JP2007126357A - Manufacturing method of spherical inorganic ultra-fine powder - Google Patents

Manufacturing method of spherical inorganic ultra-fine powder Download PDF

Info

Publication number
JP2007126357A
JP2007126357A JP2007010939A JP2007010939A JP2007126357A JP 2007126357 A JP2007126357 A JP 2007126357A JP 2007010939 A JP2007010939 A JP 2007010939A JP 2007010939 A JP2007010939 A JP 2007010939A JP 2007126357 A JP2007126357 A JP 2007126357A
Authority
JP
Japan
Prior art keywords
powder
less
droplets
slurry
spherical inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010939A
Other languages
Japanese (ja)
Other versions
JP4567700B2 (en
Inventor
Osamu Kunitomo
修 國友
Toshiaki Ishimaru
登志昭 石丸
Susumu Mizutani
晋 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007010939A priority Critical patent/JP4567700B2/en
Publication of JP2007126357A publication Critical patent/JP2007126357A/en
Application granted granted Critical
Publication of JP4567700B2 publication Critical patent/JP4567700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily manufacturing a spherical inorganic ultra-fine powder having 0.01-3 μm of a mean particle diameter. <P>SOLUTION: The manufacturing method of the spherical inorganic ultra-fine powder having 0.01-3 μm of a mean particle diameter comprises spraying a slurry including an inorganic raw powder excluding a metallic silicon powder into the flames of an elevated temperature and making a spherical shape, wherein the slurry has 1.35 kg/L or less of a liquid specific gravity and includes an inorganic raw powder having 5 μm or less of a mean first particle diameter and methanol having one mass% or less of moisture, and is sprayed so that the liquid droplets have 5.0-14.3 μm of a mean diameter and the liquid droplets having 50 μm or more is 5 mass% or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、平均粒子径0.01〜3μmの球状無機質超微粉末の製造方法に関する。詳しくは、樹脂やゴムの充填剤として、単独もしくは他の粉末と混合して使用した場合に、成形体の強度を上げたり、粘度を下げたりする作用を有する平均粒子径0.01〜3μmの球状無機質粉末を製造する方法に関する。 The present invention relates to a method for producing a spherical inorganic ultrafine powder having an average particle size of 0.01 to 3 μm. Specifically, when used as a resin or rubber filler alone or mixed with other powders, the average particle size of 0.01 to 3 μm has the effect of increasing the strength of the molded body or decreasing the viscosity. The present invention relates to a method for producing a spherical inorganic powder.

従来、無機質原料粉末を含むスラリーを高温火炎に噴霧して球状化する方法においては、原料粉末の媒体として水や可燃性液体が用いられている。しかし、媒体の種類によって火炎中に噴霧する際の液滴の大きさが異なるため、得られた球状無機質粉末の粒径は大きく変化する。水を用いた場合では、その媒体の表面張力が大きいので液滴も大きくなり、球状無機質粉末の粒径を大きくすることは容易であっても小さくすることは困難である。 Conventionally, in a method in which a slurry containing an inorganic raw material powder is sprayed onto a high-temperature flame to form a spheroid, water or a flammable liquid is used as a raw material powder medium. However, since the size of droplets when spraying into the flame differs depending on the type of medium, the particle size of the obtained spherical inorganic powder varies greatly. In the case of using water, since the surface tension of the medium is large, the droplets are also large, and it is difficult to increase the particle diameter of the spherical inorganic powder even if it is easy.

一方、可燃性液体を用い球状アルミナの超微粉を製造する方法が記載されている(特許文献1)。ここで用いられる媒体は、噴霧燃焼工程において分散液中の原料を溶融する程度の燃焼温度を発生させることができる限り限定しないと述べているだけであり、液滴径を小さくさせる作用については考慮されていない。したがって、実施例に記載している灯油等を用いた場合には液滴径が大きくなってしまうこと、また蒸発が遅いことから、得られた球状の無機粉末は水媒体時よりは小粒径であっても、満足するまでには至らなかった。
特開平11−147711号公報
On the other hand, a method for producing ultrafine powder of spherical alumina using a flammable liquid is described (Patent Document 1). The medium used here only states that the spray combustion process is not limited as long as it can generate a combustion temperature to the extent that the raw material in the dispersion is melted. It has not been. Therefore, when using kerosene or the like described in the examples, the droplet diameter becomes large, and since the evaporation is slow, the obtained spherical inorganic powder has a smaller particle size than that in the aqueous medium. Even so, I was not satisfied.
Japanese Patent Laid-Open No. 11-147711

本発明の目的は、平均粒子径0.01〜3μmの球状無機質超微粉末の製造方法を提供するものである。 An object of the present invention is to provide a method for producing a spherical inorganic ultrafine powder having an average particle size of 0.01 to 3 μm.

本発明は、無機質原料粉末(但し、金属シリコン粉末を除く。)を含むスラリーを高温火炎に噴霧して球状化する方法において、上記スラリーが、平均一次粒子径5μm以下の無機質原料粉末と水分1質量%以下のメタノールからなる液比重1.35kg/L以下のものであり、これを液滴の平均径5.0〜14.3μm、50μm以上の液滴が5質量%以下として噴霧することを特徴とする、平均粒子径0.01〜3μmの球状無機質超微粉末の製造方法である。 The present invention relates to a method in which a slurry containing an inorganic raw material powder (excluding metal silicon powder) is sprayed onto a high-temperature flame to form a spheroid, and the slurry comprises an inorganic raw material powder having an average primary particle size of 5 μm or less and moisture 1 A liquid specific gravity of 1.35 kg / L or less consisting of methanol of not more than mass%, and spraying this with droplets having an average diameter of 5.0 to 14.3 μm and droplets of 50 μm or more being 5 mass% or less. This is a method for producing a spherical inorganic ultrafine powder having an average particle size of 0.01 to 3 μm.

本発明によれば、各種樹脂等の充填材、その他用途において好適に使用される平均粒子径0.01〜3μmの球状無機質超微粉末を容易に製造することができる。 According to the present invention, it is possible to easily produce a spherical inorganic ultrafine powder having an average particle size of 0.01 to 3 μm, which is suitably used in fillers such as various resins and other applications.

本発明において、平均粒径0.01〜3μmという超微粉の球状無機質粉末を得るために、メタノール媒体中に無機質原料粉末(但し、金属シリコン粉末を除く。)(以下、単に「無機質原料粉末」ともいう。)を分散させ、高温火炎に噴霧する手法を用いた。これによって、従来の乾燥粉を空気輸送する手法よりも原料粉末の分散性がよく、定量的に高温火炎へ供給できるため、超微粉の球状無機質粉末を製造することができる。 In the present invention, in order to obtain an ultrafine spherical inorganic powder having an average particle size of 0.01 to 3 μm, an inorganic raw material powder (excluding metal silicon powder) in a methanol medium (hereinafter simply referred to as “inorganic raw material powder”). Also used was a method of dispersing and spraying on a high-temperature flame. Thereby, since the dispersibility of the raw material powder is better than the conventional method of pneumatically transporting dry powder and can be quantitatively supplied to the high-temperature flame, it is possible to produce a spherical inorganic powder of ultrafine powder.

無機質原料粉末が火炎中で球状化するメカニズムは二種類に分けられる。一つは、媒体の蒸発が早く液滴内の粒子は個々に分かれ球状化するものと、もう一つは液滴内に含まれた無機質原料粉末同士が一粒子化してしまうものがある(液滴内合着)。そのため、平均粒径0.01〜3μmの超微粉球状粒子を得るには、この液滴内合着を減らすこと、液滴を小さくすることが必要である。 There are two types of mechanisms by which inorganic raw material powders are spheroidized in a flame. One is that the medium evaporates quickly and the particles in the droplets are divided into individual spheroids, and the other is that the inorganic raw material powder contained in the droplets becomes one particle (liquid Intradrop adhesion). Therefore, in order to obtain ultrafine spherical particles having an average particle size of 0.01 to 3 μm, it is necessary to reduce the adhesion within the droplets and to reduce the droplets.

本発明において、水分1質量%以下のメタノールを媒体に用いた理由は、メタノールは表面張力が小さいので噴霧時の液滴径を微小にできるからである。たとえば、表面張力が大きい水を用いると、捕集された球状の無機質粉末は目的粒度よりも大きい結果となる。第二の理由は、沸点が低いため、上記液滴内合着の割合を抑え、超微粉の球状粒子を得ること可能となることである。純度が高いメタノールを容易に入手できることも重要な選択理由となっている。メタノールと表面張力の値が近い灯油では、蒸発が遅いため液滴内合着の割合が増え球状無機粉末が大きくなるだけでなく、硫黄成分の混入が懸念される。 In the present invention, the reason why methanol having a water content of 1% by mass or less is used as a medium is that methanol has a small surface tension, so that the droplet diameter during spraying can be made minute. For example, when water having a large surface tension is used, the collected spherical inorganic powder results in a larger particle size than the target particle size. The second reason is that since the boiling point is low, the ratio of coalescence in the droplets is suppressed, and it is possible to obtain ultrafine powder spherical particles. The availability of highly pure methanol is also an important reason for selection. Kerosene, which has a surface tension value close to that of methanol, is slow to evaporate, so that the ratio of coalescence in the droplets increases and the spherical inorganic powder becomes larger, and there is a concern that sulfur components may be mixed.

また、本発明で用いるメタノールは水分が1質量%以下でなければならない。水分が1質量%よりも多いメタノールは、表面張力は大幅に上がらないものの、火炎中での蒸発が不均一に起こり、平均粒子径0.01〜3μmの球状無機質超微粉末の製造が困難となる。 Further, the methanol used in the present invention must have a moisture content of 1% by mass or less. Methanol with a water content of more than 1% by mass does not significantly increase the surface tension, but the evaporation in the flame occurs unevenly, making it difficult to produce a spherical inorganic ultrafine powder having an average particle size of 0.01 to 3 μm. Become.

本発明が対象としている球状無機質粉末の材質としては、シリカ、アルミナ、ムライト等、火炎によって軟化、球状化できるものである。中でも、樹脂やゴムへの充填材としては、溶融シリカ又はアルミナが好ましい。この無機質原料粉末(但し、金属シリコン粉末を除く。)としては、上記材質が高温下で得られるものであれば何でもよく、例えば溶融シリカであれば、溶融シリカ粉末、結晶シリカ粉末等であり、アルミナであればアルミナ粉末、水酸化アルミニウム粉末や金属アルミニウム等が挙げられる。 Examples of the material of the spherical inorganic powder targeted by the present invention include silica, alumina, mullite, and the like that can be softened and spheroidized by a flame. Of these, fused silica or alumina is preferable as the filler for the resin or rubber. As this inorganic raw material powder (however, excluding metal silicon powder), any material can be used as long as the material is obtained at a high temperature, for example, fused silica powder, fused silica powder, crystalline silica powder, etc. Examples of the alumina include alumina powder, aluminum hydroxide powder, and metal aluminum.

本発明では、球状無機質粉末の超微粉を得るために、無機質原料粉末の平均一次粒子径が5μm以下でなければならない。さらに好ましくは1μm以下である。5μmよりも大きいと液滴径が大きくなってしまい、平均粒径が0.01〜3μmの球状無機質粉末は得られない。 In the present invention, in order to obtain the ultrafine powder of the spherical inorganic powder, the average primary particle diameter of the inorganic raw material powder must be 5 μm or less. More preferably, it is 1 μm or less. When the diameter is larger than 5 μm, the droplet diameter becomes large, and a spherical inorganic powder having an average particle diameter of 0.01 to 3 μm cannot be obtained.

無機質原料粉末の平均一次粒子径が5μm以下であっても、その分散性を向上させるために、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、高分子系界面活性剤等の各種界面活性剤を用いることができる。界面活性剤による無機質原料粉末の表面処理法としては、乾式法による流体ノズルを用いた噴霧方式、せん断力のある攪拌、ボールミル、ミキサー等および湿式法による同様な方式、超音波ホモジナイザー等を採用することができる。しかしながら、スラリーを火炎中に噴霧溶融することから、事前にその液比重を調整した湿式法が最も効率的である。 Nonionic surfactants, cationic surfactants, anionic surfactants, polymer surfactants, etc. in order to improve the dispersibility even when the average primary particle size of the inorganic raw material powder is 5 μm or less Various surfactants can be used. As the surface treatment method of inorganic raw material powder with surfactant, spray method using fluid nozzle by dry method, stirring method with shear force, ball mill, mixer etc. and similar method by wet method, ultrasonic homogenizer etc. are adopted be able to. However, since the slurry is sprayed and melted in a flame, the wet method in which the liquid specific gravity is adjusted in advance is the most efficient.

スラリーの液比重は1.35kg/L以下に調整する必要があり、好ましくは0.80〜1.35kg/Lである。1.35kg/Lよりも大きくすると、無機質原料粉末の濃度が高くなるため、液滴内合着によって生成された球状無機質粉末の粒子が大きくなってしまうことに加え、供給ラインでの閉塞等を引き起こしスラリーの定量供給が困難となる恐れがある。 The liquid specific gravity of the slurry needs to be adjusted to 1.35 kg / L or less, preferably 0.80 to 1.35 kg / L. If it is greater than 1.35 kg / L, the concentration of the inorganic raw material powder increases, so that the particles of the spherical inorganic powder generated by the coalescence in the droplets become large, and blockage in the supply line, etc. This may cause difficulty in quantitative supply of slurry.

なお、スラリー中の無機質原料粉末但し、金属シリコン粉末を除く。)の濃度としては、10〜50質量%であることが好ましい。50質量%よりも大きいスラリーは、ほとんどの無機質粉末において液比重が1.35kg/Lをこえ、供給ライン内で粉体が閉塞しやすくなり、10質量%未満の場合は生産性が低下する。 The inorganic raw material powder in the slurry, except for the metal silicon powder. ) Is preferably 10 to 50% by mass. A slurry larger than 50% by mass has a liquid specific gravity of more than 1.35 kg / L in most inorganic powders, and the powder tends to clog in the supply line, and if it is less than 10% by mass, the productivity is lowered.

本発明の方法においては、以上のようにして調整されたスラリーを液滴状に噴霧し、この液滴を燃焼させる。 In the method of the present invention, the slurry prepared as described above is sprayed into droplets, and the droplets are burned.

本発明において、この液滴は平均径5.0〜14.3μmであることが必要である。14.3μmよりも大きくなると、液滴内合着にて得られた球状無機質粉末が大きくなり、5.0μmよりも小さいと非生産性的であるだけでなく、液滴径よりも大きい無機質原料粉末が高温火炎に噴霧されたときに火炎の高温域から離脱し球状化されない粉末が多くなる。 In the present invention, these droplets are required to have an average diameter of 5.0 to 14.3 μm. When the particle size is larger than 14.3 μm, the spherical inorganic powder obtained by coalescence in the droplets becomes larger. When the particle size is smaller than 5.0 μm, not only is it non-productive, but also the inorganic raw material larger than the droplet diameter. When the powder is sprayed on the high temperature flame, the powder is separated from the high temperature range of the flame and is not spheroidized.

また、液滴は50μm以上の割合が5質量%以下でなければならない。5質量%よりも大きいと液滴の蒸発も遅くなり、液滴内合着の割合が増え球状無機質粉末の粒径が大きくなる。なお、液滴の平均径と50μm以上の割合は、東日コンピューター社製「LDSA−1400A」の装置を用いて測定することができる。 In addition, the droplets must have a ratio of 50 μm or more and 5% by mass or less. When it is larger than 5% by mass, the evaporation of the droplets is slowed, the ratio of coalescence in the droplets is increased, and the particle size of the spherical inorganic powder is increased. In addition, the average diameter of a droplet and the ratio of 50 micrometers or more can be measured using the apparatus of "LDSA-1400A" by Tohnichi Computer.

液滴の平均径と50μm以上の割合は、噴霧方法、スラリー噴霧量、分散気体量とその流速等から選ばれた一又は二以上の要素によって調整することができる。具体的には、より微小液滴を作り出せる二流体ノズル等を用い、分散気体の量に対しスラリー噴霧量を少なくすること、更にはその分散気体の流速を早めることによって行うことができる。 The average diameter of the droplets and the ratio of 50 μm or more can be adjusted by one or more factors selected from the spraying method, the slurry spraying amount, the dispersed gas amount and the flow rate thereof. Specifically, it can be performed by using a two-fluid nozzle or the like that can produce finer droplets, reducing the slurry spray amount relative to the amount of dispersed gas, and further increasing the flow rate of the dispersed gas.

噴霧方法としては、液注式又は液膜式の二流体ノズル等のスプレー噴霧器、超音波噴霧器、回転円板噴霧器等を使用することができるが、液滴の微小化、ハンドリング性、量産性の点から二流体ノズルが好適である。 As the spraying method, a spray sprayer such as a liquid injection type or a liquid film type two-fluid nozzle, an ultrasonic sprayer, a rotating disk sprayer, etc. can be used, but droplets can be miniaturized, handled, and mass-produced. From the point of view, a two-fluid nozzle is preferred.

ノズル吐出口から、スラリーを噴霧させる分散気体としては、炭酸ガス、窒素ガス等の不燃性のガスもしくは空気や酸素等の助燃ガス、もしくはプロパンガスといった可燃性ガスを単独または併用してよい。 As the dispersed gas for spraying the slurry from the nozzle discharge port, a nonflammable gas such as carbon dioxide gas or nitrogen gas, an auxiliary combustion gas such as air or oxygen, or a flammable gas such as propane gas may be used alone or in combination.

分散気体の流速は、例えば二流体ノズルを用いた場合は吐出時に100m/秒以上とすることが好ましい。100m/秒未満ではノズルとしての噴霧作用が生じない。また、分散気体の量はスラリー噴霧量の100倍以上が好ましい。100倍未満では目標の液滴径にするのが困難となり、これまた噴霧作用が生じない。 For example, when the two-fluid nozzle is used, the flow rate of the dispersed gas is preferably 100 m / second or more during discharge. If it is less than 100 m / sec, the spraying action as a nozzle does not occur. Further, the amount of the dispersed gas is preferably 100 times or more of the slurry spray amount. If it is less than 100 times, it becomes difficult to obtain a target droplet diameter, and no spray action occurs.

液滴内の粒子を完全に溶融、球状化させるには、スラリーの噴霧域に可燃ガスと助燃ガスを用いて高温火炎を形成させる。これは、通常の無機質原料粉末の球状化方法と同様であり、本発明においても特別に限定する必要はないが、可燃ガス量が、粒子の溶融、球状化よりも過剰になると、火炎中には粒子同士が合着する恐れがあるので注意を要する。可燃ガスとして、水素、天然ガス、アセチレンガス、プロパンガス、ブタン等を用い、助燃ガスとして、空気、酸素等を用いられる。 In order to completely melt and spheroidize the particles in the droplets, a high-temperature flame is formed in the slurry spray area using a combustible gas and an auxiliary combustion gas. This is the same as the normal spheroidizing method of inorganic raw material powder, and it is not necessary to specifically limit in the present invention, but if the amount of flammable gas is excessive than the melting and spheronizing of particles, Be careful as particles may coalesce. Hydrogen, natural gas, acetylene gas, propane gas, butane, or the like is used as the combustible gas, and air, oxygen, or the like is used as the auxiliary combustion gas.

本発明の製造装置の一例は、球状化炉と、その炉に接続された補集装置とを基本構成としているものである。球状化炉で製造された球状無機質超微粉末は、ブロワー等にて空気輸送され補集装置で回収される。球状化炉本体と輸送配管等は水冷ジャケット方式で水冷されていることが好ましい。補集装置としては、サイクロン、重力沈降、ルーバー、バグフィルター等が用いられる。捕集温度は、メタノールや可燃ガスの量による発熱量とブロワーの吸引量によって決定され、その調整は冷却水量や、ライン内に設けられた外気の取り入れ量等で行われる。 An example of the production apparatus of the present invention is based on a spheroidizing furnace and a collecting apparatus connected to the furnace. The spherical inorganic ultrafine powder produced in the spheronization furnace is pneumatically transported by a blower or the like and collected by a collecting device. It is preferable that the spheroidizing furnace main body and the transportation piping are water cooled by a water cooling jacket method. As the collecting device, a cyclone, gravity sedimentation, louver, bag filter, or the like is used. The collection temperature is determined by the amount of heat generated by the amount of methanol or combustible gas and the suction amount of the blower, and the adjustment is performed by the amount of cooling water, the amount of outside air provided in the line, or the like.

本発明の球状無機質粉末とは球形度が0.80以上のことをいう。この球形度は、走査型電子顕微鏡(日本電子社製「JXA−8600M型」)と画像解析装置(日本アビオニクス社製)を用いて測定することができる。すなわち、粉末のSEM写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表される。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、この粒子の球形度は、球形度=A/B=A×4π/(PM)として算出することができる。そこで、本発明においては、任意100個の粒子について測定し、その平均値でもって粉末の球形度とする。 The spherical inorganic powder of the present invention means that the sphericity is 0.80 or more. The sphericity can be measured using a scanning electron microscope (“JXA-8600M type” manufactured by JEOL Ltd.) and an image analysis device (manufactured by Nippon Avionics Co., Ltd.). That is, the projected area (A) and the perimeter (PM) of the particles are measured from the SEM photograph of the powder. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle is expressed as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 . The sphericity can be calculated as sphericity = A / B = A × 4π / (PM) 2 . Therefore, in the present invention, 100 arbitrary particles are measured, and the average value thereof is used as the sphericity of the powder.

液滴内合着の一部では、完全に球状化しない粉末が存在するので、球形度を0.80以上にするためにはなるべく液滴内合着を減らし、また噴霧時に形成した火炎から原料粉末を離脱させないことの配慮が必要である。 Since there is a powder that does not spheroidize completely in part of the coalescence within the droplets, the coalescence within the droplets is reduced as much as possible in order to achieve a sphericity of 0.80 or more, and the raw material from the flame formed during spraying Care must be taken not to let the powder leave.

本発明の製造方法によれば、目的粒径の球状無機質粉末を得ることができるが、更にサイクロン、エルボージェット等の分級機にて、粒度幅を狭くすることも可能である。 According to the production method of the present invention, a spherical inorganic powder having a target particle diameter can be obtained, but it is also possible to narrow the particle size width with a classifier such as a cyclone or an elbow jet.

実施例1〜5 参考例1 比較例1〜5
球状化炉の頂部に、可燃ガス(プロパンガス)供給管、助燃ガス(酸素ガス)供給管、無機質原料粉末供給管を接続したバーナー(3本)を設置した装置を用い、球状無機質粉末を製造した。各バーナーの中心から表1に示される各種原料スラリーを、分散気体として空気を用い、二流体ノズルにて噴出させ球状化を行った。球状化炉から排出された粉末は、その下部よりブロワーで吸引されて捕集装置に導かれ、バグフィルターで球状無機質粉末を捕集した。
Examples 1-5 Reference Example 1 Comparative Examples 1-5
Spherical inorganic powder is produced using a device that has three burners connected to a combustible gas (propane gas) supply pipe, auxiliary combustion gas (oxygen gas) supply pipe, and inorganic raw material powder supply pipe at the top of the spheroidizing furnace. did. Various raw material slurries shown in Table 1 from the center of each burner were spheroidized by jetting with a two-fluid nozzle using air as a dispersion gas. The powder discharged from the spheronization furnace was sucked from the lower part by a blower and guided to a collecting device, and spherical inorganic powder was collected by a bag filter.

実施例1〜4及び参考例1では、スラリー番号A〜Eのスラリーと分散気体として空気を用い、空気量をスラリー量に対し1000倍にして噴射した。また、実施例5ではスラリー番号Aを用い、空気量をスラリー量に対し10000倍にして噴射した。比較例1〜4ではスラリー番号F〜Iを用い、空気量をスラリー量に対し1000倍とし、比較例5ではスラリー番号Aを用い、空気量をスラリー量に対し10倍として噴射した。 In Examples 1 to 4 and Reference Example 1, air was used as the slurry Nos. A to E and the dispersed gas, and the air amount was injected 1000 times the amount of the slurry. In Example 5, slurry number A was used, and the amount of air was 10000 times as much as the amount of slurry. In Comparative Examples 1 to 4, slurry numbers F to I were used, and the amount of air was 1000 times the amount of slurry. In Comparative Example 5, slurry number A was used, and the amount of air was 10 times the amount of slurry.

これらの条件にて得られた液滴の大きさと、バグフィルターからの補集品の特性を表2に示した。実施例1〜5及び参考例1では目的粒度の球状無機質粉末が製造できているが、比較例1〜5では目的粒度よりも大きい無機質粉末となった。 Table 2 shows the size of the droplets obtained under these conditions and the characteristics of the collected product from the bag filter. In Examples 1 to 5 and Reference Example 1, spherical inorganic powder having a target particle size was produced, but in Comparative Examples 1 to 5, the inorganic powder was larger than the target particle size.

Figure 2007126357
Figure 2007126357

Figure 2007126357
Figure 2007126357

本発明によって製造された球状無機質超微粉末は、ゴム・樹脂の補強等の充填材などに使用できる。 The spherical inorganic ultrafine powder produced by the present invention can be used as a filler for reinforcing rubber and resin.

Claims (1)

無機質原料粉末(但し、金属シリコン粉末を除く。)を含むスラリーを高温火炎に噴霧して球状化する方法において、上記スラリーが、平均一次粒子径5μm以下の無機質原料粉末と水分1質量%以下のメタノールからなる液比重1.35kg/L以下のものであり、これを液滴の平均径5.0〜14.3μm、50μm以上の液滴が5質量%以下として噴霧することを特徴とする、平均粒子径0.01〜3μmの球状無機質超微粉末の製造方法。 In the method of atomizing a slurry containing an inorganic raw material powder (excluding metal silicon powder) onto a high-temperature flame, the slurry comprises an inorganic raw material powder having an average primary particle size of 5 μm or less and a water content of 1% by mass or less. A liquid specific gravity consisting of methanol of 1.35 kg / L or less, characterized in that the droplets having an average diameter of 5.0 to 14.3 μm and droplets of 50 μm or more are sprayed as 5% by mass or less, A method for producing a spherical inorganic ultrafine powder having an average particle size of 0.01 to 3 μm.
JP2007010939A 2007-01-22 2007-01-22 Method for producing spherical inorganic ultrafine powder Expired - Fee Related JP4567700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010939A JP4567700B2 (en) 2007-01-22 2007-01-22 Method for producing spherical inorganic ultrafine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010939A JP4567700B2 (en) 2007-01-22 2007-01-22 Method for producing spherical inorganic ultrafine powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002210457A Division JP3957581B2 (en) 2002-07-19 2002-07-19 Method for producing spherical silica powder

Publications (2)

Publication Number Publication Date
JP2007126357A true JP2007126357A (en) 2007-05-24
JP4567700B2 JP4567700B2 (en) 2010-10-20

Family

ID=38149307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010939A Expired - Fee Related JP4567700B2 (en) 2007-01-22 2007-01-22 Method for producing spherical inorganic ultrafine powder

Country Status (1)

Country Link
JP (1) JP4567700B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730138A (en) * 1993-06-25 1995-01-31 Matsushita Electric Ind Co Ltd Manufacture of cds sintered film
JPH11147711A (en) * 1997-11-11 1999-06-02 Asahi Glass Co Ltd Alumina fine sphere and its production
JP2002179409A (en) * 2000-12-12 2002-06-26 Denki Kagaku Kogyo Kk Method of manufacturing fine spherical inorganic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730138A (en) * 1993-06-25 1995-01-31 Matsushita Electric Ind Co Ltd Manufacture of cds sintered film
JPH11147711A (en) * 1997-11-11 1999-06-02 Asahi Glass Co Ltd Alumina fine sphere and its production
JP2002179409A (en) * 2000-12-12 2002-06-26 Denki Kagaku Kogyo Kk Method of manufacturing fine spherical inorganic powder

Also Published As

Publication number Publication date
JP4567700B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP5850544B2 (en) Spray dryer
CN111954581A (en) Method and device for producing fine spherical powder from coarse and angular powder feed
KR102349973B1 (en) Method for producing tungsten complex oxide particles
JP5362614B2 (en) Method for producing silicon monoxide fine particles and silicon monoxide fine particles
JP4601497B2 (en) Spherical alumina powder, production method and use thereof
JP2007084906A (en) Ag-BASED METAL POWDER, Cu-BASED METAL POWDER, AND METHOD FOR PRODUCING THE SAME
KR102103131B1 (en) Method for production of titanium carbide microparticles
JP2007051019A (en) Method for producing spheroidized inorganic powder
TWI723114B (en) Method for producing nonstoichiometric titanium oxide fine particle
JP3957581B2 (en) Method for producing spherical silica powder
JP2012091159A (en) Pneumatic powder treatment device and method
JP5036984B2 (en) Method for producing spherical inorganic fine powder
JPH11147711A (en) Alumina fine sphere and its production
Joni et al. Intense UV-light absorption of ZnO nanoparticles prepared using a pulse combustion-spray pyrolysis method
JP4567700B2 (en) Method for producing spherical inorganic ultrafine powder
JP2002343135A (en) Copper powder for electric conductive paste and electric conductive paste, and manufacturing method of copper powder for conductive paste
JP2009161431A (en) Method of producing fine silica powder
JP2002179409A (en) Method of manufacturing fine spherical inorganic powder
JP4230554B2 (en) Method for producing spherical particles
JP4145855B2 (en) Method for producing spherical fused silica powder
JP4313924B2 (en) Spherical silica powder and method for producing the same
JP4416936B2 (en) Method for producing fine silica powder
JP2003175329A (en) Method for manufacturing spherical inorganic powder
JP3853137B2 (en) Method for producing fine spherical silica
JP2011162416A (en) Method for producing aggregate particle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees