同軸ケーブルおよび検層プローブを接続した上で、無誘導抵抗のインピーダンスおよび位相を計測した。その結果得られた、機器特性の測定結果を図6に示す。
(Experimental example)
The present inventor manufactured a forced polarization exploration device according to the present invention (see the photograph in FIG. 5), connected a 100 m long 6-core coaxial cable and a logging probe, and then introduced the impedance and phase of the non-inductive resistance. Was measured. The measurement results of the device characteristics obtained as a result are shown in FIG.

図6によると、20Hzから2000Hz付近まで、インピーダンス値や位相精度1 mradでフラットであり、測定器やケーブルの影響を受けずにこの帯域で計測可能である事が分かる。なお、位相のオフセットは、電位計測に用いているアイソレーションアンプの機器特性によって生じているが、DDS間の位相差を計測することで補正可能である。また、20Hz以下の低周波で位相およびインピーダンスの誤差が増大している原因は、直流成分のカットのために使用しているLPF(ローパスフィルタ)のためである。   According to FIG. 6, it can be seen that the impedance value and the phase accuracy are 1 mrad from 20 Hz to around 2000 Hz, and the measurement is possible in this band without being influenced by the measuring instrument and the cable. The phase offset is caused by the device characteristics of the isolation amplifier used for measuring the potential, but can be corrected by measuring the phase difference between the DDSs. Further, the reason why the phase and impedance errors increase at a low frequency of 20 Hz or less is due to the LPF (low pass filter) used for cutting the DC component.

LPFの遮断周波をより低周波にもっていくことで、測定範囲を低周波側に広げることも可能であるが、その反面、測定時間が著しく悪化する。現在、1周波数あたりの測定時間を30秒以内で考慮しており、1点4周波のスペクトル計測で2分以内を想定している。実際の検層において、この時間程度で測定できれば、深度分解能1m、深度100mまでの検層を200分(3時間程度)で計測できると考えられる。   Although it is possible to extend the measurement range to the low frequency side by setting the cutoff frequency of the LPF to a lower frequency, on the other hand, the measurement time is significantly deteriorated. Currently, the measurement time per frequency is considered within 30 seconds, and the spectrum measurement at one point and four frequencies is assumed within 2 minutes. If actual logging can be measured in about this time, logging up to a depth resolution of 1 m and a depth of 100 m can be measured in 200 minutes (about 3 hours).

また、1点10周波の計測では、8時間程度の測定時間が必要であり、これ以上に測定時間がかかることは、実際の利用では困難であるため、測定周波数を20Hz以上に設定した。低周波の測定時間が著しく悪化する理由の一つは、4端子対のアクティブ制御を行っているためであるが、特定周波数に周波数を固定する方法や、電磁カップリングの影響の少ない低周波でのアクティブ制御を制限することにより低周波側に測定領域を広げることも可能である。   In addition, measurement at one frequency of 10 frequencies requires a measurement time of about 8 hours, and it is difficult to actually take a measurement time beyond this, so the measurement frequency was set to 20 Hz or higher. One of the reasons that the measurement time of low frequency is significantly deteriorated is because of active control of a four-terminal pair. However, the method of fixing the frequency to a specific frequency or the low frequency with little influence of electromagnetic coupling. It is also possible to widen the measurement area on the low frequency side by restricting the active control of.

また、本発明に係る強制分極探査装置の有効性を確認するため、実際のボーリング孔でのSIP検層を実施した。ボーリング孔は、深度60mのボーリング孔である。ボーリング孔の内径は、66mmであり、塩化ビニール製のケーシングに5%から7%のストレーナが切ってある(深度25m以浅と深度55m以深にはストレーナは切っていない)。   In addition, in order to confirm the effectiveness of the forced polarization exploration apparatus according to the present invention, SIP logging was performed in an actual borehole. The borehole is a borehole having a depth of 60 m. The inner diameter of the borehole is 66 mm, and a strainer of 5% to 7% is cut in a vinyl chloride casing (the strainer is not cut below a depth of 25 m or deeper than 55 m).

検層プローブは、直径30mmの塩化ビニール製プローブであり、電極には半田(鉛60%)の電極を使用している。プローブに無誘導抵抗を接続した結果は、図6のとおりである。本ボーリング孔において、1m毎に、1点あたり20Hz、200Hz、1000Hzの3周波数の検層を行い、比抵抗に特徴がある特定の深度では、20Hzから2000Hzまでの8周波のスペクトルを計測した。   The logging probe is a probe made of vinyl chloride having a diameter of 30 mm, and an electrode made of solder (60% lead) is used as an electrode. The result of connecting a non-inductive resistor to the probe is as shown in FIG. In this drilling hole, logging was performed at three frequencies of 20 Hz, 200 Hz, and 1000 Hz per point for every 1 m, and an 8-frequency spectrum from 20 Hz to 2000 Hz was measured at a specific depth characterized by specific resistance.

その結果を図7に示す。各深度とも特徴的なスペクトルの変化を示し、類似した砂層やシルト層で、特徴的なスペクトルを示している。また、深度別の各周波数の位相分布を図8に示す。各地層に応じたスペクトルの特徴が、検層結果に表れている。   The result is shown in FIG. Each depth shows a characteristic change in spectrum, and a similar spectrum is shown in similar sand and silt layers. Moreover, the phase distribution of each frequency according to depth is shown in FIG. The spectral characteristics according to each stratum are shown in the logging results.

以上、本発明に係るスペクトル強制分極探査装置の最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   As described above, the best mode of the spectral compulsory polarization exploration device according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and the technical matters described in the scope of the claims can be described. It goes without saying that there are various embodiments within the scope.

以上の構成から成る本発明によれば、従来適用が困難であった検層分野や貫入試験、トモグラフィー探査にフルカラーの地質断面図ならびに地質柱状図を提供することが可能になり、より詳細な地質分類や地盤汚染の状況などを把握するための装置として適用が可能となる。   According to the present invention having the above-described configuration, it becomes possible to provide a full-color geological sectional view and a geological columnar map for logging fields, penetration tests, and tomographic exploration, which have been difficult to apply in the past. It can be applied as a device for grasping classification and ground contamination.

従来技術を説明する図である。It is a figure explaining a prior art. 本発明の実施例の構成を説明する図である。It is a figure explaining the structure of the Example of this invention. 本発明の実施例の構成を説明する図である。It is a figure explaining the structure of the Example of this invention. 本発明の要部の等価回路を説明する図である。It is a figure explaining the equivalent circuit of the principal part of this invention. 本発明の実験に使用した強制分極探査装置である。It is a compulsory polarization exploration device used for the experiment of the present invention. 無誘導抵抗を接続したSIP特性の実験結果を示すグラフである。It is a graph which shows the experimental result of the SIP characteristic which connected the non-inductive resistance. 各深度から取得されたSIPスペクトルを示すグラフである。It is a graph which shows the SIP spectrum acquired from each depth. 検層の結果得られたSIPスペクトルの深度分布を示すグラフである。It is a graph which shows the depth distribution of the SIP spectrum obtained as a result of logging.

符号の説明Explanation of symbols

1 発信器
2 電極
3 インピーダンス測定対象物
4C2 電極
5P2 電極
6 電流制御回路
7 同軸ケーブル
8、9、10 同軸ケーブル
11 主送信機
12 副送信器
14 CPU
15 電流検出器
16 主DDS
17 副DDS
20 スペクトル強制分極探査装置
21 絶縁アンプ
22 絶対値整流器
23 A/D変換器
24 シールド接続線
25 コンソール
26 位相検出回路
1 Transmitter 2 Electrode 3 Impedance Measurement Object 4C2 Electrode 5P2 Electrode 6 Current Control Circuit 7 Coaxial Cable 8, 9, 10 Coaxial Cable
11 Main transmitter
12 Sub-transmitter
14 CPU
15 Current detector
16 Main DDS
17 Deputy DDS
20 Spectral forced polarization probe 21 Insulation amplifier
22 Absolute value rectifier
23 A / D converter
24 Shield connection line
25 Console
26 Phase detection circuit

Claims (2)

並列して接続された4本の同軸ケーブルにおける1対の同軸ケーブル間にインピーダンス測定対象物を接続し、その一方から正弦波の信号を入力してインピーダンスを測定する4端子対法を利用したスペクトル強制分極探査装置において、
2つのダイレクトデジタルシンセサイザを用い、基準電位点の電位が最小になるように、DDS間の振幅と位相を相互にデジタル制御することにより、ケーブル内の電磁誘導及び静電誘導のアクティブ制御を可能とすることを特徴とするスペクトル強制分極探査装置。
A spectrum using a four-terminal pair method in which an impedance measurement object is connected between a pair of coaxial cables of four coaxial cables connected in parallel, and a sine wave signal is input from one of them to measure impedance. In the forced polarization probe,
By using two direct digital synthesizers and mutually digitally controlling the amplitude and phase between DDSs so that the potential at the reference potential point is minimized, active control of electromagnetic induction and electrostatic induction in the cable is possible. Spectral forced polarization exploration device characterized by
前記2つのダイレクトデジタルシンセサイザ間の電位の位相差を利用して回路内での位相遅れの制御を行うことを特徴とするスペクトル強制分極探査装置。   A spectrally compulsory polarization exploration device that controls phase delay in a circuit using a phase difference in potential between the two direct digital synthesizers.
JP2005321714A 2005-11-07 2005-11-07 Spectral forced polarization probe Expired - Fee Related JP4538608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321714A JP4538608B2 (en) 2005-11-07 2005-11-07 Spectral forced polarization probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321714A JP4538608B2 (en) 2005-11-07 2005-11-07 Spectral forced polarization probe

Publications (2)

Publication Number Publication Date
JP2007127565A true JP2007127565A (en) 2007-05-24
JP4538608B2 JP4538608B2 (en) 2010-09-08

Family

ID=38150338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321714A Expired - Fee Related JP4538608B2 (en) 2005-11-07 2005-11-07 Spectral forced polarization probe

Country Status (1)

Country Link
JP (1) JP4538608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132736A (en) * 2010-12-21 2012-07-12 Hioki Ee Corp Circuit board inspection device
JP2014025907A (en) * 2012-07-27 2014-02-06 Korea Institute Of Geoscience & Minaral Resources Non-polarizable probe and spectral induced polarization logging device for borehole including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337175A (en) * 2000-05-29 2001-12-07 Hokko Georesearch Kk Method for measuring clearance rate distribution of and water saturation degree distribution of bedrock using specific electrical resistance and seismic wave velocity model
JP2004198385A (en) * 2002-12-20 2004-07-15 Japan Organo Co Ltd Method of surveying oil contamination in soil
JP2005233818A (en) * 2004-02-20 2005-09-02 Toyota Central Res & Dev Lab Inc Measuring instrument, measuring probe, and measuring method of inductance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337175A (en) * 2000-05-29 2001-12-07 Hokko Georesearch Kk Method for measuring clearance rate distribution of and water saturation degree distribution of bedrock using specific electrical resistance and seismic wave velocity model
JP2004198385A (en) * 2002-12-20 2004-07-15 Japan Organo Co Ltd Method of surveying oil contamination in soil
JP2005233818A (en) * 2004-02-20 2005-09-02 Toyota Central Res & Dev Lab Inc Measuring instrument, measuring probe, and measuring method of inductance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
神宮司元治, 狩野嘉昭: "4端子対SIP検層装置の開発(スペクトル柱状図による地質評価)", 物理探査学会学術講演会講演論文集, vol. 113, JPN6010009291, October 2005 (2005-10-01), JP, pages 371 - 372, ISSN: 0001546667 *
神宮司元治, 狩野嘉昭: "4端子対構成によるSIP探査装置の開発", 物理探査学会学術講演会講演論文集, vol. 112, JPN7010000529, May 2005 (2005-05-01), JP, pages 293 - 294, ISSN: 0001546668 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132736A (en) * 2010-12-21 2012-07-12 Hioki Ee Corp Circuit board inspection device
JP2014025907A (en) * 2012-07-27 2014-02-06 Korea Institute Of Geoscience & Minaral Resources Non-polarizable probe and spectral induced polarization logging device for borehole including the same

Also Published As

Publication number Publication date
JP4538608B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US6734675B2 (en) Apparatus accurately measuring properties of a formation
AU2013355049B2 (en) Drilling parallel wells for SAGD and relief
RU2606737C2 (en) System and method for measuring or creating electric field in well
US8115490B2 (en) Concentric return and transmitter electrodes for imaging and standoff distances compensation
EA014403B1 (en) A method of borehole conductivity simulator verification and transverse coil balancing
CA2693917A1 (en) Method and apparatus for optimizing magnetic signals and detecting casing and resistivity
MX2015000136A (en) System and method of focusing an array laterolog.
US9513399B2 (en) Methods and systems for obtaining an electrical impedivity and/or resistivity image of a subterranean formation
CA2930251C (en) Intelligent spectral induced polarization measurement module
MX2011012423A (en) Borehole compensated resistivity logging tool having an asymmetric antenna spacing.
WO2016100736A1 (en) Electric dipole surface antenna configurations for electromagnetic wellbore instrument telemetry
US20140375320A1 (en) Method of leakage current and borehole environment correction for oil based mud imager
WO2012135607A2 (en) Apparatus and method for formation resistivity measurements in oil-based mud using a floating reference signal
US9568633B2 (en) Electromagnetic formation evaluation tool apparatus and method
JP4538608B2 (en) Spectral forced polarization probe
US20120274329A1 (en) Imaging in Oil-Based Mud by Synchronizing Phases of Currents Injected Into a Formation
US8972193B2 (en) Formation resistivity imager with reduced leakage to mandrel
US5987386A (en) Interpolation of induction tool response using geometrical factors as basis functions
RU2614853C2 (en) Method of inductive logging from cased wells and device for its implementation
RU2421759C1 (en) Procedure for lateral logging and device for its implementation
CN114961707A (en) Drilling device for lateral resistivity
JP2005003657A (en) Multichannel multi-frequency electrical logging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100420

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4538608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees