JP2007126709A - Heat treatment method for making fine of crystal grains in high nitrogen stainless steel, and high nitrogen stainless steel - Google Patents

Heat treatment method for making fine of crystal grains in high nitrogen stainless steel, and high nitrogen stainless steel Download PDF

Info

Publication number
JP2007126709A
JP2007126709A JP2005320027A JP2005320027A JP2007126709A JP 2007126709 A JP2007126709 A JP 2007126709A JP 2005320027 A JP2005320027 A JP 2005320027A JP 2005320027 A JP2005320027 A JP 2005320027A JP 2007126709 A JP2007126709 A JP 2007126709A
Authority
JP
Japan
Prior art keywords
stainless steel
austenite
high nitrogen
nitrogen stainless
mixed structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005320027A
Other languages
Japanese (ja)
Other versions
JP5223046B2 (en
Inventor
Akihiro Tsuchiyama
聡宏 土山
Setsuo Takagi
節雄 高木
Tatsuro Onomoto
達郎 小野本
Shinji Araki
信二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Yasuda Kogyo KK
Fukuoka Prefecture
Original Assignee
Kyushu University NUC
Yasuda Kogyo KK
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Yasuda Kogyo KK, Fukuoka Prefecture filed Critical Kyushu University NUC
Priority to JP2005320027A priority Critical patent/JP5223046B2/en
Publication of JP2007126709A publication Critical patent/JP2007126709A/en
Application granted granted Critical
Publication of JP5223046B2 publication Critical patent/JP5223046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method for making fine of crystal grains in a high nitrogen stainless steel with which the crystal grains can be made to fine only with the heat treatment without applying any processing, and the high nitrogen stainless steel. <P>SOLUTION: The heat treatment method for making fine of the crystal grains in the high nitrogen stainless steel, is performed as the followings, with which after austenizing the high nitrogen stainless steel by heating, an isothermal transformation treatment from the austenite structure into a mixed structure composed of ferrite and nitride and thereafter, reheating and reversed transformation treatment from the above mixed structure into the austenite are applied to make fine of the crystal grains. Furthermore, the isothermal transformation treatment and the reversed transformation treatment are repeated, and the crystal grains can be made to fine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高窒素ステンレス鋼を恒温変態処理した後に逆変態処理することにより結晶粒を微細化することができる高窒素ステンレス鋼の結晶粒微細化熱処理方法及び高窒素ステンレス鋼に関するものである。   TECHNICAL FIELD The present invention relates to a high-nitrogen stainless steel crystal grain refinement heat treatment method and high-nitrogen stainless steel that can refine crystal grains by subjecting high-nitrogen stainless steel to isothermal transformation treatment and then reverse transformation treatment.

高濃度の窒素を含有する高窒素ステンレス鋼は、窒素による固溶強化作用および加工硬化率を増大させる作用により、通常のステンレス鋼に比べて高い引張強度を有するだけでなく耐熱性や耐食性にも優れているため、高温や腐食環境下で使用される高強度の特殊構造材料として有望視されている。窒素は、オーステナイト系ステンレス鋼に多量に含まれるNiと同様にオーステナイト相を熱力学的に安定化する作用があるため、Niの代替として利用可能である。また、生体用の場合には、Niが皮膚アレルギーの原因になることが問題となっていることから、Niの代替としての利用も可能であり、生体用Niフリーオーステナイト系ステンレス鋼の主要合金元素としても利用が期待されている(非特許文献1〜3参照)。
遅沢浩一朗: 熱処理, 36 (1996), 206. 岡本正三, 田中良平, 佐藤昭: 日本金属学会誌, 22 (1958), 508. M.O.Speidel: Proc.Int.Conf.on Stainless Steels, (1991), 25.
High nitrogen stainless steel containing high concentration of nitrogen not only has higher tensile strength than ordinary stainless steel, but also has heat resistance and corrosion resistance due to the solid solution strengthening action by nitrogen and the action of increasing the work hardening rate. Because of its superiority, it is promising as a high-strength special structural material used in high temperatures and corrosive environments. Nitrogen has the effect of thermodynamically stabilizing the austenite phase in the same manner as Ni contained in a large amount in austenitic stainless steel, and can be used as a substitute for Ni. Further, in the case of biomedical use, since Ni causes skin allergies, it can be used as a substitute for Ni, and is a main alloy element of Ni-free austenitic stainless steel for biomedical use. (See Non-Patent Documents 1 to 3).
Koichiro Sawasawa: Heat treatment, 36 (1996), 206. Shozo Okamoto, Ryohei Tanaka, Akira Sato: Journal of the Japan Institute of Metals, 22 (1958), 508. M.M. O. Speedel: Proc. Int. Conf. on Stainless Steels, (1991), 25.

高窒素ステンレス鋼の優れた強度特性および耐食性を発揮するには、使用前に1273K以上の高温での熱処理が必要であり、それにより著しい結晶粒成長が引き起こされる。とくに、窒素雰囲気中での加熱により固相状態で窒素を吸収させる固相吸収法で作製した高窒素ステンレス鋼の場合、高温保持によりオーステナイト粒が数百μmにまで粗大化してしまう。結晶粒成長が生じると、加工性および機械的性質は著しく損なわれ、加工時および変形時にしばしば結晶粒界を起点とした破壊を生じることが問題となる。   In order to exhibit the excellent strength characteristics and corrosion resistance of high nitrogen stainless steel, a heat treatment at a high temperature of 1273 K or more is required before use, thereby causing remarkable grain growth. In particular, in the case of a high nitrogen stainless steel produced by a solid-phase absorption method in which nitrogen is absorbed in a solid phase state by heating in a nitrogen atmosphere, austenite grains are coarsened to several hundred μm due to holding at a high temperature. When crystal grain growth occurs, workability and mechanical properties are remarkably impaired, and there is a problem that breakage is often caused at the grain boundary during processing and deformation.

前記問題を解決するため、結晶粒の微細化が有効になると考えられる。一般に、ステンレス鋼の結品粒を微細化する手段として、加工と焼鈍により生じる再結晶を利用した方法が実施される。しかし、前記再結晶を利用した結晶粒微細化法は、高窒素ステンレス鋼が高い耐力と大きな加工硬化能を有することから冷間加工性に乏しく且つ加工後の焼鈍中に窒化物の析出も懸念されるため、適用が困難である。さらに、十分な加工を施すことが可能な大型の板材や棒材への適用に限られ、小型の材料、または既に製品形状とされた材料に適用することはできないという問題もある。   In order to solve the above problem, it is considered that refinement of crystal grains is effective. In general, as a means for refining the resultant grain of stainless steel, a method using recrystallization generated by processing and annealing is performed. However, the crystal grain refining method using recrystallization has poor cold workability because high nitrogen stainless steel has high proof stress and large work hardening ability, and there is concern about precipitation of nitride during post-annealing. Therefore, application is difficult. Furthermore, it is limited to application to a large plate or bar that can be sufficiently processed, and there is a problem that it cannot be applied to a small material or a material that has already been shaped into a product.

そこで、本発明は加工を行うことなく熱処理だけで結品粒を微細化することができる高窒素ステンレス鋼の結晶粒微細化熱処理方法及び高窒素ステンレス鋼を提供するものである。   Therefore, the present invention provides a high-nitrogen stainless steel crystal grain refinement heat treatment method and a high-nitrogen stainless steel that can refine the resultant grains by only heat treatment without processing.

本発明の高窒素ステンレス鋼の結晶粒微細化熱処理方法は、高窒素ステンレス鋼を加熱してオーステナイト化した後、オーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後、再加熱して前記混合組織をオーステナイトに逆変態処理することを特徴とする。   The method for heat treatment of grain refinement of the high nitrogen stainless steel of the present invention is to heat the high nitrogen stainless steel to austenite, then subject the austenite to isothermal transformation to a mixed structure composed of ferrite and nitride, and then reheat. The mixed structure is reversely transformed to austenite.

また、逆変態処理後、再びオーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後、再加熱して前記混合組織をオーステナイトに逆変態処理して結晶粒をより微細化することもできる。   Further, after the reverse transformation treatment, the austenite is again subjected to isothermal transformation treatment to a mixed structure composed of ferrite and nitride, and then reheated to reverse transform the mixed structure to austenite to further refine the crystal grains. it can.

本発明は、例えば、Nを0.5〜1.5質量%含む高窒素ステンレス鋼を1320K〜1523Kの温度で加熱してオーステナイト化した後、873K〜1273Kに保持してオーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後1320K〜1523Kの温度に再加熱して前記混合組織をオーステナイトに逆変態処理することで、結晶粒を著しく微細化することができる。さらに、逆変態処理後、再び873K〜1273Kに保持してオーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後1320K〜1523Kの温度に再加熱して前記混合組織をオーステナイトに逆変態処理することにより結晶粒をより微細化することもできる。   In the present invention, for example, high nitrogen stainless steel containing 0.5 to 1.5% by mass of N is heated to austenite at a temperature of 1320K to 1523K, and then held at 873K to 1273K to hold the austenite with ferrite and nitride. The crystal structure can be remarkably miniaturized by subjecting the mixed structure to a constant temperature transformation treatment, followed by reheating to a temperature of 1320K to 1523K and reverse transformation treatment of the mixed structure to austenite. Further, after the reverse transformation treatment, the austenite is held at 873K to 1273K again, and the austenite is subjected to isothermal transformation treatment to a mixed structure composed of ferrite and nitride, and then reheated to a temperature of 1320K to 1523K to reverse transform the mixed structure to austenite. By processing, the crystal grains can be further refined.

