JP2007124741A - Driving force controller of vehicle - Google Patents

Driving force controller of vehicle Download PDF

Info

Publication number
JP2007124741A
JP2007124741A JP2005309925A JP2005309925A JP2007124741A JP 2007124741 A JP2007124741 A JP 2007124741A JP 2005309925 A JP2005309925 A JP 2005309925A JP 2005309925 A JP2005309925 A JP 2005309925A JP 2007124741 A JP2007124741 A JP 2007124741A
Authority
JP
Japan
Prior art keywords
rotational
driving
wheel
vibration
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005309925A
Other languages
Japanese (ja)
Other versions
JP4626481B2 (en
Inventor
Kansuke Yoshisue
監介 吉末
Mitsutaka Tsuchida
充孝 土田
Yoshinori Maeda
義紀 前田
Yoshio Uragami
芳男 浦上
Kazuya Okumura
和也 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005309925A priority Critical patent/JP4626481B2/en
Publication of JP2007124741A publication Critical patent/JP2007124741A/en
Application granted granted Critical
Publication of JP4626481B2 publication Critical patent/JP4626481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely and effectively suppress rotational vibration of drive wheels by discriminating the main factor of rotational vibration of drive wheels and appropriately controlling vibration, depending on the main factor of rotational vibration. <P>SOLUTION: Periodic variation component Vwdi of vehicle speed Vwi and periodic variation component Vddi of rotational speed Vdi are calculated (S40), and the main factor of rotational vibration of wheels is determined, based on these periodic variation components (S50, 60). When the main factor is an external force acting on the wheel from the road surface, vibration control rotational driving force Fwanti is calculated, based on the periodic variation component Vddi of the rotational speed Vdi (S120). When the main factor is the torsion of drive shafts 12FL-12RR, vibration control rotational driving force Fwanti is calculated, based on the periodic variation component Vwdi and the periodic variation component Vddi of the rotational speed Vdi (S110). Rotational vibration of wheels is suppressed by the vibration control rotational driving force Fwanti (S150, 200-230). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車輌の駆動力制御装置に係り、更に詳細には駆動輪の回転振動を低減する駆動力制御装置に係る。   The present invention relates to a driving force control device for a vehicle, and more particularly to a driving force control device that reduces rotational vibration of driving wheels.

自動車等の車輌の駆動力制御装置の一つとして、例えば本願出願人の出願にかかる下記の特許文献1に記載されている如く、駆動輪に接続された駆動軸に直接トルクを出力可能な電動機を備えた車輌に於いて、駆動軸の角加速度が大きくなるほどトルク上限値が小さくなるようトルク上限値を演算し、トルク上限値にて駆動軸に出力されるトルクを制限する駆動力制御装置が従来より知られている。   As one of driving force control devices for vehicles such as automobiles, an electric motor capable of directly outputting torque to a driving shaft connected to driving wheels as described in, for example, the following Patent Document 1 filed by the applicant of the present application. And a driving force control device that calculates a torque upper limit value so that the torque upper limit value decreases as the angular acceleration of the drive shaft increases, and limits the torque output to the drive shaft at the torque upper limit value. Conventionally known.

かかる駆動力制御装置によれば、車輌の駆動スリップが過大になると電動機の出力トルクを制御することにより駆動スリップ抑制制御を行う車輌に於いて、スリップ抑制制御に伴って生じる駆動軸の捩れに起因する駆動軸の回転振動を抑制し、駆動輪の回転振動を抑制することができる。
特開2004−96825号公報
According to such a driving force control device, in a vehicle that performs drive slip suppression control by controlling the output torque of the electric motor when the drive slip of the vehicle becomes excessive, it is caused by torsion of the drive shaft caused by the slip suppression control. The rotational vibration of the driving shaft can be suppressed, and the rotational vibration of the drive wheel can be suppressed.
JP 2004-96825 A

一般に、車輪に回転振動が発生すると、車輪速度が周期的に変動するので、車輪速度を検出し、車輪速度の周期的変動を求めることにより車輪の回転振動を判定することができ、車輪速度の周期的変動に基づいて制振制御量を演算し、制振制御量に基づいて駆動源の回転駆動力を制御することにより駆動輪の回転振動を抑制することができる。   In general, when rotational vibration occurs in a wheel, the wheel speed fluctuates periodically. Therefore, by detecting the wheel speed and obtaining the periodic fluctuation of the wheel speed, the wheel rotational vibration can be determined. By calculating the vibration suppression control amount based on the periodic variation and controlling the rotational driving force of the drive source based on the vibration suppression control amount, it is possible to suppress the rotational vibration of the drive wheels.

しかし駆動輪の回転振動は駆動軸の捩れに起因して発生するだけでなく、駆動輪が路面より受ける外力によっても発生し、駆動輪の回転振動の発生原因によって回転振動を抑制するために行うべき制御が異なる。   However, the rotational vibration of the drive wheel is generated not only due to the twist of the drive shaft, but also due to the external force that the drive wheel receives from the road surface, and is performed to suppress the rotational vibration due to the cause of the rotational vibration of the drive wheel. The power control is different.

上述の従来の駆動力制御装置に於いては、駆動輪の回転振動は駆動輪が路面より受ける外力によっても発生することや駆動輪の回転振動の発生原因によって回転振動を抑制するために行うべき制御が異なることについては考慮されておらず、駆動輪の回転振動を確実に且つ効果的に抑制する上で改善が必要とされている。   In the conventional driving force control device described above, the rotational vibration of the driving wheel should be generated in order to suppress the rotational vibration due to the external force that the driving wheel receives from the road surface or the cause of the rotational vibration of the driving wheel. The difference in control is not taken into consideration, and improvement is required to reliably and effectively suppress the rotational vibration of the drive wheels.

本発明は、駆動軸の捩れに起因する駆動軸の回転振動を抑制し、駆動輪の回転振動を抑制するよう構成された従来の駆動力制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、駆動輪の回転振動の主要因を判別し、回転振動の主要因に応じて適切な制振を行うことにより、駆動輪の回転振動を確実に且つ効果的に抑制することである。   The present invention has been made in view of the above-described problems in the conventional driving force control apparatus configured to suppress the rotational vibration of the drive shaft caused by the twist of the drive shaft and suppress the rotational vibration of the drive wheel. Therefore, the main problem of the present invention is to determine the main factor of the rotational vibration of the drive wheel and perform appropriate vibration suppression according to the main factor of the rotational vibration, thereby reliably and reliably preventing the rotational vibration of the drive wheel. It is to suppress effectively.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち駆動源と、前記駆動源の回転駆動力を駆動輪へ伝達する駆動力伝達部材と、前記駆動輪の回転振動を判定する回転振動判定手段と、前記駆動輪の回転振動を抑制しつつ運転者の運転操作に応じて前記駆動源の回転駆動力を制御する制御手段とを有する車輌の駆動力制御装置に於いて、前記駆動源の回転速度を検出する手段と、前記駆動輪の回転速度を検出する手段とを有し、前記回転振動判定手段は前記駆動源の回転速度の周期的変動成分及び前記駆動輪の回転速度の周期的変動成分に基づいて前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れ及び路面より前記駆動輪に作用する外力の何れであるかを判定し、前記制御手段は前記回転振動判定手段により判定された主要因による前記駆動輪の回転振動を抑制するよう前記駆動源の回転駆動力を制御することを特徴とする車輌の駆動力制御装置によって達成される。   According to the present invention, the main problem described above is the structure of claim 1, that is, the driving source, the driving force transmitting member that transmits the rotational driving force of the driving source to the driving wheel, and the rotational vibration of the driving wheel. In a vehicle driving force control device, comprising: a rotational vibration determining means for determining; and a control means for controlling the rotational driving force of the drive source in accordance with the driving operation of the driver while suppressing the rotational vibration of the driving wheel. , A means for detecting the rotational speed of the drive source, and a means for detecting the rotational speed of the drive wheel, wherein the rotational vibration determining means is a periodic fluctuation component of the rotational speed of the drive source and the drive wheel. The control means determines whether a main factor of rotational vibration of the driving wheel is a twist of the driving force transmitting member or an external force acting on the driving wheel from a road surface based on a periodic fluctuation component of the rotational speed, The main determined by the rotational vibration determining means It is achieved by the vehicle driving force control apparatus characterized by controlling the rotational driving force of the driving source so as to suppress the rotational vibration of the drive wheel by cause.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記回転振動判定手段は前記駆動源の回転速度の周期的変動成分の振幅及び前記駆動輪の回転速度の周期的変動成分の振幅を比較することにより、前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れ及び路面より前記駆動輪に作用する外力の何れであるかを判定するよう構成される(請求項2の構成)。   Further, according to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 1, the rotational vibration determining means includes the amplitude of the periodic fluctuation component of the rotational speed of the drive source and By comparing the amplitude of the cyclic fluctuation component of the rotational speed of the driving wheel, the main factor of the rotational vibration of the driving wheel is any of the twist of the driving force transmitting member and the external force acting on the driving wheel from the road surface. It is comprised so that may be determined (structure of Claim 2).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於いて、前記回転振動判定手段は前記駆動源の回転速度の周期的変動成分の振幅が前記駆動輪の回転速度の周期的変動成分の振幅に比して大きいときに、前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れであると判定するよう構成される(請求項3の構成)。   According to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 2, the rotational vibration determining means has an amplitude of a periodically varying component of the rotational speed of the drive source. It is configured to determine that a main factor of rotational vibration of the driving wheel is torsion of the driving force transmitting member when the amplitude is larger than the amplitude of the periodic fluctuation component of the rotational speed of the driving wheel. 3 configuration).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於いて、前記回転振動判定手段は前記駆動輪の回転速度の周期的変動成分の振幅が前記駆動源の回転速度の周期的変動成分の振幅に比して大きいときに、前記駆動輪の回転振動の主要因が路面より前記駆動輪に作用する外力であると判定するよう構成される(請求項4の構成)。   According to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 2, the rotational vibration determining means has an amplitude of a periodic fluctuation component of the rotational speed of the drive wheel. It is configured to determine that the main factor of the rotational vibration of the drive wheel is an external force acting on the drive wheel from the road surface when the amplitude is larger than the amplitude of the periodic fluctuation component of the rotational speed of the drive source ( Configuration of claim 4).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至4の構成に於いて、前記制御手段は前記駆動源の回転速度の周期的変動成分若しくは前記駆動輪の回転速度の周期的変動成分に基づいて前記駆動輪の回転振動を低減するための前記駆動源の回転駆動力の制振制御量を演算し、前記回転振動判定手段により前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れであると判定されたときには、前記駆動輪の回転速度の周期的変動成分及び前記駆動源の回転速度の周期的変動成分に基づいて前記制振制御量を演算するよう構成される(請求項5の構成)。   Further, according to the present invention, in order to effectively achieve the above-mentioned main problems, in the configuration according to any one of claims 1 to 4, the control means is a periodic fluctuation component of the rotational speed of the drive source or the drive. Based on the cyclic fluctuation component of the rotational speed of the wheel, a vibration suppression control amount of the rotational driving force of the drive source for reducing the rotational vibration of the driving wheel is calculated, and the rotational vibration determining means rotates the driving wheel. When it is determined that the main cause of vibration is torsion of the driving force transmission member, the vibration suppression control is performed based on a periodic variation component of the rotational speed of the driving wheel and a periodic variation component of the rotational speed of the drive source. It is comprised so that quantity may be calculated (structure of Claim 5).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至5の構成に於いて、前記制御手段は前記駆動源の回転速度の周期的変動成分若しくは前記駆動輪の回転速度の周期的変動成分に基づいて前記駆動輪の回転振動を低減するための前記駆動源の回転駆動力の制振制御量を演算し、前記回転振動判定手段により前記駆動輪の回転振動の主要因が前記駆動輪に作用する外力であると判定されたときには、前記制振制御量に対する前記駆動輪の回転速度の周期的変動成分の寄与度合を低下させるよう構成される(請求項6の構成)。   According to the present invention, in order to effectively achieve the above-mentioned main problems, in the configuration according to any one of claims 1 to 5, the control means is a periodic fluctuation component of the rotational speed of the drive source or the drive. Based on the cyclic fluctuation component of the rotational speed of the wheel, a vibration suppression control amount of the rotational driving force of the drive source for reducing the rotational vibration of the driving wheel is calculated, and the rotational vibration determining means rotates the driving wheel. When it is determined that the main factor of vibration is an external force acting on the drive wheel, the degree of contribution of a periodically varying component of the rotational speed of the drive wheel to the vibration suppression control amount is reduced (claim). 6 configuration).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至5の構成に於いて、前記制御手段は運転者の運転操作に基づいて前記駆動源の目標回転駆動力を演算し、前記駆動源の目標回転駆動力に基づいて前記駆動源の回転駆動力を制御し、前記回転振動判定手段により前記駆動輪の回転振動の主要因が前記駆動輪に作用する外力であると判定されたときには、前記駆動源の回転速度の周期的変動成分と前記駆動輪の回転速度の周期的変動成分との偏差に基づく補正量を演算し、前記駆動源の目標回転駆動力を前記補正量にて補正するよう構成される(請求項7の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration according to any one of claims 1 to 5, the control means performs a target rotation of the drive source based on a driver's driving operation. The driving force is calculated, the rotational driving force of the driving source is controlled based on the target rotational driving force of the driving source, and the main factor of the rotational vibration of the driving wheel acts on the driving wheel by the rotational vibration determining means. When it is determined that the force is an external force, a correction amount based on a deviation between a periodic variation component of the rotational speed of the drive source and a periodic variation component of the rotational speed of the drive wheel is calculated, and the target rotational drive of the drive source is calculated. It is comprised so that force may be correct | amended with the said corrected amount (structure of Claim 7).

一般に、駆動輪に回転振動が発生すると、駆動源の回転速度及び駆動輪の回転速度が周期的に変動するが、図7に示されている如く、駆動輪の回転振動の主要因が駆動力伝達部材の捩れであるか(A)、駆動輪の回転振動の主要因が駆動輪に作用する外力であるか(B)によって駆動輪の回転速度及び駆動減の回転速度の関係が異なるので、駆動源の回転速度の周期的変動成分及び駆動輪の回転速度の周期的変動成分を比較することにより、駆動輪の回転振動の主要因が駆動力伝達部材の捩れ及び路面より駆動輪に作用する外力の何れであるかを判定することができる。   In general, when rotational vibration occurs in the drive wheels, the rotational speed of the drive source and the rotational speed of the drive wheels fluctuate periodically. As shown in FIG. 7, the main factor of the rotational vibration of the drive wheels is the driving force. Since the relationship between the rotational speed of the driving wheel and the rotational speed of driving reduction differs depending on whether the transmission member is twisted (A) or the main factor of rotational vibration of the driving wheel is an external force acting on the driving wheel (B) By comparing the periodic fluctuation component of the rotational speed of the driving source and the periodic fluctuation component of the rotational speed of the driving wheel, the main factor of the rotational vibration of the driving wheel acts on the driving wheel from the twist of the driving force transmission member and the road surface. It can be determined which of the external forces.

上記請求項1の構成によれば、駆動源の回転速度の周期的変動成分及び駆動輪の回転速度の周期的変動成分を比較することにより、駆動輪の回転振動の主要因が駆動力伝達部材の捩れ及び路面より駆動輪に作用する外力の何れであるかが判定されるので、駆動輪の回転振動が生じた場合にその主要因が駆動力伝達部材の捩れ及び路面より駆動輪に作用する外力の何れであるかを確実に判定することができ、また判定された主要因による駆動輪の回転振動を抑制するよう駆動源の回転駆動力が制御されるので、駆動輪の回転振動の主要因に応じて適正に駆動源の回転駆動力を制御し、これにより駆動輪の回転振動の主要因の如何に関係なく駆動輪の回転振動を確実に且つ効果的に抑制することができる。   According to the first aspect of the present invention, by comparing the periodic fluctuation component of the rotational speed of the driving source and the periodic fluctuation component of the rotational speed of the driving wheel, the main factor of the rotational vibration of the driving wheel is the driving force transmitting member. It is determined whether the torsion of the driving wheel or the external force acting on the driving wheel from the road surface. Therefore, when rotational vibration of the driving wheel occurs, the main factor acts on the driving wheel from the twisting of the driving force transmitting member and the road surface. The external driving force can be reliably determined, and the rotational driving force of the driving source is controlled so as to suppress the rotational vibration of the driving wheel due to the determined main factor. The rotational driving force of the drive source is appropriately controlled according to the cause, and thereby the rotational vibration of the driving wheel can be reliably and effectively suppressed regardless of the main factor of the rotational vibration of the driving wheel.

また上記請求項2の構成によれば、駆動源の回転速度の周期的変動成分の振幅及び駆動輪の回転速度の周期的変動成分の振幅を比較することにより、駆動輪の回転振動の主要因が駆動力伝達部材の捩れ及び路面より駆動輪に作用する外力の何れであるかが判定されるので、駆動輪の回転振動の主要因が駆動力伝達部材の捩れ及び路面より駆動輪に作用する外力の何れであるかを確実に且つ正確に判定することができる。   According to the second aspect of the present invention, by comparing the amplitude of the periodically varying component of the rotational speed of the driving source and the amplitude of the periodically varying component of the rotating speed of the driving wheel, the main factor of the rotational vibration of the driving wheel is compared. Therefore, it is determined which is the torsion of the driving force transmission member and the external force acting on the driving wheel from the road surface. Therefore, the main factor of the rotational vibration of the driving wheel acts on the driving wheel from the twisting of the driving force transmission member and the road surface. It is possible to reliably and accurately determine the external force.

また上記請求項3の構成によれば、駆動源の回転速度の周期的変動成分の振幅が駆動輪の回転速度の周期的変動成分の振幅に比して大きいときに、駆動輪の回転振動の主要因が駆動力伝達部材の捩れであると判定されるので、駆動力伝達部材の捩れに起因して駆動輪の回転振動が発生している場合に、そのことを確実に判定することができる。   According to the third aspect of the present invention, when the amplitude of the periodic fluctuation component of the rotational speed of the drive source is larger than the amplitude of the periodic fluctuation component of the rotational speed of the drive wheel, Since it is determined that the main factor is torsion of the driving force transmission member, when rotational vibration of the driving wheel is generated due to torsion of the driving force transmission member, it can be reliably determined. .

また上記請求項4の構成によれば、駆動輪の回転速度の周期的変動成分の振幅が駆動源の回転速度の周期的変動成分の振幅に比して大きいときに、駆動輪の回転振動の主要因が路面より前記駆動輪に作用する外力であると判定されるので、路面より駆動輪に作用する外力に起因して駆動輪の回転振動が発生している場合に、そのことを確実に判定することができる。   According to the fourth aspect of the present invention, when the amplitude of the periodic fluctuation component of the rotational speed of the driving wheel is larger than the amplitude of the periodic fluctuation component of the rotational speed of the driving source, the rotational vibration of the driving wheel is reduced. Since it is determined that the main factor is the external force acting on the driving wheel from the road surface, it is ensured that the rotational vibration of the driving wheel is generated due to the external force acting on the driving wheel from the road surface. Can be determined.

また上記請求項5の構成によれば、駆動源の回転速度の周期的変動成分若しくは駆動輪の回転速度の周期的変動成分に基づいて駆動輪の回転振動を低減するための駆動源の回転駆動力の制振制御量が演算され、駆動輪の回転振動の主要因が駆動力伝達部材の捩れであると判定されたときには、駆動輪の回転速度の周期的変動成分及び駆動源の回転速度の周期的変動成分に基づいて制振制御量が演算されるので、駆動輪の回転速度の周期的変動成分及び駆動源の回転速度の周期的変動成分の一方に基づいて制振制御量が演算される場合に比して、駆動輪の回転振動を確実に且つ効果的に低減することができる。   According to the fifth aspect of the present invention, the rotational driving of the driving source for reducing the rotational vibration of the driving wheel based on the periodic fluctuation component of the rotational speed of the driving source or the periodic fluctuation component of the rotational speed of the driving wheel. When the damping control amount of the force is calculated and it is determined that the main factor of the rotational vibration of the driving wheel is torsion of the driving force transmission member, the periodic fluctuation component of the rotational speed of the driving wheel and the rotational speed of the driving source Since the vibration suppression control amount is calculated based on the periodic variation component, the vibration suppression control amount is calculated based on one of the periodic variation component of the rotational speed of the drive wheel and the periodic variation component of the rotation speed of the drive source. As compared with the case, the rotational vibration of the drive wheel can be surely and effectively reduced.

また上記請求項6の構成によれば、駆動源の回転速度の周期的変動成分若しくは駆動輪の回転速度の周期的変動成分に基づいて駆動輪の回転振動を低減するための駆動源の回転駆動力の制振制御量が演算され、駆動輪の回転振動の主要因が駆動輪に作用する外力であると判定されたときには、制振制御量に対する駆動輪の回転速度の周期的変動成分の寄与度合が低下されるので、駆動輪の回転速度の周期的変動成分が制振制御量に反映することに起因して駆動輪の回転振動が却って悪化することを防止しつつ駆動輪の回転振動を確実に且つ効果的に低減することができる。   According to the sixth aspect of the present invention, the rotational driving of the driving source for reducing the rotational vibration of the driving wheel based on the periodic fluctuation component of the rotational speed of the driving source or the periodic fluctuation component of the rotational speed of the driving wheel. When the damping control amount of force is calculated and it is determined that the main factor of rotational vibration of the driving wheel is an external force acting on the driving wheel, the contribution of the cyclic fluctuation component of the rotational speed of the driving wheel to the damping control amount Since the degree of rotation is reduced, the rotational vibration of the driving wheel is prevented from deteriorating due to the fact that the periodic fluctuation component of the rotational speed of the driving wheel is reflected in the vibration suppression control amount. It can be reliably and effectively reduced.

また上記請求項7の構成によれば、制御手段は運転者の運転操作に基づいて駆動源の目標回転駆動力を演算し、駆動源の目標回転駆動力に基づいて駆動源の回転駆動力を制御し、回転振動判定手段により駆動輪の回転振動の主要因が駆動輪に作用する外力であると判定されたときには、駆動源の回転速度の周期的変動成分と駆動輪の回転速度の周期的変動成分との偏差に基づく補正量を演算し、駆動源の回転駆動力を補正量にて補正するので、駆動輪に作用する外力が外乱として車輌に作用する虞れを低減しつつ駆動輪の回転振動を確実に且つ効果的に低減することができる。   According to the seventh aspect of the present invention, the control means calculates the target rotational driving force of the driving source based on the driving operation of the driver, and calculates the rotational driving force of the driving source based on the target rotational driving force of the driving source. When the rotational vibration determining means determines that the main factor of the rotational vibration of the driving wheel is an external force acting on the driving wheel, the periodic fluctuation component of the rotational speed of the driving source and the periodic speed of the rotational speed of the driving wheel are determined. Since the correction amount based on the deviation from the fluctuation component is calculated and the rotational driving force of the drive source is corrected with the correction amount, the possibility that the external force acting on the driving wheel acts on the vehicle as a disturbance is reduced. Rotational vibration can be reliably and effectively reduced.

[課題解決手段の好ましい態様]
本発明の一つの好ましい態様によれば、上記請求項1の構成に於いて、制御手段は運転者の運転操作に基づいて駆動源の目標回転駆動力を演算し、駆動源の回転速度の周期的変動成分若しくは駆動輪の回転速度の周期的変動成分に基づいて駆動輪の回転振動を抑制するための制振制御量を演算し、制振制御量にて補正された後の目標回転駆動力に基づいて駆動源の回転駆動力を制御するよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferred aspect of the present invention, in the configuration of claim 1, the control means calculates the target rotational driving force of the driving source based on the driving operation of the driver, and the period of the rotational speed of the driving source. The target rotational driving force after calculating the vibration damping control amount to suppress the rotational vibration of the driving wheel based on the dynamic fluctuation component or the cyclic fluctuation component of the rotational speed of the driving wheel, and correcting with the vibration damping control amount The rotational driving force of the driving source is controlled based on the above (preferred aspect 1).

本発明の他の一つの好ましい態様によれば、上記請求項2又は上記好ましい態様1の構成に於いて、回転振動判定手段は駆動源の回転速度の周期的変動成分の振幅及び駆動輪の回転速度の周期的変動成分の振幅の大小関係に基づいて駆動輪の回転振動の主要因が駆動力伝達部材の捩れ及び路面より駆動輪に作用する外力の何れであるかを判定するよう構成される(好ましい態様2)。   According to another preferred aspect of the present invention, in the configuration of the above-mentioned claim 2 or the preferred aspect 1, the rotational vibration determining means includes the amplitude of the periodically varying component of the rotational speed of the drive source and the rotation of the drive wheel. It is configured to determine whether the main factor of the rotational vibration of the driving wheel is the torsion of the driving force transmitting member or the external force acting on the driving wheel from the road surface based on the amplitude relationship of the periodic fluctuation component of the speed (Preferred embodiment 2).

本発明の他の一つの好ましい態様によれば、上記請求項3又は上記好ましい態様1又は2の構成に於いて、回転振動判定手段は駆動源の回転速度の周期的変動成分の振幅が振幅基準値以上であり且つ駆動源の回転速度の周期的変動成分の振幅が駆動輪の回転速度の周期的変動成分の振幅に比して大きいときに、駆動輪の回転振動の主要因が駆動力伝達部材の捩れに起因する振動であると判定するよう構成される(好ましい態様3)。   According to another preferred aspect of the present invention, in the configuration of the above-mentioned claim 3 or the preferred aspect 1 or 2, the rotational vibration determining means is configured such that the amplitude of the periodically varying component of the rotational speed of the drive source is an amplitude reference. When the amplitude of the periodic fluctuation component of the rotational speed of the driving source is greater than the value and larger than the amplitude of the cyclic fluctuation component of the rotational speed of the driving wheel, the main factor of the rotational vibration of the driving wheel is the driving force transmission. It is configured to determine that the vibration is caused by torsion of the member (preferred aspect 3).

本発明の他の一つの好ましい態様によれば、上記好ましい態様3の構成に於いて、回転振動判定手段は駆動源の回転速度の周期的変動成分の振幅の振幅がそれぞれ駆動源用及び駆動輪用の振幅基準値以上であり且つ駆動源の回転速度の周期的変動成分の振幅が駆動輪の回転速度の周期的変動成分の振幅に比して第一の比較基準値以上大きいときに、駆動輪の回転振動の主要因が駆動力伝達部材の捩れに起因する振動であると判定するよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in the configuration of the preferred aspect 3 described above, the rotational vibration determining means has the amplitude of the periodically varying component of the rotational speed of the driving source for the driving source and the driving wheel, respectively. Driving when the amplitude of the periodic fluctuation component of the rotational speed of the drive source is greater than the first reference reference value compared to the amplitude of the cyclic fluctuation component of the rotational speed of the drive wheel. It is configured to determine that the main factor of the rotational vibration of the wheel is vibration caused by torsion of the driving force transmission member (preferred aspect 4).

本発明の他の一つの好ましい態様によれば、上記請求項4又は上記好ましい態様1乃至4の構成に於いて、回転振動判定手段は駆動源の回転速度の周期的変動成分の振幅が振幅基準値未満であり且つ駆動輪の回転速度の周期的変動成分の振幅が駆動源の回転速度の周期的変動成分の振幅に比して大きいときに、駆動輪の回転振動の主要因が路面より駆動輪に作用する外力に起因する振動であると判定するよう構成される(好ましい態様5)。   According to another preferred embodiment of the present invention, in the configuration of the above-mentioned claim 4 or the preferred embodiments 1 to 4, the rotational vibration determining means is configured such that the amplitude of the periodically varying component of the rotational speed of the drive source is an amplitude reference. If the amplitude of the periodic fluctuation component of the rotational speed of the driving wheel is less than the value and larger than the amplitude of the periodic fluctuation component of the rotational speed of the driving source, the main factor of the rotational vibration of the driving wheel is driven from the road surface. It is comprised so that it may determine with it being the vibration resulting from the external force which acts on a ring | wheel (Preferable aspect 5).

本発明の他の一つの好ましい態様によれば、上記好ましい態様5の構成に於いて、回転振動判定手段は駆動源の回転速度の周期的変動成分の振幅が振幅基準値未満であり且つ駆動輪の回転速度の周期的変動成分の振幅が駆動源の回転速度の周期的変動成分の振幅に比して第二の比較基準値以上大きいときに、駆動輪の回転振動の主要因が路面より駆動輪に作用する外力に起因する振動であると判定するよう構成される(好ましい態様6)。   According to another preferred aspect of the present invention, in the configuration of the preferred aspect 5 described above, the rotational vibration determining means has an amplitude of a periodically varying component of the rotational speed of the drive source that is less than the amplitude reference value and the drive wheel. When the amplitude of the periodic fluctuation component of the rotational speed of the motor is larger than the amplitude of the periodic fluctuation component of the rotational speed of the drive source by more than the second comparison reference value, the main factor of the rotational vibration of the driving wheel is driven from the road surface It is configured to determine that the vibration is caused by an external force acting on the wheel (preferred aspect 6).

本発明の他の一つの好ましい態様によれば、上記請求項5の構成に於いて、回転振動判定手段により駆動輪の回転振動の主要因が駆動力伝達部材の捩れであると判定されたときには、制御手段は予め求められた駆動源の回転駆動力の変動と駆動源の回転速度の周期的変動成分及び駆動輪の回転速度の周期的変動成分との関係を利用して駆動源の回転速度の周期的変動成分及び駆動輪の回転速度の周期的変動成分に基づいて制振制御量を演算するよう構成される(好ましい態様7)。   According to another preferred aspect of the present invention, in the configuration of claim 5 above, when the rotational vibration determining means determines that the main factor of the rotational vibration of the driving wheel is the torsion of the driving force transmitting member. The control means uses the relationship between the predetermined fluctuation of the rotational driving force of the driving source and the periodic fluctuation component of the rotational speed of the driving source and the periodic fluctuation component of the rotational speed of the driving wheel to obtain the rotational speed of the driving source. The vibration damping control amount is configured to be calculated based on the periodic fluctuation component and the periodic fluctuation component of the rotational speed of the drive wheel (preferred aspect 7).

本発明の他の一つの好ましい態様によれば、上記請求項6の構成に於いて、回転振動判定手段により駆動輪の回転振動の主要因が駆動輪に作用する外力であると判定されたときには、制御手段は制振制御量に対する駆動源の回転速度の周期的変動成分の寄与度合を高くすると共に制振制御量に対する駆動輪の回転速度の周期的変動成分の寄与度合を低下させるよう構成される(好ましい態様8)。   According to another preferred aspect of the present invention, in the configuration of claim 6, when the rotational vibration determining means determines that the main factor of the rotational vibration of the driving wheel is an external force acting on the driving wheel. The control means is configured to increase the contribution of the periodically varying component of the rotational speed of the drive source to the vibration suppression control amount and to reduce the contribution of the periodically varying component of the rotational speed of the drive wheel to the vibration suppression control amount. (Preferred embodiment 8)

本発明の他の一つの好ましい態様によれば、上記請求項6の構成に於いて、回転振動判定手段により駆動輪の回転振動の主要因が駆動輪に作用する外力であると判定されたときには、制御手段は駆動源の回転速度の周期的変動成分に基づいて制振制御量を演算するよう構成される(好ましい態様9)。   According to another preferred aspect of the present invention, in the configuration of claim 6, when the rotational vibration determining means determines that the main factor of the rotational vibration of the driving wheel is an external force acting on the driving wheel. The control means is configured to calculate a vibration suppression control amount based on a periodic fluctuation component of the rotational speed of the drive source (preferred aspect 9).

本発明の他の一つの好ましい態様によれば、上記請求項6の構成に於いて、回転振動判定手段により駆動輪の回転振動の主要因が駆動輪に作用する外力であると判定されたときには、制御手段は駆動輪に作用する外力に起因する周期的変動成分の寄与度合を低下させるフィルタ処理後の駆動輪の回転速度の周期的変動成分に基づいて制振制御量を演算するよう構成される(好ましい態様10)。   According to another preferred aspect of the present invention, in the configuration of claim 6, when the rotational vibration determining means determines that the main factor of the rotational vibration of the driving wheel is an external force acting on the driving wheel. The control means is configured to calculate a damping control amount based on a periodic fluctuation component of the rotational speed of the drive wheel after the filter processing that reduces the contribution degree of the periodic fluctuation component caused by the external force acting on the drive wheel. (Preferred embodiment 10).

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.

図1は四輪駆動の電気自動車に適用された本発明による車輌の駆動力制御装置の実施例1を示す概略構成図である。   FIG. 1 is a schematic diagram showing a first embodiment of a vehicle driving force control apparatus according to the present invention applied to a four-wheel drive electric vehicle.

図1に於いて、10FL及び10FRはそれぞれ操舵輪である左右の前輪を示し、10RL及び10RRはそれぞれ非操舵輪である左右の後輪を示している。左右の前輪10FL及び10FRはそれぞれ駆動軸12FL及び12FRにより駆動源である電動機14FL及び14FRの回転軸に連結されており、電動機14FL及び14FRの回転駆動力はそれぞれ駆動軸12FL及び12FRにより左右の前輪10FL及び10FRへ伝達される。   In FIG. 1, 10FL and 10FR respectively indicate left and right front wheels that are steering wheels, and 10RL and 10RR respectively indicate left and right rear wheels that are non-steering wheels. The left and right front wheels 10FL and 10FR are connected to the rotating shafts of electric motors 14FL and 14FR, which are driving sources, by driving shafts 12FL and 12FR, respectively, and the rotational driving forces of the electric motors 14FL and 14FR are respectively driven by the driving shafts 12FL and 12FR. It is transmitted to 10FL and 10FR.

同様に、左右の後輪10RL及び10RRはそれぞれ駆動軸12RL及び12RRにより駆動源である電動機14RL及び14RRの回転軸に連結されており、電動機14RL及び14RRの回転駆動力はそれぞれ駆動軸12RL及び12RRにより左右の後輪10RL及び10RRへ伝達される。尚電動機14FL〜14RRは制動時には発電機として機能することにより回生制動力を発生するようになっていてもよい。   Similarly, the left and right rear wheels 10RL and 10RR are connected to the rotation shafts of the electric motors 14RL and 14RR as drive sources by the drive shafts 12RL and 12RR, respectively, and the rotational driving forces of the electric motors 14RL and 14RR are the drive shafts 12RL and 12RR, respectively. Is transmitted to the left and right rear wheels 10RL and 10RR. The motors 14FL to 14RR may function as a generator during braking to generate a regenerative braking force.

運転者により操作されるアクセルペダル16にはアクセル開度センサ18が設けられており、電動機14FL〜14RRの回転駆動力はアクセル開度センサ18により検出されるアクセルペダル16の踏み込み量としてのアクセル開度φに基づき駆動力制御用電子制御装置20により制御される。尚電動機14FL〜14RRが制動時に発電機として機能する場合には、電動機14FL〜14RRの回生制動力も駆動力制御用電子制御装置20により制御される。   The accelerator pedal 16 that is operated by the driver is provided with an accelerator opening sensor 18, and the rotational driving force of the electric motors 14 FL to 14 RR is an accelerator opening as an amount of depression of the accelerator pedal 16 detected by the accelerator opening sensor 18. It is controlled by the driving force control electronic control unit 20 based on the degree φ. When the motors 14FL to 14RR function as a generator during braking, the regenerative braking force of the motors 14FL to 14RR is also controlled by the driving force control electronic control unit 20.

左右の前輪10FL、10FR及び左右の後輪10RL、10RRの摩擦制動力は摩擦制動装置22の油圧回路24により対応するホイールシリンダ26FL、26FR、26RL、26RRの制動圧が制御されることによって制御される。図には示されていないが、油圧回路24はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧力は通常時には運転者によるブレーキペダル28の踏み込みにより駆動されるマスタシリンダ30の圧力に応じて制動力制御用電子制御装置32により制御され、また必要に応じて運転者によるブレーキペダル28の踏み込み量に関係なく制御される。   The friction braking force of the left and right front wheels 10FL, 10FR and the left and right rear wheels 10RL, 10RR is controlled by controlling the braking pressures of the corresponding wheel cylinders 26FL, 26FR, 26RL, 26RR by the hydraulic circuit 24 of the friction braking device 22. The Although not shown in the drawing, the hydraulic circuit 24 includes a reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven by depression of the brake pedal 28 by the driver. Is controlled by the braking force control electronic control device 32 in accordance with the pressure of the vehicle, and is controlled as necessary regardless of the amount of depression of the brake pedal 28 by the driver.

尚図1には詳細に示されていないが、駆動力制御用電子制御装置20及び制動力制御用電子制御装置32はそれぞれマイクロコンピュータと駆動回路とを含み、特に駆動力制御用電子制御装置20はインバータ及びバッテリを含み、マイクロコンピュータは例えばCPUと、ROMと、RAMと、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。   Although not shown in detail in FIG. 1, the driving force control electronic control device 20 and the braking force control electronic control device 32 each include a microcomputer and a drive circuit, and in particular, the driving force control electronic control device 20. Includes an inverter and a battery. The microcomputer has, for example, a CPU, a ROM, a RAM, and an input / output port device, which are connected to each other via a bidirectional common bus. Good.

左前輪について図2に示されている如く、左右の前輪10FL、10FR及び左右の後輪10RL、10RRにはそれぞれ対応する車輪の回転速度Vwi(i=fl、fr、rl、rr)を検出する車輪速度センサ34FL〜34RRが設けられており、電動機14FL〜14RRにはその回転速度Vdi(i=fl、fr、rl、rr)を検出するレゾルバ36FL〜36RRが設けられている。   As shown in FIG. 2 for the left front wheel, the rotational speeds Vwi (i = fl, fr, rl, rr) of the corresponding wheels are detected for the left and right front wheels 10FL, 10FR and the left and right rear wheels 10RL, 10RR, respectively. Wheel speed sensors 34FL to 34RR are provided, and resolvers 36FL to 36RR for detecting the rotational speed Vdi (i = fl, fr, rl, rr) are provided for the motors 14FL to 14RR.

駆動力制御用電子制御装置20にはアクセル開度センサ18よりのアクセル開度φを示す信号に加えて、車輪速度センサ34FL〜34RRより車輪の回転速度Vwiを示す信号、レゾルバ36FL〜36RRより回転速度Vdiを示す信号が入力される。また制動力制御用電子制御装置32には圧力センサ38よりマスタシリンダ圧力Pmを示す信号、圧力センサ40FL〜40RRより対応する車輪の制動圧(ホイールシリンダ圧力)Pbi(i=fl、fr、rl、rr)を示す信号が入力される。駆動力制御用電子制御装置20及び制動力制御用電子制御装置32は必要に応じて相互に信号の授受を行う。   In addition to the signal indicating the accelerator opening φ from the accelerator opening sensor 18, the driving force control electronic control device 20 rotates the signals from the resolvers 36 FL to 36 RR through the signals indicating the wheel rotation speed Vwi from the wheel speed sensors 34 FL to 34 RR. A signal indicating the speed Vdi is input. The braking force control electronic control unit 32 has a signal indicating the master cylinder pressure Pm from the pressure sensor 38, and a corresponding wheel braking pressure (wheel cylinder pressure) Pbi (i = fl, fr, rl,) from the pressure sensors 40FL to 40RR. rr) is input. The driving force control electronic control device 20 and the braking force control electronic control device 32 exchange signals with each other as necessary.

駆動力制御用電子制御装置20は、運転者の加減速操作量であるアクセル開度φに基づき車輌の目標駆動力Fvtを演算すると共に、目標駆動力Fvtを当技術分野に於いて公知の要領にて各車輪に配分することにより電動機14FL〜14RRの目標回転駆動力Fwti(i=fl、fr、rl、rr)を演算し、通常時には目標回転駆動力Fwtiに基づいて電動機14FL〜14RRに対する目標駆動電流Iwti(i=fl、fr、rl、rr)を演算し、目標駆動電流Iwtiに基づいて電動機14FL〜14RRの回転駆動力を制御する。   The driving force control electronic control unit 20 calculates the target driving force Fvt of the vehicle based on the accelerator opening φ that is the acceleration / deceleration operation amount of the driver, and uses the target driving force Fvt as known in the art. The target rotational driving force Fwti (i = fl, fr, rl, rr) of the motors 14FL to 14RR is calculated by allocating to each wheel at the normal time, and the target for the motors 14FL to 14RR is normally calculated based on the target rotational driving force Fwti. The drive current Iwti (i = fl, fr, rl, rr) is calculated, and the rotational drive force of the motors 14FL to 14RR is controlled based on the target drive current Iwti.

また駆動力制御用電子制御装置20は、各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車体速度Vb及び各車輪の加速スリップ量SAi(i=fl、fr、rl、rr)を演算し、加速スリップ量SAiがトラクション制御(TRC制御)開始の基準値よりも大きくなり、トラクション制御の開始条件が成立すると、トラクション制御の終了条件が成立するまで、当該車輪の加速スリップ量が所定の範囲内になるよう当該車輪のトラクション制御の目標回転駆動力Fwtrcti(i=fl、fr、rl、rr)を演算し、目標回転駆動力Fwtrctiに基づいて当該車輪の電動機14FL〜14RRに対する目標駆動電流Iwtrcti(i=fl、fr、rl、rr)を演算し、目標駆動電流Iwtrctiに基づいて当該車輪の電動機14FL〜14RRの回転駆動力を制御することによりトラクション制御を行う。   The electronic controller 20 for controlling the driving force controls the vehicle body speed Vb and the acceleration slip amount SAi (i = fl, fr, rl, etc.) of each wheel according to a known method in the art based on the wheel speed Vwi of each wheel. rr), and when the acceleration slip amount SAi becomes larger than the reference value for starting traction control (TRC control) and the traction control start condition is satisfied, the acceleration slip of the wheel is continued until the traction control end condition is satisfied. The target rotational driving force Fwtrcti (i = fl, fr, rl, rr) for the traction control of the wheel is calculated so that the amount falls within a predetermined range, and the motors 14FL to 14RR of the wheel are calculated based on the target rotational driving force Fwtrcti. Is calculated by calculating a target drive current Iwtrcti (i = fl, fr, rl, rr) for the motor and controlling the rotational drive force of the motors 14FL to 14RR of the wheel based on the target drive current Iwtrcti. Control.

他方制動力制御用電子制御装置32は、各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車体速度Vb及び各車輪の制動スリップ量SBi(i=fl、fr、rl、rr)を演算し、制動スリップ量SBiがアンチスキッド制御(ABS制御)開始の基準値よりも大きくなり、アンチスキッド制御の開始条件が成立すると、アンチスキッド制御の終了条件が成立するまで、当該車輪の制動スリップ量が所定の範囲内になるよう当該車輪の制動圧Pbiを制御することによってアンチスキッド制御を行う。   On the other hand, the braking force control electronic control unit 32 is based on the wheel speed Vwi of each wheel, and the vehicle speed Vb and the braking slip amount SBi (i = fl, fr, rl, rr), the braking slip amount SBi becomes larger than the reference value for starting the anti-skid control (ABS control), and when the anti-skid control start condition is satisfied, the corresponding wheel is kept until the anti-skid control end condition is satisfied. Anti-skid control is performed by controlling the braking pressure Pbi of the wheel so that the braking slip amount of the vehicle falls within a predetermined range.

更に駆動力制御用電子制御装置20は、各車輪毎に車輪速度Vwiの周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddi(i=fl、fr、rl、rr)を演算し、周期的変動成分Vwdi及びVddiの振幅に基づいて車輪の回転振動が過大であり、制振が必要であるか否かを判定し、制振が必要ではないと判定したときには上述の如く通常時又はトラクション制御時の回転駆動力の制御を行う。   Further, the driving force control electronic control unit 20 calculates the periodic fluctuation component Vwdi of the wheel speed Vwi and the periodic fluctuation component Vddi (i = fl, fr, rl, rr) of the rotational speed Vdi for each wheel, and the cycle. Based on the amplitudes of the dynamic fluctuation components Vwdi and Vddi, it is determined whether or not the vibration of the wheel is excessive and vibration suppression is necessary. Controls the rotational driving force during control.

これに対し駆動力制御用電子制御装置20は、制振が必要であると判定したときには、周期的変動成分Vwdi及びVddiの大小関係に基づき車輪の回転振動の主要因が駆動軸12FL〜12RRの捩れ及び路面より車輪に作用する外力の何れであるかを判定し、判定された主要因による車輪の回転振動を抑制するよう電動機14FL〜14RRの回転駆動力を制御するための制振回転駆動力Fwanti(i=fl、fr、rl、rr)を演算し、制振回転駆動力Fwantiに基づき電動機14FL〜14RRに対する目標制振駆動電流Ianti(i=fl、fr、rl、rr)を演算し、目標制振駆動電流Iantiにて補正された後の目標駆動電流Itiに基づいて電動機14FL〜14RRの回転駆動力を制御する。   On the other hand, when the driving force control electronic control unit 20 determines that vibration suppression is necessary, the main factor of the rotational vibration of the wheels is that of the drive shafts 12FL to 12RR based on the magnitude relationship between the periodic fluctuation components Vwdi and Vddi. It is determined whether torsion or external force acting on the wheel from the road surface, and vibration damping rotational driving force for controlling the rotational driving force of the motors 14FL to 14RR so as to suppress the rotational vibration of the wheel due to the determined main factor. Fwanti (i = fl, fr, rl, rr) is calculated, and the target damping drive current Ianti (i = fl, fr, rl, rr) for the motors 14FL to 14RR is calculated based on the damping rotational driving force Fwanti, Based on the target drive current Iti corrected by the target vibration suppression drive current Iti, the rotational drive force of the motors 14FL to 14RR is controlled.

次に図3に示されたフローチャートを参照して図示の実施例1に於いて駆動力制御用電子制御装置20により達成される駆動力制御について説明する。尚図3に示されたフローチャートによる制御は駆動力制御用電子制御装置20が起動されることにより開始され、図には示されていないイグニッションスイッチがオフに切り換えられるまで所定の時間毎に繰返し実行される。またステップ20以降は例えば左前輪、右前輪、左後輪、右後輪の順に各車輪毎に実行される。   Next, the driving force control achieved by the driving force control electronic control unit 20 in the illustrated embodiment 1 will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 3 is started when the driving force control electronic control device 20 is started, and is repeatedly executed at predetermined time intervals until an ignition switch (not shown) is turned off. Is done. Step 20 and subsequent steps are executed for each wheel in the order of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, for example.

まずステップ10に於いてはアクセル開度センサ14により検出されたアクセル開度φを示す信号等の読み込みが行われ、ステップ20に於いてはアクセル開度φ等に基づき上述の要領にて車輌の目標駆動力Fvtが演算されると共に、目標駆動力Fvtに基づいて電動機14FL〜14RRの目標回転駆動力Fwtiが演算され、ステップ30に於いては目標回転駆動力Fwtiに基づいて電動機14FL〜14RRに対する目標駆動電流Iwtiが演算される。   First, in step 10, a signal indicating the accelerator opening φ detected by the accelerator opening sensor 14 is read, and in step 20, based on the accelerator opening φ and the like, the vehicle is The target driving force Fvt is calculated, and the target rotational driving force Fwti of the motors 14FL to 14RR is calculated based on the target driving force Fvt. In step 30, the motors 14FL to 14RR are operated based on the target rotational driving force Fwti. A target drive current Iwti is calculated.

ステップ40に於いては当技術分野に於いて公知の要領にて車輪速度Vwiの周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddi(i=fl、fr、rl、rr)が演算され、ステップ50に於いては周期的変動成分Vddiの振幅Addiが演算されると共に、振幅Addiが振動判定の基準値Addo(正の定数)以上であるか否かの判別、即ち対応する電動機14FL〜14RRの回転振動が大きい状況であるか否かの判別が行われ、肯定判別が行われたときにはステップ100へ進み、否定判別が行われたときにはステップ60へ進む。   In step 40, the periodic fluctuation component Vwdi of the wheel speed Vwi and the periodic fluctuation component Vddi (i = fl, fr, rl, rr) of the rotational speed Vdi are calculated in a manner known in the art. In step 50, the amplitude Addi of the periodic fluctuation component Vddi is calculated, and whether or not the amplitude Addi is greater than or equal to a vibration determination reference value Addo (a positive constant), that is, the corresponding motor 14FL˜ It is determined whether or not the rotational vibration of 14RR is large. If an affirmative determination is made, the process proceeds to step 100. If a negative determination is made, the process proceeds to step 60.

ステップ60に於いては周期的変動成分Vwdiの振幅Awdiが周期的変動成分Vddiの振幅Addiよりも大きいか否かの判別、即ち車輪の回転振動の主要因が路面より当該車輪に作用する外力であるか否かの判別が行われ、肯定判別が行われたときにはステップ120へ進み、否定判別が行われたときにはステップ70へ進む。   In step 60, it is determined whether the amplitude Awdi of the periodic fluctuation component Vwdi is larger than the amplitude Addi of the periodic fluctuation component Vddi, that is, the main factor of the rotational vibration of the wheel is an external force acting on the wheel from the road surface. If a positive determination is made, the process proceeds to step 120. If a negative determination is made, the process proceeds to step 70.

ステップ70に於いては当該車輪についてトラクション制御が実行されているか否かの判別が行われ、否定判別が行われたときにはステップ80に於いて当該車輪の最終目標駆動電流Itiがステップ30に於いて演算された目標駆動電流Iwtiに設定され、肯定判別が行われたときにはステップ90に於いて当該車輪の最終目標駆動電流Itiがトラクション制御の目標駆動電流Iwtrctiに設定される。   In step 70, it is determined whether or not the traction control is being performed for the wheel. If a negative determination is made, in step 80, the final target drive current Iti of the wheel is determined in step 30. When the calculated target drive current Iwti is set and an affirmative determination is made, in step 90, the final target drive current Iti of the wheel is set to the target drive current Iwtrcti for traction control.

ステップ100に於いては周期的変動成分Vddiの振幅Addiが周期的変動成分Vwdiの振幅Awdiよりも大きいか否かの判別、即ち車輪の回転振動の主要因が駆動軸12FL〜12RRの捩れであるか否かの判別が行われ、肯定判別が行われたときにはステップ110へ進み、否定判別が行われたときにはステップ120へ進む。   In step 100, it is determined whether or not the amplitude Addi of the periodic fluctuation component Vddi is larger than the amplitude Awdi of the periodic fluctuation component Vwdi, that is, the main factor of the rotational vibration of the wheels is the torsion of the drive shafts 12FL to 12RR. If the determination is affirmative, the process proceeds to step 110. If the determination is negative, the process proceeds to step 120.

ステップ110に於いては周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddiに基づいて当技術分野に於いて公知の要領にて該周期的変動成分の振動を抑制するための制振回転駆動力Fwanti(i=fl、fr、rl、rr)が演算され、ステップ120に於いては回転速度Vdiの周期的変動成分Vddiに基づいて当技術分野に於いて公知の要領にて該周期的変動成分の振動を抑制するための制振回転駆動力Fwanti(i=fl、fr、rl、rr)が演算される。   In step 110, the damping rotation for suppressing the vibration of the periodic fluctuation component based on the periodic fluctuation component Vwdi and the periodic fluctuation component Vddi of the rotational speed Vdi in a manner known in the art. The driving force Fwanti (i = fl, fr, rl, rr) is calculated, and in step 120, the periodicity is calculated in a manner known in the art based on the periodic fluctuation component Vddi of the rotational speed Vdi. A damping rotation driving force Fwanti (i = fl, fr, rl, rr) for suppressing the vibration of the fluctuation component is calculated.

尚ステップ110に於いては、電動機14FL〜14RRの回転駆動力の周期的変動を入力とし車輪速度Vwiの周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddiを出力とする車輌モデルに基づいて、車輪速度Vwiの周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddiを入力とし電動機14FL〜14RRの回転駆動力の周期的変動成分を出力とする逆モデルを設定し、逆モデルを利用して周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddiに基づいて制振回転駆動力Fwantiが演算されてよい。   In step 110, based on a vehicle model in which the periodic fluctuations of the rotational driving force of the motors 14FL to 14RR are input and the periodic fluctuation component Vwdi of the wheel speed Vwi and the periodic fluctuation component Vddi of the rotation speed Vdi are output. Then, an inverse model is set, in which the periodic fluctuation component Vwdi of the wheel speed Vwi and the periodic fluctuation component Vddi of the rotational speed Vdi are input, and the periodic fluctuation component of the rotational driving force of the motors 14FL to 14RR is output. By using the periodic fluctuation component Vwdi and the periodic fluctuation component Vddi of the rotational speed Vdi, the damping rotational driving force Fwanti may be calculated.

ステップ110又は120が完了するとステップ150へ進み、ステップ150に於いては制振回転駆動力Fwantiに基づいて電動機14FL〜14RRに対する目標制振駆動電流Ianti(i=fl、fr、rl、rr)が演算され、しかる後ステップ200へ進む。   When step 110 or 120 is completed, the routine proceeds to step 150 where the target damping drive current Ianti (i = fl, fr, rl, rr) for the motors 14FL-14RR is determined based on the damping rotational driving force Fwanti. After the calculation, the process proceeds to step 200.

ステップ200に於いては当該車輪についてトラクション制御が実行されているか否かの判別が行われ、否定判別が行われたときにはステップ210に於いて当該車輪の最終目標駆動電流Itiがステップ30に於いて演算された目標駆動電流Iwtiとステップ150に於いて演算された目標制振駆動電流Iantiとの和に設定され、肯定判別が行われたときにはステップ220に於いて当該車輪の最終目標駆動電流Itiがトラクション制御の目標駆動電流Iwtrctiとステップ150に於いて演算された目標制振駆動電流Iantiとの和に設定される。   In step 200, it is determined whether or not the traction control is being performed for the wheel. If a negative determination is made, in step 210, the final target drive current Iti of the wheel is determined in step 30. The sum of the calculated target drive current Iwti and the target vibration suppression drive current Ianti calculated in step 150 is set. It is set to the sum of the target drive current Iwtrcti for traction control and the target damping drive current Ianti calculated in step 150.

ステップ230に於いては当該車輪の電動機14FL〜14RRの駆動電流が最終目標駆動電流Itiに基づいて制御されることにより、当該車輪の回転駆動力が最終目標駆動電流Itiに対応する値に制御される。   In step 230, the drive current of the motors 14FL to 14RR of the wheel is controlled based on the final target drive current Iti, so that the rotational driving force of the wheel is controlled to a value corresponding to the final target drive current Iti. The

かくして図示の実施例1によれば、ステップ20及び30に於いて運転者の駆動操作量に基づいて各車輪の電動機14FL〜14RRに対する目標駆動電流Iwtiが演算され、ステップ40に於いて車輪速度Vwiの周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddiが演算される。   Thus, according to the illustrated first embodiment, the target drive current Iwti for the motors 14FL to 14RR of each wheel is calculated in steps 20 and 30 based on the driving operation amount of the driver, and the wheel speed Vwi is calculated in step 40. The periodic variation component Vwdi and the periodic variation component Vddi of the rotational speed Vdi are calculated.

電動機の回転振動が小さく、車輪の回転振動の主要因が路面より当該車輪に作用する外力である場合には、ステップ50に於いて否定判別が行われると共にステップ60に於いて肯定判別が行われ、これによりステップ120に於いて回転速度Vdiの周期的変動成分Vddiに基づいて制振回転駆動力Fwantiが演算され、ステップ150及びステップ200〜230に於いて制振回転駆動力Fwantiにより車輪の回転振動が抑制される。   When the rotational vibration of the motor is small and the main factor of the rotational vibration of the wheel is an external force acting on the wheel from the road surface, a negative determination is made at step 50 and an affirmative determination is made at step 60. Thus, in step 120, the vibration damping rotational driving force Fwanti is calculated based on the periodic fluctuation component Vddi of the rotational speed Vdi, and in steps 150 and 200 to 230, the wheel rotation is performed by the vibration damping rotational driving force Fwanti. Vibration is suppressed.

また電動機の回転振動が大きく、車輪の回転振動の主要因が駆動軸12FL〜12RRの捩れである場合には、ステップ50及び100に於いて肯定判別が行われ、これによりステップ110に於いて周期的変動成分Vwdi及び回転速度Vdiの周期的変動成分Vddiに基づいて制振回転駆動力Fwantiが演算され、ステップ150及びステップ200〜230に於いて制振回転駆動力Fwantiにより車輪の回転振動が抑制される。   Further, when the rotational vibration of the motor is large and the main cause of the rotational vibration of the wheel is the torsion of the drive shafts 12FL to 12RR, an affirmative determination is made in steps 50 and 100, whereby the cycle is determined in step 110. The vibration damping rotational driving force Fwanti is calculated based on the periodic fluctuation component Vwdi and the periodic fluctuation component Vddi of the rotational speed Vdi, and the rotational vibration of the wheel is suppressed by the vibration damping rotational driving force Fwanti in steps 150 and 200 to 230. Is done.

従って図示の実施例1によれば、車輪の回転振動の主要因が路面より当該車輪に作用する外力及び駆動軸12FL〜12RRの捩れの何れである場合にも、車輪の回転振動の主要因に応じて適正に制振回転駆動力Fwantiを演算し、これにより回転振動の主要因の如何に関係なく車輪の回転振動を確実に且つ効果的に抑制することができる。   Therefore, according to the first embodiment shown in the figure, the main factor of the rotational vibration of the wheel is the main factor of the rotational vibration of the wheel regardless of whether the main factor of the rotational vibration of the wheel is the external force acting on the wheel from the road surface or the torsion of the drive shafts 12FL-12RR. Accordingly, the vibration damping rotational driving force Fwanti is appropriately calculated, and thereby the rotational vibration of the wheel can be surely and effectively suppressed regardless of the main factor of the rotational vibration.

特に図示の実施例1によれば、ステップ60に於いて肯定判別が行われたときには、即ち車輪の回転振動の主要因が路面より当該車輪に作用する外力である場合には、ステップ50に於いて否定判別が行われると共にステップ60に於いて肯定判別が行われ、これによりステップ120に於いて回転速度Vdiの周期的変動成分Vddiに基づいて制振回転駆動力Fwantiが演算されるので、路面の凹凸等の影響を低減して制振回転駆動力Fwantiを演算することができると共に、車輪速度Vwiの周期的変動成分Vwdiに基づいて制振回転駆動力Fwantiが演算される後述の実施例2及び4の場合の如き周期的変動成分Vwdiに対する特別の信号処理も不要である。   In particular, according to the illustrated embodiment 1, when an affirmative determination is made at step 60, that is, when the main factor of the rotational vibration of the wheel is an external force acting on the wheel from the road surface, at step 50. Thus, a negative determination is made and an affirmative determination is made in step 60, whereby the vibration damping rotational driving force Fwanti is calculated based on the periodic fluctuation component Vddi of the rotational speed Vdi in step 120. The vibration damping rotation driving force Fwanti can be calculated by reducing the influence of the unevenness of the wheel, and the vibration damping rotation driving force Fwanti is calculated based on the periodic fluctuation component Vwdi of the wheel speed Vwi, which will be described later in a second embodiment. No special signal processing is required for the periodic fluctuation component Vwdi as in the case of 4 and 4.

図4は四輪駆動の電気自動車に適用された本発明による車輌の駆動力制御装置の実施例2に於ける駆動力制御ルーチンの要部を示すフローチャートである。尚図4に於いて図3に示されたステップと同一のステップには図3に於いて付されたステップ番号と同一のステップ番号が付されており、このことは後述の他の実施例についても同様である。   FIG. 4 is a flowchart showing a main part of a driving force control routine in Embodiment 2 of the vehicle driving force control device according to the present invention applied to a four-wheel drive electric vehicle. In FIG. 4, the same step number as the step number shown in FIG. 3 is assigned to the same step as the step shown in FIG. Is the same.

この実施例2に於いては、ステップ10〜110、150、200〜230は上述の実施例1の場合と同様に実行され、ステップ60に於いて肯定判別が行われたとき又はステップ100に於いて否定判別が行われたときにはステップ130へ進む。   In the second embodiment, steps 10 to 110, 150, and 200 to 230 are executed in the same manner as in the first embodiment, and when an affirmative determination is made in step 60 or in step 100. If a negative determination is made, the routine proceeds to step 130.

ステップ130に於いては車輪速度Vwiの周期的変動成分Vwdiに含まれる路面より車輪に作用し路面の凹凸に起因する外力振動成分を除去すべく、周期的変動成分Vwdiに対しローパスフィルタ処理が行われることにより、ローパスフィルタ処理後の車輪速度Vwiの周期的変動成分Vwdfi(i=fl、fr、rl、rr)が演算され、ステップ140に於いてはローパスフィルタ処理後の車輪速度Vwiの周期的変動成分Vwdfiに基づいて当技術分野に於いて公知の要領にて該周期的変動成分の振動を抑制するための制振回転駆動力Fwanti(i=fl、fr、rl、rr)が演算される。   In step 130, the low-pass filter processing is performed on the periodic fluctuation component Vwdi to remove the external force vibration component that acts on the wheel from the road surface included in the periodic fluctuation component Vwdi of the wheel speed Vwi and is caused by the unevenness of the road surface. As a result, a periodic fluctuation component Vwdfi (i = fl, fr, rl, rr) of the wheel speed Vwi after the low-pass filter processing is calculated, and in step 140, the periodicity of the wheel speed Vwi after the low-pass filter processing is calculated. Based on the fluctuation component Vwdfi, a damping rotation driving force Fwanti (i = fl, fr, rl, rr) for suppressing the vibration of the cyclic fluctuation component is calculated in a manner known in the art. .

かくして図示の実施例2によれば、車輪の回転振動が大きく、車輪の回転振動の主要因が路面より当該車輪に作用する外力である場合には、ステップ50に於いて否定判別が行われると共にステップ60に於いて肯定判別が行われ、これによりステップ130に於いて周期的変動成分Vwdiに対しローパスフィルタ処理が行われることにより、路面の凹凸に起因する振動成分が除去されたローパスフィルタ処理後の車輪速度Vwiの周期的変動成分Vwdfiが演算され、ステップ140に於いてローパスフィルタ処理後の車輪速度Vwiの周期的変動成分Vwdfiに基づいて制振回転駆動力Fwantiが演算され、ステップ150及びステップ200〜230に於いて制振回転駆動力Fwantiにより車輪の回転振動が抑制される。   Thus, according to the second embodiment shown in the figure, when the wheel rotational vibration is large and the main factor of the wheel rotational vibration is an external force acting on the wheel from the road surface, a negative determination is made in step 50. In step 60, an affirmative determination is made. In step 130, a low-pass filter process is performed on the periodic fluctuation component Vwdi, thereby removing a vibration component caused by road surface irregularities. The periodic fluctuation component Vwdfi of the wheel speed Vwi is calculated, and in step 140, the vibration damping rotational driving force Fwanti is calculated based on the periodic fluctuation component Vwdfi of the wheel speed Vwi after the low-pass filter processing. In 200 to 230, the rotational vibrations of the wheels are suppressed by the vibration damping rotational driving force Fwanti.

また電動機の回転振動が大きく、車輪の回転振動の主要因が駆動軸12FL〜12RRの捩れである場合には、ステップ50及び100に於いて肯定判別が行われ、これによりステップ110、150、200〜230に於いて上述の実施例1の場合と同様の要領にて車輪の回転振動が抑制される。   Further, when the rotational vibration of the motor is large and the main factor of the rotational vibration of the wheel is the torsion of the drive shafts 12FL to 12RR, an affirmative determination is made in steps 50 and 100, whereby steps 110, 150, and 200 are performed. ˜230, the rotational vibration of the wheel is suppressed in the same manner as in the first embodiment.

従って図示の実施例2によれば、上述の実施例1の場合と同様の作用効果を得ることができ、特に車輪の回転振動の主要因が路面より当該車輪に作用する外力である場合には、路面の凹凸に起因する振動成分の影響を低減しつつ車輪の回転振動を確実に且つ効果的に抑制することができる。   Therefore, according to the illustrated second embodiment, the same operational effects as in the first embodiment can be obtained, particularly when the main factor of the rotational vibration of the wheel is an external force acting on the wheel from the road surface. Further, it is possible to reliably and effectively suppress the rotational vibration of the wheel while reducing the influence of the vibration component due to the road surface unevenness.

図5は実施例1の修正例として構成された本発明による車輌の駆動力制御装置の実施例3に於ける駆動力制御ルーチンの要部を示すフローチャートである。   FIG. 5 is a flowchart showing a main part of a driving force control routine in the third embodiment of the vehicle driving force control apparatus according to the present invention, which is configured as a modification of the first embodiment.

この実施例3に於いては、ステップ10〜120、150、200〜230は上述の実施例1の場合と同様に実行され、ステップ120の次に実行されるステップ160に於いてはステップ150の場合と同様制振回転駆動力Fwantiに基づいて電動機14FL〜14RRに対する目標制振駆動電流Ianti(i=fl、fr、rl、rr)が演算される。   In the third embodiment, steps 10 to 120, 150, and 200 to 230 are executed in the same manner as in the first embodiment described above. In step 160 executed after step 120, step 150 is executed. As in the case, the target damping drive current Ianti (i = fl, fr, rl, rr) for the motors 14FL to 14RR is calculated based on the damping rotation driving force Fwanti.

ステップ170に於いては回転速度Vdiの周期的変動成分Vddiと車輪速度Vwiの周期的変動成分Vwdiとの偏差ΔVdi(=Vddi−Vwdi)(i=fl、fr、rl、rr)が演算され、ステップ180に於いては偏差ΔVdiに基づいて目標制振駆動電流Iantiに対する補正電流ΔIti(i=fl、fr、rl、rr)が演算され、ステップ190に於いては目標制振駆動電流IantiがIanti−ΔItiに補正され、しかる後ステップ200へ進む。   In step 170, a deviation ΔVdi (= Vddi−Vwdi) (i = fl, fr, rl, rr) between the periodic fluctuation component Vddi of the rotational speed Vdi and the cyclic fluctuation component Vwdi of the wheel speed Vwi is calculated. In step 180, a correction current ΔIti (i = fl, fr, rl, rr) for the target vibration suppression drive current Iti is calculated based on the deviation ΔVdi. In step 190, the target vibration suppression drive current Iti is calculated as Ianti. It is corrected to −ΔIt i, and then the routine proceeds to step 200.

図6は実施例2の修正例として構成された本発明による車輌の駆動力制御装置の実施例4に於ける駆動力制御ルーチンの要部を示すフローチャートである。   FIG. 6 is a flowchart showing a main part of the driving force control routine in the fourth embodiment of the vehicle driving force control apparatus according to the present invention, which is configured as a modification of the second embodiment.

この実施例4に於いては、ステップ10〜110、130〜150、200〜230は上述の実施例2の場合と同様に実行され、ステップ160〜190は上述の実施例3の場合と同様に実行される。   In the fourth embodiment, steps 10 to 110, 130 to 150, and 200 to 230 are executed in the same manner as in the second embodiment, and steps 160 to 190 are performed in the same manner as in the third embodiment. Executed.

かくして図示の実施例3及び4によれば、車輪の回転振動の主要因が路面より当該車輪に作用する外力である場合には、ステップ50に於いて否定判別が行われると共にステップ60に於いて肯定判別が行われ、これによりステップ120又はステップ130、140が実行された後、ステップ160に於いて制振回転駆動力Fwantiに基づいて電動機14FL〜14RRに対する目標制振駆動電流Iantiが演算され、ステップ170に於いて回転速度Vdiの周期的変動成分Vddiと車輪速度Vwiの周期的変動成分Vwdiとの偏差ΔVdiが演算され、ステップ180に於いて偏差ΔVdiに基づいて目標制振駆動電流Iantiに対する補正電流ΔItiが演算され、ステップ190に於いて目標制振駆動電流IantiがIanti−ΔItiに補正される。   Thus, according to the embodiments 3 and 4 shown in the drawings, when the main factor of the rotational vibration of the wheel is an external force acting on the wheel from the road surface, a negative determination is made at step 50 and at step 60. After an affirmative determination is made and step 120 or steps 130 and 140 are executed, a target damping drive current Ianti for the motors 14FL to 14RR is calculated based on the damping rotation driving force Fwanti in step 160, In step 170, a deviation ΔVdi between the periodic fluctuation component Vddi of the rotational speed Vdi and the cyclic fluctuation component Vwdi of the wheel speed Vwi is calculated, and in step 180, correction for the target vibration damping drive current Ianti is performed based on the deviation ΔVdi. The current ΔIti is calculated, and in step 190, the target vibration suppression drive current Iti is corrected to Ianti−ΔIti.

従って図示の実施例3及び4によれば、それぞれ上述の実施例1及び2の場合と同様の作用効果を得ることができると共に、路面の凹凸に起因する振動成分の影響が車輌に及ぶことを抑制しつつ、車輪の回転振動を確実に且つ効果的に抑制することができる。   Therefore, according to the illustrated third and fourth embodiments, it is possible to obtain the same effects as those of the first and second embodiments described above, and that the influence of the vibration component due to the unevenness of the road surface reaches the vehicle. While suppressing, the rotational vibration of the wheel can be reliably and effectively suppressed.

尚図示の各実施例によれば、ステップ60及び100の判別に先立ってステップ50に於いて周期的変動成分Vddiの振幅Addiが振動判定の基準値Addo以上であるか否かの判別により、対応する電動機14FL〜14RRの回転振動が大きい状況であるか否かの判別が行われ、否定判別が行われたときにステップ60の判別が行われ、肯定が行われたときにステップ100の判別が行われるので、ステップ50の判別が行われない場合に比して、車輪の回転振動の主要因が路面より当該車輪に作用する外力であるか駆動軸12FL〜12RRの捩れであるかの判別を正確に行うことができる。   According to each embodiment shown in the figure, prior to the determination in steps 60 and 100, in step 50, it is determined whether or not the amplitude Addi of the periodic fluctuation component Vddi is greater than or equal to the vibration determination reference value Addo. It is determined whether or not the rotational vibrations of the motors 14FL to 14RR are large. When a negative determination is made, the determination at step 60 is performed, and when the determination is affirmative, the determination at step 100 is performed. Therefore, as compared with the case where the determination in step 50 is not performed, it is determined whether the main factor of the rotational vibration of the wheel is an external force acting on the wheel from the road surface or the torsion of the drive shafts 12FL to 12RR. Can be done accurately.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の各実施例に於いては、車輌は四輪駆動の電気自動車であり、各車輪10FL〜10RRはそれぞれ電動機14FL〜14RRにより駆動軸12FL〜12RRを介して駆動されるようになっているが、本発明は例えばハイブリッド車の如く左右の車輪が一つの駆動源により対応する駆動軸を介して駆動される車輌に適用されてもよく、また本発明は前輪駆動車や後輪駆動車の駆動輪に適用されてもよい。   For example, in each of the above-described embodiments, the vehicle is a four-wheel drive electric vehicle, and the wheels 10FL to 10RR are driven by the motors 14FL to 14RR via the drive shafts 12FL to 12RR, respectively. However, the present invention may be applied to a vehicle in which the left and right wheels are driven via a corresponding drive shaft by a single drive source, such as a hybrid vehicle, and the present invention is applicable to a front wheel drive vehicle and a rear wheel drive vehicle. You may apply to a driving wheel.

また上述の各実施例に於いては、ステップ60に於いて周期的変動成分Vwdiの振幅Awdiが周期的変動成分Vddiの振幅Addiよりも大きいか否かの判別が行われるようになっているが、α1を正の定数として、周期的変動成分Vwdiの振幅Awdiが周期的変動成分Vddiの振幅Addi+α1よりも大きいか否かの判別が行われるよう修正されてもよい。   In each of the above embodiments, it is determined in step 60 whether or not the amplitude Awdi of the periodic fluctuation component Vwdi is larger than the amplitude Addi of the periodic fluctuation component Vddi. , Α1 may be a positive constant, and correction may be made so as to determine whether or not the amplitude Awdi of the periodic variation component Vwdi is larger than the amplitude Addi + α1 of the periodic variation component Vddi.

同様に、上述の各実施例に於いては、ステップ100に於いて周期的変動成分Vddiの振幅Addiが周期的変動成分Vwdiの振幅Awdiよりも大きいか否かの判別が行われるようになっているが、α2を正の定数として、周期的変動成分Vddiの振幅Addiが周期的変動成分Vwdiの振幅Awdi+α2よりも大きいか否かの判別が行われるよう修正されてもよい。   Similarly, in each of the embodiments described above, it is determined in step 100 whether or not the amplitude Addi of the periodic fluctuation component Vddi is larger than the amplitude Awdi of the periodic fluctuation component Vwdi. However, it may be modified so that it is determined whether α2 is a positive constant and the amplitude Addi of the periodic fluctuation component Vddi is larger than the amplitude Awdi + α2 of the periodic fluctuation component Vwdi.

四輪駆動の電気自動車に適用された本発明による車輌の駆動力制御装置の実施例1を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows Example 1 of the driving force control apparatus of the vehicle by this invention applied to the four-wheel drive electric vehicle. 実施例1に於ける車輪速度及び回転速度の検出要領を左前輪について示す説明図である。It is explanatory drawing which shows the detection point of the wheel speed and rotational speed in Example 1 about a left front wheel. 実施例1に於いて駆動力制御用電子制御装置により達成される駆動力制御ルーチンを示すフローチャートである。4 is a flowchart illustrating a driving force control routine achieved by the driving force control electronic control device in the first embodiment. 四輪駆動の電気自動車に適用された本発明による車輌の駆動力制御装置の実施例2に於ける駆動力制御ルーチンの要部を示すフローチャートである。It is a flowchart which shows the principal part of the driving force control routine in Example 2 of the driving force control apparatus of the vehicle by this invention applied to the four-wheel drive electric vehicle. 実施例1の修正例として構成された本発明による車輌の駆動力制御装置の実施例3に於ける駆動力制御ルーチンの要部を示すフローチャートである。It is a flowchart which shows the principal part of the driving force control routine in Example 3 of the driving force control apparatus of the vehicle by this invention comprised as a modification of Example 1. FIG. 実施例2の修正例として構成された本発明による車輌の駆動力制御装置の実施例4に於ける駆動力制御ルーチンの要部を示すフローチャートである。FIG. 10 is a flowchart showing a main part of a driving force control routine in Embodiment 4 of a vehicle driving force control apparatus according to the present invention configured as a modification of Embodiment 2. FIG. 駆動輪の回転振動の主要因が駆動力伝達部材の捩れである場合(A)及び駆動輪の回転振動の主要因が駆動輪に作用する外力である場合(B)ついて、駆動輪の回転速度の周期的変動成分及び駆動源の回転速度の周期的変動成分の例を示す説明図である。The rotational speed of the driving wheel when the main factor of rotational vibration of the driving wheel is torsion of the driving force transmission member (A) and when the main factor of rotational vibration of the driving wheel is external force acting on the driving wheel (B) It is explanatory drawing which shows the example of the periodic fluctuation component of this, and the periodic fluctuation component of the rotational speed of a drive source.

符号の説明Explanation of symbols

12FL〜12RR 駆動軸
14FL〜14RR 電動機
16 アクセルペダル
18 アクセル開度センサ
20 駆動力制御用電子制御装置
22 摩擦制動装置
32 制動力制御用電子制御装置
34FL〜34RR 車輪速度センサ
36FL〜36RR レゾルバ
38、40FL〜40RR 圧力センサ
12FL to 12RR Drive shaft 14FL to 14RR Motor 16 Accelerator pedal 18 Accelerator opening sensor 20 Electronic controller for driving force control 22 Friction braking device 32 Electronic control device for braking force control 34FL to 34RR Wheel speed sensor 36FL to 36RR Resolver 38, 40FL ~ 40RR Pressure sensor

Claims (7)

駆動源と、前記駆動源の回転駆動力を駆動輪へ伝達する駆動力伝達部材と、前記駆動輪の回転振動を判定する回転振動判定手段と、前記駆動輪の回転振動を抑制しつつ運転者の運転操作に応じて前記駆動源の回転駆動力を制御する制御手段とを有する車輌の駆動力制御装置に於いて、前記駆動源の回転速度を検出する手段と、前記駆動輪の回転速度を検出する手段とを有し、前記回転振動判定手段は前記駆動源の回転速度の周期的変動成分及び前記駆動輪の回転速度の周期的変動成分に基づいて前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れ及び路面より前記駆動輪に作用する外力の何れであるかを判定し、前記制御手段は前記回転振動判定手段により判定された主要因による前記駆動輪の回転振動を抑制するよう前記駆動源の回転駆動力を制御することを特徴とする車輌の駆動力制御装置。   A driving source, a driving force transmitting member for transmitting the rotational driving force of the driving source to the driving wheel, a rotational vibration determining means for determining the rotational vibration of the driving wheel, and a driver while suppressing the rotational vibration of the driving wheel; In a vehicle driving force control device having a control means for controlling the rotational driving force of the driving source in accordance with the driving operation, a means for detecting the rotational speed of the driving source, and a rotational speed of the driving wheel. The rotational vibration determining means is configured to determine whether the main factor of rotational vibration of the driving wheel is based on a periodic variation component of the rotational speed of the driving source and a periodic variation component of the rotational speed of the driving wheel. It is determined whether the driving force transmitting member is twisted or an external force acting on the driving wheel from the road surface, and the control means suppresses the rotational vibration of the driving wheel due to the main factor determined by the rotational vibration determining means. So that the drive source Vehicle driving force control apparatus characterized by controlling the rotation drive force. 前記回転振動判定手段は前記駆動源の回転速度の周期的変動成分の振幅及び前記駆動輪の回転速度の周期的変動成分の振幅を比較することにより、前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れ及び路面より前記駆動輪に作用する外力の何れであるかを判定することを特徴とする請求項1に記載の車輌の駆動力制御装置。   The rotational vibration determining means compares the amplitude of the periodic fluctuation component of the rotational speed of the driving source with the amplitude of the periodic fluctuation component of the rotational speed of the driving wheel, so that the main factor of the rotational vibration of the driving wheel is the 2. The vehicle driving force control device according to claim 1, wherein it is determined which of the driving force transmitting member is torsional and the external force acting on the driving wheel from the road surface. 前記回転振動判定手段は前記駆動源の回転速度の周期的変動成分の振幅が前記駆動輪の回転速度の周期的変動成分の振幅に比して大きいときに、前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れであると判定することを特徴とする請求項2に記載の車輌の駆動力制御装置。   The rotational vibration determining means is a main factor of rotational vibration of the driving wheel when the amplitude of the periodic fluctuation component of the rotational speed of the driving source is larger than the amplitude of the periodic fluctuation component of the rotational speed of the driving wheel. The vehicle driving force control apparatus according to claim 2, wherein the driving force transmission member is determined to be twisted. 前記回転振動判定手段は前記駆動輪の回転速度の周期的変動成分の振幅が前記駆動源の回転速度の周期的変動成分の振幅に比して大きいときに、前記駆動輪の回転振動の主要因が路面より前記駆動輪に作用する外力であると判定することを特徴とする請求項2に記載の車輌の駆動力制御装置。   The rotational vibration determining means is a main factor of rotational vibration of the driving wheel when the amplitude of the periodic fluctuation component of the rotational speed of the driving wheel is larger than the amplitude of the periodic fluctuation component of the rotational speed of the driving source. The vehicle driving force control apparatus according to claim 2, wherein an external force acting on the driving wheel from a road surface is determined. 前記制御手段は前記駆動源の回転速度の周期的変動成分若しくは前記駆動輪の回転速度の周期的変動成分に基づいて前記駆動輪の回転振動を低減するための前記駆動源の回転駆動力の制振制御量を演算し、前記回転振動判定手段により前記駆動輪の回転振動の主要因が前記駆動力伝達部材の捩れであると判定されたときには、前記駆動輪の回転速度の周期的変動成分及び前記駆動源の回転速度の周期的変動成分に基づいて前記制振制御量を演算することを特徴とする請求項1乃至4に記載の車輌の駆動力制御装置。   The control means controls the rotational driving force of the driving source for reducing rotational vibration of the driving wheel based on a periodic fluctuation component of the rotational speed of the driving source or a periodic fluctuation component of the rotational speed of the driving wheel. A vibration control amount is calculated, and when the rotational vibration determining means determines that the main factor of the rotational vibration of the driving wheel is torsion of the driving force transmitting member, the periodic fluctuation component of the rotational speed of the driving wheel and 5. The vehicle driving force control device according to claim 1, wherein the vibration suppression control amount is calculated based on a periodic fluctuation component of a rotational speed of the driving source. 6. 前記制御手段は前記駆動源の回転速度の周期的変動成分若しくは前記駆動輪の回転速度の周期的変動成分に基づいて前記駆動輪の回転振動を低減するための前記駆動源の回転駆動力の制振制御量を演算し、前記回転振動判定手段により前記駆動輪の回転振動の主要因が前記駆動輪に作用する外力であると判定されたときには、前記制振制御量に対する前記駆動輪の回転速度の周期的変動成分の寄与度合を低下させることを特徴とする請求項1乃至5に記載の車輌の駆動力制御装置。   The control means controls the rotational driving force of the driving source for reducing rotational vibration of the driving wheel based on a periodic fluctuation component of the rotational speed of the driving source or a periodic fluctuation component of the rotational speed of the driving wheel. When the vibration control amount is calculated, and the rotational vibration determining means determines that the main factor of the rotational vibration of the drive wheel is an external force acting on the drive wheel, the rotational speed of the drive wheel with respect to the vibration suppression control amount The vehicle driving force control device according to claim 1, wherein the degree of contribution of the periodic fluctuation component is reduced. 前記制御手段は運転者の運転操作に基づいて前記駆動源の目標回転駆動力を演算し、前記駆動源の目標回転駆動力に基づいて前記駆動源の回転駆動力を制御し、前記回転振動判定手段により前記駆動輪の回転振動の主要因が前記駆動輪に作用する外力であると判定されたときには、前記駆動源の回転速度の周期的変動成分と前記駆動輪の回転速度の周期的変動成分との偏差に基づく補正量を演算し、前記駆動源の目標回転駆動力を前記補正量にて補正することを特徴とする請求項1乃至5に記載の車輌の駆動力制御装置。
The control means calculates a target rotational driving force of the driving source based on a driving operation of the driver, controls the rotational driving force of the driving source based on the target rotational driving force of the driving source, and determines the rotational vibration. When it is determined by the means that the main factor of the rotational vibration of the driving wheel is an external force acting on the driving wheel, the periodic fluctuation component of the rotational speed of the driving source and the periodic fluctuation component of the rotational speed of the driving wheel 6. The vehicle driving force control device according to claim 1, wherein a correction amount based on the deviation is calculated and a target rotational driving force of the driving source is corrected with the correction amount. 7.
JP2005309925A 2005-10-25 2005-10-25 Vehicle driving force control device Expired - Fee Related JP4626481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309925A JP4626481B2 (en) 2005-10-25 2005-10-25 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309925A JP4626481B2 (en) 2005-10-25 2005-10-25 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2007124741A true JP2007124741A (en) 2007-05-17
JP4626481B2 JP4626481B2 (en) 2011-02-09

Family

ID=38147972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309925A Expired - Fee Related JP4626481B2 (en) 2005-10-25 2005-10-25 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP4626481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215019A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Vehicular drive device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257347A (en) * 1994-03-17 1995-10-09 Sumitomo Electric Ind Ltd Anti-lock brake control device
JPH09301145A (en) * 1996-05-17 1997-11-25 Mitsubishi Electric Corp Anti-lock brake controller
JPH1138034A (en) * 1997-07-22 1999-02-12 Nisshinbo Ind Inc Vibration recognition processing method for vehicle and antiskid control method
JP2002012139A (en) * 2000-06-29 2002-01-15 Unisia Jecs Corp Antiskid control device
JP2004090695A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Road surface state change estimation device and automobile loaded with it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257347A (en) * 1994-03-17 1995-10-09 Sumitomo Electric Ind Ltd Anti-lock brake control device
JPH09301145A (en) * 1996-05-17 1997-11-25 Mitsubishi Electric Corp Anti-lock brake controller
JPH1138034A (en) * 1997-07-22 1999-02-12 Nisshinbo Ind Inc Vibration recognition processing method for vehicle and antiskid control method
JP2002012139A (en) * 2000-06-29 2002-01-15 Unisia Jecs Corp Antiskid control device
JP2004090695A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Road surface state change estimation device and automobile loaded with it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215019A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Vehicular drive device

Also Published As

Publication number Publication date
JP4626481B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US7028805B2 (en) Vehicle steering control device for controlling steering assist torque
JP4534641B2 (en) Wheel slip ratio calculation device and wheel braking / driving force control device
EP1864879A1 (en) Braking-driving force control device of vehicle
JP4353058B2 (en) Control device for electric power steering device
JP2002002470A (en) Traction controller for vehicle
GB2437036A (en) Drive and braking force control device for vehicle
JPH0741823B2 (en) Wheel slip controller
JP4728550B2 (en) Vehicle traction control (ASR) method and apparatus
JP4193706B2 (en) Road surface friction coefficient detector
JP4137041B2 (en) Vehicle control device
EP3231657B1 (en) Braking/drive power control device and braking/drive power control method
JP2017030466A (en) Electric vehicle
JP2003524155A (en) Method and apparatus for determining the speed value of at least one drive wheel of a motor vehicle
JP4831929B2 (en) Vehicle driving force control device
JP2005168184A (en) Determing system of degradation in motor performance of vehicle driven by motor
JP4626481B2 (en) Vehicle driving force control device
US20080079311A1 (en) Vehicle regenerative braking system and method
JP4107162B2 (en) Vehicle travel control device
JP5228815B2 (en) Brake control device
JP4539451B2 (en) Control device for behavior stabilization device
JP2008081115A (en) Control device of vehicle
JP4736763B2 (en) Vehicle stabilization control device
JP2006264433A (en) Vehicular longitudinal acceleration estimation and control system
JP4238707B2 (en) Driving force control device for electric motor driven vehicle
JP2008024125A (en) Vehicle behavior stabilization controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4626481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees