JP2007126018A - Suspension device - Google Patents

Suspension device Download PDF

Info

Publication number
JP2007126018A
JP2007126018A JP2005320862A JP2005320862A JP2007126018A JP 2007126018 A JP2007126018 A JP 2007126018A JP 2005320862 A JP2005320862 A JP 2005320862A JP 2005320862 A JP2005320862 A JP 2005320862A JP 2007126018 A JP2007126018 A JP 2007126018A
Authority
JP
Japan
Prior art keywords
spring
vehicle
efficiency
suspension
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005320862A
Other languages
Japanese (ja)
Inventor
Tadatsugu Tamamasa
忠嗣 玉正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005320862A priority Critical patent/JP2007126018A/en
Publication of JP2007126018A publication Critical patent/JP2007126018A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suspension device capable of controlling the vehicle posture with a relatively small force. <P>SOLUTION: The spring constant (the spring efficiency) of a suspension spring 6 in the vertical direction of a vehicle is variable. Thus, the posture of a vehicle can be controlled by reducing the spring efficiency (the spring constant in the vertical direction of the vehicle at the wheel position) at an arbitrary wheel position, increasing the set-in amount (the deflection) caused by the self weight or the inertia force, and inclining the vehicle in the wheel direction. Further, the spring efficiency is changed by moving a vehicle body side end of the suspension spring 6 in the direction orthogonal to the axial direction of the suspension spring 6 to support the sprung weight of the vehicle. Thus, in comparison with, for example, a suspension device for changing the vehicle posture by compressing the suspension spring 6 in the axial direction, the vehicle height at an arbitrary wheel position can be easily controlled, and the vehicle posture can be controlled with a small force. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両姿勢を制御するサスペンション装置に関する。   The present invention relates to a suspension device that controls a vehicle attitude.

従来、この種の技術としては、車体側からバネ機能を有する部材(サスペンション装置の懸架バネよりもバネ定数が一桁小さい部材)でサスペンション装置を引き上げて車高を低くすることで、車両姿勢を制御するものがある(例えば、特許文献1参照)。
特開2004−268902号公報
Conventionally, as this kind of technology, the vehicle posture is lowered by pulling up the suspension device with a member having a spring function from the vehicle body side (a member whose spring constant is one digit smaller than the suspension spring of the suspension device) to lower the vehicle height. Some control (for example, refer to Patent Document 1).
JP 2004-268902 A

しかしながら、上記従来の技術にあっては、懸架バネよりもバネ定数が一桁小さい部材で引き上げるようになっているため、例えば、車両旋回時に、ホイールストロークを0とするために、サスペンション装置を30mm程度引き上げる場合には、前記部材は300mm程度引き上げなければ(巻き取らなければ)ならなかった。そのため、十分な制御性能が得られるようにするためには、大出力で且つ高速な巻き取り装置を備える必要があり、その結果、重量、サイズが大きくなってしまうという問題があった。
本発明は、上記従来技術の問題点を解決することを目的とするものであって、比較的小さな力で車両姿勢を制御可能なサスペンション装置を提供することを課題とする。
However, in the above prior art, the suspension is pulled up by a member whose spring constant is an order of magnitude smaller than that of the suspension spring. For example, in order to make the wheel stroke zero when turning the vehicle, the suspension device is 30 mm. In the case of raising the degree, the member had to be raised (taken up) by about 300 mm. Therefore, in order to obtain sufficient control performance, it is necessary to provide a high-power and high-speed winding device, resulting in a problem that the weight and size increase.
An object of the present invention is to provide a suspension device that can control the vehicle posture with a relatively small force.

上記課題を解決するために、本発明のサスペンションは、車両姿勢を制御するサスペンション装置であって、車両重量を支える各バネ要素のバネ効率(前記バネ要素の固有のバネ定数に対する、ホイール位置での車両上下方向の見かけのバネ定数の割合)を制御することで、車両姿勢を制御するバネ効率制御手段を備えたことを特徴とする。   In order to solve the above-described problems, the suspension of the present invention is a suspension device that controls the vehicle posture, and the spring efficiency of each spring element that supports the vehicle weight (at the wheel position with respect to the inherent spring constant of the spring element). It is characterized by comprising a spring efficiency control means for controlling the vehicle posture by controlling the apparent spring constant ratio in the vertical direction of the vehicle.

したがって、本発明のサスペンション装置によれば、任意のホイール位置での見かけのバネ定数を小さくし、自重や慣性力による沈み込み量を前記ホイール位置で増大させ、前記ホイールの方向に車両を傾かせることができ、車両姿勢を制御することができる。
また、バネ要素の軸方向と直交する方向にバネ要素の一端を移動し、バネ要素を傾けることでバネ効率を変更することにより、例えば、バネ要素を圧縮する圧縮力を発生して車両姿勢を変化するものに比べ、比較的小さな力で車両姿勢を制御することができる。
Therefore, according to the suspension device of the present invention, the apparent spring constant at an arbitrary wheel position is reduced, the amount of subsidence due to its own weight or inertia force is increased at the wheel position, and the vehicle is tilted in the direction of the wheel. And the vehicle attitude can be controlled.
Further, by moving one end of the spring element in a direction orthogonal to the axial direction of the spring element and changing the spring efficiency by tilting the spring element, for example, a compressive force that compresses the spring element is generated to change the vehicle posture. The vehicle posture can be controlled with a relatively small force as compared with the changing one.

以下、本発明のサスペンション装置の実施形態を図面に基づいて説明する。
<サスペンション装置の構成>
図1は、本発明のサスペンション装置の一実施形態であるダブルウィッシュボーン形式のサスペンション装置を示す概略構成図である。この図1に示すように、サスペンション装置は、車体1とホイール2との間に配され、アクスル3、ロアアーム4、アッパーアーム5、懸架バネ6及び効率可変機構7を含んで構成される(即ち、通常のサスペンション装置の構成要素群2〜6に加えて効率可変機構7を含んで構成される。)。
Embodiments of the suspension device of the present invention will be described below with reference to the drawings.
<Configuration of suspension device>
FIG. 1 is a schematic configuration diagram showing a double wishbone type suspension apparatus according to an embodiment of the suspension apparatus of the present invention. As shown in FIG. 1, the suspension device is disposed between a vehicle body 1 and a wheel 2 and includes an axle 3, a lower arm 4, an upper arm 5, a suspension spring 6, and a variable efficiency mechanism 7 (that is, In addition to the component groups 2 to 6 of the normal suspension device, the variable efficiency mechanism 7 is included.

効率可変機構7は、車体側に設けられ、懸架バネ6の車体側端端が取り付けられる。
図2は、効率可変機構7を拡大して示す要部拡大図である。この図2に示すように、効率可変機構7は、動力源8、回転直線変換器9及び直動機構10を含んで構成される。
動力源8は、各懸架バネ6のバネ効率を制御するためのバネ効率制御コントローラ(不図示)から入力される指令に応じて回転トルクを発生するモータ8aと、モータ8aで発生された回転トルクを増幅して回転直線変換器9に伝達する減速機8bとを備える。
The variable efficiency mechanism 7 is provided on the vehicle body side, and the end of the suspension spring 6 on the vehicle body side is attached.
FIG. 2 is an enlarged view of a main part showing the variable efficiency mechanism 7 in an enlarged manner. As shown in FIG. 2, the variable efficiency mechanism 7 includes a power source 8, a rotary linear converter 9, and a linear motion mechanism 10.
The power source 8 includes a motor 8a that generates a rotational torque in response to a command input from a spring efficiency control controller (not shown) for controlling the spring efficiency of each suspension spring 6, and a rotational torque generated by the motor 8a. And a speed reducer 8b that transmits the signal to the rotating linear converter 9.

回転直線変換器9は、減速機8bで増幅された回転トルクを直動機構10のスライダ10a(後述)を直線移動させる直線的な推進力に変換し、スライダ10aに付加する。
直動機構10は、一端に懸架バネ6の車体側端が取り付けられ且つ他端に回転直線変換器9の推進力が付加されるスライダ10aと、スライダ10aの移動方向を懸架バネ6の軸方向と直交する方向(背面視で車両幅方向)に規制するガイド10bとを備える。
The rotational linear converter 9 converts the rotational torque amplified by the speed reducer 8b into a linear propulsive force that linearly moves a slider 10a (described later) of the linear motion mechanism 10, and adds the linear torque to the slider 10a.
The linear motion mechanism 10 includes a slider 10a to which one end of the vehicle body side of the suspension spring 6 is attached at one end and the driving force of the rotary linear converter 9 is added to the other end. And a guide 10b that regulates in a direction perpendicular to the vehicle (vehicle width direction in rear view).

そして、効率可変機構7は、バネ効率制御コントローラから回転トルクの発生指令が出力されると、その指令に応じてモータ8aで回転トルクを発生し、その回転トルクを減速機8bで増幅し、その増幅された回転トルクを回転直線変換器9でスライダ10aの推進力に変換してスライダ10aに付加し、その推進力でスライダ10aを懸架バネ6の軸方向と直交する方向に移動して、懸架バネ6の車体側端を移動する。すると、懸架バネ6の車両上下方向に対する傾き度合いが変化し、ホイール位置での車両上下方向の見かけのバネ定数(バネ効率)が変化する。即ち、懸架バネ6の傾き度合いが大きくなるとバネ効率が小さくなり、懸架バネ6の傾き度合いが小さくなるとバネ効率が大きくなる。   And if the generation | occurrence | production command of rotational torque is output from the spring efficiency control controller, the efficiency variable mechanism 7 will generate rotational torque with the motor 8a according to the instruction | command, Amplify the rotational torque with the reduction gear 8b, The amplified rotational torque is converted into the propulsive force of the slider 10a by the rotary linear converter 9 and applied to the slider 10a, and the slider 10a is moved in the direction perpendicular to the axial direction of the suspension spring 6 by the propulsive force. The vehicle body side end of the spring 6 is moved. Then, the inclination degree of the suspension spring 6 with respect to the vehicle vertical direction changes, and the apparent spring constant (spring efficiency) in the vehicle vertical direction at the wheel position changes. That is, when the inclination degree of the suspension spring 6 increases, the spring efficiency decreases, and when the inclination degree of the suspension spring 6 decreases, the spring efficiency increases.

このように、本実施形態のサスペンション装置にあっては、懸架バネ6のバネ効率を変更可能とした。そのため、任意のホイール位置でのバネ効率(前記ホイール位置での車両上下方向のバネ定数)を小さくし、自重や慣性力による沈み込み量(たわみ量)を増大させ、前記ホイールの方向に車両を傾かせることで、車両姿勢を制御することができる。
また、車両のバネ上重量を支持する懸架バネ6の軸方向と直交する方向に懸架バネ6の車体側端を移動することでバネ効率の変更を行うようにした。そのため、例えば、懸架バネ6を軸方向に圧縮する圧縮力を発生することで車両姿勢を変化するものに比べ、任意のホイール位置の車高を容易に制御でき、小さな力で車両姿勢を制御することができる。
Thus, in the suspension device of the present embodiment, the spring efficiency of the suspension spring 6 can be changed. Therefore, the spring efficiency at any wheel position (spring constant in the vehicle vertical direction at the wheel position) is reduced, the amount of subsidence (deflection amount) due to its own weight or inertial force is increased, and the vehicle is moved in the direction of the wheel. By tilting, the vehicle attitude can be controlled.
Further, the spring efficiency is changed by moving the vehicle body side end of the suspension spring 6 in a direction orthogonal to the axial direction of the suspension spring 6 that supports the sprung weight of the vehicle. Therefore, for example, the vehicle height at an arbitrary wheel position can be easily controlled and the vehicle posture can be controlled with a small force, compared to a vehicle posture changing by generating a compressive force that compresses the suspension spring 6 in the axial direction. be able to.

<サスペンション装置の動作検証の結果>
次に、本実施形態のサスペンション装置の動作検証の結果を図面に基づいて説明する。
この動作検証では、バネ効率の制御を行う懸架バネ6及び当該懸架バネ5のバネ効率の制御方法をサスペンション毎に変えて、各サスペンション装置(比較例、実施例1、2)について0〜1Gの旋回中(0.025G刻みの各旋回中)に、旋回内輪側のホイールストローク量sti、旋回外輪側のホイールストローク量sto、重心高の変動量ΔH、旋回内輪側のレバー比γi、旋回外輪側のレバー比γo、ロール角rollangleを測定した。
<Results of suspension device operation verification>
Next, the results of the operation verification of the suspension device of the present embodiment will be described with reference to the drawings.
In this operation verification, the suspension spring 6 for controlling the spring efficiency and the method for controlling the spring efficiency of the suspension spring 5 are changed for each suspension, and each suspension device (comparative example, Examples 1 and 2) is set to 0 to 1G. While turning (in each turn in increments of 0.025G), the wheel stroke amount sti on the turning inner wheel side, the wheel stroke amount sto on the turning outer wheel side, the fluctuation amount ΔH of the center of gravity height, the lever ratio γi on the turning inner wheel side, the turning outer wheel side The lever ratio γo and the roll angle rollangle were measured.

なお、この動作検証では、レバー比を変更することでバネ効率を変更する装置を用いた。また、比較例として、いずれの懸架バネ6もバネ効率を変更しないサスペンション装置を用いた。また、実施例1として、旋回内輪側の懸架バネ6のバネ効率のみ変更するサスペンション装置を用いた。さらに、実施例2として、旋回内輪側の懸架バネ6のバネ効率及び旋回外輪側の懸架バネ6のバネ効率を変更するサスペンション装置を用いた。   In this operation verification, a device that changes the spring efficiency by changing the lever ratio was used. In addition, as a comparative example, a suspension device that does not change the spring efficiency of any suspension spring 6 was used. Further, as Example 1, a suspension device that changes only the spring efficiency of the suspension spring 6 on the turning inner ring side was used. Furthermore, as Example 2, a suspension device that changes the spring efficiency of the suspension spring 6 on the turning inner ring side and the spring efficiency of the suspension spring 6 on the turning outer ring side was used.

また、図3に示すように、バネ上重量Wを800kgfとし、トレッドTrを1.5mとし、重心高Hを0.5mとし、懸架バネ6の固有のバネ定数kを2kgf/mmとし、懸架バネ5のプロロード(β×(W/2))算出に用いる変数βを0.5[-]とした。
図4は、比較例の測定結果を示すグラフである。この図4に示すように、比較例では、旋回Gが大きくなるほど、旋回内輪側のホイールストローク量stiが正方向(ストロークが伸びる方向)に増大し、旋回外輪側のホイールストローク量stoが負方向(ストロークが縮む方向)に増大することで、車体1のロール角rollangleが増大している。
As shown in FIG. 3, the sprung weight W is 800 kgf, the tread Tr is 1.5 m, the center of gravity height H is 0.5 m, the inherent spring constant k of the suspension spring 6 is 2 kgf / mm, The variable β used for calculating the proload (β × (W / 2)) of the spring 5 was set to 0.5 [−].
FIG. 4 is a graph showing the measurement results of the comparative example. As shown in FIG. 4, in the comparative example, as the turning G increases, the wheel stroke amount sti on the turning inner wheel side increases in the positive direction (the direction in which the stroke extends), and the wheel stroke amount sto on the turning outer wheel side decreases in the negative direction. By increasing in the (shrinking direction), the roll angle rollangle of the vehicle body 1 is increased.

また、図5は、実施例1、つまり、旋回内輪側のたわみ量(ホイールストローク量)を変化させないための下記(1)式に従って旋回内輪側の懸架バネ6のバネ効率を変化させた場合(車両の加減速度α(旋回G)が大きくなるほど、旋回内輪側のレバー比γiが小さくなるようにした場合)の測定結果を示すグラフである。この図5に示すように、実施例1では、旋回Gが大きくなるほど、旋回外輪側のホイールストローク量stoは負方向に増大するものの、旋回内輪側のレバー比γiが小さくなり、旋回内輪側のバネ効率が小さくなり、旋回内輪側の浮き上がり(リバウンド量)を低減することができ、旋回内輪側のホイールストローク量stiは0となるので、旋回内輪側のホイールストローク量stiが正方向に増大する比較例に比べ、ロール角rollangleを半減することができる。また、比較例の場合に比べ、重心高の変化量ΔHが減少し、重心高Hが低くなっている。
γi=(―β+(β2+4(1−β)(1−(H/Tr)α))1/2)/(2(1−β))・・・(1)
FIG. 5 shows a case where the spring efficiency of the suspension spring 6 on the turning inner ring side is changed in accordance with the first embodiment, that is, the following equation (1) for not changing the deflection amount (wheel stroke amount) on the turning inner ring side ( It is a graph which shows the measurement result of the case where the lever ratio γi on the turning inner wheel side decreases as the vehicle acceleration / deceleration α (turning G) increases. As shown in FIG. 5, in Example 1, as the turning G increases, the wheel stroke amount sto on the turning outer wheel side increases in the negative direction, but the lever ratio γi on the turning inner wheel side decreases, and the turning inner wheel side increases. The spring efficiency is reduced, the lift (rebound amount) on the inner turning wheel side can be reduced, and the wheel stroke amount sti on the inner turning wheel side becomes 0, so the wheel stroke amount sti on the inner turning wheel side increases in the positive direction. Compared to the comparative example, the roll angle rollangle can be halved. Further, the amount of change ΔH in the center of gravity height is reduced and the center of gravity height H is lower than in the comparative example.
γ i = (− β + (β 2 +4 (1-β) (1- (H / Tr) α)) 1/2 ) / (2 (1-β)) (1)

さらに、図6は、実施例2、つまり、旋回内輪側のたわみ量及び旋回外輪側のたわみ量を変化させないための前記(1)式及び下記(2)式に従って旋回内輪側及び旋回外輪側の懸架バネ6のバネ効率を変化させた場合(車両の加減速度α(旋回G)が大きくなるほど、旋回内輪側のレバー比γiが小さくなり、旋回外輪のレバー比γoが大きくなるようにした場合)の測定結果を示すグラフである。この図6に示すように、実施例2では、旋回Gが大きくなるほど、旋回外輪側のレバー比γoが大きくなり、旋回外輪側のバネ効率が大きくなり、旋回外輪側の沈み込み(バウンド量)を低減することができ、旋回外輪側のホイールストローク量stoは0となるので、旋回外輪側のホイールストローク量がstoが負方向に増大する比較例に比べ、ロール角rollangleを低減することができる。   Furthermore, FIG. 6 shows the second embodiment, that is, the turning inner ring side and the turning outer ring side according to the above formula (1) and the following formula (2) for preventing the deflection amount on the turning inner ring side and the deflection amount on the turning outer ring side. When the spring efficiency of the suspension spring 6 is changed (when the vehicle acceleration / deceleration α (turning G) increases, the lever ratio γi on the turning inner wheel side decreases and the lever ratio γo on the turning outer wheel increases) It is a graph which shows the measurement result. As shown in FIG. 6, in Example 2, as the turning G increases, the lever ratio γo on the turning outer wheel side increases, the spring efficiency on the turning outer wheel side increases, and the sinking (bound amount) on the turning outer wheel side increases. Since the wheel stroke amount sto on the turning outer wheel side becomes 0, the roll stroke rollangle can be reduced compared with the comparative example in which the wheel stroke amount on the turning outer wheel side increases in the negative direction. .

また、旋回Gが大きくなっても、旋回内輪側及び旋回外輪側のホイールストローク量sti、stoがともに0となるので、ロール角rollangleも0となる。また、例えば、0.5G旋回の場合には、内輪側のレバー比γiが0.88となり、外輪側のレバー比γoが1.11となり、バネ効率の10%程度の効率変換で実現できることがわかる。
γo=(―β+(β2+4(1−β)(1+(H/Tr)α))1/2)/(2(1−β))・・・(2)
Even when the turn G is increased, the wheel stroke amounts sti and sto on the turning inner wheel side and the turning outer wheel side are both 0, so the roll angle rollangle is also 0. Further, for example, in the case of 0.5G turning, the inner wheel side lever ratio γi is 0.88 and the outer wheel side lever ratio γo is 1.11, which can be realized by an efficiency conversion of about 10% of the spring efficiency. Recognize.
γ o = (− β + (β 2 +4 (1-β) (1+ (H / Tr) α)) 1/2 ) / (2 (1-β)) (2)

<前記(1)(2)式の算出方法>
次に、旋回内輪側のたわみ量及び旋回外輪側のたわみ量を変化させないための前記(1)(2)式の算出方法を説明する。
まず、図3に示すように、旋回内輪側のたわみ量Δzi、旋回外輪側のたわみ量をΔzoは下記(3)式のように表される。
Δzi=W/(2γi 2k)×(1−αH/Tr−γiβ)
Δzo=W/(2γo 2k)×(1+αH/Tr−γoβ) ・・・(3)
但し、αWは旋回による慣性力である。この(3)式より、レバー比γi、γoが小さくなるほど、たわみ量Δzi、Δzoが大きくなり、車高Hが低くなることがわかる。
<Calculation method of the formulas (1) and (2)>
Next, a description will be given of a calculation method of the above formulas (1) and (2) in order not to change the deflection amount on the turning inner wheel side and the deflection amount on the turning outer wheel side.
First, as shown in FIG. 3, the deflection amount Δz i on the inner turning wheel side and the deflection amount Δz o on the outer turning wheel side are expressed by the following equation (3).
Δz i = W / (2γ i 2 k) × (1−αH / Tr−γ i β)
Δz o = W / (2γ o 2 k) × (1 + αH / Tr−γ o β) (3)
Where αW is the inertial force due to turning. From this equation (3), as the lever ratio .gamma.i, is γo decreases, the amount of deflection Delta] z i, Delta] z o is increased, it can be seen that the vehicle height H is reduced.

また、旋回時に、旋回内輪側及び旋回外輪側のたわみ量Δzi、Δzoを変化させない場合には、たわみ量Δzi、Δzoは、α=0、γi、γo=1の場合のたわみ量と等しくなるため、前記(3)式より、下記(4)式(前記(1)、(2)式)が導出される。
γi=(―β+(β2+4(1−β)(1−(H/Tr)α))1/2)/(2(1−β))
γo=(―β+(β2+4(1−β)(1+(H/Tr)α))1/2)/(2(1−β))・・・(4)
なお、本発明のサスペンション装置は、上記実施の形態の内容に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
Further, when the deflection amounts Δz i and Δz o on the turning inner wheel side and the turning outer wheel side are not changed during turning, the deflection amounts Δz i and Δz o are the same as when α = 0, γ i , and γ o = 1. Since it becomes equal to the amount of deflection, the following equation (4) (the above equations (1) and (2)) is derived from the above equation (3).
γ i = (− β + (β 2 +4 (1-β) (1- (H / Tr) α)) 1/2 ) / (2 (1-β))
γ o = (− β + (β 2 +4 (1-β) (1+ (H / Tr) α)) 1/2 ) / (2 (1-β)) (4)
The suspension device of the present invention is not limited to the contents of the above embodiment, and can be appropriately changed without departing from the gist of the present invention.

例えば、ダブルウィッシュボーン形式のサスペンションに適用する例を示したが、これに限られるものではない。例えば、図7に示すように、プッシュロッド形式のサスペンション装置に適用してもよい。具体的には、プッシュロッド11の一端をロアアーム4に取り付けると共に他端をロッカー12を介して懸架バネ6に取り付け、懸架バネ6の車体側端部を、車体側に設けられた効率可変機構7に取り付けるようにしてもよい。
また、効率可変機構7をホイール2の上下動とともに運動する部分を避けて車体側に取り付ける例を示したが、これに限られるものではない。例えば、ホイール2の上下動による機構の耐久性やレイアウトを確保することができれば車体側以外に設けてもよい。
For example, an example of application to a double wishbone type suspension has been shown, but the present invention is not limited to this. For example, as shown in FIG. 7, the present invention may be applied to a push rod type suspension device. Specifically, one end of the push rod 11 is attached to the lower arm 4 and the other end is attached to the suspension spring 6 via the rocker 12, and the vehicle body side end of the suspension spring 6 is provided on the vehicle body side. You may make it attach to.
Moreover, although the example which attaches the variable efficiency mechanism 7 to a vehicle body side avoiding the part which moves with the vertical motion of the wheel 2 was shown, it is not restricted to this. For example, as long as the durability and layout of the mechanism due to the vertical movement of the wheel 2 can be ensured, it may be provided other than on the vehicle body side.

さらに、バネ効率を変更するための動力源としてモータ8aを用いる例を示したが、これに限られるものではない。例えば、図8に示すように、油圧パワーステアリング13の油圧を用いるようにしてもよい。具体的には、スライダ10aとして、一端に懸架バネ6の車体側端が取り付けられ且つ他端にピストン14が設けられ、前記一端側には前記他端側に向かうプリロードを与えるバネ15が配されている。また、ガイド10bとして、スライダ10aの移動方向が懸架バネ5の軸方向と直交する方向に伸びており且つピストン14で内部が区切られたシリンダ16で形成され、前記ピストン14で区切られたシリンダ16の空間のうちバネ15がプリロードを与えている方向の空間17が油圧パワーステアリング13の油圧室13L、13Rと連通される(油圧パワーステアリング13の車幅方向左側の油圧室13Lが車幅方向左側の効率可変機構7の空間17と連通され、車幅方向右側の油圧室13Rが車幅方向右側の効率可変機構7の空間17と連通される。)。   Furthermore, although the example which uses the motor 8a as a power source for changing spring efficiency was shown, it is not restricted to this. For example, as shown in FIG. 8, the hydraulic pressure of the hydraulic power steering 13 may be used. Specifically, as the slider 10a, a vehicle body side end of the suspension spring 6 is attached to one end and a piston 14 is provided to the other end, and a spring 15 for applying a preload toward the other end is disposed on the one end side. ing. Further, the guide 10b is formed of a cylinder 16 in which the moving direction of the slider 10a extends in a direction perpendicular to the axial direction of the suspension spring 5 and the inside is partitioned by the piston 14, and the cylinder 16 partitioned by the piston 14 is formed. Of these spaces, the space 17 in the direction in which the spring 15 applies preload is communicated with the hydraulic chambers 13L and 13R of the hydraulic power steering 13 (the hydraulic chamber 13L on the left side in the vehicle width direction of the hydraulic power steering 13 is on the left side in the vehicle width direction). The hydraulic chamber 13R on the right side in the vehicle width direction communicates with the space 17 of the efficiency variable mechanism 7 on the right side in the vehicle width direction.

そして、ステアリングハンドル(不図示)が操舵され、操舵方向側の油圧室の油圧が上昇し、反対側の油圧室の油圧が減少すると、操舵方向側の効率可変機構7の空間17の油圧が上昇し、反対側の効率可変機構7の空間17の油圧が減少する。すると、操舵方向側の効率可変機構7のピストン14にはスライダ10aの前記一端側に向かう推進力が付加され、反対側の効率可変機構7のピストン14には前記他端側に向かう推進力が付加される。そのため、前記一端側に向かう推進力でスライダ10aが移動した場合にバネ効率が小さくなり、前記他端側に向かう推進力でスライダ10aが移動した場合にバネ効率が大きくなるようにすることで、車両姿勢制御のためだけの特別な動力源を追加せずに、車両の旋回状態に応じた車両姿勢制御を実現することができる。   When the steering handle (not shown) is steered, the hydraulic pressure in the hydraulic chamber on the steering direction side increases, and the hydraulic pressure in the opposite hydraulic chamber decreases, the hydraulic pressure in the space 17 of the efficiency variable mechanism 7 on the steering direction side increases. Then, the hydraulic pressure in the space 17 of the opposite efficiency variable mechanism 7 decreases. Then, a propulsive force toward the one end side of the slider 10a is applied to the piston 14 of the efficiency variable mechanism 7 on the steering direction side, and a propulsive force toward the other end side is applied to the piston 14 of the opposite efficiency variable mechanism 7. Added. Therefore, the spring efficiency is reduced when the slider 10a is moved by the driving force toward the one end side, and the spring efficiency is increased when the slider 10a is moved by the driving force toward the other end side. Vehicle posture control according to the turning state of the vehicle can be realized without adding a special power source only for vehicle posture control.

本発明のサスペンション装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the suspension apparatus of this invention. 図1の効率可変機構を拡大して示す要部拡大図である。It is a principal part enlarged view which expands and shows the efficiency variable mechanism of FIG. 動作検証に用いた諸元を説明するための説明図である。It is explanatory drawing for demonstrating the specification used for operation | movement verification. 比較例の動作を説明するためのグラフである。It is a graph for demonstrating operation | movement of a comparative example. 実施例1の動作を説明するためのグラフである。6 is a graph for explaining the operation of the first embodiment. 実施例2の動作を説明するためのグラフである。6 is a graph for explaining the operation of the second embodiment. 本発明の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of this invention. 本発明の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of this invention.

符号の説明Explanation of symbols

1はサスペンション装置、2はホイール、3はアクスル、4はロアアーム、4はアッパーアーム、6は懸架バネ、7は効率可変機構、8は動力源、8aはモータ、8bは9は回転直線変換器、10は直動機構、10aはスライダ、10bはガイド、11はプッシュロッド、1はロッカー、13は油圧パワーステアリング、14はピストン、15はバネ、16はシリンダ、17は空間 1 is a suspension device, 2 is a wheel, 3 is an axle, 4 is a lower arm, 4 is an upper arm, 6 is a suspension spring, 7 is a variable efficiency mechanism, 8 is a power source, 8a is a motor, 8b is a rotating linear converter 9 10 is a linear motion mechanism, 10a is a slider, 10b is a guide, 11 is a push rod, 1 is a rocker, 13 is hydraulic power steering, 14 is a piston, 15 is a spring, 16 is a cylinder, and 17 is a space.

Claims (6)

車両姿勢を制御するサスペンション装置であって、
車両重量を支える各バネ要素のバネ効率を制御することで、車両姿勢を制御するバネ効率制御手段を備えたことを特徴とするサスペンション装置。
A suspension device for controlling a vehicle attitude,
A suspension apparatus comprising spring efficiency control means for controlling a vehicle posture by controlling spring efficiency of each spring element supporting a vehicle weight.
前記バネ効率制御手段は、車両旋回時に、旋回内輪側のバネ要素のバネ効率を小さくすることを特徴とする請求項1に記載のサスペンション装置。   The suspension device according to claim 1, wherein the spring efficiency control means reduces the spring efficiency of the spring element on the turning inner ring side when the vehicle is turning. 前記バネ効率制御手段は、車両旋回時に、旋回外輪側のバネ要素のバネ効率を大きくすることを特徴とする請求項1又は2に記載のサスペンション装置。   The suspension device according to claim 1 or 2, wherein the spring efficiency control means increases the spring efficiency of the spring element on the side of the turning outer wheel when the vehicle is turning. 前記バネ効率制御手段は、前記バネ要素の軸方向と直交する方向に前記バネ要素の一端を移動することで前記バネ効率の制御を行うことを特徴とする請求項1から3のいずれか1項に記載のサスペンション装置。   4. The spring efficiency control unit controls the spring efficiency by moving one end of the spring element in a direction perpendicular to the axial direction of the spring element. 5. The suspension device described in 1. 前記バネ効率制御手段は、油圧パワーステアリングの油圧を用いて前記バネ効率の制御を行うことを特徴とする請求項1から3のいずれか1項に記載のサスペンション装置。   The suspension apparatus according to any one of claims 1 to 3, wherein the spring efficiency control means controls the spring efficiency using a hydraulic pressure of hydraulic power steering. 前記バネ効率制御手段は、各バネ要素それぞれに対応して設けられ、油圧パワーステアリングの左右の油圧室それぞれと連通する左右のシリンダを備え、
前記シリンダは、連通された油圧室の油圧が大きい場合に、対応するバネ要素のバネ効率を当該油圧を用いて小さくし、連通された油圧室の油圧が小さい場合に、対応するバネ要素のバネ効率を当該油圧を用いて大きくすることを特徴とする請求項5に記載のサスペンション装置。
The spring efficiency control means is provided corresponding to each spring element, and includes left and right cylinders communicating with the left and right hydraulic chambers of the hydraulic power steering,
The cylinder reduces the spring efficiency of the corresponding spring element using the hydraulic pressure when the hydraulic pressure of the communicated hydraulic chamber is large, and the spring of the corresponding spring element when the hydraulic pressure of the communicated hydraulic chamber is small 6. The suspension device according to claim 5, wherein the efficiency is increased by using the hydraulic pressure.
JP2005320862A 2005-11-04 2005-11-04 Suspension device Withdrawn JP2007126018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320862A JP2007126018A (en) 2005-11-04 2005-11-04 Suspension device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320862A JP2007126018A (en) 2005-11-04 2005-11-04 Suspension device

Publications (1)

Publication Number Publication Date
JP2007126018A true JP2007126018A (en) 2007-05-24

Family

ID=38149041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320862A Withdrawn JP2007126018A (en) 2005-11-04 2005-11-04 Suspension device

Country Status (1)

Country Link
JP (1) JP2007126018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540633A (en) * 2010-08-26 2013-11-07 インペリアル イノベ−ションズ リミテッド Variable geometry suspension device and vehicle equipped with the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540633A (en) * 2010-08-26 2013-11-07 インペリアル イノベ−ションズ リミテッド Variable geometry suspension device and vehicle equipped with the device

Similar Documents

Publication Publication Date Title
JP4737222B2 (en) Vehicle suspension system
US5678847A (en) Active suspension system
JP6583255B2 (en) Vehicle travel control device
JP2001180244A (en) Attitude controller for vehicle
JP2001080336A (en) Vehicle attitude control device
JP2007126018A (en) Suspension device
JP2007160944A (en) Suspension device
JP2008279794A (en) Electric power steering device
JP4142551B2 (en) Vehicle suspension system
JP4403851B2 (en) Vehicle suspension system
JP2009241726A (en) Vehicle suspension device
US20170096041A1 (en) Active Vehicle Suspension System
JP2011143770A (en) Suspension device
JP4078290B2 (en) Vehicle suspension system
JP2009029246A (en) Electric suspension device
JPH08332822A (en) Car height adjusting mechanism
JP2007030566A (en) Control device and vehicle
JP4539283B2 (en) Vehicle suspension system
JP4068547B2 (en) Vehicle suspension system
JP2000015499A (en) Slide drive method and its device
JP2000170826A (en) Device for and system of controlling vibration and also attitude
JP4329670B2 (en) Vehicle suspension system
JP2009279984A (en) Suspension system for vehicle
JP6990733B2 (en) Electric suspension device
JP2009024745A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080926

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090805