JP2007125522A - Method for coating friction member - Google Patents
Method for coating friction member Download PDFInfo
- Publication number
- JP2007125522A JP2007125522A JP2005322256A JP2005322256A JP2007125522A JP 2007125522 A JP2007125522 A JP 2007125522A JP 2005322256 A JP2005322256 A JP 2005322256A JP 2005322256 A JP2005322256 A JP 2005322256A JP 2007125522 A JP2007125522 A JP 2007125522A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- pressure plate
- friction member
- resin
- friction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Braking Arrangements (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、自動車、鉄道車両、産業機械などのブレーキ用摩擦部材に使用される摩擦部材の塗装方法に関し、特に塗装皮膜、耐食性及び耐候性に優れ、品質の安定した摩擦部材を製造することができる塗装方法に関する。 The present invention relates to a method for coating a friction member used for a friction member for brakes of automobiles, railway vehicles, industrial machines, etc., and in particular, it is possible to produce a friction member having excellent coating film, corrosion resistance and weather resistance, and having stable quality. It relates to a painting method that can be performed.
ブレーキパッドのような摩擦部材の塗装について、「特許文献1」では、プレッシャプレートに熱成形で付着した離型剤、樹脂、汚れ、搬送時にできた打痕、加熱時に劣化した化成皮膜等を除去し、プレッシャプレートと塗装皮膜との密着性を高める方法として、熱成形、加熱後に塗装すべき面(「被塗面」ともいう)にショットブラストを行うこと、あるいはショットブラスト後化成処理を行うことが記載されている。
しかしながら、上記の方法ではショットブラスト後設備的な故障等の何らかの理由で加工品の処理に停滞があった場合、ショットブラスト面の酸化劣化が著しく早いため、そのまま塗装するとプレッシャプレート塗装皮膜間の密着性が大きく低下してしまう。生産の上で塗装前での造り込みも保管中に錆が発生してしまい不可能である。また、処理に停滞なく完成品となったブレーキパッドにおいても塗装面の下地皮膜がないため、化成処理等の下地皮膜があるものと比較した場合、耐食性は劣る。
Regarding the painting of friction members such as brake pads, “Patent Document 1” removes release agent, resin, dirt, dents made during transportation, chemical conversion film deteriorated during heating, etc. attached to the pressure plate by thermoforming. However, as a method of improving the adhesion between the pressure plate and the paint film, shot blasting is performed on the surface to be coated (also referred to as “coating surface”) after thermoforming, heating, or post-blast blast chemical conversion treatment. Is described.
However, in the above method, if there is a stagnation in the processing of the processed product for some reason, such as equipment failure after shot blasting, the shot blasting surface is extremely deteriorated by oxidation. The performance is greatly reduced. In production, it is impossible to build in before painting because rust is generated during storage. In addition, the brake pad that has been finished without any stagnation in the treatment has no underlying coating on the painted surface, so that the corrosion resistance is inferior when compared with the coating with the underlying coating such as chemical conversion treatment.
ショットブラスト後化成処理を行う場合、プレッシャプレート単独ではそれらの処理を行うことは容易であるが、熱成形→加熱後で摩擦材が張り付いた状態でプレッシャプレートの塗装面だけを化成処理することは技術的に困難であり、また、化成処理を行った場合でも既に接着前処理としての表面処理工程で処理されたプレッシャプレートに対して、ショットブラスト→化成処理→水洗→乾燥といった重複した処理を行うこととなる。
本発明は、熱成形後、被塗面にショットブラストを行ない、その後の処理に停滞があっても錆が発生することがないような処理手段後に、塗装を行うことにより、塗装皮膜の密着性、耐食性に優れた摩擦部材(ブレーキパッド)を製造できる摩擦部材の塗装方法を提供することである。 The present invention performs shot blasting on the surface to be coated after thermoforming, and performs coating after treatment means that does not generate rust even if the subsequent treatment is stagnant, thereby providing adhesion of the coating film. Another object of the present invention is to provide a friction member coating method capable of producing a friction member (brake pad) having excellent corrosion resistance.
本発明は、下記の手段によって前記の課題を解決した。
(1)金属製プレッシャプレートと摩擦材とからなる摩擦部材の塗装方法において、該プレッシャプレートの接着面に該摩擦材を重ねて加熱加圧成形して一体化する工程と、該加熱加圧成形工程後に前記プレッシャプレートの被塗面を粗面化する工程と、該粗面化したプレッシャプレートを過熱蒸気により加熱して熱処理する工程と、プレッシャプレートの被塗面に塗料を塗布する工程とを含むことを特徴とする摩擦部材の塗装方法。
(2)前記プレッシャプレートの被塗面に塗料を塗布する工程は、熱硬化性樹脂を主成分とする粉体塗料を用いて静電塗布することを特徴とする前記(1)記載の摩擦部材の塗装方法。
(3)前記熱硬化性樹脂が、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、エポキシ/ポリエステル複合化樹脂のいずれかからなることを特徴とする前記(2)記載の摩擦部材の塗装方法。
The present invention has solved the above problems by the following means.
(1) In a method for coating a friction member made of a metal pressure plate and a friction material, a step of superimposing the friction material on the adhesive surface of the pressure plate and forming it by heat and pressure molding, and the heat and pressure molding A step of roughening the surface to be coated of the pressure plate after the step, a step of heat-treating the roughened pressure plate with superheated steam, and a step of applying a paint to the surface to be coated of the pressure plate A method for painting a friction member.
(2) The friction member according to (1), wherein the step of applying the paint to the coated surface of the pressure plate is electrostatically applied using a powder paint mainly composed of a thermosetting resin. Painting method.
(3) The method for coating a friction member according to (2), wherein the thermosetting resin is any one of an acrylic resin, an epoxy resin, a polyester resin, and an epoxy / polyester composite resin.
本発明により、(a)塗装皮膜の密着性、耐食性に優れた摩擦部材が得られ、(b)熱成形後、被塗面のショットブラストを行い、過熱蒸気処理後に塗装を行うことにより、塗装前での処理の停滞があった時の錆発生が起こることを防ぐことができ、下地被膜生成により摩擦材としての耐食性、密着性といった品質を維持することができる。 According to the present invention, (a) a friction member having excellent adhesion and corrosion resistance of the coating film is obtained. (B) After thermoforming, the surface to be coated is shot blasted and coated after superheated steam treatment. It is possible to prevent the occurrence of rust when there is a stagnation of the previous treatment, and it is possible to maintain quality such as corrosion resistance and adhesion as a friction material by generating a base coating.
図面を参照して発明を実施するための最良の形態を詳細に説明する。
なお、実施の形態及び実施例を説明する全図において、同一機能を有する構成要素は同一の符号を付けて説明する。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments and examples.
一般にブレーキ用摩擦材の製造は、摩擦材原料の配合、混合、常温における予備成形、熱成形、熱処理、研磨等の仕上げ加工の各工程を経て行われる。
最初に摩擦部材1(ディスクブレーキの摩擦パッド)を例示して各工程について説明する。ここで図1は、プライマー5を塗布されたプレッシャプレート2(以下「P/P」という)に接着剤3を介して摩擦材4がプレス成形により一体化された摩擦部材1の断面図である。P/Pの加工は、板金プレス、脱脂処理、プライマー処理及びP/P予熱の各工程を主工程とする。板金プレス工程では、予め選定したP/P素材をプレス加工等により、所定形状のP/Pに成形加工する。脱脂工程では、プレス加工に際してP/Pに付着した油脂等を洗浄剤を用いて除去する。
In general, production of a friction material for brake is performed through each step of finishing processing such as blending, mixing, preliminary molding at normal temperature, thermoforming, heat treatment, and polishing.
First, each process will be described by exemplifying the friction member 1 (friction pad of a disc brake). Here, FIG. 1 is a cross-sectional view of a friction member 1 in which a friction material 4 is integrated by press molding with a pressure plate 2 (hereinafter referred to as “P / P”) coated with a primer 5 via an adhesive 3. . P / P processing includes sheet metal pressing, degreasing, primer treatment, and P / P preheating as main processes. In the sheet metal pressing step, a P / P material selected in advance is formed into a P / P having a predetermined shape by pressing or the like. In the degreasing step, oils and fats adhering to the P / P during press working are removed using a cleaning agent.
プライマー処理工程では、脱脂処理したP/Pの表面全体に樹脂系プライマーをスプレー塗布し、乾燥し、180〜200℃で約1時間加熱し、プライマーを硬化させてプライマー層を形成する。前記のプライマー5には、一般的なプライマーを用いることができ、例えばビニル/フェノール系樹脂(ビニル系エラストマーとしてポリビニルアセタール、ポリビニルホルマール、ポリビニルブチラール、共重合ポリアミド)、ニトリルゴム/フェノール系樹脂、シラン系(γ−アミノプロピルトリエトキシシランなど)、ウレタン系プライマーなどが挙げられる。 In the primer treatment step, a resin-based primer is spray-coated on the entire surface of the degreased P / P, dried, heated at 180 to 200 ° C. for about 1 hour, and the primer is cured to form a primer layer. As the primer 5, a general primer can be used, for example, vinyl / phenolic resins (vinyl acetal, polyvinyl formal, polyvinyl butyral, copolymerized polyamide as vinyl elastomer), nitrile rubber / phenolic resin, silane. Examples include γ-aminopropyltriethoxysilane and urethane primers.
一方、摩擦材4の予備成形は、原材料の計量、配合、混合及び予備成形を主工程とする。これらの各工程は、従来の摩擦材の製造技術に従うことができる。例えば、耐熱性有機繊維や無機繊維、金属繊維等の補強繊維と、無機充填材、摩擦調整材、固体潤滑材及び熱硬化樹脂結合材等の粉末原料とを、所定の割合で配合し、混合により十分に均質化して出発原料を調製する。上記において、補強繊維としては、例えば芳香族ポリアミド繊維、耐炎化アクリル繊維等の有機繊維や銅繊維、スチール繊維等の金属繊維、チタン酸カリウム繊維やAl2O3−SiO系セラミック繊維等の無機繊維が挙げられる。無機充填材としては、例えば硫酸バリウムや炭酸カルシウム等の無機粒子、バーミキュライトやマイカ等の鱗片状無機物等が挙げられる。熱硬化性樹脂結合材としては、例えばフェノール樹脂(ストレートフェノール樹脂、ゴム等による各種変性フェノール樹脂を含む)、メラミン樹脂、エポキシ樹脂、ポリイミド樹脂等を挙げることができる。また、摩擦調整材としては、例えばアルミナやシリカ、マグネシア、ジルコニア、酸化クロム等の無機摩擦調整材、合成ゴムやカシュー樹脂等の有機摩擦調整材を、固体潤滑材としては、例えば黒鉛や二硫化モリブデン等を挙げることができる。摩擦材の組成としては、種々の組成割合を採ることができる。すなわち、これらは、製品に要求される摩擦特性、例えば、摩擦係数、耐摩耗性、振動特性、鳴き特性等に応じて、単独でまたは2種以上を組み合わせて配合すればよい。 On the other hand, the preforming of the friction material 4 is mainly performed by measuring, blending, mixing, and preforming raw materials. Each of these steps can follow conventional friction material manufacturing techniques. For example, reinforcing fibers such as heat-resistant organic fibers, inorganic fibers, and metal fibers and powder raw materials such as inorganic fillers, friction modifiers, solid lubricants, and thermosetting resin binders are blended at a predetermined ratio and mixed. To prepare a starting material with sufficient homogenization. In the above, examples of the reinforcing fibers include organic fibers such as aromatic polyamide fibers and flame-resistant acrylic fibers, copper fibers, metal fibers such as steel fibers, inorganic materials such as potassium titanate fibers and Al 2 O 3 —SiO-based ceramic fibers. Fiber. Examples of the inorganic filler include inorganic particles such as barium sulfate and calcium carbonate, and scale-like inorganic substances such as vermiculite and mica. Examples of the thermosetting resin binder include a phenol resin (including various modified phenol resins such as a straight phenol resin and rubber), a melamine resin, an epoxy resin, and a polyimide resin. Examples of the friction modifier include inorganic friction modifiers such as alumina, silica, magnesia, zirconia, and chromium oxide; organic friction modifiers such as synthetic rubber and cashew resin; and solid lubricants such as graphite and disulfide. Molybdenum etc. can be mentioned. As the composition of the friction material, various composition ratios can be adopted. That is, these may be blended singly or in combination of two or more according to the friction characteristics required for the product, for example, friction coefficient, wear resistance, vibration characteristics, squeal characteristics, and the like.
次いで、この出発原料を、成形金型に投入し、常温で、面圧10〜100MPa程度の圧力にて成形して、例えば図1に示すような摩擦部材1の予備成形体4aを作製する。上記の如く処理されたP/P及び摩擦材の予備成形体4aは熱成形工程に移される。熱成形工程では、先ず、プレス機内に予備加熱されたP/Pを高温を維持した状態でセットし、その上に予備成形体4aを載せ、熟成形する。 Next, this starting material is put into a molding die and molded at room temperature and with a surface pressure of about 10 to 100 MPa to produce a preform 4a of the friction member 1 as shown in FIG. 1, for example. The P / P and friction material preform 4a processed as described above is transferred to a thermoforming process. In the thermoforming process, first, preheated P / P is set in a press machine while maintaining a high temperature, and the preformed body 4a is placed thereon and matured.
本発明では、熱成形後、ショットブラスト、過熱蒸気処理を行うことを特徴としている。
ショットブラストは表面の面粗度がRz=6〜35μmレベルになるように行うのが好ましい。熱成形後ショットブラストを行うことにより、離型剤、樹脂、酸化劣化皮膜、不純物を除去し、清浄な面とした後、過熱蒸気雰囲気での熱処理にて不動態化された緻密な酸化被膜を生成させることができる。この被膜は化成処理(リン酸鉄被膜)と同等以上の耐食性を持ち、塗料との親和性にも優れているため、塗装前の好適な下地処理とすることができる。
The present invention is characterized by performing shot blasting and superheated steam treatment after thermoforming.
Shot blasting is preferably performed so that the surface roughness of the surface is Rz = 6 to 35 μm. By performing shot blasting after thermoforming, the release agent, resin, oxidatively deteriorated film and impurities are removed to form a clean surface, and then a dense oxide film passivated by heat treatment in a superheated steam atmosphere is formed. Can be generated. Since this film has a corrosion resistance equal to or higher than that of the chemical conversion treatment (iron phosphate coating) and is excellent in affinity with the paint, it can be a suitable ground treatment before coating.
この過熱蒸気雰囲気での熱処理は塗装前の下地処理として有効であるが、摩擦材に対しても耐フェード性を向上させることができる。
過熱蒸気雰囲気での熱処理条件は摩擦材の効果も含め、225〜800℃、15〜60分で可能であるが、好ましくは300〜400℃、15〜60分である。また、過熱蒸気は脱脂能力もあるため、ショットブラスト後付着してしまった鉱物系油脂、動植物系油脂を除去することもできる。
The heat treatment in the superheated steam atmosphere is effective as a base treatment before coating, but can also improve the fade resistance against the friction material.
The heat treatment conditions in the superheated steam atmosphere, including the effect of the friction material, are possible at 225 to 800 ° C. and 15 to 60 minutes, but preferably 300 to 400 ° C. and 15 to 60 minutes. In addition, since the superheated steam has a degreasing ability, it is possible to remove mineral oils and animal and vegetable oils that have adhered after shot blasting.
本発明の塗装は粉体塗装が用いられる。粉体塗装は静電塗装法と流動浸漬法があり、静電塗装法は粉体塗料による静電塗装法の原理は高圧静電発生機で得られる直流高電圧により粉体粒子を帯電させ、静電引力によりアースされた被塗物に付着させる。被塗物に塗着した塗料は焼付炉で加熟され溶融、硬化して連続被膜が形成される。オーバースプレーされた粉体塗料は回収し、再利用する。粉体塗料による静電塗装法は大別して2種類がある。 Powder coating is used for the coating of the present invention. There are electrostatic coating method and fluidized immersion method for powder coating. The electrostatic coating method is based on the principle of electrostatic coating method using powder coating. It adheres to the object grounded by electrostatic attraction. The coating material applied to the object to be coated is ripened in a baking oven, melted and cured to form a continuous film. The oversprayed powder paint is collected and reused. There are roughly two types of electrostatic coating methods using powder coatings.
a.静電吹付法
粉体塗料は塗料供給槽より空気によってスプレーガンに送られる。また高圧静電発生機により得られた高電圧(通常−40KV〜−90KV)により、粉体塗料は負の荷電を帯びる。一方被塗物はアースされており、ガン先端より吐出された粉体塗料は静電引力によって被塗物表面に付着する。この際、負に帯電した粉体粒子は電位の高い部分に強く働いて被塗物上に付着し粉体粒子が厚く付着するにつれて塗膜に負の電荷が堆積し、一定以上の厚さになると静電反発を生じて付着しづらくなる。被塗物に直進しない粉体塗料は一部が裏側に廻り込んで付着する。これらの現象によりある程度の厚さで均一な塗膜が得られると共に膜厚の限界も生ずる。また、摩擦帯電の原理を応用した摩擦帯電方式スプレー塗装は、高圧発生機が不要なことや付き廻り性や入り込み性が良く、静電反発が発生し難いことなどに利点のある塗装方法である。
a. Electrostatic spraying method Powder paint is sent to the spray gun by air from the paint supply tank. The powder coating is negatively charged by the high voltage (usually −40 KV to −90 KV) obtained by the high-voltage electrostatic generator. On the other hand, the object to be coated is grounded, and the powder paint discharged from the tip of the gun adheres to the surface of the object to be coated by electrostatic attraction. At this time, the negatively charged powder particles strongly act on the portion having a high potential and adhere to the object to be coated. As the powder particles adhere thickly, negative charges accumulate on the coating film, and the thickness exceeds a certain level. Then, electrostatic repulsion occurs and it becomes difficult to adhere. Part of the powder coating that does not go straight to the object is attached to the back side. By these phenomena, a uniform coating film can be obtained with a certain thickness, and the film thickness is limited. In addition, the tribocharging spray coating, which applies the principle of triboelectric charging, is a coating method that is advantageous in that it does not require a high-pressure generator, has good throwing power and penetration, and does not easily generate electrostatic repulsion. .
b.静電浸漬法
粉体塗料を充填する浸漬槽の底板は多孔板から出来ており、一定の間隔で電極が配置されている。槽内の粉体塗料は多孔質の底板より吹き上げられる空気によって流動状態となり、一方、高圧静電発生機より−40KV〜−90KVの高電圧が電極に印加され、イオン化された空気中に浮遊する粉体粒子は負に帯電して槽内を上部に舞い上り、アースされた被塗物に付着する。被塗物に付着しない粒子は重力で落下して再び帯電粒子となって上昇し被塗物へ再付着する。
b. Electrostatic dipping method The bottom plate of the dipping tank filled with the powder coating is made of a perforated plate, and electrodes are arranged at regular intervals. The powder coating in the tank becomes fluidized by the air blown up from the porous bottom plate. On the other hand, a high voltage of −40 KV to −90 KV is applied to the electrode from the high-voltage electrostatic generator and floats in the ionized air. The powder particles are negatively charged, move up in the tank, and adhere to the grounded object. Particles that do not adhere to the object to be coated fall by gravity, rise as charged particles again, and reattach to the object to be coated.
流動浸漬法は、底部に多孔質の板を置いた流動槽内で粉体をエアー流動させ、浮遊する粉体中に予熱された被塗物を浸漬し、被塗物表面に付着した粉体を熟溶融させることで連続した被膜を形成させる方法である。
特別な機器を必要としないので、設備費用が比較的安価であり、塗料損失が殆どなくまた250μm〜1000μmの高膜厚やエッジカバー性に優れた塗膜が容易に得られるが、被塗物の大きさと形状が制約され、被塗物の予熱(250〜300℃)が必須条件となる。
In the fluid immersion method, powder is air-flowed in a fluid tank with a porous plate at the bottom, and the preheated coating is immersed in the floating powder, and the powder adheres to the surface of the coating. Is a method of forming a continuous film by melting and melting.
Since no special equipment is required, the equipment cost is relatively low, there is almost no paint loss, and a film with a high film thickness of 250 μm to 1000 μm and excellent edge cover properties can be easily obtained. The size and shape of the material are restricted, and preheating (250 to 300 ° C.) of the object is an essential condition.
本発明で使用される粉体塗料組成物は、粒子の平均粒径が15〜35μmであり、かつ50μm以上の粒径の粒子が30質量%以下である。さらに好ましくは、100μm以上の粒径の粒子が5質量%以下であり、一方、5μm以下の粒径の粒子が15質量%以下である。このように、平均粒径が小さくかつ粒径を均一にすることにより、塗膜厚さが薄く、スコーチ処理性が優れたものになる。 The powder coating composition used in the present invention has an average particle size of 15 to 35 μm, and particles having a particle size of 50 μm or more are 30% by mass or less. More preferably, particles having a particle size of 100 μm or more are 5% by mass or less, while particles having a particle size of 5 μm or less are 15% by mass or less. Thus, by making the average particle size small and making the particle size uniform, the coating film thickness is thin and the scorch processability is excellent.
粉体塗料に用いられる粉体塗料用樹脂としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、エポキシ/ポリエステル複合化樹脂等の熱硬化性樹脂が用いられるが、本発明ではエポキシ樹脂を主成分とする粉体塗料が好ましく用いられる。
エポキシ樹脂の具体例としては、グリシジルエステル樹脂;ビスフェノールAとエピクロロヒドリンとの縮合反応物や、ビスフェノールFとエピクロロヒドリンとの縮合反応物等のグリシジルエーテル型樹脂;脂環式エポキシ樹脂;脂肪族エポキシ樹脂;含ブロムエポキシ樹脂;フェノール−ノボラック型またはクレゾール−ノボラック型のエポキシ樹脂などが挙げられ、好ましくはビスフェノールAとエピクロロヒドリンとの縮合反応物、またはビスフェノールFとエピクロロヒドリンとの縮合反応物等のグリシジルエーテル型樹脂である。
As the resin for powder coating used in the powder coating, thermosetting resins such as acrylic resin, epoxy resin, polyester resin, and epoxy / polyester composite resin are used. In the present invention, epoxy resin is the main component. A powder paint is preferably used.
Specific examples of epoxy resins include glycidyl ester resins; glycidyl ether type resins such as condensation reaction products of bisphenol A and epichlorohydrin and condensation reaction products of bisphenol F and epichlorohydrin; alicyclic epoxy resins Aliphatic epoxy resins; bromine-containing epoxy resins; phenol-novolac type or cresol-novolac type epoxy resins, etc., preferably a condensation reaction product of bisphenol A and epichlorohydrin, or bisphenol F and epichlorohydride It is a glycidyl ether type resin such as a condensation reaction product with phosphorus.
具体的には、東都化成社製の「エポトート YD903N、YD128、YD14、PN639、CN701、NT114、ST−5080、ST−5100、ST−4100D」、ダイセル化学社製の「EITPA3150」、チバ・ガイギー社製の「アルダイトCY179、PT810、PT910、GY6084」、ナガセ化成社製の「テコナールEX711」、大日本インキ社製の「エピクロン 4055RP、N680、HP4032、N−695、HP7200H」、油化シェルエポキシ社製の「エピコート1001、1002、1003、1004、1007」、ダウ・ケミカル社製の「DER662」、日本化薬社製の「EPPN201、202、EOCN1020、102S」などが挙げられる。 Specifically, “Epototo YD903N, YD128, YD14, PN639, CN701, NT114, ST-5080, ST-5100, ST-4100D” manufactured by Toto Kasei Co., Ltd., “EITPA3150” manufactured by Daicel Chemical Industries, Ciba-Geigy "Aldite CY179, PT810, PT910, GY6084" manufactured by Nagase Chemicals, "Teconal EX711" manufactured by Nagase Chemical Co., Ltd. "Epicron 4055RP, N680, HP4032, N-695, HP7200H" manufactured by Dainippon Ink, Inc. “Epicoat 1001, 1002, 1003, 1004, 1007”, “DER662” manufactured by Dow Chemical Co., “EPPN201, 202, EOCN1020, 102S” manufactured by Nippon Kayaku Co., Ltd., and the like.
エポキシ樹脂の硬化剤としては、ブロックドイソシアネート系、トリグリシジルイソシアヌレート(TGIC)系のもが挙げられる。特に好ましくは、ブロックドイソシアネート系の化合物である。 Examples of the epoxy resin curing agent include blocked isocyanate type and triglycidyl isocyanurate (TGIC) type. Particularly preferred are blocked isocyanate compounds.
本発明の塗料組成物に、適宜配合される顔料又は体質顔料として、酸化チタン、ベンガラ、酸化鉄、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン、キナクリドン系顔料、アゾ系顔料等の着色顔料や、タルク、シリカ、アルミナ、炭酸カルシウム、沈降性硫酸バリウム等の体質顔料、或いは、クロム系顔料、リン酸塩系顔料、モリブデン系顔料等の防錆顔料などが挙げられる。
また、所望により、適宜配合されるレベリング剤(表面調整剤)としては、ジメチルシリコーンやメチルシリコーンなどのシリコーン類、アクリルオリゴマー等があり、具体的には、東芝シリコーン社製の「CF−1056」、モンサント化成社製の「モダフロー」、BASF社製の「アクロナール4F」、BYKchemie社製の「BYK−360P」、楠本化成社製の「チィスパロンPL540」などが挙げられる。
As pigments or extender pigments that are appropriately blended in the coating composition of the present invention, titanium oxide, bengara, iron oxide, carbon black, phthalocyanine blue, phthalocyanine green, quinacridone pigments, azo pigments and other colored pigments, talc, Examples include extender pigments such as silica, alumina, calcium carbonate, and precipitated barium sulfate, and rust preventive pigments such as chromium pigments, phosphate pigments, and molybdenum pigments.
Moreover, as a leveling agent (surface conditioner) mix | blended suitably, there exist silicones, such as dimethyl silicone and methyl silicone, an acrylic oligomer, etc., specifically, "CF-1056" by Toshiba Silicone Co., Ltd. “Modaflow” manufactured by Monsanto Kasei Co., Ltd., “Acronal 4F” manufactured by BASF, “BYK-360P” manufactured by BYKchemie, “Chipalon PL540” manufactured by Enomoto Kasei, and the like.
本発明では、過熱蒸気処理面への塗装は液体、粉体(コロナ荷電方式、トリボ帯電方式)共、通常の条件で問題なく塗布でき、塗料とのぬれ性はショットブラストによる表面凹凸のため、平滑面で過熱蒸気処理された場合よりも更に良好なものとなる。
以上のように、要約すれば、熱成形後、粗面化し、過熱蒸気雰囲気下での熱処理後塗装することにより、密着性、耐食性の優れた塗装被膜を生成することができる。塗料は粉体塗料が好ましい。
In the present invention, the coating on the superheated steam-treated surface can be applied without any problem under normal conditions for both liquid and powder (corona charging method, tribo charging method), and the wettability with the paint is due to surface irregularities due to shot blasting, This is even better than the case of superheated steam treatment on a smooth surface.
As described above, in summary, a coating film having excellent adhesion and corrosion resistance can be produced by roughening after thermoforming and coating after heat treatment in a superheated steam atmosphere. The paint is preferably a powder paint.
以下において、実施例を挙げて本発明をさらに詳細に説明するが、本発明の範囲はこれらの実施例により限定されるものではない。
実施例1及び比較例1
図2に示す実施例1、比較例1の処理工程により摩擦部材を作成し、評価を行った。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by these examples.
Example 1 and Comparative Example 1
Friction members were prepared and evaluated by the processing steps of Example 1 and Comparative Example 1 shown in FIG.
実施例1の過熱蒸気処理は酸素濃度0.3%未満、400℃×30分で行ない、光学顕微鏡にて2〜3μmの緻密な酸化被膜が生成されていることを確認した。
比較例1は、熱成形、加熱後、被塗面をショットブラストする方法で作成した。
ショットブラストは、実施例1及び比較例1共、Rz=20〜30μm(10点平均粗さ)とした。塗装は密着性に差の出やすい粉体塗装(トリボ帯電方式)とし、エポキシ樹脂系の粉体塗料を使い、厚み=30μmにて作成した。
評価は以下の塩水噴霧試験で行ない、結果を第1表に示す。実施例1は比較例1より耐食性、密着性で優れていることが確認できた。
The superheated steam treatment of Example 1 was performed at an oxygen concentration of less than 0.3% and 400 ° C. × 30 minutes, and it was confirmed that a dense oxide film having a thickness of 2 to 3 μm was generated with an optical microscope.
Comparative Example 1 was prepared by a method of shot blasting the coated surface after thermoforming and heating.
The shot blasting was set to Rz = 20 to 30 μm (10-point average roughness) in both Example 1 and Comparative Example 1. The coating was a powder coating (tribo-charging method) with a difference in adhesion, and an epoxy resin powder coating was used and the thickness was 30 μm.
Evaluation is performed by the following salt spray test, and the results are shown in Table 1. It was confirmed that Example 1 was superior to Comparative Example 1 in corrosion resistance and adhesion.
(試験方法)
塗装面にクロスカットを入れ塩水噴霧(JIS規格)72時間後、セロハンテープをクロスカット部に密着させ、10分後セロハンテープを剥離し、下記評価基準にて評価した。
(試験結果)
クロスカット部より片側2mm以内の剥れ:○
クロスカット部より片側5mm以内の剥れ:△
クロスカット部より片側5mm以上の剥れ:×
(Test method)
A crosscut was put on the painted surface, and after 72 hours of spraying with salt water (JIS standard), the cellophane tape was brought into close contact with the crosscut portion, and after 10 minutes, the cellophane tape was peeled off and evaluated according to the following evaluation criteria.
(Test results)
Peeling within 2mm on one side from cross cut part: ○
Peeling within 5mm on one side from the cross cut part: △
Peeling of 5 mm or more on one side from the cross cut part: ×
本発明は、自動車、鉄道車両、産業機械などのブレーキ用摩擦材の製造工程において、耐食性、密着性に優れ、均一な品質の製品が得られる摩擦部材の塗装方法として実施が期待される。 INDUSTRIAL APPLICABILITY The present invention is expected to be implemented as a friction member coating method that is excellent in corrosion resistance and adhesion and that can provide a product of uniform quality in the manufacturing process of brake friction materials such as automobiles, railway vehicles, and industrial machines.
1 摩擦部材
2 プレッシャプレート
3 接着剤
4 摩擦材
4a 予備成形体
5 プライマー
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005322256A JP2007125522A (en) | 2005-11-07 | 2005-11-07 | Method for coating friction member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005322256A JP2007125522A (en) | 2005-11-07 | 2005-11-07 | Method for coating friction member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007125522A true JP2007125522A (en) | 2007-05-24 |
Family
ID=38148628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005322256A Withdrawn JP2007125522A (en) | 2005-11-07 | 2005-11-07 | Method for coating friction member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007125522A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014014766A (en) * | 2012-07-09 | 2014-01-30 | Asahi Sunac Corp | Powder coating method |
JP2017106080A (en) * | 2015-12-10 | 2017-06-15 | 曙ブレーキ工業株式会社 | Soft nitrided steel member, method for manufacturing the same, pressure plate and brake pad |
-
2005
- 2005-11-07 JP JP2005322256A patent/JP2007125522A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014014766A (en) * | 2012-07-09 | 2014-01-30 | Asahi Sunac Corp | Powder coating method |
JP2017106080A (en) * | 2015-12-10 | 2017-06-15 | 曙ブレーキ工業株式会社 | Soft nitrided steel member, method for manufacturing the same, pressure plate and brake pad |
WO2017099025A1 (en) * | 2015-12-10 | 2017-06-15 | 曙ブレーキ工業株式会社 | Soft nitrided steel member, manufacturing method therefor, pressure plate, and brake pad |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007111690A (en) | Workpiece to be coated formed with multilayer coating film and method for forming multilayer coating film to workpiece to be coated | |
CA2206481C (en) | Cathodic disbondment resistant epoxy powder coating composition and reinforcing steel bar coated therewith | |
US5281481A (en) | Powder coating of thermosetting adhesives onto metal substrates to enable a friction material to be bonded to the metal substrate | |
US20070295577A1 (en) | Friction member and method of manufacturing thereof | |
CN110394290A (en) | A kind of anti-corrosion spray technique based on tetrafluoride material | |
JP2010514599A (en) | Conductive organic coating with thin film and good moldability | |
JP2007313475A (en) | Multilayer coating film formation process and article coated with the multilayer coating film | |
WO2002087339A1 (en) | Antimicrobial powder coated metal sheet | |
US6861467B2 (en) | Powder coating composition | |
JPWO2017163877A1 (en) | High durability spring and its coating method | |
CN1935502A (en) | Work with multi layers coating films and method of forming multi layers coating films | |
JP2007125522A (en) | Method for coating friction member | |
JP2003083376A (en) | Plate spring and manufacturing method thereof | |
JP2018176053A (en) | Method for producing polyolefin resin-coated steel pipe | |
JP7035699B2 (en) | Method for manufacturing coated metal profiles, complexes and composites for injection molding adhesion | |
JP2008075681A (en) | Magnet clutch | |
JP4208050B2 (en) | Powder coating composition, method of coating anticorrosive coating, steel for automobile | |
JP2008214686A (en) | Manufacturing method of iron-based member, and iron-based member | |
JP5237080B2 (en) | Pre-coated metal sheet for electronic and electrical equipment | |
JP4336304B2 (en) | Conductive endothermic coated steel sheet and method for producing the same | |
JP6948583B2 (en) | Resin molded body | |
JP7339514B2 (en) | Composite, its manufacturing method, and painted metal plate | |
JP2008043897A (en) | Method for forming coating film on iron-based material and its coating film | |
CN1137007C (en) | Resin-coated aluminum-zinc alloy coating steel products | |
JP2021037647A (en) | Composite, method of manufacturing the same, and coated metal plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081021 |
|
A761 | Written withdrawal of application |
Effective date: 20100419 Free format text: JAPANESE INTERMEDIATE CODE: A761 |