本発明の結晶粒微細化熱処理方法は、Nを0.5〜1.5質量%、窒化物生成元素としてCrを10.0〜30.0質量%含む高窒素ステンレス鋼に適用することができる。高窒素ステンレス鋼は、例えば、NiをNで置換した高窒素ニッケルフリーオーステナイト系ステンレス鋼などで知られている。高窒素ステンレス鋼は、例えば、高圧力の窒素ガス雰囲気中で溶製を行う加圧溶製法や窒素雰囲気中での焼鈍により固相状態で窒素を吸収させる固相吸収法により製造される。   The grain refinement heat treatment method of the present invention can be applied to high nitrogen stainless steel containing 0.5 to 1.5% by mass of N and 10.0 to 30.0% by mass of Cr as a nitride-forming element. . High nitrogen stainless steel is known as, for example, high nitrogen nickel-free austenitic stainless steel in which Ni is replaced with N. High nitrogen stainless steel is manufactured by, for example, a pressure melting method in which melting is performed in a high-pressure nitrogen gas atmosphere or a solid-phase absorption method in which nitrogen is absorbed in a solid state by annealing in a nitrogen atmosphere.

高窒素ステンレス鋼は1320K〜1523Kで加熱することにより、オーステナイト化することができる。加熱後は、水冷により室温まで冷却する。   High nitrogen stainless steel can be austenitized by heating at 1320K to 1523K. After heating, it is cooled to room temperature by water cooling.

恒温変態は873K〜1273Kに保持し、フェライト(α)+CrNの共析組織にする。なお、オーステナイト化が終了すると、水冷することなく、873K〜1273Kに降温させて恒温変態させてもよい。恒温変態後に1320K〜1523Kのγ単相域で逆変態処理を施すことにより、オーステナイト粒が微細化される。 The isothermal transformation is maintained at 873K to 1273K and a eutectoid structure of ferrite (α) + Cr 2 N is formed. When the austenitization is completed, the temperature may be lowered to 873K to 1273K and the temperature may be transformed without cooling with water. Austenite grains are refined by applying a reverse transformation treatment in the γ single phase region of 1320K to 1523K after the isothermal transformation.

本発明の高窒素ステンレス鋼は、オーステナイト化された後、フェライトと窒化物からなる混合組織へ恒温変態処理され、その後、再加熱によるオーステナイトへの逆変態処理により微細な結晶粒組織が形成されていることを特徴とする。さらに、逆変態処理された後、再びフェライトと窒化物からなる混合組織へ恒温変態処理され、その後、再加熱によるオーステナイトへの逆変態処理により微細な結晶粒組織が形成されていることを特徴とする。また、結晶粒が20μm以下であることを特徴とする。この高窒素ステンレス鋼は生体用に適している。   The high nitrogen stainless steel of the present invention is austenitized and then subjected to isothermal transformation to a mixed structure composed of ferrite and nitride, and then a fine grain structure is formed by reverse transformation to austenite by reheating. It is characterized by being. Furthermore, after the reverse transformation treatment, it is again subjected to isothermal transformation to a mixed structure composed of ferrite and nitride, and then a fine crystal grain structure is formed by reverse transformation treatment to austenite by reheating. To do. Further, the crystal grains are 20 μm or less. This high nitrogen stainless steel is suitable for biological use.

本発明は、オーステナイトをフェライトと窒化物からなる混合組織へと相変態させ、再加熱して再びオーステナイトに相変態させることにより、結晶粒径が微細化されたオーステナイト組織を得ることができる。また、本発明は加工を必要としないため、小型の材料や既に製品形状とされた材料の結晶粒の微細化にも適用可能である。   In the present invention, an austenite structure with a refined crystal grain size can be obtained by phase-transforming austenite into a mixed structure composed of ferrite and nitride, reheating and phase-transforming into austenite again. In addition, since the present invention does not require processing, the present invention can be applied to miniaturization of crystal grains of a small material or a material already in a product shape.

本発明の結晶粒微細化熱処理方法により得られた高窒素ステンレス鋼は、生体用に適しており、例えば、皮膚アレルギーを起こすNiを含まない、医療用・歯科用高窒素ニッケルフリーステンレス鋼を素材とする製品、例えば、歯列矯正器具用ワイヤー・ブラケット等の小型部品、ガイドワイヤ・ステント・骨プレート等の構造材料、耐食材料、医療用材料に用いられる高窒素ステンレス鋼について、その結晶粒の微細化により加工性および機械的性質を改善することが可能となる。また、身体に直接接触する時計や食器類などの用途にも適している。   The high nitrogen stainless steel obtained by the grain refinement heat treatment method of the present invention is suitable for use in living organisms, for example, medical and dental high nitrogen nickel-free stainless steel that does not contain Ni causing skin allergy. For example, high-nitrogen stainless steel used for small parts such as orthodontic appliance wires and brackets, structural materials such as guide wires, stents, and bone plates, corrosion resistant materials, and medical materials. Refinement makes it possible to improve processability and mechanical properties. It is also suitable for applications such as watches and tableware that come into direct contact with the body.

本発明を実施例により説明する。   The present invention is illustrated by examples.

図1は本発明による高窒素ステンレス鋼の結晶粒微細化熱処理方法の一実施例を示す概略図である。本実施例は、窒素吸収処理により高窒素ステンレス鋼を作成し、この過程で高窒素ステンレス鋼をオーステナイト化し、次いで恒温変態処理でオーステナイト(γ)をフェライト(α)と窒化物からなる混合組織へ相変態させ、その後、逆変態処理により再びオーステナイトに相変態させるステップからなる。
(1)オーステナイト化(窒素吸収処理)
高周波真空溶解炉にて純鉄、電解クロムを真空溶解し、鋳造して供試材を得た。供試材の組成(以下「%」は「質量%」である。)は、C:0.005%、N:0.033%、O:0.007%、P:0.006%、S:0.0026%、Cr:25.4%、Mn:<0.01%、Si:0.03%、Al:0.02%、残りFeである(以下「Fe−25%Cr合金」という。)。本合金にはγ安定化元素はほとんど含まれておらず、窒素無添加の状態ではα単相組織を有する。
FIG. 1 is a schematic view showing one embodiment of a method for heat treating a crystal grain refinement of high nitrogen stainless steel according to the present invention. In this example, a high nitrogen stainless steel is prepared by nitrogen absorption treatment, and the high nitrogen stainless steel is austenitized in this process, and then austenite (γ) is converted into a mixed structure composed of ferrite (α) and nitride by isothermal transformation treatment. It comprises a step of phase transformation and then a phase transformation to austenite again by reverse transformation treatment.
(1) Austenitization (nitrogen absorption treatment)
Pure iron and electrolytic chromium were vacuum-melted in a high-frequency vacuum melting furnace and cast to obtain a test material. The composition of the test material (hereinafter “%” is “mass%”) is C: 0.005%, N: 0.033%, O: 0.007%, P: 0.006%, S : 0.0026%, Cr: 25.4%, Mn: <0.01%, Si: 0.03%, Al: 0.02%, remaining Fe (hereinafter referred to as “Fe-25% Cr alloy”) .) This alloy contains almost no γ-stabilizing element, and has an α single-phase structure when nitrogen is not added.

Fe−25%Cr合金を金型鋳造した後、鋳造組織を壊すため熱間圧延し、その後、Ar雰囲気中にて均質化焼鈍を施した。得られたFe−25%Cr合金を40mm×15mm×1mmの薄板に切り出した後、研磨を施し、1気圧の窒素雰囲気中にて1473Kで108ksの窒素吸収処理をした後水冷した。   After casting the Fe-25% Cr alloy, it was hot-rolled to break the cast structure, and then homogenized and annealed in an Ar atmosphere. The obtained Fe-25% Cr alloy was cut out into a thin plate of 40 mm × 15 mm × 1 mm, polished, and subjected to a nitrogen absorption treatment at 1473 K at 1473 K in a nitrogen atmosphere at 1 atm, followed by water cooling.

高温での窒素吸収処理後の試料は、試料の表面から窒素が内部へと拡散し、それに伴いαがγに相変態し、その粒径は400μm程度にまで粗大になっている。この試料について化学分析を行った結果、固溶窒素濃度は約1.01%であった(以下「Fe−25%Cr−1%N合金」という。)。 In the sample after the nitrogen absorption treatment at a high temperature, nitrogen diffuses from the surface of the sample into the inside, and α is phase-transformed into γ, and the particle size is coarsened to about 400 μm. As a result of chemical analysis of this sample, the solid solution nitrogen concentration was about 1.01% (hereinafter referred to as “Fe-25% Cr-1% N alloy”).

(2)恒温変態処理
ついで、オーステナイト化した高窒素ステンレス鋼を各種温度で0.3〜18ks恒温保持した。
(2) Isothermal transformation treatment Next, the austenitized high nitrogen stainless steel was kept at a constant temperature of 0.3 to 18 ks at various temperatures.

1273Kを超える温度で種々の時間恒温保持したFe−25%Cr−1%N合金の光顕組織およびX線回折の結果、この1273Kを超える温度での恒温保持ではα+CrNから構成された共析組織は試料全面で得られなかった。 As a result of optical microstructure and X-ray diffraction of an Fe-25% Cr-1% N alloy held at a temperature exceeding 1273 K for various times, eutectoid composed of α + Cr 2 N was observed at the constant temperature holding above 1273 K. Tissue was not obtained on the entire sample surface.

次ぎに、Fe−25%Cr−1%N合金に1223K以下の種々の温度で恒温変態処理を施した。その結果、いずれの温度においても、γ→α+CrNの共析変態が起こり、試料全面で共析組織が確認された。α+CrN共析組織の生成挙動は恒温保持の温度により大きく異なっており、1223Kで恒温保持した試料では、共析組織がγ粒界から生成して片側のγ粒内に向かって成長していくのに対し、低温の873Kで恒温保持した試料では、共析組織はγ粒内からも核生成していることがわかった。このことは、恒温保持の温度が低温になるほど、共析変態の核生成の頻度が高くなっていることを示唆している。 Next, a constant temperature transformation treatment was performed on the Fe-25% Cr-1% N alloy at various temperatures of 1223K or less. As a result, the eutectoid transformation of γ → α + Cr 2 N occurred at any temperature, and the eutectoid structure was confirmed on the entire surface of the sample. The formation behavior of the α + Cr 2 N eutectoid structure varies greatly depending on the temperature at which the temperature is maintained. In the sample maintained at a constant temperature of 1223K, the eutectoid structure is generated from the γ grain boundary and grows into the γ grain on one side. On the other hand, it was found that the eutectoid structure nucleated from the γ grains in the sample kept at a low temperature of 873 K. This suggests that the frequency of nucleation of eutectoid transformation increases as the temperature of the isothermal holding decreases.

一方、各温度での変態挙動を比較すると、1173Kではわずか0.3ks程度で変態は完了するが、それよりも高温の1223Kや低温の873Kでは、いずれも共析変態完了時間が長時間側へ移行している。   On the other hand, when the transformation behavior at each temperature is compared, the transformation is completed at about 0.3 ks at 1173K, but the eutectoid transformation completion time is longer for both the higher temperature 1223K and the lower temperature 873K. It has migrated.

図2は恒温保持温度が異なる他の試料でも同様な組織観察を行って作製したT.T.T.図である。高窒素γ鋼における、γ→α+CrNの共析変態の開始(T)・完了(T)はFe−C系合金のパーライト変態と同様に典型的なC曲線となっており、1173K付近にノーズ(nose)が存在している。 FIG. 2 is a graph showing the structure of T.P. T.A. T.A. FIG. The onset (T s ) and completion (T f ) of the eutectoid transformation of γ → α + Cr 2 N in the high nitrogen γ steel is a typical C curve, similar to the pearlite transformation of the Fe—C alloy, 1173K There is a nose in the vicinity.

図3は各温度での恒温保持後に得られる共析組織の模式図である。高温域では、共析組織が30μm程度のブロックから構成され、その内部には板状や塊状のCrNが不均一に分布しているのに対して、低温域では、変態温度の低下に伴い、ブロックサイズは細かくなり、CrNの分散状態も均一となる。したがって、共析組織を緻密化させるという観点からは、ノーズ以下の温度域で、しかもなるべく低い温度で恒温変態させることが有効であると判断される。 FIG. 3 is a schematic view of a eutectoid structure obtained after holding at a constant temperature at each temperature. In the high temperature region, the eutectoid structure is composed of blocks of about 30 μm, and plate-like or block-like Cr 2 N is unevenly distributed inside, whereas in the low temperature region, the transformation temperature decreases. As a result, the block size becomes finer and the dispersion state of Cr 2 N becomes uniform. Therefore, from the viewpoint of densifying the eutectoid structure, it is judged that it is effective to perform isothermal transformation at a temperature as low as possible in the temperature range below the nose.

(3)逆変態処理
1223K、1173Kおよび873Kの各温度でそれぞれ恒温変態後、γ単相域の1473Kで1.8ksの逆変態処理を施した試料についてX線回折した結果、いずれの試料においても、αとCrNの回折ピークは確認されず、α+CrNからγへの逆変態が完了していた。
(3) Reverse transformation treatment As a result of X-ray diffraction on a sample subjected to a constant transformation at 1223K, 1173K, and 873K, respectively, and subjected to a reverse transformation treatment of 1.8 ks at 1473 K in the γ single phase region, The diffraction peaks of α and Cr 2 N were not confirmed, and the reverse transformation from α + Cr 2 N to γ was completed.

図4は恒温変態処理した後逆変態処理を施した合金の光顕組織を示す。恒温変態前のFe−25%Cr−1%N合金に比べて、共析変態処理した後逆変態処理を施したいずれの合金も、γ粒は著しく微細化されていた。例えば、1223K恒温保持の合金では、γ粒の粒径が50μm程度であり、恒温変態前の合金の粒径(500μm)の1/10程度にまで微細化されていた。   FIG. 4 shows a light microstructure of an alloy that has been subjected to a constant temperature transformation treatment and then a reverse transformation treatment. Compared with the Fe-25% Cr-1% N alloy before isothermal transformation, in any alloy subjected to the eutectoid transformation treatment and then subjected to the reverse transformation treatment, the γ grains were remarkably refined. For example, in an alloy maintained at a constant temperature of 1223K, the particle size of γ grains is about 50 μm, and the particle size is reduced to about 1/10 of the particle size (500 μm) of the alloy before the isothermal transformation.

図5はFe−25%Cr−1%N合金の応力−歪み曲線を示す図である。オーステナイト化し恒温変態処理後逆変態処理して微細化した合金1は、オーステナイト化しただけの合金2に比べて、機械的性質が優れていることが確認できた。   FIG. 5 is a diagram showing a stress-strain curve of an Fe-25% Cr-1% N alloy. It was confirmed that the alloy 1 that was austenitized and refined by the isothermal transformation after the isothermal transformation treatment was superior in mechanical properties to the alloy 2 that was only austenitized.

本実施例は恒温変態→逆変態処理を2回繰り返すことによってさらに結晶粒を微細化するものである。   In the present embodiment, the crystal grains are further refined by repeating the isothermal transformation → reverse transformation treatment twice.

図6は高窒素ステンレス鋼の結晶粒微細化熱処理方法の別実施例を示す概略図、図7は恒温変態処理→逆変態処理を2回繰り返した合金の光顕組織を示す図である。   FIG. 6 is a schematic view showing another embodiment of the method for heat treatment of grain refinement of high nitrogen stainless steel, and FIG. 7 is a view showing an optical microscopic structure of an alloy in which the isothermal transformation treatment → reverse transformation treatment is repeated twice.

図6に示すように、実施例1と同様に、1473K、108ksでオーステナイト化し、1173K、0.3ksで恒温変態処理した後、1473K、0.3ksで逆変態処理したFe−25%Cr−1%N合金を再び1173K、0.3ksで恒温変態処理し、次いで1473K、0.3ksで逆変態処理した。   As shown in FIG. 6, similarly to Example 1, Fe-25% Cr-1 was austenitized at 1473 K and 108 ks, subjected to isothermal transformation treatment at 1173 K and 0.3 ks, and then reverse transformed at 1473 K and 0.3 ks. The% N alloy was again subjected to isothermal transformation treatment at 1173 K and 0.3 ks, and then reverse transformation treatment was conducted at 1473 K and 0.3 ks.

その結果、図7に示すように初回の恒温変態処理前の合金の粒径500μmが微細化されてγ粒の粒径が20μm程度であり、さらに実施例1の初回の恒温変態処理後逆変態処理させた粒径50μmのγ粒よりさらに微細化されるとともに、より均一な組織になっていた。   As a result, as shown in FIG. 7, the grain size of the alloy before the first isothermal transformation treatment is refined to 500 μm, and the γ grain size is about 20 μm. Further, the reverse transformation after the first isothermal transformation treatment of Example 1 is performed. It was further refined from the treated γ grains with a particle diameter of 50 μm and a more uniform structure.

本発明による高窒素ステンレス鋼の結晶粒微細化熱処理方法の一実施例を示す概略図である。It is the schematic which shows one Example of the crystal grain refinement | purification heat processing method of the high nitrogen stainless steel by this invention. 恒温保持温度が異なる他の試料でも同様な組織観察を行って作製したT.T.T.図である。Other samples with different constant temperature holding temperatures were prepared by performing similar tissue observations. T. T. et al. T. T. et al. FIG. 各温度での恒温保持後に得られる共析組織の模式図である。It is a schematic diagram of the eutectoid structure | tissue obtained after constant temperature holding | maintenance at each temperature. 恒温変態処理した後逆変態処理を施した合金の光顕組織を示す図である。It is a figure which shows the light-microscopic structure of the alloy which performed the reverse transformation process after the isothermal transformation process. Fe−25%Cr−1%N合金の応力−歪み曲線を示す図である。It is a figure which shows the stress-strain curve of a Fe-25% Cr-1% N alloy. 本発明の高窒素ステンレス鋼の結晶粒微細化熱処理方法の別実施例を示す概略図である。It is the schematic which shows another Example of the crystal grain refinement | purification heat processing method of the high nitrogen stainless steel of this invention. 恒温変態処理→逆変態処理を2回繰り返した合金の光顕組織を示す図である。It is a figure which shows the optical microscope of the alloy which repeated the isothermal transformation process-> reverse transformation process twice.

符号の説明Explanation of symbols

1:オーステナイト化し恒温変態処理後逆変態処理して微細化した合金
2:オーステナイト化しただけの合金
1: Alloy austenitized and refined by isothermal transformation after reverse transformation 2: Alloy just austenitized

Claims (8)

高窒素ステンレス鋼を加熱してオーステナイト化した後、オーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後、再加熱して前記混合組織をオーステナイトに逆変態処理することを特徴とする高窒素ステンレス鋼の結晶粒微細化熱処理方法。   After heating high nitrogen stainless steel to austenite, austenite is isothermally transformed to a mixed structure composed of ferrite and nitride, and then reheated to reverse transform the mixed structure to austenite. High-nitrogen stainless steel grain refinement heat treatment method. 逆変態処理後、再びオーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後、再加熱して前記混合組織をオーステナイトに逆変態処理することを特徴とする請求項1記載の高窒素ステンレス鋼の結晶粒微細化熱処理方法。   The high nitrogen according to claim 1, wherein after the reverse transformation treatment, the austenite is isothermally transformed to a mixed structure composed of ferrite and nitride, and then reheated to reverse transform the mixed structure to austenite. Stainless steel grain refinement heat treatment method. Nを0.5〜1.5質量%含む高窒素ステンレス鋼を1320K〜1523Kの温度で加熱してオーステナイト化した後、873K〜1273Kに保持してオーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後1320K〜1523Kの温度に再加熱して前記混合組織をオーステナイトに逆変態処理することを特徴とする請求項1記載の高窒素ステンレス鋼の結晶粒微細化熱処理方法。   High nitrogen stainless steel containing 0.5 to 1.5% by mass of N is heated to a temperature of 1320K to 1523K to austenite, and then held at 873K to 1273K to keep the austenite to a mixed structure composed of ferrite and nitride. The method for heat treatment for refining crystal grains of high nitrogen stainless steel according to claim 1, wherein the transformation treatment is performed, and then the mixed structure is reversely transformed to austenite by reheating to a temperature of 1320K to 1523K. 逆変態処理後、再び873K〜1273Kに保持してオーステナイトをフェライトと窒化物からなる混合組織へ恒温変態処理し、その後1320K〜1523Kの温度に再加熱して前記混合組織をオーステナイトに逆変態処理することを特徴とする請求項3記載の高窒素ステンレス鋼の結晶粒微細化熱処理方法。 After the reverse transformation treatment, the austenite is held at 873K to 1273K again, and the austenite is isothermally transformed to a mixed structure composed of ferrite and nitride, and then reheated to a temperature of 1320K to 1523K to reversely transform the mixed structure to austenite. The method for heat treatment for refining crystal grains of high nitrogen stainless steel according to claim 3. オーステナイト化された後、フェライトと窒化物からなる混合組織へ恒温変態処理され、その後、再加熱によるオーステナイトへの逆変態処理により微細な結晶粒組織が形成されていることを特徴とする高窒素ステンレス鋼。   High nitrogen stainless steel characterized in that after being austenitized, it is subjected to isothermal transformation to a mixed structure consisting of ferrite and nitride, and then a fine grain structure is formed by reverse transformation to austenite by reheating. steel. 逆変態処理された後、再びフェライトと窒化物からなる混合組織へ恒温変態処理され、その後、再加熱によるオーステナイトへの逆変態処理により微細な結晶粒組織が形成されていることを特徴とする請求項5記載の高窒素ステンレス鋼。   After the reverse transformation treatment, isothermal transformation treatment is again performed on the mixed structure composed of ferrite and nitride, and then a fine crystal grain structure is formed by reverse transformation treatment to austenite by reheating. Item 6. The high nitrogen stainless steel according to Item 5. 結晶粒が20μm以下であることを特徴とする請求項6記載の高窒素ステンレス鋼。   The high nitrogen stainless steel according to claim 6, wherein the crystal grains are 20 μm or less. 生体用であることを特徴とする請求項5、6又は7記載の高窒素ステンレス鋼。   The high nitrogen stainless steel according to claim 5, 6 or 7, wherein the high nitrogen stainless steel is used for living bodies.
JP2005320027A 2005-11-02 2005-11-02 Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use Expired - Fee Related JP5223046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320027A JP5223046B2 (en) 2005-11-02 2005-11-02 Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320027A JP5223046B2 (en) 2005-11-02 2005-11-02 Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use

Publications (2)

Publication Number Publication Date
JP2007126709A true JP2007126709A (en) 2007-05-24
JP5223046B2 JP5223046B2 (en) 2013-06-26

Family

ID=38149589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320027A Expired - Fee Related JP5223046B2 (en) 2005-11-02 2005-11-02 Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use

Country Status (1)

Country Link
JP (1) JP5223046B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036090A (en) * 2011-08-09 2013-02-21 Gauss Kk Nickel-free and manganese-free high n-containing austenitic stainless steel sintering powder for member for living body or for medical use, and sintered member for living body or for medical use using the same
WO2013081144A1 (en) * 2011-11-30 2013-06-06 独立行政法人物質・材料研究機構 Method for rolling/drawing nickel-free high-nitrogen stainless steel material, nickel-free high-nitrogen stainless steel seamless thin pipe, and method for producing same
US9738963B2 (en) 2013-03-21 2017-08-22 Denso Corporation Method for manufacturing ferritic stainless steel product
JP2020101530A (en) * 2018-12-24 2020-07-02 メコ・エス アー Method for producing ornament

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227068A (en) * 1986-03-17 1987-10-06 セントロ・スビルツポ・マテリア−リ・エセ・ピ・ア Austenite steel and its production
JPH10183303A (en) * 1995-04-08 1998-07-14 Vsg Energ & Schmiedetechnik Gmbh Austenitic steel alloy and manufacture therefor, and article made of such steel alloy
JP2002235153A (en) * 2001-02-05 2002-08-23 Daido Steel Co Ltd High strength and highly corrosion resistant nonmagnetic stainless steel
JP2003503595A (en) * 1999-06-24 2003-01-28 ビーエーエスエフ アクチェンゲゼルシャフト Low nickel austenitic steel
JP2003532795A (en) * 2000-05-10 2003-11-05 ソシエテ アンデュストリエル ド メタルリュルジイアバンセ (エス.イ.エム.ア) Steel composition, method for producing the same and parts produced from said composition, in particular valves
JP2005146321A (en) * 2003-11-13 2005-06-09 Nippon Steel Corp Steel having fine structure, and its production method
JP2005248263A (en) * 2004-03-04 2005-09-15 Daido Steel Co Ltd Martensitic stainless steel
JP2005281855A (en) * 2004-03-04 2005-10-13 Daido Steel Co Ltd Heat-resistant austenitic stainless steel and production process thereof
JP2006052452A (en) * 2004-08-13 2006-02-23 Daido Steel Co Ltd High-nitrogen austenitic stainless steel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227068A (en) * 1986-03-17 1987-10-06 セントロ・スビルツポ・マテリア−リ・エセ・ピ・ア Austenite steel and its production
JPH10183303A (en) * 1995-04-08 1998-07-14 Vsg Energ & Schmiedetechnik Gmbh Austenitic steel alloy and manufacture therefor, and article made of such steel alloy
JP2003503595A (en) * 1999-06-24 2003-01-28 ビーエーエスエフ アクチェンゲゼルシャフト Low nickel austenitic steel
JP2003532795A (en) * 2000-05-10 2003-11-05 ソシエテ アンデュストリエル ド メタルリュルジイアバンセ (エス.イ.エム.ア) Steel composition, method for producing the same and parts produced from said composition, in particular valves
JP2002235153A (en) * 2001-02-05 2002-08-23 Daido Steel Co Ltd High strength and highly corrosion resistant nonmagnetic stainless steel
JP2005146321A (en) * 2003-11-13 2005-06-09 Nippon Steel Corp Steel having fine structure, and its production method
JP2005248263A (en) * 2004-03-04 2005-09-15 Daido Steel Co Ltd Martensitic stainless steel
JP2005281855A (en) * 2004-03-04 2005-10-13 Daido Steel Co Ltd Heat-resistant austenitic stainless steel and production process thereof
JP2006052452A (en) * 2004-08-13 2006-02-23 Daido Steel Co Ltd High-nitrogen austenitic stainless steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036090A (en) * 2011-08-09 2013-02-21 Gauss Kk Nickel-free and manganese-free high n-containing austenitic stainless steel sintering powder for member for living body or for medical use, and sintered member for living body or for medical use using the same
WO2013081144A1 (en) * 2011-11-30 2013-06-06 独立行政法人物質・材料研究機構 Method for rolling/drawing nickel-free high-nitrogen stainless steel material, nickel-free high-nitrogen stainless steel seamless thin pipe, and method for producing same
JP2013112874A (en) * 2011-11-30 2013-06-10 National Institute For Materials Science Method for rolling and drawing processing of material made of nickel-free high nitrogen stainless steel, seamless capillary made of nickel-free high nitrogen stainless steel, and method for producing the same
US9738963B2 (en) 2013-03-21 2017-08-22 Denso Corporation Method for manufacturing ferritic stainless steel product
JP2020101530A (en) * 2018-12-24 2020-07-02 メコ・エス アー Method for producing ornament

Also Published As

Publication number Publication date
JP5223046B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US8216398B2 (en) Method for controlling phase transformation temperature in metal alloy of a device
Sutou et al. Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys
JP6719903B2 (en) Heat treatment method for manganese steel and manganese steel
NO343350B1 (en) Seamless steel tube for oil wells with excellent resistance to sulphide stress cracking and method for producing seamless steel tubes for oil wells
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
Riazi et al. Influence of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel
WO2013081144A1 (en) Method for rolling/drawing nickel-free high-nitrogen stainless steel material, nickel-free high-nitrogen stainless steel seamless thin pipe, and method for producing same
Tian et al. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents
JP2012136742A (en) High-strength martensitic-stainless steel seamless pipe for oil well
Li et al. Improvements in the Superelasticity and Change in Deformation Mode of β-Type TiNb 24 Zr 2 Alloys Caused by Aging Treatments
JP5223046B2 (en) Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use
Wang et al. Microstructure, martensitic transformation and superelasticity of Ti49. 6Ni45. 1Cu5Cr0. 3 shape memory alloy
Peltier et al. Martensite transformation and superelasticity at high temperature of (TiHfZr) 74 (NbTa) 26 high-entropy shape memory alloy
CN112375882B (en) Heat treatment process for improving strength of flexible gear 40CrNiMo steel
JP2012136730A (en) Hot processed steel for surface hardening
Yu et al. Shape memory characteristics of a near β titanium alloy
Gueler et al. Austenitic high interstitial steels vs. CoCrMo–Comparison of fatigue behavior
KR20180004253A (en) Steel strip for cutlery
JPS62294130A (en) Production of stainless steel having high strength and non-magnetism
Keshtta et al. Shape memory effect in new Ti-Nb-Ta alloy
Kumar et al. Influence of strain-induced phase transformation on the surface crystallographic texture in cold-rolled-and-aged austenitic stainless steel
Borowski et al. Modifying the structure of glow discharge nitrided layers produced on high-nickel chromium-less steel with the participation of an athermal martensitic transformation
Kuroda et al. Mechanical properties and microstructures of a thin plate of nickel-free stainless steel with nitrogen absorption treatment
RU2641429C1 (en) Method to increase strength of stable austenitic steel
Akbari et al. Effect of grain refinement on the mechanical properties of a nickel-and manganese-free high nitrogen austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5223046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees