JP2007125457A - Organic waste liquid treatment apparatus and method - Google Patents

Organic waste liquid treatment apparatus and method Download PDF

Info

Publication number
JP2007125457A
JP2007125457A JP2005318355A JP2005318355A JP2007125457A JP 2007125457 A JP2007125457 A JP 2007125457A JP 2005318355 A JP2005318355 A JP 2005318355A JP 2005318355 A JP2005318355 A JP 2005318355A JP 2007125457 A JP2007125457 A JP 2007125457A
Authority
JP
Japan
Prior art keywords
evaporator
liquid
temperature side
organic waste
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005318355A
Other languages
Japanese (ja)
Other versions
JP4349656B2 (en
Inventor
Hiroshi Ishikawa
石川  浩
Masakazu Sakano
正和 坂野
Yoshinari Niimi
能成 新美
Atsushi Idota
篤 井戸田
Kenji Kojima
健志 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2005318355A priority Critical patent/JP4349656B2/en
Publication of JP2007125457A publication Critical patent/JP2007125457A/en
Application granted granted Critical
Publication of JP4349656B2 publication Critical patent/JP4349656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic waste liquid treatment apparatus and method which enable a continuous extraction of distillate which can be discharged, from organic waste liquid etc. without using chemicals. <P>SOLUTION: The organic waste liquid treatment apparatus 1 comprises a first evaporator 18 which evaporates liquid d to be treated, and condenses and extracts purified water with a low concentration of ammonia and high-concentration ammonia water, a second evaporator 20 which evaporates a residue f having not been evaporated in the first evaporator 18, a first partial condenser 19 which condenses steam e evaporated in the first evaporator 18, in two stages, a high-temperature side condensation part and a low-temperature side condensation part, and a second partial condenser 21 which condenses steam h evaporated in the second evaporator 20, in two stages, a high-temperature side condensation part and a low temperature side condensation part. Distillate b condensed in the high-temperature side condensation part of the first partial condenser 19, and distillate c condensed in the low-temperature side condensation part of the second partial condenser 21 are returned to the first evaporator 18 as a part of the liquid d to be treated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、畜舎から排出される蓄糞尿などの有機性廃液や、その有機性廃液を嫌気発酵させてバイオガスを取り出した後のいわゆる消化液を減容化し、貯留や運搬などの取り扱いが容易な肥料を生産するものであって、連続処理が可能な有機性廃液の処理装置及び処理方法に関する。   The present invention reduces the volume of organic waste liquid such as stored manure discharged from barns and so-called digested liquid after anaerobic fermentation of the organic waste liquid to extract biogas, and facilitates handling such as storage and transportation. The present invention relates to a processing apparatus and a processing method for organic waste liquid that produce a simple fertilizer and can be continuously processed.

例えば、バイオガスプラントでは、嫌気発酵により蓄糞尿からバイオガスの採取処理が行われるが、処理後の消化液には多量の窒素分やSS分が残存しているので、この液を一般の河川や水環境へ直接放流することはできない。そのため、消化液を液体肥料として有効に利用することが望まれる。ただし、消化液はバイオガスを採取する前の状態からほとんど重量や容積の変化がないため、大量の消化液の貯留や運搬などが問題であった。例えば、牛200頭を有する畜舎では、およそ一日16トンの蓄糞尿が排出されるが、肥料として散布する時期は春と秋の年2回であるため、半年分の約3000トンの消化液を貯留しておく極めて大型のタンクが必要になる。また、液体肥料として消化液をタンクの周辺に散布できる環境が整っていればよいが、離れた土地に散布する場合には運搬の手間やコストがかかってしまう。更に、圃場が狭くて散布できないような場所では、そもそも消化液を液体肥料として利用できないため、多大な手間とコストをかけて排水処理を行うこととなる。   For example, in biogas plants, biogas is collected from stored manure by anaerobic fermentation, but a large amount of nitrogen and SS remain in the digestive juice after the treatment. It cannot be discharged directly into the water environment. Therefore, it is desired to use digestive juice effectively as liquid fertilizer. However, since the digestive juice has almost no change in weight or volume from the state before collecting biogas, storage and transportation of a large amount of digestive juice has been a problem. For example, in a barn with 200 cattle, approximately 16 tons of stored manure is discharged per day, but since it is sprayed as fertilizer twice a year in spring and autumn, approximately 3000 tons of digestive juice for half a year An extremely large tank for storing the water is required. In addition, it is sufficient if an environment in which digestive juice can be sprayed around the tank as a liquid fertilizer is required, but when spraying it on distant land, labor and cost of transportation are required. Furthermore, since the digestive juice cannot be used as a liquid fertilizer in a place where the agricultural field is small and cannot be sprayed, wastewater treatment is performed with great effort and cost.

そうした問題を解決するため、特開2003−117593号公報には有機性廃液の処理装置及び処理方法が提案されている。これは、アンモニア及び水分を含む有機性廃棄物の原液、有機性廃棄物に前処理(固形分の一部除去等)を施した液、有機性廃棄物をメタン発酵処理した後の消化脱離液、又は消化脱離液から固形分を一部除去した液などを処理するものであって、加熱濃縮して濃縮液と凝縮水とに分けることにより、廃水処理設備を必要とせず、濃縮工程で得られた凝縮水は簡便な方法で放流可能であり、濃縮液を液体肥料として有効利用する場合には利用性、輸送性を向上する処理装置及び処理方法として記載されている。 In order to solve such problems, Japanese Patent Application Laid-Open No. 2003-117593 proposes an organic waste liquid treatment apparatus and treatment method. This is a stock solution of organic waste containing ammonia and water, a solution obtained by pre-treating organic waste (partial removal of solids, etc.), and digestion and desorption after organic waste is treated with methane fermentation. Liquid, or liquid from which digestion detachment liquid has been partially removed, and is concentrated by heating and concentrating to separate into concentrated liquid and condensed water, eliminating the need for wastewater treatment equipment and concentrating steps The condensed water obtained in (1) can be discharged by a simple method, and is described as a processing apparatus and a processing method for improving the usability and transportability when the concentrated liquid is effectively used as a liquid fertilizer.

図4は、同公報に記載された有機性廃液処理装置について、その概略構成を示した図である。これには、畜糞尿等の有機性廃棄物をメタン発酵した後の消化液を処理する場合が示されている。消化液貯槽100内の消化液は、ポンプ101により第1蒸発装置110における吸収塔111に導かれるが、その間に熱交換器102,103,104で加温される。吸収塔111に噴霧された消化液は、蒸発したアンモニアがポンプ112を経由して第1蒸発装置110の熱交換器113に導入される。熱交換器113にはアンモニアを除去した消化液が循環しており、導入されたアンモニアが循環消化液と熱交換して冷却・凝縮される。   FIG. 4 is a diagram showing a schematic configuration of the organic waste liquid treatment apparatus described in the publication. This shows a case in which digestive liquid after methane fermentation of organic waste such as livestock manure is processed. The digested liquid in the digested liquid storage tank 100 is guided to the absorption tower 111 in the first evaporator 110 by the pump 101, and is heated by the heat exchangers 102, 103, and 104 during that time. In the digested liquid sprayed on the absorption tower 111, evaporated ammonia is introduced into the heat exchanger 113 of the first evaporator 110 via the pump 112. A digestion liquid from which ammonia has been removed circulates in the heat exchanger 113, and the introduced ammonia is cooled and condensed by exchanging heat with the circulation digestion liquid.

凝縮したアンモニア水は、熱交換器104で冷却され、気液分離装置105にて気体側の濃縮アンモニアと残りの液体とに分離される。分離された液体は吸収塔111に噴霧され、気体側の濃縮アンモニアは熱交換器102で冷却・凝縮されてアンモニアタンク200に貯留される。この濃縮アンモニア水は液体肥料として利用可能である。一方、アンモニアを除去した消化液は、ポンプ114により抜き出されて加熱器115で加熱され、熱交換器113でさらに加熱されて循環し、その一部が抜き出されて第2蒸発装置120に導入される。   The condensed ammonia water is cooled by the heat exchanger 104 and separated into concentrated ammonia on the gas side and the remaining liquid by the gas-liquid separator 105. The separated liquid is sprayed on the absorption tower 111, and the concentrated ammonia on the gas side is cooled and condensed by the heat exchanger 102 and stored in the ammonia tank 200. This concentrated ammonia water can be used as a liquid fertilizer. On the other hand, the digested liquid from which ammonia has been removed is extracted by the pump 114 and heated by the heater 115, further heated by the heat exchanger 113 and circulated, and a part of the digested liquid is extracted to the second evaporator 120. be introduced.

第2蒸発装置120では、アンモニアを除去した消化液がポンプ121に送り出されて加熱器122、さらに熱交換器123でも加熱されて循環している。消化液は、加熱器122や熱交換器123によって加熱濃縮され、蒸発した水分が蒸気取出し口124から取り出される。取り出された蒸気はポンプ125を経由してスクラバー等の湿式ガス洗浄装置126に導入され、ここでガス洗浄が行われる。湿式ガス洗浄装置126からの洗浄後の液は第2蒸発装置120の循環消化液に混合される。湿式ガス洗浄装置126には、薬品タンク130,140からそれぞれ水酸化ナトリウム水溶液、硝酸水溶液をガス洗浄用の薬品が供給されている。   In the second evaporator 120, the digested liquid from which ammonia has been removed is sent out to the pump 121 and heated and circulated in the heater 122 and further in the heat exchanger 123. The digested liquid is heated and concentrated by the heater 122 and the heat exchanger 123, and the evaporated water is taken out from the vapor outlet 124. The extracted steam is introduced into a wet gas cleaning device 126 such as a scrubber through a pump 125, where gas cleaning is performed. The liquid after cleaning from the wet gas cleaning device 126 is mixed with the circulating digestion liquid of the second evaporator 120. The wet gas scrubber 126 is supplied with chemicals for gas scrubbing with sodium hydroxide aqueous solution and nitric acid aqueous solution from chemical tanks 130 and 140, respectively.

湿式ガス洗浄装置126で洗浄された蒸気は、前述の熱交換器123で循環消化液と熱交換して冷却・凝縮され、凝縮水(蒸留水)として取り出される。凝縮水は凝縮水受槽127及びポンプ128を経由して熱交換器103で冷却され、凝縮水(蒸留水)貯槽300に貯留される。凝縮水はそのまま、あるいは簡単な処理を施して一般の河川などに放流できる。一方、加熱器122及び熱交換器123で加熱濃縮された消化液は、第2蒸発装置120から抜き出され、濃縮液貯槽400に貯留される。この濃縮消化液は液体肥料として利用可能であり、濃縮により利用性、輸送性が高まっている。
特開2003−117593号公報(第4−5頁、図1)
The steam cleaned by the wet gas cleaning device 126 is cooled and condensed by exchanging heat with the circulating digested liquid in the heat exchanger 123 described above, and taken out as condensed water (distilled water). The condensed water is cooled by the heat exchanger 103 via the condensed water receiving tank 127 and the pump 128 and stored in the condensed water (distilled water) storage tank 300. Condensed water can be discharged into ordinary rivers as it is or after simple treatment. On the other hand, the digested liquid heated and concentrated by the heater 122 and the heat exchanger 123 is extracted from the second evaporator 120 and stored in the concentrated liquid storage tank 400. This concentrated digestive juice can be used as a liquid fertilizer, and its utilization and transportability are enhanced by concentration.
Japanese Unexamined Patent Publication No. 2003-117593 (page 4-5, FIG. 1)

こうした従来の有機性廃液の処理装置および処理方法では、排水基準を満たした浄水を得るために、湿式ガス洗浄装置126に薬品タンク130,140から水酸化ナトリウム水溶液や酸水溶液といったガス洗浄用の薬品が使用されるため、消化液を処理するためのコストが上がってしまい、薬品供給のための手間もかかるものであった。
また、従来の有機性廃液の処理装置および処理方法では、有機性廃棄物に前処理(固形分の一部除去等)を施した液を用いる場合、例えば濃硫酸を使用することが考えられ、濃硫酸を使用すれば濃縮液が酸性になるので中和する必要がある。そのため、薬品使用の安全性やコストがかかることになり、好ましいものではない。
In such a conventional organic waste liquid processing apparatus and processing method, in order to obtain purified water that satisfies the drainage standard, chemicals for gas cleaning such as aqueous sodium hydroxide solution and aqueous acid solution are supplied from the chemical tanks 130 and 140 to the wet gas cleaning device 126. Therefore, the cost for processing the digestive juice increases, and it takes time to supply chemicals.
In addition, in the conventional organic waste liquid treatment apparatus and treatment method, when using a liquid obtained by pre-treating organic waste (partial removal of solids etc.), for example, it is considered to use concentrated sulfuric acid, If concentrated sulfuric acid is used, the concentrated solution becomes acidic and must be neutralized. Therefore, the safety and cost of using chemicals are increased, which is not preferable.

そこで、本発明は、かかる課題を解決すべく、薬品を使用することなく有機性廃液などから放流可能な蒸留液を連続式に取り出す有機性廃液の処理装置および処理方法を提供することを目的とする。   Therefore, in order to solve such problems, the present invention has an object to provide an organic waste liquid treatment apparatus and treatment method for continuously taking out a distillate that can be discharged from an organic waste liquid without using chemicals. To do.

本発明に係る有機性廃液の処理装置は、有機性廃液やその有機性廃液に対して一定処理を施した消化液などアンモニア及びアンモニウム塩及び水分を含む処理液について、蒸発させた蒸気を凝縮してアンモニア濃度の低い浄水と高濃度のアンモニア水とを分離して取り出すようにしたものであって、前記処理液を蒸発させる第1蒸発器と、前記第1蒸発器で蒸発しなかった残渣を蒸発させる第2蒸発器と、前記第1蒸発器で蒸発した蒸気を高温側凝縮部と低温側凝縮部との2段階で凝縮する第1分縮器と、前記第2蒸発器で蒸発した蒸気を高温側凝縮部と低温側凝縮部との2段階で凝縮する第2分縮器とを有し、前記第1分縮器の高温側凝縮部で凝縮した蒸留液と、前記第2分縮器の低温側凝縮部で凝縮した蒸留液とを前記処理液の一部として前記第1蒸発器へ還流させるようにしたものであることを特徴とする。   The organic waste liquid treatment apparatus according to the present invention condenses evaporated vapor for a treatment liquid containing ammonia, an ammonium salt, and moisture, such as an organic waste liquid and digestive liquid obtained by subjecting the organic waste liquid to a certain treatment. In this way, the purified water having a low ammonia concentration and the high concentration ammonia water are separated and taken out, and a first evaporator that evaporates the treatment liquid and a residue that has not evaporated in the first evaporator are removed. A second evaporator that evaporates, a first partial condenser that condenses the vapor evaporated in the first evaporator in two stages of a high-temperature side condensing unit and a low-temperature side condensing unit, and the vapor evaporated in the second evaporator A second partial condenser that condenses the high-temperature-side condenser section and the low-temperature-side condenser section in two stages, and the condensed liquid condensed in the high-temperature-side condenser section of the first partial condenser, The distilled liquid condensed in the low temperature side condensing part of the vessel is a part of the treatment liquid. Characterized in that it is obtained by so as to reflux to said first evaporator.

また、本発明に係る有機性廃液の処理装置は、前記第1蒸発器と前記第2蒸発器が、前記第1蒸発器で蒸発する処理液の蒸発量よりも前記第2蒸発器で蒸発する処理液の蒸発量が多くなるように設定されたものであることが好ましい。
また、本発明に係る有機性廃液の処理装置は、前記第1分縮器には低温側凝縮部で得られたアンモニアを蓄えるタンクが接続され、前記第2分縮器には高温側凝縮部で得られた蒸留液を浄水として蓄えるタンクが接続され、前記第2分縮器には蒸発しなかった残渣を蓄えるタンクが接続されたものであることが好ましい。
Further, in the organic waste liquid processing apparatus according to the present invention, the first evaporator and the second evaporator evaporate in the second evaporator rather than the evaporation amount of the processing liquid evaporated in the first evaporator. It is preferable that the evaporation amount of the treatment liquid is set to be large.
In the organic waste liquid treatment apparatus according to the present invention, a tank for storing ammonia obtained in the low temperature side condenser is connected to the first partial condenser, and a high temperature side condenser is connected to the second partial condenser. It is preferable that a tank for storing the distillate obtained in the above as purified water is connected, and a tank for storing a residue that has not evaporated is connected to the second partial condenser.

また、本発明に係る有機性廃液の処理装置は、前記第1蒸発器と第1分縮器及び前記第2蒸発器と第2分縮器は、それぞれが一体に構成された濃縮機であって、前記処理液が供給される蒸発缶と、その蒸発缶内部に設けられて蒸気が通る複数の伝熱管と、その蒸発缶内で発生した蒸気を伝熱管に送る蒸気管と、蒸発缶内で発生した蒸気を断熱圧縮した過熱蒸気として伝熱管に送り込む蒸気管に設けられた圧縮機とを有し、前記蒸気管を介して前記伝熱管に送られた過熱蒸気が、蒸発缶内に供給され処理液が当該伝熱管に触れて蒸発するときに潜熱を奪われて凝縮するものであって、処理液の温度が高い状態で伝熱管に触れて凝縮した蒸留液を取り出す部分を前記高温側凝縮部とし、処理液の温度が低い状態で伝熱管に触れて凝縮した蒸留液を取り出す部分を前記低温側凝縮部としたものであることが好ましい。   The organic waste liquid treatment apparatus according to the present invention is a concentrator in which each of the first evaporator and the first partial condenser and the second evaporator and the second partial condenser are integrally configured. An evaporator to which the treatment liquid is supplied, a plurality of heat transfer tubes provided inside the evaporator and through which steam passes, a steam tube for sending the steam generated in the evaporator to the heat transfer tube, and an evaporator And a compressor provided in a steam pipe that feeds into the heat transfer pipe as superheated steam adiabatically compressed, and the superheated steam sent to the heat transfer pipe through the steam pipe is supplied into the evaporator When the treatment liquid touches the heat transfer tube and evaporates, latent heat is taken away and condenses, and the portion of the treatment liquid that touches the heat transfer tube at a high temperature and takes out the condensed distilled liquid is Condensate is used as the condensing part, and the condensed liquid is obtained by touching the heat transfer tube while the temperature of the processing liquid is low. Ri is preferably a portion is obtained by said low-temperature side condenser section issuing.

また、本発明に係る有機性廃液の処理装置は、前記高温側凝縮部と前記低温側凝縮部は、複数本の前記伝熱管が上下方向に分けられたブロックによって構成され、前記高温側凝縮部が、前記圧縮機で加圧された蒸気が送り込まれる下側のブロックによって構成され、前記低温側凝縮部が、前記高温側凝縮部の二次側にあって上方から噴霧された前記処理液が先に触れる上側のブロックによって構成されたものであることが好ましい。
また、本発明に係る有機性廃液の処理装置は、前記濃縮機が、前記蒸発缶に接続された真空ポンプによって蒸発缶内部を所定圧力に減圧するようにしたものであることが好ましい。
Further, in the organic waste liquid treatment apparatus according to the present invention, the high temperature side condensing unit and the low temperature side condensing unit are configured by a block in which a plurality of the heat transfer tubes are divided in the vertical direction, and the high temperature side condensing unit However, it is constituted by a lower block into which steam pressurized by the compressor is sent, and the low temperature side condensing part is on the secondary side of the high temperature side condensing part, and the treatment liquid sprayed from above is It is preferable that the upper block is touched first.
In the organic waste liquid treatment apparatus according to the present invention, it is preferable that the concentrator depressurizes the inside of the evaporator to a predetermined pressure by a vacuum pump connected to the evaporator.

一方、本発明に係る有機性廃液の処理方法は、有機性廃液やその有機性廃液に対して一定処理を施した消化液などアンモニア及びアンモニウム塩及び水分を含む処理液について、蒸発させた蒸気を凝縮してアンモニア濃度の低い浄水と高濃度のアンモニア水とを分離させて取り出すようにしたものであって、前記処理液を蒸発させる第1蒸発工程と、前記第1蒸発工程で蒸発しなかった残渣を蒸発させる第2蒸発工程と、前記第1蒸発工程で蒸発した蒸気を高温側凝縮と低温側凝縮の2段階で凝縮する第1凝縮工程と、前記第2蒸発工程で蒸発した蒸気を高温側凝縮と低温側凝縮との2段階で凝縮する第2凝縮工程とを有し、前記第1凝縮工程によって高温側で凝縮した蒸留液と、前記第2凝縮工程によって低温側で凝縮した蒸留液とを前記処理液の一部として前記第1蒸発工程へ還流させるようにしたことを特徴とする。
また、本発明に係る有機性廃液の処理方法は、前記第1蒸発工程と前記第2蒸発工程は、前記第1蒸発工程で蒸発する処理液の蒸発量よりも前記第2蒸発工程で蒸発する処理液の蒸発量が多いことが好ましい。
On the other hand, the method for treating an organic waste liquid according to the present invention is a method for treating an organic waste liquid or a treatment liquid containing ammonia, ammonium salt and moisture, such as a digested liquid obtained by subjecting the organic waste liquid to a certain treatment. The purified water having a low ammonia concentration and the high-concentration ammonia water are condensed and extracted, and are not evaporated in the first evaporation step for evaporating the treatment liquid and the first evaporation step. A second evaporation step for evaporating the residue, a first condensation step for condensing the vapor evaporated in the first evaporation step in two stages of high temperature side condensation and low temperature side condensation, and the vapor evaporated in the second evaporation step at a high temperature. A second condensing solution that condenses in two stages, a side condensing step and a low temperature condensing step, condensing on the high temperature side by the first condensing step, and a distillate condensed on the low temperature side by the second condensing step And the above Characterized in that as part of the management solution was to be returned to the first evaporation step.
In the organic waste liquid treatment method according to the present invention, the first evaporation step and the second evaporation step evaporate in the second evaporation step rather than the evaporation amount of the treatment solution evaporated in the first evaporation step. It is preferable that the evaporation amount of the treatment liquid is large.

よって、本発明に係る有機性廃液の処理装置および処理方法では、第1蒸発器と第2蒸発器の2段階で処理液を蒸発させ、それぞれにおいて発生した蒸気を高温側と低温側とで凝縮する分縮を行い、アンモニア水や放流水として取り出した蒸留液以外のものを還流液として再び第1蒸発器へ戻すように還流させる。このことにより、薬品を使用することなく連続処理において高濃度のアンモニア水を得ることができ、供給する処理液から多くの放流水を効率良く取り出すことができる。   Therefore, in the organic waste liquid processing apparatus and processing method according to the present invention, the processing liquid is evaporated in two stages of the first evaporator and the second evaporator, and the vapor generated in each is condensed on the high temperature side and the low temperature side. In this way, the water is condensed so that a solution other than the distilled liquid taken out as ammonia water or effluent water is returned to the first evaporator as a reflux liquid. This makes it possible to obtain high-concentration ammonia water in the continuous treatment without using chemicals, and it is possible to efficiently extract a large amount of discharged water from the treatment liquid to be supplied.

また、本発明によれば、蒸発器と分縮器を一体にした濃縮機を使用し、圧縮縮機の断熱圧縮によって加圧された蒸気が伝熱管に送り込まれ、その伝熱管に噴霧された処理液が触れることにより新たな蒸気を発生させ、その一方で伝熱管内の過熱蒸気が潜熱を奪われて凝縮するので、処理液を蒸発させるために伝熱管を常に加熱する系外に設けられた加熱装置や、逆に過熱蒸気を凝縮する同じく系外の冷却装置に対する負担が軽減させることが可能になる。   Further, according to the present invention, using a concentrator integrated with an evaporator and a partial condenser, steam pressurized by adiabatic compression of the compression / condenser is fed into the heat transfer tube and sprayed onto the heat transfer tube. When the treatment liquid touches, new steam is generated, while the superheated steam in the heat transfer tube is deprived of latent heat and condenses, so it is installed outside the system that always heats the heat transfer tube to evaporate the treatment liquid. It is possible to reduce the burden on the heating device and the cooling device outside the system that condenses the superheated steam.

次に、本発明に係る有機性廃液の処理装置及び処理方法について、その一実施形態を図面を参照しながら以下に説明する。バイオガスプラントでは、前述したように畜舎から排出される蓄糞尿においてCH4 ,CO2 ,H2S ,H2 などのバイオガスを採取し、本実施形態の有機性廃液処理装置では、そのバイオガスプラントから得られる消化液を固液分離機にかけて固形分と、濾液に分離する。ここで得られる固形分は、バイオガスプラントにおいてメタン菌によって有機物が無機化されているので、そのまま発酵済み堆肥として利用することができる。そして、本実施形態では、特に固形分が除かれた消化液の濾液(以下、このようにして得られた濾液を「原液」という)について液量を減容化し、多くを一般河川へ放流できるようにしたものである。 Next, an embodiment of an organic waste liquid treatment apparatus and treatment method according to the present invention will be described below with reference to the drawings. In the biogas plant, as described above, biogas such as CH 4 , CO 2 , H 2 S, and H 2 is collected from the stored manure discharged from the barn, and the organic waste liquid treatment apparatus of this embodiment uses the biogas. The digested liquid obtained from the gas plant is applied to a solid-liquid separator and separated into a solid and a filtrate. The solid content obtained here can be used as fermented compost as it is because the organic matter is mineralized by methane bacteria in the biogas plant. In the present embodiment, the volume of the digested filtrate from which the solid content has been removed (hereinafter, the filtrate thus obtained is referred to as “stock solution”) can be reduced, and a large amount can be discharged into a general river. It is what I did.

図1は、有機性廃液処理装置の実施形態を概念的に示した図である。そこで先ず、この有機性廃液処理装置1の構造について説明する。
有機性廃液処理装置1は、バイオガスプラントから送られた消化液を一時的に蓄える消化液タンク11を有し、それには所定量の消化液を二次側に送るための定量ポンプ12が接続されている。そして、この定量ポンプ12を介して固液分離機13が接続されている。固液分離機13としては、例えばフィルタープレス、スクリュープレスまたは遠心式分離機が用いられる。
FIG. 1 is a diagram conceptually showing an embodiment of an organic waste liquid treatment apparatus. First, the structure of the organic waste liquid treatment apparatus 1 will be described.
The organic waste liquid treatment apparatus 1 has a digestive liquid tank 11 for temporarily storing digestive liquid sent from a biogas plant, to which a metering pump 12 for sending a predetermined amount of digestive liquid to the secondary side is connected. Has been. A solid-liquid separator 13 is connected via the metering pump 12. For example, a filter press, a screw press, or a centrifugal separator is used as the solid-liquid separator 13.

そして、その固液分離機13には、消化液から分離して排出された固形分を蓄えておくための堆肥タンク14が接続され、更に、消化液から固形分が除かれた原液を予熱するための加熱容器15が接続されている。固液分離機13を用いて固形分を除去した原液を送り出すのは、例えば蓄糞尿を扱うバイオガスプラントからの消化液には、藁くずなどの夾雑物が発酵されずに残っているので、それが二次側に接続されている蒸発器などにおいて悪影響を及ぼさないようにするためである。   The solid-liquid separator 13 is connected to a compost tank 14 for storing the solid content separated and discharged from the digested liquid, and further preheats the stock solution from which the solid content has been removed from the digested liquid. A heating container 15 is connected. Sending the stock solution from which the solid content has been removed using the solid-liquid separator 13 is because, for example, in the digestive liquid from the biogas plant that handles stored manure, impurities such as waste remain without being fermented. This is so as not to adversely affect the evaporator or the like connected to the secondary side.

本実施形態の有機性廃液処理装置1は、連続処理によって原液を浄水とアンモニア水に分離するようにしたものであり、加熱容器15の二次側には供給ポンプ16があって単位時間当たり一定量の原液が連続して送られるようになっている。供給ポンプ16には混合槽17が接続され、その先に第1蒸発器18が接続されている。この第1蒸発器18には、そこで蒸発した原液の蒸気が送り込まれる第1分縮器19と、第1蒸発器18で蒸発しないで残った原液が送り込まれる第2蒸発器20が接続されている。そして、その第2蒸発器20には、やはりそこで蒸発した蒸気が送り込まれる第2分縮器21と、第2蒸発器20で蒸発しないで残った原液が送り込まれるタンク23が接続されている。   The organic waste liquid treatment apparatus 1 of the present embodiment is configured to separate the stock solution into purified water and ammonia water by continuous treatment, and there is a supply pump 16 on the secondary side of the heating container 15 and constant per unit time. An amount of stock solution is sent continuously. A mixing tank 17 is connected to the supply pump 16, and a first evaporator 18 is connected to the end of the mixing tank 17. The first evaporator 18 is connected to a first partial condenser 19 to which the vapor of the raw liquid evaporated there is sent, and a second evaporator 20 to which the raw liquid remaining without being evaporated by the first evaporator 18 is sent. Yes. The second evaporator 20 is connected to a second partial condenser 21 into which the vapor evaporated there is sent, and a tank 23 into which the stock solution remaining without being evaporated in the second evaporator 20 is sent.

第1分縮器19及び第2分縮器21は、第1蒸発器18及び第2蒸発器20でそれぞれ発生した蒸気を2段階の温度で別々に凝縮、いわゆる分縮させるようにしたものである。原液内に含まれているアンモニアは水よりも沸点が低く、蒸発して気化したアンモニアが水より凝縮し難いことから、第1分縮器19及び第2分縮器21は、アンモニア濃度が低くなるように高温帯で高沸分を凝縮させる高温側凝縮部と、アンモニア濃度が高くなるように低温帯で低沸分を凝縮させる低温側凝縮部とが設けられている。   The first divider 19 and the second divider 21 condense the vapor generated in the first evaporator 18 and the second evaporator 20 separately at two stages of temperature, so-called partial condensation. is there. Since the ammonia contained in the stock solution has a lower boiling point than water and the evaporated and vaporized ammonia is less likely to condense than water, the first and second dividers 19 and 21 have a low ammonia concentration. Thus, a high temperature side condensing part that condenses the high boiling point in the high temperature zone and a low temperature side condensing part that condenses the low boiling point in the low temperature zone so as to increase the ammonia concentration are provided.

こうした蒸発器18,20や分縮器19,21には、例えば次のような構成のものが使用されている。第1蒸発器18と第2蒸発器20は、蒸発缶に伝熱管が設けられ、噴霧されて落ちてくる原液が伝熱管に触れて蒸発するようにするため、伝熱管にはボイラで発生した蒸気が送り込まれるように構成されている。そして、こうした第1蒸発器18と第2蒸発器20にそれぞれ接続された第1分縮器19と第2分縮器21は、高温側凝縮部と低温側凝縮部の冷却源にクーリングタワーが設置され、そこで生成された冷水が両者を循環するような流路が形成されている。その際、冷水の流量を調節して高温側凝縮部と低温側凝縮部とで温度差が生じるように構成されている。   For the evaporators 18 and 20 and the condensers 19 and 21, for example, the following configurations are used. The first evaporator 18 and the second evaporator 20 are provided with heat transfer tubes in the evaporator, and the heat transfer tubes are generated by a boiler so that the undiluted liquid sprayed and touches the heat transfer tubes to evaporate. It is comprised so that steam may be sent. The first and second dividers 19 and 21 connected to the first and second evaporators 18 and 20, respectively, have cooling towers installed as cooling sources for the high-temperature side condenser and the low-temperature side condenser. A flow path is formed so that the cold water generated there circulates both. In that case, it is comprised so that a temperature difference may arise between a high temperature side condensation part and a low temperature side condensation part by adjusting the flow volume of cold water.

そして、第1分縮器19では、アンモニア濃度の低い蒸留液が取り出される高温側凝縮部が混合槽17に接続され、アンモニア濃度の高い蒸留液が取り出される低温側凝縮部がタンク22に接続されている。一方、第2蒸発器20では、アンモニア濃度の低い蒸留液を取り出す高温側凝縮部がタンク24に接続され、アンモニア濃度の高い蒸留液を取り出す低温側凝縮部が混合槽17に接続されている。すなわち、本実施形態の有機性廃液処理装置1では、2組の蒸発器と分縮器とを使用して蒸発と凝縮を行って原液からアンモニア水と浄水とを連続的に取り出すようにしたものであり、その際、分縮器から取り出したアンモニア濃度の低い蒸留液を再び蒸発器に戻す還流構造となっている。   In the first divider 19, a high-temperature side condensing part from which a distillate having a low ammonia concentration is taken out is connected to the mixing tank 17, and a low-temperature side condensing part from which a distillate having a high ammonia concentration is taken out is connected to the tank 22. ing. On the other hand, in the second evaporator 20, a high temperature side condensing part for taking out a distillate having a low ammonia concentration is connected to the tank 24, and a low temperature side condensing part for taking out a distillate having a high ammonia concentration is connected to the mixing tank 17. That is, in the organic waste liquid treatment apparatus 1 of this embodiment, two sets of evaporators and partial condensers are used to perform evaporation and condensation to continuously extract ammonia water and purified water from the stock solution. In this case, the reflux structure is such that the distillate having a low ammonia concentration taken out from the partial condenser is returned to the evaporator again.

ところで、バイオガスプラントから得られた原液には水の他にリンやカリ、アンモニア態窒素などが多量に含まれているため、最終的に得られる蒸留液は放流可能な排水基準として定められている全窒素の含有量120mg/Lを超えないようにする必要がある。この点、従来の有機性廃液処理装置では薬品を使用して浄化を行っていた。本実施形態では、第1蒸発器18及び第1分縮器19と、第2蒸発器20及び第2分縮器21との2段階で原液の蒸発と凝縮を行い、更には分縮したアンモニア濃度の低い蒸留液を還流させて原液に加えて再び蒸発及び凝縮を行わせることで、効率良くアンモニアの含有量を基準値以下とした蒸留液(浄水)を取り出すようにしている。なお、混合槽17から送り出される原液と還流した蒸留液との混合液を以下では「処理液」という。   By the way, since the stock solution obtained from the biogas plant contains a large amount of phosphorus, potassium, ammonia nitrogen, etc. in addition to water, the finally obtained distillate is defined as a drainage standard that can be discharged. It is necessary not to exceed the total nitrogen content of 120 mg / L. In this regard, the conventional organic waste liquid treatment apparatus has been purified using chemicals. In this embodiment, the stock solution is evaporated and condensed in two stages, ie, the first evaporator 18 and the first partial condenser 19, the second evaporator 20 and the second partial condenser 21, and further the partial ammonia is condensed. A distillate (purified water) having an ammonia content equal to or less than a reference value is efficiently taken out by refluxing a low-concentration distillate and adding it to the stock solution to cause evaporation and condensation again. In addition, the liquid mixture of the undiluted | stock solution sent out from the mixing tank 17 and the refluxed distillate is called "processing liquid" below.

つまり、第1蒸発器18では低沸点のアンモニアが水よりも先に蒸発するため、蒸発しなかった処理液(残渣)はアンモニア濃度が低い状態で第2蒸発器20へと供給され、そこで再び蒸発し第2分縮器で分縮することにより放流可能な浄水が取り出されるようにしている。そして、第1分縮器19及び第2分縮器21で分縮されたアンモニア濃度の低い蒸留液は、排水基準を超えてしまうため放流水に含めることはできず、一方でこれを液体肥料となるアンモニア水とするならば、供給された原液から放流水として取り出す割合が低下した効率の悪いものになってしまう。そこで、本実施形態では、分縮したアンモニア濃度の低い蒸留液を還流させて再処理することで、高い割合で放流可能な浄水が取り出されるようにしている。   That is, in the first evaporator 18, ammonia having a low boiling point evaporates before water, so that the treatment liquid (residue) that has not evaporated is supplied to the second evaporator 20 in a state where the ammonia concentration is low, and again there. Purified water that can be discharged is taken out by evaporating and contracting with the second partial condenser. And the low ammonia concentration distillate fractionated by the first and second fractionators 19 and 21 exceeds the drainage standard and cannot be included in the effluent water. If it becomes the ammonia water which becomes, it will become inefficient thing with which the ratio taken out from the supplied stock solution as discharge water fell. Therefore, in the present embodiment, purified water that can be discharged at a high rate is taken out by refluxing and reprocessing the distillate having a reduced ammonia concentration and reprocessing.

こうした構成において、還流量は、第1及び第2蒸発器18,20で全体の蒸発量が少なくなるように、かつ、水とアンモニアの分離が良くなるように条件が設定されている。ここでは、第1蒸発器18で行われる第1段階の蒸発に関しては蒸発量を少なく抑え、その蒸気を凝縮させる第1分縮器19では還流させる還流量を多く取るようにしている。それに対し、第2蒸発器20で行われる第2段階の蒸発に関しては蒸発量を多くし、その蒸気を凝縮させる第2分縮器21では還流する還流量をできるだけ少なくしている。こうすることにより、原液から放流可能な浄水を多く取り出すことができ、アンモニア水を少なくすることができるからである。具体的には、一例として次のような流量比がとられている。   In such a configuration, the conditions for the reflux amount are set so that the total evaporation amount in the first and second evaporators 18 and 20 is reduced and the separation of water and ammonia is improved. Here, with respect to the first stage evaporation performed in the first evaporator 18, the evaporation amount is suppressed to be small, and the first regenerator 19 for condensing the vapor takes a large amount of reflux to be recirculated. On the other hand, with respect to the second stage evaporation performed in the second evaporator 20, the evaporation amount is increased, and the recirculation amount to be refluxed is reduced as much as possible in the second partial condenser 21 that condenses the vapor. This is because a large amount of purified water that can be discharged from the stock solution can be taken out and ammonia water can be reduced. Specifically, the following flow rate ratio is taken as an example.

図2は、有機性廃液処理装置1を構成する混合槽17以降の蒸留部を抜き出して示したブロック図であって、特に各処理工程における流量割合や流体中のアンモニア濃度を数値で示している。
先ず、有機性廃液処理装置1の運転が連続して行われている定常運転時には、供給ポンプ16によって加熱容器15から流量(100)の原料aが混合槽17に供給され、第1分縮器19からは流量(20)の蒸留液(還流液)bが、そして第2分縮器21からは流量(10)の蒸留液(還流液)cが戻され、混合槽17から合計(130)の処理液dが流れ出るように設定されている。
FIG. 2 is a block diagram showing the distillation section after the mixing tank 17 that constitutes the organic waste liquid treatment apparatus 1, and particularly shows numerical values of the flow rate ratio and the ammonia concentration in the fluid in each treatment step. .
First, during the steady operation in which the operation of the organic waste liquid treatment apparatus 1 is continuously performed, the feed pump 16 supplies the raw material a having a flow rate (100) from the heating container 15 to the mixing tank 17, and the first partial condenser. A distillate (reflux) b having a flow rate (20) is returned from 19, and a distillate (reflux) c having a flow rate (10) is returned from the second condenser 21. The processing liquid d is set to flow out.

従って、第1蒸発器18に供給された流量(130)の処理液dは、第1段階の蒸発量を少なく抑えて流量(30)とされ、第1分縮器19から還流させる還流量を多くとるため、蒸発量(30)のうち(20)が混合槽17へ送られて第1蒸発器18へと還流するようになっている。一方、第1蒸発器18で蒸発しなかった処理液(残渣)fは、流量(100)が第2蒸発器20へ供給される。第2段階の第2蒸発器20では蒸発量を(80)と多くし、そのうち第2分縮器21から第1蒸発器18へ戻る還流量が(10)となるように設定されている。   Accordingly, the flow rate (130) of the processing liquid d supplied to the first evaporator 18 is set to a flow rate (30) with a small amount of evaporation in the first stage, and the recirculation amount to be refluxed from the first divider 19 is reduced. Therefore, (20) of the evaporation amount (30) is sent to the mixing tank 17 and refluxed to the first evaporator 18. On the other hand, the flow rate (100) of the processing liquid (residue) f that has not evaporated in the first evaporator 18 is supplied to the second evaporator 20. In the second evaporator 20 in the second stage, the amount of evaporation is increased to (80), and the amount of reflux returning from the second divider 21 to the first evaporator 18 is set to (10).

次に、有機性廃液処理方法の一実施形態を、図1に示した有機性廃液処理装置1の運転によって行われる処理の流れに従って説明する。
バイオガスプラントから送られた消化液は消化液タンク11に一時的に蓄えられ、定量ポンプ12によって所定量の消化液が固液分離機13に送り込まれる。固液分離機13では、遠心分離によって固形分が取り除かれた原液が加熱容器15へ送られ、藁くずなどの固形分は堆肥タンク14に入れられる。こうして堆肥タンク14に送られた固形分は、無機態の窒素、リン、カリを含んだ発酵済みの堆肥として利用される。加熱容器15では、原液が撹拌されながらヒータによって暖められて予熱処理が施される。そして、供給ポンプ16によって単位時間当たりに一定量の原液が混合槽17へと供給される。
Next, an embodiment of the organic waste liquid treatment method will be described according to the flow of treatment performed by the operation of the organic waste liquid treatment apparatus 1 shown in FIG.
The digested liquid sent from the biogas plant is temporarily stored in the digested liquid tank 11, and a predetermined amount of digested liquid is sent to the solid-liquid separator 13 by the metering pump 12. In the solid-liquid separator 13, the stock solution from which the solid content has been removed by centrifugation is sent to the heating container 15, and the solid content such as sawdust is placed in the compost tank 14. The solid content thus sent to the compost tank 14 is used as fermented compost containing inorganic nitrogen, phosphorus, and potash. In the heating container 15, the stock solution is heated by a heater while being stirred and preheated. Then, a constant amount of the stock solution is supplied to the mixing tank 17 per unit time by the supply pump 16.

ここで、供給ポンプ16から単位時間当たりに供給される原液aの流量を(100)として説明する。そして、各工程での流量とアンモニア濃度が図2に示されているため、以下は図2を参照しながら説明する。流量(100)の原液aは、アンモニア濃度が1200mg/kgであるとする。定常運転時には、第1分縮器19からアンモニア濃度が445mg/kgで流量(20)の還流液bが戻され、更に第2分縮器21からはアンモニア濃度が1805mg/kgで流量(10)の還流液cが戻されている。   Here, the flow rate of the stock solution a supplied from the supply pump 16 per unit time will be described as (100). Since the flow rate and ammonia concentration in each step are shown in FIG. 2, the following will be described with reference to FIG. The stock solution a at the flow rate (100) has an ammonia concentration of 1200 mg / kg. At the time of steady operation, the reflux liquid b at the flow rate (20) at the ammonia concentration of 445 mg / kg is returned from the first divider 19, and the flow rate (10) at the ammonia concentration of 1805 mg / kg from the second divider 21. The reflux liquid c is returned.

混合槽17からは、アンモニア濃度を1130mg/kgに下げた流量(130)の処理液dが第1蒸発器18へと送り込まれることになる。第1蒸発器18では、第1段階の蒸発量を少なくするように設定されており、前述したように流量(130)のうち流量(30)が蒸発して第1分縮器19へ蒸気eとなって送られる。一方、第2蒸発器20側へは2段階の蒸発量を多くすべく、流量(130)のうち流量(100)が残渣fとして送られる。このとき、アンモニアの沸点が低いため多くのアンモニアが蒸発して蒸気eに含まれることになって、蒸気eのアンモニア濃度は4198mg/kgと高い値を示し、逆に残渣fは210mg/kgとアンモニア濃度が低くなる。   From the mixing tank 17, the treatment liquid d having a flow rate (130) with the ammonia concentration lowered to 1130 mg / kg is fed into the first evaporator 18. The first evaporator 18 is set so as to reduce the amount of evaporation in the first stage. As described above, the flow rate (30) of the flow rate (130) evaporates, and the vapor e is sent to the first partial condenser 19. Will be sent. On the other hand, the flow rate (100) of the flow rate (130) is sent to the second evaporator 20 side as the residue f in order to increase the evaporation amount in two stages. At this time, since the boiling point of ammonia is low, a lot of ammonia is evaporated and contained in the vapor e, and the ammonia concentration of the vapor e shows a high value of 4198 mg / kg, and conversely, the residue f is 210 mg / kg. Ammonia concentration decreases.

第1分縮器19では、アンモニア高濃度の蒸気eが先ず高温側凝縮部に送り込まれると、そこでは沸点が高い水分が先に凝縮した蒸留液が還流液bとして混合槽17へと戻される。そして、高温側凝縮部を通過した蒸気は、低温側凝縮部に送り込まれて凝縮し、その蒸留液がアンモニア水gとなってタンク22へと蓄えられることになる。第1分縮器19では、還流量を多くするように設定されているため、供給された蒸気eは、流量(30)のうち流量(20)が高温側凝縮部で還流液bとなるべく凝縮され、流量(10)のアンモニア水gが低温側凝縮部で凝縮される。このとき、還流液bのアンモニア濃度は、前述したように445mg/kgと低く、逆にアンモニア水gは11700mg/kgと高濃度である。   In the first partial condenser 19, when high-concentration ammonia e is first sent to the high-temperature side condensing part, the distillate in which water having a high boiling point is first condensed is returned to the mixing tank 17 as the reflux liquid b. . And the vapor | steam which passed the high temperature side condensation part is sent to a low temperature side condensation part, and is condensed, The distillate becomes ammonia water g and is stored in the tank 22. FIG. In the first divider 19, since the reflux amount is set so as to increase, the supplied steam e is condensed as much as possible to the reflux liquid b in the high-temperature side condensing part of the flow rate (30). Then, ammonia water g having a flow rate (10) is condensed in the low temperature side condensing part. At this time, the ammonia concentration of the reflux liquid b is as low as 445 mg / kg as described above, and conversely, the ammonia water g is as high as 11700 mg / kg.

第1蒸発器18から第2蒸発器20へと送られたアンモニア濃度の低い残渣fは、更にここで蒸発して蒸気hが取り出されて第2分縮器21へと送られ、蒸発しなかった残渣iはタンク23へと蓄えられる。このときも、アンモニアの沸点が低いため多くのアンモニアが蒸発して蒸気hに含まれる。従って、蒸気hのアンモニア濃度は259mg/kgとなり、逆に残渣iは13mg/kgとアンモニア濃度が低くなった。   The low ammonia concentration residue f sent from the first evaporator 18 to the second evaporator 20 further evaporates here, and the vapor h is taken out and sent to the second partial condenser 21 and does not evaporate. The residue i is stored in the tank 23. Also at this time, since the boiling point of ammonia is low, much ammonia is evaporated and contained in the vapor h. Therefore, the ammonia concentration of the steam h was 259 mg / kg, and conversely, the residue i had a low ammonia concentration of 13 mg / kg.

一方、第2分縮器21に供給された蒸気hは、先ず高温側凝縮部に送り込まれると、沸点が高い水が先に凝縮し、アンモニア濃度が40mg/kgとなった蒸留液が排水基準を満たした浄水(放流水)jとしてタンク24に蓄えられる。そして、高温側凝縮部を通過した蒸気は、低温側凝縮部に送り込まれて凝縮して蒸留液が得られ、この蒸留液が還流液cとして混合槽17へと戻される。第2分縮器21では、供給された流量(80)の蒸気hから流量(70)が放流水jとなるべく高温側凝縮部で凝縮され、残る流量(10)が低温側凝縮部で凝縮されて還流液cとなる。   On the other hand, when the steam h supplied to the second partial condenser 21 is first sent to the high-temperature side condensing part, the water having a high boiling point is first condensed, and the distillate having an ammonia concentration of 40 mg / kg is the drainage standard. Is stored in the tank 24 as purified water (discharged water) j. And the vapor | steam which passed the high temperature side condensation part is sent to a low temperature side condensation part, is condensed, a distillate is obtained, and this distillate is returned to the mixing tank 17 as the recirculation | reflux liquid c. In the second partial condenser 21, the flow rate (70) is condensed from the supplied flow rate (80) of steam h into the discharged water j as much as possible in the high-temperature side condensing part, and the remaining flow rate (10) is condensed in the low-temperature side condensing part. Thus, the reflux liquid c is obtained.

よって、本実施形態では、供給ポンプ16から送り出される原液aは連続的に処理され、単位時間当たりに供給される流量(100)の原液aのうち、流量(70)が放流水としてタンク24に採取され、流量(10)がアンモニア水として採取され、更には流量(20)が残渣iとしてタンク23に取り出される。
このとき、第1蒸発器18と第2蒸発器20の2段階で蒸発させ、それぞれにおいて発生した蒸気を高温側と低温側とで凝縮する分縮を行い、アンモニア水gや放流水jとしてタンク22,24に取り出した以外の蒸留液を還流液b,cとして第1蒸発器18へ戻すようにしている。これにより、連続処理において高濃度のアンモニア水gを得ることができ、供給される原液の70%を放流水jとして効率良く取り出すことができるようになった。
Therefore, in the present embodiment, the stock solution a delivered from the supply pump 16 is continuously processed, and the flow rate (70) of the stock solution a of the flow rate (100) supplied per unit time is discharged to the tank 24 as discharged water. The flow rate (10) is collected as ammonia water, and the flow rate (20) is taken out as a residue i to the tank 23.
At this time, the vaporization is performed in two stages of the first evaporator 18 and the second evaporator 20, and the steam generated in each is condensed to condense on the high temperature side and the low temperature side, and the tank is obtained as ammonia water g or effluent water j. Distilled liquids other than those taken out at 22 and 24 are returned to the first evaporator 18 as reflux liquids b and c. As a result, high-concentration ammonia water g can be obtained in the continuous treatment, and 70% of the supplied stock solution can be efficiently taken out as discharge water j.

ところで、前記実施形態では、第1蒸発器18と第1分縮器19、第2蒸発器20と第2分縮器21について、それぞれが別々に構成されたものを例に挙げて説明した。しかし、これらを一体的に構成したものであってもよく、例えば図3は、蒸発器と分縮器とを一体に構成した濃縮機である。図3は、当該濃縮機の構造を概念的に示した図である。   By the way, in the said embodiment, the 1st evaporator 18 and the 1st divider 19 and the 2nd evaporator 20 and the 2nd divider 21 were mentioned as an example, and what was each comprised separately was demonstrated. However, these may be integrally configured. For example, FIG. 3 shows a concentrator in which an evaporator and a partial condenser are integrally configured. FIG. 3 is a diagram conceptually showing the structure of the concentrator.

濃縮機30は、蒸発缶31内に処理液が噴霧され、落ちていく処理液が複数の伝熱管32によって加熱されるようになっているが、その伝熱管32には、蒸発缶31内で発生した蒸気が送り込まれるよう構成されている。すなわち、蒸発缶31には蒸気管33が接続され、そこには発生した蒸気を断熱圧縮するための圧縮機34が設けられている。
従って、濃縮機30では、この圧縮機34の断熱圧縮によって加圧された蒸気が伝熱管32に送り込まれ、その伝熱管32に噴霧された処理液が触れることにより新たな蒸気を発生させ、その一方で伝熱管32内の過熱蒸気は潜熱を奪われて凝縮するように構成されている。
In the concentrator 30, the treatment liquid is sprayed into the evaporator 31, and the falling treatment liquid is heated by the plurality of heat transfer tubes 32. The generated steam is configured to be sent. That is, a steam pipe 33 is connected to the evaporator 31, and a compressor 34 for adiabatically compressing the generated steam is provided there.
Therefore, in the concentrator 30, the steam pressurized by the adiabatic compression of the compressor 34 is sent to the heat transfer tube 32, and the treated liquid sprayed on the heat transfer tube 32 is touched to generate new steam. On the other hand, the superheated steam in the heat transfer tube 32 is configured to be deprived of latent heat and condensed.

また濃縮機30は、沸点を下げるように内部を真空引きする構成がとられている。すなわち、濃縮機30には真空ポンプ35が接続され、内部が25kPa abs.の圧力に保たれ、処理液の蒸発および凝縮が同圧における水の沸点である65℃近傍で行われるようになっている。濃縮機30は、内部に数百本の単位で伝熱管32が設置され、上下方向に所定の本数に分けた3つのブロックが形成されている。そして、圧縮機34を通って加圧された過熱蒸気が最下段のブロックに送り込まれるように蒸気管33が接続されている。伝熱管32は前述したように蒸気を凝縮させるところであり、分縮器としても構成されている。   Further, the concentrator 30 is configured to evacuate the inside so as to lower the boiling point. That is, a vacuum pump 35 is connected to the concentrator 30, the inside is maintained at a pressure of 25 kPa abs., And the evaporation and condensation of the treatment liquid is performed at around 65 ° C., which is the boiling point of water at the same pressure. Yes. In the concentrator 30, heat transfer tubes 32 are installed in units of several hundreds, and three blocks divided into a predetermined number in the vertical direction are formed. And the steam pipe 33 is connected so that the superheated steam pressurized through the compressor 34 may be sent into the lowest block. As described above, the heat transfer tube 32 condenses the steam and is also configured as a partial condenser.

具体的には、3つのブロックに分けられた伝熱管32の下段部分及び中段部分が高温側凝縮部36となり、伝熱管32の上段部分が低温側凝縮部37となるように構成されている。つまり、蒸発缶31内に噴霧される処理液によって伝熱管32内の蒸気が潜熱を奪われて凝縮するが、中段から下段にかけては処理液の温度が上がっているため主に高沸分が凝縮し、上段では先に温度の低い状態の処理液が伝熱管32に触れるため主に低沸分が凝縮するようになっている。そして、凝縮部36,37には、各工程で凝縮した蒸留液を貯留する補助タンク38と39が設けられている。   Specifically, the lower part and the middle part of the heat transfer tube 32 divided into three blocks are configured as the high temperature side condensing unit 36, and the upper part of the heat transfer tube 32 is configured as the low temperature side condensing unit 37. In other words, the steam in the heat transfer tube 32 is deprived of latent heat and condensed by the processing liquid sprayed in the evaporator 31, but the high boiling content is mainly condensed because the temperature of the processing liquid rises from the middle stage to the lower stage. In the upper stage, the low-boiling component is mainly condensed because the processing liquid having a lower temperature first touches the heat transfer tube 32. The condensing units 36 and 37 are provided with auxiliary tanks 38 and 39 for storing the distillate condensed in each step.

そこで、前記実施形態の第1蒸発器18及び第1分縮器19、更に第2蒸発器20及び第2分縮器21がこの濃縮機30に置き換えられたとすると、前記実施形態で示した有機性廃液処理が次のようにして行われる。
先ず、第1蒸発器18及び第1分縮器19に置き換えられた濃縮機30には、蒸発缶31に入力ライン41から混合槽17(以下、適宜に図1および図2を参照)に処理液dが供給される。濃縮機30へ送られた処理液dは、蒸発缶31内の伝熱管32に噴霧され、その表面に触れて一部が蒸発する。その際、処理液dは上下方向に配置された伝熱管32に触れながら落下していき、蒸発しなかったものが残渣fとなる。
Therefore, if the first evaporator 18 and the first partial condenser 19, and the second evaporator 20 and the second partial condenser 21 of the embodiment are replaced with the concentrator 30, the organic material described in the embodiment is used. The effluent treatment is performed as follows.
First, in the concentrator 30 replaced with the first evaporator 18 and the first partial condenser 19, the evaporator 31 is processed from the input line 41 to the mixing tank 17 (refer to FIG. 1 and FIG. 2 as appropriate). Liquid d is supplied. The processing liquid d sent to the concentrator 30 is sprayed on the heat transfer tube 32 in the evaporator 31 and partially touches the surface to evaporate. At that time, the treatment liquid d falls while touching the heat transfer tubes 32 arranged in the vertical direction, and the residue that has not evaporated becomes the residue f.

濃縮機30内部は真空引きされているため処理液dは低い温度でも蒸発する。そして、伝熱管32に触れて蒸発した蒸気は、蒸気管33の途中で圧縮機34による断熱圧縮が行われるため、加圧された状態で伝熱管32へと送り込まれる。なお、運転開始時には伝熱管32に対して系外から一時的に過熱蒸気が送り込まれ、それによって加熱された伝熱管32に触れた処理液の蒸発が引き起こされるようにする。従って、伝熱管32内の過熱蒸気は、蒸発缶31内に噴霧された処理液が伝熱管32に触れることによって潜熱を奪われて凝縮する。   Since the inside of the concentrator 30 is evacuated, the treatment liquid d evaporates even at a low temperature. Then, the vapor evaporated by touching the heat transfer tube 32 is adiabatically compressed by the compressor 34 in the middle of the steam tube 33, and is sent to the heat transfer tube 32 in a pressurized state. At the start of operation, superheated steam is temporarily sent from outside the system to the heat transfer tube 32, thereby causing evaporation of the processing liquid that has touched the heated heat transfer tube 32. Accordingly, the superheated steam in the heat transfer tube 32 is condensed by depriving of latent heat when the treatment liquid sprayed in the evaporator 31 touches the heat transfer tube 32.

その際、高温側凝縮部36では、中段及び下段の伝熱管32に触れる処理液の温度が上がっているため、沸点より僅かに低い温度で過熱蒸気が凝縮し、その蒸留液が補助タンク38に入る。そして、高温側凝縮部36で凝縮しなかった過熱蒸気は低温側凝縮部37に送られ、そこで完全に凝縮されて蒸留液が補助タンク39に蓄えられる。そして、第1蒸発器18を構成する濃縮機30では、補助タンク38内の蒸留液が還流液bとして所定量ずつ送り出され、再び第1分縮器19を構成するこの濃縮機30に戻される。一方、補助タンク39に蓄えられた蒸留液がアンモニア水gとしてタンク22へと送られる。   At that time, in the high temperature side condensing section 36, the temperature of the treatment liquid that touches the middle and lower heat transfer tubes 32 is increased, so that the superheated steam is condensed at a temperature slightly lower than the boiling point, and the distillate in the auxiliary tank 38. enter. Then, the superheated steam that has not been condensed in the high temperature side condensing unit 36 is sent to the low temperature side condensing unit 37 where it is completely condensed and the distillate is stored in the auxiliary tank 39. Then, in the concentrator 30 constituting the first evaporator 18, the distillate in the auxiliary tank 38 is sent out by a predetermined amount as the reflux liquid b and returned again to the concentrator 30 constituting the first partial condenser 19. . On the other hand, the distillate stored in the auxiliary tank 39 is sent to the tank 22 as ammonia water g.

一方、蒸発缶31内で蒸発しなかった残渣fは、第2蒸発器20を構成する濃縮機30へと供給され、同じように蒸発缶31内の伝熱管32に噴霧され一部が蒸発し、蒸発しなかったものが残渣iとり、これはタンク23に取り出される。また、この濃縮機30内部も真空引きされており残渣fは低い温度で蒸発し、伝熱管32に触れて蒸発した蒸気は、蒸気管33の途中で圧縮機34による断熱圧縮が行われるため、加圧された状態で伝熱管32へと送り込まれる。そして、運転開始時には伝熱管32に対して系外から一時的に過熱蒸気が送り込まれ、それによって加熱された伝熱管32に触れた処理液の蒸発が引き起こされるようにする。   On the other hand, the residue f that has not evaporated in the evaporator 31 is supplied to the concentrator 30 that constitutes the second evaporator 20, and is similarly sprayed onto the heat transfer tube 32 in the evaporator 31 to partially evaporate. Those that have not evaporated take residue i, which is taken out to tank 23 Further, the inside of the concentrator 30 is also evacuated, and the residue f evaporates at a low temperature, and the vapor evaporated by touching the heat transfer tube 32 is subjected to adiabatic compression by the compressor 34 in the middle of the steam tube 33. It is fed into the heat transfer tube 32 in a pressurized state. Then, at the start of operation, superheated steam is temporarily sent from outside the system to the heat transfer tube 32, thereby causing evaporation of the processing liquid that has touched the heated heat transfer tube 32.

伝熱管32内の過熱蒸気は、蒸発缶31内に噴霧された処理液が伝熱管32に触れることによって潜熱を奪われて凝縮するが、高温側凝縮部36では沸点より僅かに低い温度で過熱蒸気が凝縮してその蒸留液が補助タンク38に入り、低温側凝縮部37で凝縮された蒸留液が補助タンク39に入って蓄えられる。そして、第2蒸発器20を構成する濃縮機30では、補助タンク38内の蒸留液が放流水jとしてタンク24に取り出され、補助タンク39に蓄えられた蒸留液が還流液cとして所定量ずつ送り出され、再び第1分縮器19を構成するこの濃縮機30に戻される。   The superheated steam in the heat transfer tube 32 is condensed by depriving latent heat when the processing liquid sprayed in the evaporator 31 touches the heat transfer tube 32, but is heated at a temperature slightly lower than the boiling point in the high temperature side condensing unit 36. The steam is condensed and the distillate enters the auxiliary tank 38, and the distillate condensed in the low temperature side condensing unit 37 enters the auxiliary tank 39 and is stored. In the concentrator 30 constituting the second evaporator 20, the distillate in the auxiliary tank 38 is taken out into the tank 24 as effluent water j, and the distillate stored in the auxiliary tank 39 is a predetermined amount as the reflux liquid c. It is sent out and returned to the concentrator 30 constituting the first divider 19 again.

よって、こうした濃縮機30を用いた有機性廃液処理装置によれば、前記実施形態と同じように、連続処理においても高濃度のアンモニア水gを得ることができ、供給する原液の70%を放流水jとして効率良く取り出すことができる。そして、濃縮機30を使用して蒸発と凝縮とを行わせることにより、処理液を蒸発させるために伝熱管32を常に加熱する系外に設けられた加熱装置や、逆に過熱蒸気を凝縮する同じく系外の冷却装置に対する負担が軽減させることが可能になった。   Therefore, according to the organic waste liquid treatment apparatus using such a concentrator 30, high-concentration ammonia water g can be obtained even in the continuous treatment as in the above embodiment, and 70% of the supplied stock solution is discharged. It can be taken out efficiently as water j. Then, by using the concentrator 30 to evaporate and condense, a heating device provided outside the system that constantly heats the heat transfer tube 32 in order to evaporate the processing liquid, or conversely, superheated steam is condensed. Similarly, the burden on the cooling device outside the system can be reduced.

以上、本発明に係る有機性廃液の処理装置及び処理方法について一実施形態を説明したが、本発明はこれに限定されることなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
前記実施形態では、図2で示したような流量で、処理液dの供給量、第1蒸発器18や第2蒸発器20での蒸発量、或いは第1分縮器19や第2分縮器21での分縮の割合などが設定されているが、これは一例であってこの他の流量で設定するものであってもよい。
As mentioned above, although one Embodiment was described about the processing apparatus and the processing method of the organic waste liquid concerning this invention, this invention is not limited to this, A various change is possible in the range which does not deviate from the meaning.
In the above embodiment, the supply amount of the processing liquid d, the evaporation amount in the first evaporator 18 or the second evaporator 20, or the first divider 19 or the second divider at the flow rate as shown in FIG. Although the ratio of partial reduction in the vessel 21 is set, this is an example, and other flow rates may be set.

有機性廃液処理装置の一実施形態を概念的に示した図である。It is the figure which showed notionally one Embodiment of the organic waste liquid processing apparatus. 実施形態の有機性廃液処理装置を構成する蒸留部を抜き出して示したブロック図であって、特に各処理工程における流量割合や流体中のアンモニア濃度を数値で示したものである。It is the block diagram which extracted and showed the distillation part which comprises the organic waste liquid processing apparatus of embodiment, Comprising: The flow rate ratio in each process process and the ammonia concentration in a fluid are shown numerically. 蒸発器と分縮器とを一体に構成した濃縮機の構造を概念的に示した図である。It is the figure which showed notionally the structure of the concentrator which comprised the evaporator and the partial condenser integrally. 従来の有機性廃液処理装置の概略構成を示した図である。It is the figure which showed schematic structure of the conventional organic waste liquid processing apparatus.

符号の説明Explanation of symbols

1 有機性廃液処理装置
11 消化液タンク
12 定量ポンプ
13 固液分離機
14 堆肥タンク
15 加熱容器
16 供給ポンプ
17 混合槽
18 第1蒸発器
19 第1分縮器
20 第2蒸発器
21 第2分縮器
22,22,23 タンク
a 原液
b,c 還流液
d 処理液
e,h 蒸気
f,i 残渣
g アンモニア水
j 放流水
DESCRIPTION OF SYMBOLS 1 Organic waste liquid processing apparatus 11 Digestion liquid tank 12 Metering pump 13 Solid-liquid separator 14 Compost tank 15 Heating container 16 Supply pump 17 Mixing tank 18 1st evaporator 19 1st partial condenser 20 2nd evaporator 21 2nd minute Condenser 22, 22, 23 Tank a Stock solution b, c Reflux solution d Treatment liquid e, h Steam f, i Residual g Ammonia water j Discharged water

Claims (8)

有機性廃液やその有機性廃液に対して一定処理を施した消化液などアンモニア及びアンモニウム塩及び水分を含む処理液について、蒸発させた蒸気を凝縮してアンモニア濃度の低い浄水と高濃度のアンモニア水とを分離して取り出すようにした有機性廃液の処理装置において、
前記処理液を蒸発させる第1蒸発器と、
前記第1蒸発器で蒸発しなかった残渣を蒸発させる第2蒸発器と、
前記第1蒸発器で蒸発した蒸気を高温側凝縮部と低温側凝縮部との2段階で凝縮する第1分縮器と、
前記第2蒸発器で蒸発した蒸気を高温側凝縮部と低温側凝縮部との2段階で凝縮する第2分縮器とを有し、
前記第1分縮器の高温側凝縮部で凝縮した蒸留液と、前記第2分縮器の低温側凝縮部で凝縮した蒸留液とを前記処理液の一部として前記第1蒸発器へ還流させるようにしたものであることを特徴とする有機性廃液の処理装置。
For treatment liquids containing ammonia, ammonium salts, and moisture, such as digestive liquid that has been subjected to a certain treatment on organic waste liquid and its organic waste liquid, purified water with low ammonia concentration and high concentration ammonia water by condensing evaporated vapor In an organic waste liquid treatment device that is separated and removed,
A first evaporator for evaporating the treatment liquid;
A second evaporator for evaporating the residue that has not evaporated in the first evaporator;
A first partial condenser that condenses the vapor evaporated in the first evaporator in two stages, a high temperature side condensing unit and a low temperature side condensing unit;
A second partial condenser that condenses the vapor evaporated in the second evaporator in two stages of a high temperature side condensing part and a low temperature side condensing part,
The distillate condensed in the high temperature side condensing part of the first partial condenser and the distillate condensed in the low temperature side condensing part of the second partial condenser are returned to the first evaporator as a part of the processing liquid. An organic waste liquid treatment apparatus, characterized by being made to cause
請求項1に記載する有機性廃液の処理装置において、
前記第1蒸発器と前記第2蒸発器は、前記第1蒸発器で蒸発する処理液の蒸発量よりも前記第2蒸発器で蒸発する処理液の蒸発量が多くなるように設定されたものであることを特徴とする有機性廃液の処理装置。
In the processing apparatus of the organic waste liquid of Claim 1,
The first evaporator and the second evaporator are set so that the evaporation amount of the processing liquid evaporated in the second evaporator is larger than the evaporation amount of the processing liquid evaporated in the first evaporator. An organic waste liquid treatment apparatus characterized by
請求項1又は請求項2に記載する有機性廃液の処理装置において、
前記第1分縮器には低温側凝縮部で得られたアンモニアを蓄えるタンクが接続され、前記第2分縮器には高温側凝縮部で得られた蒸留液を浄水として蓄えるタンクが接続され、前記第2分縮器には蒸発しなかった残渣を蓄えるタンクが接続されたものであることを特徴とする有機性廃液の処理装置。
In the processing apparatus of the organic waste liquid of Claim 1 or Claim 2,
A tank for storing ammonia obtained at the low temperature side condenser is connected to the first partial condenser, and a tank for storing the distilled liquid obtained at the high temperature side condenser as purified water is connected to the second partial condenser. The organic waste liquid treatment apparatus is characterized in that a tank for storing a residue that has not evaporated is connected to the second condenser.
請求項1乃至請求項3のいずれかに記載する有機性廃液の処理装置において、
前記第1蒸発器と第1分縮器及び前記第2蒸発器と第2分縮器は、それぞれが一体に構成された濃縮機であって、
前記処理液が供給される蒸発缶と、その蒸発缶内部に設けられて蒸気が通る複数の伝熱管と、その蒸発缶内で発生した蒸気を伝熱管に送る蒸気管と、蒸発缶内で発生した蒸気を断熱圧縮した過熱蒸気として伝熱管に送り込む蒸気管に設けられた圧縮機とを有し、
前記蒸気管を介して前記伝熱管に送られた過熱蒸気が、蒸発缶内に供給され処理液が当該伝熱管に触れて蒸発するときに潜熱を奪われて凝縮するものであって、処理液の温度が高い状態で伝熱管に触れて凝縮した蒸留液を取り出す部分を前記高温側凝縮部とし、処理液の温度が低い状態で伝熱管に触れて凝縮した蒸留液を取り出す部分を前記低温側凝縮部としたものであることを特徴とする有機性廃液の処理装置。
In the processing apparatus of the organic waste liquid in any one of Claims 1 thru | or 3,
The first evaporator and the first partial condenser, and the second evaporator and the second partial condenser are each a concentrator configured integrally.
An evaporator that is supplied with the treatment liquid, a plurality of heat transfer tubes that are provided inside the evaporator and through which steam passes, a steam tube that sends steam generated in the evaporator to the heat transfer tube, and generated in the evaporator And a compressor provided in the steam pipe for feeding the steam into the heat transfer pipe as superheated steam adiabatically compressed,
When the superheated steam sent to the heat transfer tube via the steam pipe is supplied into the evaporator and the treatment liquid touches the heat transfer pipe and evaporates, the latent heat is taken away and condensed. The portion where the condensed liquid is extracted by touching the heat transfer tube in a state where the temperature is high is referred to as the high-temperature side condensing portion, and the portion where the condensed liquid is extracted by touching the heat transfer tube when the temperature of the treatment liquid is low An organic waste liquid treatment apparatus characterized by being a condensing unit.
請求項4に記載する有機性廃液の処理装置において、
前記高温側凝縮部と前記低温側凝縮部は、複数本の前記伝熱管が上下方向に分けられたブロックによって構成され、前記高温側凝縮部が、前記圧縮機で加圧された蒸気が送り込まれる下側のブロックによって構成され、前記低温側凝縮部が、前記高温側凝縮部の二次側にあって上方から噴霧された前記処理液が先に触れる上側のブロックによって構成されたものであることを特徴とする有機性廃液の処理装置。
In the processing apparatus of the organic waste liquid described in Claim 4,
The high temperature side condensing unit and the low temperature side condensing unit are configured by blocks in which a plurality of the heat transfer tubes are divided in the vertical direction, and the high temperature side condensing unit is fed with steam pressurized by the compressor. It is constituted by a lower block, and the low temperature side condensing part is a secondary side of the high temperature side condensing part, and is constituted by an upper block that comes into contact with the processing liquid sprayed from above. Organic waste liquid treatment equipment characterized by
請求項4又は請求項5に記載する有機性廃液の処理装置において、
前記濃縮機は、前記蒸発缶に接続された真空ポンプによって蒸発缶内部を所定圧力に減圧するようにしたものであることを特徴とする有機性廃液の処理装置。
In the processing apparatus of the organic waste liquid of Claim 4 or Claim 5,
2. The organic waste liquid treatment apparatus according to claim 1, wherein the concentrator is configured to depressurize the inside of the evaporator to a predetermined pressure by a vacuum pump connected to the evaporator.
有機性廃液やその有機性廃液に対して一定処理を施した消化液などアンモニア及びアンモニウム塩及び水分を含む処理液について、蒸発させた蒸気を凝縮してアンモニア濃度の低い浄水と高濃度のアンモニア水とを分離させて取り出すようにした有機性廃液の処理方法において、
前記処理液を蒸発させる第1蒸発工程と、
前記第1蒸発工程で蒸発しなかった残渣を蒸発させる第2蒸発工程と、
前記第1蒸発工程で蒸発した蒸気を高温側凝縮と低温側凝縮の2段階で凝縮する第1凝縮工程と、
前記第2蒸発工程で蒸発した蒸気を高温側凝縮と低温側凝縮との2段階で凝縮する第2凝縮工程とを有し、
前記第1凝縮工程によって高温側で凝縮した蒸留液と、前記第2凝縮工程によって低温側で凝縮した蒸留液とを前記処理液の一部として前記第1蒸発工程へ還流させるようにしたことを特徴とする有機性廃液の処理方法。
For treatment liquids containing ammonia, ammonium salts, and moisture, such as digestive liquid that has been subjected to a certain treatment on organic waste liquid and its organic waste liquid, purified water with low ammonia concentration and high concentration ammonia water by condensing evaporated vapor In the processing method of organic waste liquid that is separated and removed,
A first evaporation step for evaporating the treatment liquid;
A second evaporation step of evaporating the residue that has not evaporated in the first evaporation step;
A first condensing step of condensing the vapor evaporated in the first evaporating step in two stages of high temperature side condensation and low temperature side condensation;
A second condensing step of condensing the vapor evaporated in the second evaporating step in two stages of high temperature side condensation and low temperature side condensation;
The distillate condensed on the high temperature side by the first condensing step and the distillate condensed on the low temperature side by the second condensing step are refluxed to the first evaporation step as a part of the processing liquid. A method for treating organic waste liquid.
請求項7に記載する有機性廃液の処理方法において、
前記第1蒸発工程と前記第2蒸発工程は、前記第1蒸発工程で蒸発する処理液の蒸発量よりも前記第2蒸発工程で蒸発する処理液の蒸発量が多いことを特徴とする有機性廃液の処理方法。
In the processing method of the organic waste liquid of Claim 7,
In the first evaporation step and the second evaporation step, the evaporation amount of the processing liquid evaporated in the second evaporation step is larger than the evaporation amount of the processing liquid evaporated in the first evaporation step. Waste liquid treatment method.
JP2005318355A 2005-11-01 2005-11-01 Organic waste liquid processing apparatus and processing method Expired - Fee Related JP4349656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318355A JP4349656B2 (en) 2005-11-01 2005-11-01 Organic waste liquid processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318355A JP4349656B2 (en) 2005-11-01 2005-11-01 Organic waste liquid processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2007125457A true JP2007125457A (en) 2007-05-24
JP4349656B2 JP4349656B2 (en) 2009-10-21

Family

ID=38148569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318355A Expired - Fee Related JP4349656B2 (en) 2005-11-01 2005-11-01 Organic waste liquid processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4349656B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093523A (en) * 2006-10-06 2008-04-24 Nippon Sharyo Seizo Kaisha Ltd Apparatus and method for treating organic waste liquid
JP2008173591A (en) * 2007-01-19 2008-07-31 Nippon Sharyo Seizo Kaisha Ltd Organic waste liquid treatment apparatus and method
CN109809515A (en) * 2019-04-08 2019-05-28 北京生态岛科技有限责任公司 A kind of industrial wastewater external circulation evaporation separation complete set of equipments with high salt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923893A (en) * 2012-10-30 2013-02-13 山东沃蓝生物集团有限公司 System and method for treating wastewater containing sodium chloride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093523A (en) * 2006-10-06 2008-04-24 Nippon Sharyo Seizo Kaisha Ltd Apparatus and method for treating organic waste liquid
JP4568264B2 (en) * 2006-10-06 2010-10-27 日本車輌製造株式会社 Organic waste liquid processing apparatus and processing method
JP2008173591A (en) * 2007-01-19 2008-07-31 Nippon Sharyo Seizo Kaisha Ltd Organic waste liquid treatment apparatus and method
JP4588723B2 (en) * 2007-01-19 2010-12-01 日本車輌製造株式会社 Organic waste liquid processing apparatus and processing method
CN109809515A (en) * 2019-04-08 2019-05-28 北京生态岛科技有限责任公司 A kind of industrial wastewater external circulation evaporation separation complete set of equipments with high salt

Also Published As

Publication number Publication date
JP4349656B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4349655B2 (en) Organic waste liquid processing apparatus and processing method
CN101264948B (en) Ammonia nitrogen waste water discharge-reducing and ammonia nitrogen resource utilizing device and method
RU2571146C2 (en) Separation method
KR100407370B1 (en) METHOD AND APPARATUS FOR RECOVERING INTEGRATED VAPOR CONDENSATE FROM URGENT VACUUM EVAPORATOR
US6638398B1 (en) Methods for the evaporation of an aqueous solution containing ammonia
JP2006212605A (en) Organic waste liquid treatment apparatus and method
CN104030514B (en) A kind of processing method of dual-effect energy-saving wastewater stripping depickling deamination
JP4349656B2 (en) Organic waste liquid processing apparatus and processing method
JP4553810B2 (en) Organic waste liquid processing apparatus and processing method
JP4588723B2 (en) Organic waste liquid processing apparatus and processing method
CN212222702U (en) High-efficient low temperature negative pressure ammonia nitrogen waste water strip system
JP2008545403A (en) Method and apparatus for preparing an ethanol / water mixture
JP4568264B2 (en) Organic waste liquid processing apparatus and processing method
CN104724776A (en) Device and method for mixing secondary steam into pressurized water in pressurized evaporation
JP7098324B2 (en) Evaporation system with a series of evaporators for processing the ammoxidation process stream
JP3703420B2 (en) Organic waste treatment method and apparatus
CN109553236A (en) The process flow containing ammonia nitrogen, phenol wastewater is administered in controllable concentration
CN114772829A (en) Distillation-oxidation treatment system and method for organic acid chemical cleaning waste liquid of power station boiler
CN106809896A (en) A kind of organic wastewater treating system and method
CN209618919U (en) A kind of waste water desalination exsolution apparatus
CN102442884B (en) Method for recovering ethanol during soy production process and device thereof
CN104524789A (en) Single-effect concentrated alcohol recovering apparatus
CN217264918U (en) Evaporation system suitable for contain isopropanol and contain salt waste water
CN216837522U (en) System for retrieve oil-free aqueous ammonia in follow oily ammoniacal waste water
CN206680191U (en) A kind of device using remained ammonia as waste high purity ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees