JP2007124722A - Synchronous motor controller - Google Patents

Synchronous motor controller Download PDF

Info

Publication number
JP2007124722A
JP2007124722A JP2005308969A JP2005308969A JP2007124722A JP 2007124722 A JP2007124722 A JP 2007124722A JP 2005308969 A JP2005308969 A JP 2005308969A JP 2005308969 A JP2005308969 A JP 2005308969A JP 2007124722 A JP2007124722 A JP 2007124722A
Authority
JP
Japan
Prior art keywords
voltage
axis
field weakening
command signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005308969A
Other languages
Japanese (ja)
Other versions
JP4730658B2 (en
Inventor
Bunno Cho
文農 張
Mitsujiro Sawamura
光次郎 沢村
Masaki Hisatsune
正希 久恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005308969A priority Critical patent/JP4730658B2/en
Publication of JP2007124722A publication Critical patent/JP2007124722A/en
Application granted granted Critical
Publication of JP4730658B2 publication Critical patent/JP4730658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synchronous motor controller which can efficiently perform weakish field control, by deciding the need for weakish field control and suppressing the vibration in velocity of a rotor, in a synchronous motor control which drives a synchronous motor by the vector control of a d-q axis, performing weakish field control. <P>SOLUTION: This synchronous motor controller is equipped with a weakish field deciding unit 8 which outputs a weakish field command signal F<SB>s</SB>, based on the difference signal between a weakish field reference signal r<SB>Vref</SB><SP>*</SP>and a voltage vector amplitude command signal r<SB>V</SB><SP>*</SP>; a voltage vector amplitude limiter 9, which inputs the above voltage vector amplitude command signal r<SB>V</SB><SP>*</SP>and outputs a new voltage vector amplitude command signal r<SB>V1</SB><SP>*</SP>; a d-axis current controller 4 which outputs a d-axis voltage command signal V<SB>d</SB><SP>*</SP>, based on the above weakish field command signal F<SB>s</SB>; and a d-axis voltage compensator 7 which outputs a d-axis voltage compensation signal V<SB>dc</SB>, based on the above weakish field command signal F<SB>s</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、弱め界磁制御をしてd−q軸ベクトル制御により同期電動機を駆動する同期電動機制御装置に関する。   The present invention relates to a synchronous motor control device that performs field weakening control and drives a synchronous motor by dq axis vector control.

一般に、同期電動機の制御は、低速運転時効率を良くするためd軸電流を0とするが、高速運転時誘起電圧による電圧不足の問題を克服するため負のd軸電流を流す弱め磁束制御を行うことにする(例えば、非特許文献1参照)。
図4は、従来技術の同期電動機制御装置の電流制御部構成を示すブロック図である。図において、15は同期電動機である。14は電流センサであり、同期電動機15の電機子に流れる3相電流i、i、iを検出する。16は位置センサであり、同期電動機15の磁極位置θを検出する。12は3相交流/d―q座標変換器であり、磁極位置θに基づいて3相電流i、i、iをd―q座標形式の検出電流I、Iに変換する。19はd軸PI制御器であり、d軸電流指令信号I とd軸電流検出信号Iとの偏差EIdに基づきd軸電圧指令V を計算する。5はq軸PI制御器であり、q軸電流指令信号I とq軸電流検出信号Iとの偏差EIqに基づきq軸電圧指令V を計算する。6はd―q/極座標変換器であり、d、q軸電圧指令V 、V を式(1)、式(2)に示すように極座標形式の電圧ベクトル振幅指令値r と電圧ベクトル位相指令値θ に変換する。
=√(V *2+V *2) (1)
θ =tan−1(−V /V ) (2)
In general, in the control of a synchronous motor, the d-axis current is set to 0 in order to improve the efficiency during low-speed operation. However, in order to overcome the problem of voltage shortage due to the induced voltage during high-speed operation, a weak magnetic flux control for flowing a negative d-axis current is performed. This is done (for example, see Non-Patent Document 1).
FIG. 4 is a block diagram illustrating a configuration of a current control unit of a conventional synchronous motor control device. In the figure, reference numeral 15 denotes a synchronous motor. Reference numeral 14 denotes a current sensor which detects three-phase currents i u , i v and i w flowing through the armature of the synchronous motor 15. 16 is a position sensor, for detecting the magnetic pole position theta m of the synchronous motor 15. Reference numeral 12 denotes a three-phase AC / dq coordinate converter, which converts the three-phase currents i u , i v , i w into detection currents I d , I q in the dq coordinate format based on the magnetic pole position θ m. . Reference numeral 19 denotes a d-axis PI controller, which calculates a d-axis voltage command V d * based on a deviation E Id between the d-axis current command signal I d * and the d-axis current detection signal I d . A q-axis PI controller 5 calculates a q-axis voltage command V q * based on a deviation E Iq between the q-axis current command signal I q * and the q-axis current detection signal I q . Reference numeral 6 denotes a dq / polar coordinate converter. The d and q axis voltage commands V d * and V q * are converted into polar vector voltage vector amplitude command values r V * as shown in equations (1) and (2) . And a voltage vector phase command value θ V * .
r V * = √ (V d * 2 + V q * 2) (1)
θ V * = tan −1 (−V d * / V q * ) (2)

11は極/3相交流座標変換器であり、磁極位置θに基づいて電圧ベクトル振幅指令値r と電圧ベクトル位相指令値θ を3相電圧指令値v 、v 、v に変換する。13はPWMインバータであり、三相電圧指令v 、v 、v に基づき三相電圧v、v、vを出力し、電動機15を駆動する。17は積分補償器であり、予め定めた電圧ベクトル振幅指令の弱め界磁基準信号rVref から電圧ベクトル振幅指令値r を減じた値を積分する。18はd軸電流指令リミッタであり、d軸電流指令を0以下に限定してd軸電流指令信号I とする。 Reference numeral 11 denotes a pole / three-phase AC coordinate converter, which converts the voltage vector amplitude command value r V * and the voltage vector phase command value θ V * based on the magnetic pole position θ m into the three-phase voltage command values v u * and v v *. , V w * . A PWM inverter 13 outputs three-phase voltages v u , v v , v w based on the three-phase voltage commands v u * , v v * , v w * , and drives the motor 15. 17 is an integral compensator for integrating the value obtained by subtracting the voltage vector amplitude command r V * from a predetermined voltage vector amplitude command field weakening reference signal r Vref *. Reference numeral 18 denotes a d-axis current command limiter. The d-axis current command signal I d * is limited to 0 or less.

低速運転時誘起電圧は小さく、電圧ベクトル振幅指令値r が電圧ベクトル振幅指令の弱め界磁基準信号rVref より小さいため、積分補償器17の出力が正の値になるのでd軸電流指令が0となる。一方、高速運転時誘起電圧は大きくなり、電圧ベクトル振幅指令値r が電圧ベクトル振幅指令の弱め界磁基準信号rVref より大きくなるため、積分補償器17の出力が負の値になるので、d軸電流指令も負の値となる。
このように、従来技術の同期電動機制御装置は、電圧ベクトル振幅指令値r が電圧ベクトル振幅指令の弱め界磁基準信号rVref より大きくなった場合のみに、d軸電流指令を負の値とすることで弱め磁束制御を行うものである。
伊藤佳樹 外2名著「永久磁石同期モータの電圧飽和領域における高トルク制御法」、平成16年電気学会産業応用部門大会、2004年8月14日、p. I175−I178
Since the induced voltage during low-speed operation is small and the voltage vector amplitude command value r V * is smaller than the field weakening reference signal r Vref * of the voltage vector amplitude command, the output of the integral compensator 17 becomes a positive value. The command becomes 0. On the other hand, the induced voltage during high-speed operation increases, and the voltage vector amplitude command value r V * becomes larger than the field weakening reference signal r Vref * of the voltage vector amplitude command, so that the output of the integral compensator 17 becomes a negative value. Therefore, the d-axis current command is also a negative value.
As described above, the synchronous motor control device according to the prior art makes the d-axis current command negative only when the voltage vector amplitude command value r V * becomes larger than the field weakening reference signal r Vref * of the voltage vector amplitude command. By setting the value, the flux-weakening control is performed.
Yoshiki Ito et al., “High Torque Control Method for Permanent Magnet Synchronous Motor in Voltage Saturation Region”, 2004 Annual Conference of the Institute of Electrical Engineers of Japan, August 14, 2004, p. I175-I178

従来技術の同期電動機制御装置は、電圧ベクトル振幅指令の弱め界磁基準信号を電圧ベクトル振幅飽和値(同期電動機を一定な速度で回転させるための電圧ベクトル振幅の最大値)より低く設定すると、弱め磁束制御がまだ必要ない時にもd軸に電流を流してしまい、効率が悪いという問題点があった。また、電圧ベクトル振幅指令の弱め界磁基準信号を電圧ベクトル振幅飽和値とする場合に、電圧ベクトル振幅指令が電圧ベクトル振幅飽和値を超えない際に弱め磁束制御が動作せず、電圧ベクトル振幅指令が電圧ベクトル振幅飽和値を超えた際に弱め磁束制御が動作するが、電圧ベクトル振幅指令は一定であっても電機子電圧ベクトルは変動的になるので、q軸電流は振動的になり、回転子の回転速度も振動的になるという問題点もあった。
本発明はこのような問題点に鑑みてなされたものであり、弱め界磁制御の必要性を判断して、効率良く、また回転子速度の振動を抑制して弱め界磁制御を行うことができる同期電動機制御装置を提供することを目的とする。
The conventional synchronous motor control device is weakened when the field weakening reference signal of the voltage vector amplitude command is set lower than the voltage vector amplitude saturation value (the maximum value of the voltage vector amplitude for rotating the synchronous motor at a constant speed). Even when the magnetic flux control is not necessary yet, a current is passed through the d-axis, resulting in poor efficiency. Also, when the field weakening reference signal of the voltage vector amplitude command is the voltage vector amplitude saturation value, if the voltage vector amplitude command does not exceed the voltage vector amplitude saturation value, the flux weakening control does not operate and the voltage vector amplitude command When the voltage vector amplitude saturation value is exceeded, the flux-weakening control operates. However, even if the voltage vector amplitude command is constant, the armature voltage vector becomes variable, so the q-axis current becomes oscillating and rotating. There was also a problem that the rotation speed of the child became vibrational.
SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and a synchronous motor control capable of performing field-weakening control efficiently by judging the necessity of field-weakening control and suppressing vibration of the rotor speed. An object is to provide an apparatus.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、弱め界磁制御をしてd−q軸ベクトル制御により同期電動機を駆動する同期電動機制御装置において、弱め界磁基準信号と電圧ベクトル振幅指令信号との偏差信号に基づいて、弱め界磁指令信号を出力する弱め界磁判断器と、前記電圧ベクトル振幅指令信号を入力し、新たな電圧ベクトル振幅指令信号を出力する電圧ベクトル振幅リミッタとを備え、前記新たな電圧ベクトル振幅指令信号に基づいて前記同期電動機を駆動するものである。
また、請求項2に記載の発明は、請求項1記載の発明における前記弱め界磁判断器が、前記偏差が正の場合、弱め界磁を無効とする前記弱め界磁指令信号を出力し、前記偏差が負の場合、弱め界磁を有効とする前記弱め界磁指令信号を出力するものである。
また、請求項3に記載の発明は、請求項1記載の発明における前記弱め界磁指令信号に基づいて、d軸電圧指令信号を出力するd軸電流制御器と、前記弱め界磁指令信号に基づいて、d軸電圧補償信号を出力するd軸電圧補償器とを備えるものである。
また、請求項4に記載の発明は、請求項3記載の発明における前記d軸電流制御器が、電流制御切り替えスイッチと電流積分バッファーを備え、前記弱め界磁指令信号に基づいて、前記電流制御切り替えスイッチを切り替え、弱め界磁を無効とする前記弱め界磁指令信号の場合、d軸電流指令信号とd軸電流検出信号との偏差であるd軸電流偏差信号に電流制御積分ゲインを乗算して乗算値を算出し、前記電流積分バッファーの出力であるd軸電圧指令積分値に前記乗算値を加算して前記電流積分バッファーに入力し、弱め界磁を有効とする前記弱め界磁指令信号の場合、前記d軸電圧指令積分値を前記電流積分バッファーに入力し、前記d軸電流偏差信号に電流制御比例ゲインを乗算した値と、前記d軸電圧指令積分値と、を加算して前記d軸電圧指令信号を出力するものである。
また、請求項5に記載の発明は、請求項4記載の発明における前記電流積分バッファーが、その入力値を1サンプル周期遅れて前記d軸電圧指令積分値として出力するものである。
また、請求項6に記載の発明は、請求項3記載の発明における前記d軸電圧補償器が、電圧補償切り替えスイッチと電圧補償積分バッファーと電圧補償PI制御器を備え、前記弱め界磁指令信号に基づいて、前記電圧補償切り替えスイッチを切り替え、弱め界磁を無効とする前記弱め界磁指令信号の場合、前記電圧補償PI制御器を待機状態にし、前記d軸電圧補償信号を0(ゼロ)とし、弱め界磁を有効とする前記弱め界磁指令信号の場合、前記電圧補償積分バッファーを1度リセットした後、前記電圧補償PI制御器を起動し、前記電圧補償PI制御器の出力を前記d軸電圧補償信号とするものである。
また、請求項7に記載の発明は、請求項6記載の発明における前記電圧補償PI制御器が、弱め界磁基準信号と電圧ベクトル振幅指令信号との偏差信号に電圧補償積分ゲインを乗算して乗算値を算出し、前記電圧補償積分バッファーの出力であるd軸電圧補償積分値に前記乗算値を加算して前記電流積分バッファーに入力し、前記弱め界磁基準信号と前記電圧ベクトル振幅指令信号との偏差信号に電圧補償比例ゲインを乗算した値と、前記d軸電圧補償積分値と、を加算して前記d軸電圧補償信号を出力するものである。
また、請求項8に記載の発明は、請求項6記載の発明における前記電圧補償バッファーが、その入力値を1サンプル周期遅れて前記d軸電圧補償積分値として出力するものである。
また、請求項9に記載の発明は、請求項1記載の発明における前記弱め界磁基準信号が、電圧ベクトル振幅飽和値であり、前記電圧ベクトル振幅リミッタが、前記電圧ベクトル振幅飽和値で前記電圧ベクトル振幅指令信号をリミットするものである。
In order to solve the above problem, the present invention is configured as follows.
According to the first aspect of the present invention, in a synchronous motor control device that performs field weakening control and drives a synchronous motor by dq axis vector control, based on a deviation signal between the field weakening reference signal and the voltage vector amplitude command signal. A field weakening determination device for outputting a field weakening command signal; a voltage vector amplitude limiter for inputting the voltage vector amplitude command signal and outputting a new voltage vector amplitude command signal; and the new voltage vector amplitude The synchronous motor is driven based on a command signal.
According to a second aspect of the present invention, the field weakening determination device according to the first aspect outputs the field weakening command signal for invalidating the field weakening when the deviation is positive, When the deviation is negative, the field weakening command signal for enabling the field weakening is output.
According to a third aspect of the present invention, there is provided a d-axis current controller that outputs a d-axis voltage command signal based on the field weakening command signal according to the first aspect of the invention, and a field weakening command signal. And a d-axis voltage compensator that outputs a d-axis voltage compensation signal.
According to a fourth aspect of the present invention, the d-axis current controller according to the third aspect of the invention includes a current control changeover switch and a current integration buffer, and the current control is performed based on the field weakening command signal. In the case of the field weakening command signal that disables the field weakening by switching the changeover switch, the current control integral gain is multiplied by the d axis current deviation signal that is the deviation between the d axis current command signal and the d axis current detection signal. The field weakening command signal for enabling the field weakening is calculated by adding the multiplication value to the d-axis voltage command integral value that is the output of the current integration buffer and inputting the product to the current integration buffer. In this case, the d-axis voltage command integrated value is input to the current integration buffer, a value obtained by multiplying the d-axis current deviation signal by a current control proportional gain, and the d-axis voltage command integrated value are added, and And it outputs an axis voltage command signal.
According to a fifth aspect of the invention, the current integration buffer according to the fourth aspect of the invention outputs the input value as the d-axis voltage command integration value with a delay of one sample period.
According to a sixth aspect of the invention, the d-axis voltage compensator according to the third aspect of the invention includes a voltage compensation changeover switch, a voltage compensation integration buffer, and a voltage compensation PI controller, and the field weakening command signal In the case of the field weakening command signal for switching the voltage compensation changeover switch to invalidate the field weakening based on the voltage compensation PI controller, the voltage compensation PI controller is set in a standby state, and the d-axis voltage compensation signal is set to 0 (zero). In the case of the field weakening command signal for enabling the field weakening, after resetting the voltage compensation integration buffer once, the voltage compensation PI controller is started and the output of the voltage compensation PI controller is This is a d-axis voltage compensation signal.
According to a seventh aspect of the invention, the voltage compensation PI controller according to the sixth aspect of the invention multiplies a deviation signal between the field weakening reference signal and the voltage vector amplitude command signal by a voltage compensation integral gain. A multiplication value is calculated, the multiplication value is added to the d-axis voltage compensation integration value that is an output of the voltage compensation integration buffer, and the multiplication value is input to the current integration buffer. The field weakening reference signal and the voltage vector amplitude command signal And a value obtained by multiplying the deviation signal by a voltage compensation proportional gain and the d-axis voltage compensation integral value are added to output the d-axis voltage compensation signal.
According to an eighth aspect of the present invention, the voltage compensation buffer according to the sixth aspect of the invention outputs the input value as the d-axis voltage compensated integral value delayed by one sample period.
According to a ninth aspect of the present invention, the field weakening reference signal according to the first aspect of the invention is a voltage vector amplitude saturation value, and the voltage vector amplitude limiter is the voltage vector amplitude saturation value and the voltage. The vector amplitude command signal is limited.

請求項1または2、請求項9のいずれかに記載の発明によると、弱め界磁制御の必要性を判断することができ、電圧ベクトル振幅指令信号を電圧ベクトル振幅飽和値にリミッタさせ、安定かつ必要最小限なd軸電流を流すことができ、効率良く、また回転子速度の振動を抑制して弱め界磁制御を行うことができる。
また、請求項3乃至8のいずれかに記載の発明によると、電圧ベクトル振幅指令信号が電圧ベクトル振幅飽和値以内である場合、d軸電流指令を0として普通の電流制御を行うことで効率良く同期電動機を回転させることができる。また、電圧ベクトル振幅指令信号が電圧ベクトル振幅飽和値を超える場合、d軸電流制御器の積分器の出力をホールドし、d軸電圧補償器を起動してd軸電圧補償信号をd軸電圧指令に加えて新たなd軸電圧指令とし、そして電圧ベクトル振幅指令信号を電圧ベクトル振幅飽和値にリミッタさせ、安定かつ必要最小限なd軸電流を流すことでスムーズに弱め磁束制御を行うことができ、効率が良く、また回転子速度の振動を抑制して同期電動機を高速回転させることができる。
According to the invention described in any one of claims 1, 2, and 9, the necessity of field weakening control can be determined, and the voltage vector amplitude command signal is limited to the voltage vector amplitude saturation value, which is stable and necessary minimum. A limited d-axis current can be supplied, and field weakening control can be performed efficiently and by suppressing vibration of the rotor speed.
In addition, according to the invention of any one of claims 3 to 8, when the voltage vector amplitude command signal is within the voltage vector amplitude saturation value, the d-axis current command is set to 0 to perform normal current control efficiently. The synchronous motor can be rotated. If the voltage vector amplitude command signal exceeds the voltage vector amplitude saturation value, the output of the integrator of the d-axis current controller is held, the d-axis voltage compensator is started, and the d-axis voltage compensation signal is transferred to the d-axis voltage command. In addition to the new d-axis voltage command, the voltage vector amplitude command signal is limited to the voltage vector amplitude saturation value, and a stable and necessary d-axis current can be flowed to smoothly weaken and control the magnetic flux. Therefore, the synchronous motor can be rotated at a high speed by suppressing the vibration of the rotor speed.

以下、本発明の実施の形態について図を参照して説明する。
図1は、本発明の実施例を示す同期電動機制御装置の電流制御部のブロック図である。図において、15は同期電動機である。14は電流センサであり、同期電動機15の電機子に流れる3相電流i、i、iを検出する。なお、ここでは3相電流の検出例を示しているが、2相電流検出を検出して残り1相の電流を演算により算出してもよい。16は位置センサであり、同期電動機15の磁極位置θを検出する。12は3相交流/d―q座標変換器であり、磁極位置θに基づいて3相電流i、i、iをd―q座標形式の検出電流I、Iに変換する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a current control unit of a synchronous motor control apparatus showing an embodiment of the present invention. In the figure, reference numeral 15 denotes a synchronous motor. Reference numeral 14 denotes a current sensor which detects three-phase currents i u , i v and i w flowing through the armature of the synchronous motor 15. Although an example of detecting a three-phase current is shown here, two-phase current detection may be detected, and the remaining one-phase current may be calculated by calculation. 16 is a position sensor, for detecting the magnetic pole position theta m of the synchronous motor 15. Reference numeral 12 denotes a three-phase AC / dq coordinate converter, which converts the three-phase currents i u , i v , i w into detection currents I d , I q in the dq coordinate format based on the magnetic pole position θ m. .

4はd軸電流制御器であり、d軸電流指令信号I とd軸電流検出信号Iとの偏差EIdおよび弱め界磁指令信号Fに基づきd軸電圧指令V を計算する。3は加算器であり、d軸電圧指令V にd軸電圧補償信号Vdcを足して新たなd軸電圧指令Vd1 を出力する。5はq軸PI制御器であり、q軸電流指令信号I とq軸電流検出信号Iとの偏差EIqに基づきq軸電圧指令V を計算する。6はd―q/極座標変換器であり、Vd1 、V を式(1)、式(2)に示すように極座標形式の電圧ベクトル振幅指令値r と電圧ベクトル位相指令値θ に変換する。9は電圧ベクトル振幅リミッタであり、電圧ベクトル振幅指令値r を電圧ベクトル振幅飽和値r以内に限定して新たな電圧ベクトル振幅指令値rV1 を出力する。11は極/3相交流座標変換器であり、磁極位置θに基づいて新たな電圧ベクトル振幅指令値rV1 と電圧ベクトル位相指令値θ を3相電圧指令値v 、v 、v に変換する。 Reference numeral 4 denotes a d-axis current controller, which calculates a d-axis voltage command V d * based on a deviation E Id between the d-axis current command signal I d * and the d-axis current detection signal I d and a field weakening command signal F s. To do. 3 is an adder, by adding the d-axis voltage compensation signal V dc and outputs the new d-axis voltage command V d1 * in the d-axis voltage command V d *. A q-axis PI controller 5 calculates a q-axis voltage command V q * based on a deviation E Iq between the q-axis current command signal I q * and the q-axis current detection signal I q . Reference numeral 6 denotes a dq / polar coordinate converter, where V d1 * and V q * are the voltage vector amplitude command value r V * and the voltage vector phase command value in the polar coordinate format as shown in the equations (1) and (2). Convert to θ V * . 9 the voltage is the vector amplitude limiter, and outputs the voltage vector amplitude command r V * to the voltage vector magnitude saturation value r is limited within m new voltage vector amplitude command value r V1 *. Reference numeral 11 denotes a pole / three-phase AC coordinate converter, which converts a new voltage vector amplitude command value r V1 * and a voltage vector phase command value θ V * based on the magnetic pole position θ m into a three-phase voltage command value v u * , v. v *, v is converted to w *.

13はPWMインバータであり、三相電圧指令v 、v 、v に基づき三相電圧v、v、vを出力し、電動機15を駆動する。8は弱め界磁判断器であり、電圧ベクトル振幅指令の弱め界磁基準信号rVref と電圧ベクトル振幅指令値r との差Eに基づいて弱め界磁指令信号Fを出力する。7はd軸電圧補償器であり、EおよびFに基づいてd軸電圧補償信号Vdcを計算する。
本発明が非特許文献1と異なる部分は、弱め界磁基準信号と電圧ベクトル振幅指令信号との偏差信号に基づいて、弱め界磁指令信号を出力する弱め界磁判断器と、前記電圧ベクトル振幅指令信号を入力し、新たな電圧ベクトル振幅指令信号を出力する電圧ベクトル振幅リミッタと、前記弱め界磁指令信号に基づいてd軸電圧指令信号を出力するd軸電流制御器と、前記弱め界磁指令信号に基づいて、d軸電圧補償信号を出力するd軸電圧補償器とを備えた部分である。
これにより、従来技術のようにd軸電流指令I を変えるのではなく、I を常に0とし、電圧ベクトル振幅指令値r が電圧ベクトル振幅飽和値rをオーバーした場合にd軸電圧指令を変え、また、電圧ベクトル振幅指令値r をリミッタに通し電圧ベクトル振幅飽和値r以内に限定して新たな電圧ベクトル振幅指令値rV1 を生成するのである。
A PWM inverter 13 outputs three-phase voltages v u , v v , v w based on the three-phase voltage commands v u * , v v * , v w * , and drives the motor 15. Reference numeral 8 denotes a field weakening determination unit that outputs a field weakening command signal F s based on the difference E r between the field weakening reference signal r Vref * of the voltage vector amplitude command and the voltage vector amplitude command value r V *. . Reference numeral 7 denotes a d-axis voltage compensator, which calculates a d-axis voltage compensation signal V dc based on E r and F s .
The present invention is different from Non-Patent Document 1 in that a field weakening determination unit that outputs a field weakening command signal based on a deviation signal between the field weakening reference signal and the voltage vector amplitude command signal, and the voltage vector amplitude A voltage vector amplitude limiter that inputs a command signal and outputs a new voltage vector amplitude command signal, a d-axis current controller that outputs a d-axis voltage command signal based on the field weakening command signal, and the field weakening A d-axis voltage compensator that outputs a d-axis voltage compensation signal based on the command signal is provided.
Thus, instead of changing the d-axis current command I d * as in the prior art, the I d * always zero, if the voltage vector amplitude command r V * has exceeded the voltage vector magnitude saturation value r m changing the d-axis voltage command, also is to produce a voltage vector amplitude command r V * a new voltage vector amplitude command value is limited within the voltage vector magnitude saturation value r m through a limiter r V1 *.

弱め界磁判断器8は、電圧ベクトル振幅指令の弱め界磁基準信号rVref と電圧ベクトル振幅指令値r との差Eが正の値であれば弱め界磁指令信号Fを無効とし、Eが負の値であれば弱め界磁指令信号Fを有効とする。
なお、図1は本発明の主要部分である電流制御部のみの記述としたが、本来、速度制御部(図示しない)や位置制御部(図示しない)等が存在して同期電動機制御装置を構成している。図示していない構成は、周知の構成を用いることができるため、説明を省略している。
The field weakening determination unit 8 determines the field weakening command signal F s if the difference E r between the field weakening reference signal r Vref * of the voltage vector amplitude command and the voltage vector amplitude command value r V * is a positive value. It is invalidated, and enable the field weakening command signal F s if E r is a negative value.
Although FIG. 1 only describes the current control unit which is the main part of the present invention, the synchronous motor control device is originally configured by the presence of a speed control unit (not shown), a position control unit (not shown), and the like. is doing. Since the well-known structure can be used for the structure not shown, description is abbreviate | omitted.

図2は、本発明の実施例を示す同期電動機制御装置のd軸電流制御器の構成を示すブロック図である。図において、41は電流制御比例ゲインであり、EIdにKpdを掛けたd軸電圧指令の比例項Vpd を出力する。42は電流制御積分ゲインであり、EIdにKidを掛けた値を出力する。43は加算器であり、電流制御積分ゲイン42の出力にd軸電圧指令の積分項Vid を加算する。46は電流制御切り替えスイッチであり、弱め界磁指令信号Fが無効である場合に加算器43の出力を、Fが有効である場合にd軸電圧指令の積分項Vid を出力する。45は電流制御積分バッファーであり、電流制御切り替えスイッチ46の出力を1サンプル周期遅れてd軸電圧指令の積分項Vid として出力する。44は加算器であり、d軸電圧指令の積分項Vid とd軸電圧指令の比例項Vpd を加算してd軸電圧指令信号V として出力する。 FIG. 2 is a block diagram showing the configuration of the d-axis current controller of the synchronous motor control apparatus according to the embodiment of the present invention. In the figure, 41 is a current control proportional gain, which outputs a proportional term V pd * of a d-axis voltage command obtained by multiplying E Id by K pd . Reference numeral 42 denotes a current control integral gain, which outputs a value obtained by multiplying E Id by Kid . Reference numeral 43 denotes an adder that adds the integral term V id * of the d-axis voltage command to the output of the current control integral gain 42. 46 is a current control changeover switch that outputs the output of the adder 43 when the field weakening command signal F s is invalid, and outputs the integral term V id * of the d-axis voltage command when F s is valid. . Reference numeral 45 denotes a current control integration buffer, which outputs the output of the current control switch 46 as an integral term V id * of the d-axis voltage command with a delay of one sample period. An adder 44 adds the integral term V id * of the d-axis voltage command and the proportional term V pd * of the d-axis voltage command and outputs the result as a d-axis voltage command signal V d * .

図3は、本発明の実施例を示す同期電動機制御装置のd軸電圧補償器の構成を示すブロック図である。図において、77は零信号であり、0(ゼロ)を出力する。78は電圧補償PI制御器であり、弱め界磁指令信号Fが無効である場合に待機状態になり、Fが有効である場合に起動されて計算が始まる。76は電圧補償切り替えスイッチであり、Fが無効である場合に0を、Fが有効である場合に電圧補償PI制御器78の出力をd軸電圧補償信号Vdcとして出力する。71は電圧補償比例ゲインであり、EにKpcを掛けてd軸電圧補償信号の比例項Vpcを出力する。72は電圧補償積分ゲインであり、EにKicを掛けた値を出力する。73は加算器であり、電圧補償積分ゲイン72の出力にd軸電圧補償信号の積分項Vicを加算する。75は電圧補償積分バッファーであり、弱め界磁指令信号Fが無効から有効に切り替える際にリセットされて、そして加算器73の出力を1サンプル周期遅れてd軸電圧補償信号の積分項Vicとして出力する。74は加算器であり、d軸電圧補償信号の積分項Vicとd軸電圧補償信号の比例項Vpcを加算してd軸電圧補償信号Vdcとして出力する。なお、電圧補償積分バッファー75でのリセットは、電圧補償積分バッファー75内の値を0(ゼロ)クリアすることを意味する。 FIG. 3 is a block diagram showing the configuration of the d-axis voltage compensator of the synchronous motor control device according to the embodiment of the present invention. In the figure, reference numeral 77 denotes a zero signal, which outputs 0 (zero). Reference numeral 78 denotes a voltage compensation PI controller, which enters a standby state when the field weakening command signal F s is invalid, and is activated when F s is valid and starts calculation. A voltage compensation changeover switch 76 outputs 0 when F s is invalid, and outputs the output of the voltage compensation PI controller 78 as a d-axis voltage compensation signal V dc when F s is valid. A voltage compensation proportional gain 71 multiplies Er by K pc and outputs a proportional term V pc of the d-axis voltage compensation signal. Reference numeral 72 denotes a voltage compensation integral gain, which outputs a value obtained by multiplying Er by Kic . An adder 73 adds the integral term V ic of the d-axis voltage compensation signal to the output of the voltage compensation integral gain 72. Reference numeral 75 denotes a voltage compensation integration buffer, which is reset when the field weakening command signal F s is switched from invalid to valid, and the output of the adder 73 is delayed by one sample period and the integral term V ic of the d-axis voltage compensation signal. Output as. An adder 74 adds the integral term V ic of the d-axis voltage compensation signal and the proportional term V pc of the d-axis voltage compensation signal and outputs the result as a d-axis voltage compensation signal V dc . Note that the reset in the voltage compensation integration buffer 75 means that the value in the voltage compensation integration buffer 75 is cleared to 0 (zero).

以下、本発明の実施例を示す同期電動機制御装置の電流制御部の動作原理について説明する。
電圧ベクトル振幅指令値r が電圧ベクトル振幅指令の弱め界磁基準信号rVref 以下である場合に弱め界磁指令信号Fが無効であるため、d軸電圧補償器の出力であるd軸電圧補償信号Vdcが0となり、また、d軸電流制御器が普通のPI制御器と同じ動作をするので、制御系全体は弱め磁束制御を行わない制御系と同じものとなる。
一方、電圧ベクトル振幅指令値r が電圧ベクトル振幅指令の弱め界磁基準信号rVref 以上である場合に弱め界磁指令信号Fが有効となる。この際に、d軸電圧指令の積分項は不変になるため、d軸フィードバック電流Iは、d軸電流指令I =0に定常偏差なく追従しなくなる。この場合、d軸電圧補償器7が電圧ベクトル振幅指令の弱め界磁基準信号rVref と電圧ベクトル振幅指令値r との差Eに基づいて、負のd軸電圧補償信号Vdcを出力し、負のd軸電機子電流を流して回転子を高速度で回転させることができるのである。
また、電圧ベクトル振幅指令の弱め界磁基準信号rVref を電圧ベクトル振幅飽和値rとして与えても、電圧ベクトル振幅指令値r が電圧ベクトル振幅飽和値rを超えた際に、電圧ベクトル振幅リミッタ9を設けているため、極/3相交流座標変換器11に入力する新たな新たな電圧ベクトル振幅指令値rV1 が電圧ベクトル振幅飽和値rとなるので、回転子を一定な速度で回転させることができる。
Hereinafter, the operation principle of the current control unit of the synchronous motor control device according to the embodiment of the present invention will be described.
Since the field weakening command signal F s is invalid when the voltage vector amplitude command value r V * is equal to or less than the field weakening reference signal r Vref * of the voltage vector amplitude command, d is the output of the d-axis voltage compensator. Since the shaft voltage compensation signal V dc becomes 0 and the d-axis current controller operates in the same manner as an ordinary PI controller, the entire control system is the same as the control system that does not perform the flux-weakening control.
On the other hand, when the voltage vector amplitude command value r V * is equal to or greater than the field weakening reference signal r Vref * of the voltage vector amplitude command, the field weakening command signal F s becomes effective. At this time, since the integral term of the d-axis voltage command is unchanged, the d-axis feedback current I d does not follow the d-axis current command I d * = 0 without a steady deviation. In this case, the d-axis voltage compensator 7 determines that the negative d-axis voltage compensation signal V dc is based on the difference E r between the field weakening reference signal r Vref * of the voltage vector amplitude command and the voltage vector amplitude command value r V *. , And a negative d-axis armature current can be passed to rotate the rotor at a high speed.
Moreover, even given a field weakening reference signal r Vref of the voltage vector amplitude command * as voltage vector amplitude saturation value r m, when * the voltage vector amplitude command r V exceeds the voltage vector magnitude saturation value r m, since is provided a voltage vector magnitude limiter 9, so * new new voltage vector amplitude command value input to the pole / three-phase AC coordinate converter 11 r V1 is the voltage vector magnitude saturation value r m, the rotor It can be rotated at a constant speed.

このように、電圧ベクトル振幅指令信号が電圧ベクトル振幅飽和値以内である場合にd軸電流指令を0として普通の電流制御を行うことで、効率良く同期電動機を回転させることができる。
一方、電圧ベクトル振幅指令信号が電圧ベクトル振幅飽和値を超えると、d軸電流制御器の積分器の出力をホールドし、d軸電圧補償器を起動してd軸電圧補償信号をd軸電圧指令に加えて新たなd軸電圧指令とし、そして電圧ベクトル振幅指令信号を電圧ベクトル振幅飽和値にリミッタさせ、安定かつ必要最小限なd軸電流を流すことでスムーズに弱め磁束制御を行うことができ、効率が良く振動がなく同期電動機を高速回転させることができる。
As described above, when the voltage vector amplitude command signal is within the voltage vector amplitude saturation value, the d-axis current command is set to 0 and normal current control is performed, whereby the synchronous motor can be efficiently rotated.
On the other hand, when the voltage vector amplitude command signal exceeds the voltage vector amplitude saturation value, the output of the integrator of the d-axis current controller is held, the d-axis voltage compensator is started, and the d-axis voltage compensation signal is transferred to the d-axis voltage command. In addition to the new d-axis voltage command, the voltage vector amplitude command signal is limited to the voltage vector amplitude saturation value, and a stable and necessary d-axis current can be flowed to smoothly weaken and control the magnetic flux. The synchronous motor can be rotated at high speed with high efficiency and no vibration.

次に、本発明の効果をシミュレーション結果を用いて説明する。
図5は、従来技術の同期電動機制御装置での弱め界磁制御をしない場合の速度制御のシミュレーション結果を示す図であり、図6は図5の一部の拡大図である。図7は、従来技術の同期電動機制御装置での速度制御のシミュレーション結果を示す図であり、図8は図7の一部の拡大図である。図9は、本発明の同期電動機制御装置での速度制御のシミュレーション結果を示す図であり、図10は図9の一部の拡大図である。
各図において、ある速度指令を入力した際の波形図であるが、下段は速度指令と回転子速度、中段はd軸電機子電流とq軸電機子電流、上段は電機子電圧ベクトル振幅と電圧ベクトル振幅飽和値を示している。
Next, the effect of the present invention will be described using simulation results.
FIG. 5 is a diagram showing a simulation result of speed control when field-weakening control is not performed in the conventional synchronous motor control device, and FIG. 6 is an enlarged view of a part of FIG. FIG. 7 is a diagram showing a simulation result of speed control in the conventional synchronous motor control device, and FIG. 8 is an enlarged view of a part of FIG. FIG. 9 is a diagram showing a simulation result of speed control in the synchronous motor control device of the present invention, and FIG. 10 is a partially enlarged view of FIG.
In each figure, it is a waveform diagram when a certain speed command is input. The lower stage is the speed command and the rotor speed, the middle stage is the d-axis armature current and the q-axis armature current, and the upper stage is the armature voltage vector amplitude and voltage. A vector amplitude saturation value is shown.

図6において、速度指令と回転子速度との間に定常偏差が残っていることが分かる。また、図8において、速度指令と回転子速度との間に定常偏差が残らないものの、回転子速度が振動的であることが分かる。一方、図10において、速度指令と回転子速度との間に定常偏差が残らず、また、回転子速度も殆ど振動していないことが分かる。これらにより、本発明の同期電動機制御装置での同期電動機を駆動する効果が、大いにあると言える。 In FIG. 6, it can be seen that there is a steady deviation between the speed command and the rotor speed. Also, in FIG. 8, it can be seen that the rotor speed is oscillatory although no steady deviation remains between the speed command and the rotor speed. On the other hand, in FIG. 10, it can be seen that there is no stationary deviation between the speed command and the rotor speed, and that the rotor speed hardly oscillates. Thus, it can be said that there is a great effect of driving the synchronous motor in the synchronous motor control device of the present invention.

本発明の実施例を示す同期電動機制御装置の電流制御部のブロック図The block diagram of the current control part of the synchronous motor control apparatus which shows the Example of this invention 本発明の同期電動機制御装置のd軸電流制御器の構成を示すブロック図The block diagram which shows the structure of the d-axis current controller of the synchronous motor control apparatus of this invention 本発明の同期電動機制御装置のd軸電圧補償器の構成を示すブロック図The block diagram which shows the structure of the d-axis voltage compensator of the synchronous motor control apparatus of this invention 従来技術の同期電動機制御装置の電流制御部の構成を示すブロック図The block diagram which shows the structure of the current control part of the synchronous motor control apparatus of a prior art 従来技術の同期電動機制御装置での弱め界磁制御をしない場合の速度制御のシミュレーション結果を示す図The figure which shows the simulation result of the speed control when not performing field-weakening control in the synchronous motor control device of the prior art 図5の一部の拡大図5 is an enlarged view of a part of FIG. 従来技術の同期電動機制御装置での速度制御のシミュレーション結果を示す図The figure which shows the simulation result of the speed control in the synchronous motor control device of the prior art 図7の一部の拡大図7 is an enlarged view of a part of FIG. 本発明の同期電動機制御装置での速度制御のシミュレーション結果を示す図The figure which shows the simulation result of the speed control in the synchronous motor control apparatus of this invention 図9の一部の拡大図9 is an enlarged view of a part of FIG.

符号の説明Explanation of symbols

1、2、10 減算器
3、43、44、73、74 加算器
4 d軸電流制御器
5 q軸PI制御器
6 d―q/極座標変換器
7 d軸電圧補償器
8 弱め界磁判断器
9 電圧ベクトル振幅リミッタ
11 極/3相交流座標変換器
12 3相交流/d―q座標変換器
13 PWMインバータ
14 電流センサ
15 同期電動機
16 位置センサ
17 積分補償器
18 d軸電流指令リミッタ
19 d軸PI制御器
41 電流制御比例ゲイン
42 電流制御積分ゲイン
45 電流制御積分バッファー
46 電流制御切り替えスイッチ
71 電圧補償比例ゲイン
72 電圧補償積分ゲイン
75 電圧補償積分バッファー
76 電圧補償切り替えスイッチ
77 零信号
78 電圧補償PI制御器
1, 2, 10 Subtractor 3, 43, 44, 73, 74 Adder 4 d-axis current controller 5 q-axis PI controller 6 dq / polar coordinate converter 7 d-axis voltage compensator 8 field weakening determination device 9 Voltage vector amplitude limiter 11 Pole / 3-phase AC coordinate converter 12 3-phase AC / dq coordinate converter 13 PWM inverter 14 Current sensor 15 Synchronous motor 16 Position sensor 17 Integral compensator 18 d-axis current command limiter 19 d-axis PI controller 41 Current control proportional gain 42 Current control integral gain 45 Current control integral buffer 46 Current control changeover switch 71 Voltage compensation proportional gain 72 Voltage compensation integral gain 75 Voltage compensation integral buffer 76 Voltage compensation integral buffer 77 Zero signal 78 Voltage compensation PI Controller

Claims (9)

弱め界磁制御をしてd−q軸ベクトル制御により同期電動機を駆動する同期電動機制御装置において、
弱め界磁基準信号と電圧ベクトル振幅指令信号との偏差信号に基づいて、弱め界磁指令信号を出力する弱め界磁判断器と、
前記電圧ベクトル振幅指令信号を入力し、新たな電圧ベクトル振幅指令信号を出力する電圧ベクトル振幅リミッタとを備え、
前記新たな電圧ベクトル振幅指令信号に基づいて前記同期電動機を駆動することを特徴とする同期電動機制御装置。
In a synchronous motor control device that performs field weakening control and drives a synchronous motor by dq axis vector control,
A field weakening determiner that outputs a field weakening command signal based on a deviation signal between the field weakening reference signal and the voltage vector amplitude command signal;
A voltage vector amplitude limiter that inputs the voltage vector amplitude command signal and outputs a new voltage vector amplitude command signal;
A synchronous motor control device that drives the synchronous motor based on the new voltage vector amplitude command signal.
前記弱め界磁判断器が、前記偏差が正の場合、弱め界磁を無効とする前記弱め界磁指令信号を出力し、
前記偏差が負の場合、弱め界磁を有効とする前記弱め界磁指令信号を出力することを特徴とする請求項1記載の同期電動機制御装置。
The field weakening determination device, when the deviation is positive, outputs the field weakening command signal to invalidate the field weakening,
2. The synchronous motor control device according to claim 1, wherein when the deviation is negative, the field weakening command signal for enabling the field weakening is output.
前記弱め界磁指令信号に基づいて、d軸電圧指令信号を出力するd軸電流制御器と、
前記弱め界磁指令信号に基づいて、d軸電圧補償信号を出力するd軸電圧補償器とを備えたことを特徴とする請求項1記載の同期電動機制御装置。
A d-axis current controller that outputs a d-axis voltage command signal based on the field weakening command signal;
The synchronous motor control device according to claim 1, further comprising a d-axis voltage compensator that outputs a d-axis voltage compensation signal based on the field weakening command signal.
前記d軸電流制御器が、電流制御切り替えスイッチと電流積分バッファーを備え、
前記弱め界磁指令信号に基づいて、前記電流制御切り替えスイッチを切り替え、
弱め界磁を無効とする前記弱め界磁指令信号の場合、d軸電流指令信号とd軸電流検出信号との偏差であるd軸電流偏差信号に電流制御積分ゲインを乗算して乗算値を算出し、前記電流積分バッファーの出力であるd軸電圧指令積分値に前記乗算値を加算して前記電流積分バッファーに入力し、
弱め界磁を有効とする前記弱め界磁指令信号の場合、前記d軸電圧指令積分値を前記電流積分バッファーに入力し、
前記d軸電流偏差信号に電流制御比例ゲインを乗算した値と、前記d軸電圧指令積分値と、を加算して前記d軸電圧指令信号を出力することを特徴とする請求項3記載の同期電動機制御装置。
The d-axis current controller includes a current control changeover switch and a current integration buffer;
Based on the field weakening command signal, switching the current control changeover switch,
In the case of the field weakening command signal invalidating the field weakening, the multiplication value is calculated by multiplying the d-axis current deviation signal, which is the deviation between the d-axis current command signal and the d-axis current detection signal, by the current control integral gain. And adding the multiplication value to the d-axis voltage command integration value, which is the output of the current integration buffer, and inputting it to the current integration buffer,
In the case of the field weakening command signal that activates the field weakening, the d-axis voltage command integrated value is input to the current integration buffer,
4. The synchronization according to claim 3, wherein the d-axis voltage command signal is output by adding a value obtained by multiplying the d-axis current deviation signal by a current control proportional gain and the d-axis voltage command integrated value. Electric motor control device.
前記電流積分バッファーが、その入力値を1サンプル周期遅れて前記d軸電圧指令積分値として出力することを特徴とする請求項4記載の同期電動機制御装置。 5. The synchronous motor control device according to claim 4, wherein the current integration buffer outputs the input value as the d-axis voltage command integrated value with a delay of one sample period. 前記d軸電圧補償器が、電圧補償切り替えスイッチと電圧補償積分バッファーと電圧補償PI制御器を備え、
前記弱め界磁指令信号に基づいて、前記電圧補償切り替えスイッチを切り替え、
弱め界磁を無効とする前記弱め界磁指令信号の場合、前記電圧補償PI制御器を待機状態にし、前記d軸電圧補償信号を0(ゼロ)とし、
弱め界磁を有効とする前記弱め界磁指令信号の場合、前記電圧補償積分バッファーを1度リセットした後、前記電圧補償PI制御器を起動し、前記電圧補償PI制御器の出力を前記d軸電圧補償信号とすることを特徴とする請求項3記載の同期電動機制御装置。
The d-axis voltage compensator includes a voltage compensation changeover switch, a voltage compensation integration buffer, and a voltage compensation PI controller.
Based on the field weakening command signal, switch the voltage compensation switch,
In the case of the field weakening command signal for invalidating the field weakening, the voltage compensation PI controller is set in a standby state, the d-axis voltage compensation signal is set to 0 (zero),
In the case of the field weakening command signal for enabling the field weakening, the voltage compensation integration buffer is reset once, then the voltage compensation PI controller is started, and the output of the voltage compensation PI controller is set to the d-axis. 4. The synchronous motor control device according to claim 3, wherein the synchronous motor control device is a voltage compensation signal.
前記電圧補償PI制御器が、弱め界磁基準信号と電圧ベクトル振幅指令信号との偏差信号に電圧補償積分ゲインを乗算して乗算値を算出し、前記電圧補償積分バッファーの出力であるd軸電圧補償積分値に前記乗算値を加算して前記電流積分バッファーに入力し、
前記弱め界磁基準信号と前記電圧ベクトル振幅指令信号との偏差信号に電圧補償比例ゲインを乗算した値と、前記d軸電圧補償積分値と、を加算して前記d軸電圧補償信号を出力することを特徴とする請求項6記載の同期電動機制御装置。
The voltage compensation PI controller calculates a multiplication value by multiplying a deviation signal between the field weakening reference signal and the voltage vector amplitude command signal by a voltage compensation integral gain, and outputs a d-axis voltage which is an output of the voltage compensation integral buffer. Add the multiplication value to the compensation integral value and input to the current integration buffer,
A value obtained by multiplying a deviation signal between the field-weakening reference signal and the voltage vector amplitude command signal by a voltage compensation proportional gain and the d-axis voltage compensation integral value are added to output the d-axis voltage compensation signal. The synchronous motor control device according to claim 6.
前記電圧補償バッファーが、その入力値を1サンプル周期遅れて前記d軸電圧補償積分値として出力することを特徴とする請求項6記載の同期電動機制御装置。   The synchronous motor control device according to claim 6, wherein the voltage compensation buffer outputs the input value as the d-axis voltage compensation integral value with a delay of one sample period. 前記弱め界磁基準信号が、電圧ベクトル振幅飽和値であり、
前記電圧ベクトル振幅リミッタが、前記電圧ベクトル振幅飽和値で前記電圧ベクトル振幅指令信号をリミットすることを特徴とする請求項1記載の同期電動機制御装置。
The field weakening reference signal is a voltage vector amplitude saturation value;
The synchronous motor control device according to claim 1, wherein the voltage vector amplitude limiter limits the voltage vector amplitude command signal with the voltage vector amplitude saturation value.
JP2005308969A 2005-10-24 2005-10-24 Synchronous motor controller Expired - Fee Related JP4730658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308969A JP4730658B2 (en) 2005-10-24 2005-10-24 Synchronous motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005308969A JP4730658B2 (en) 2005-10-24 2005-10-24 Synchronous motor controller

Publications (2)

Publication Number Publication Date
JP2007124722A true JP2007124722A (en) 2007-05-17
JP4730658B2 JP4730658B2 (en) 2011-07-20

Family

ID=38147956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308969A Expired - Fee Related JP4730658B2 (en) 2005-10-24 2005-10-24 Synchronous motor controller

Country Status (1)

Country Link
JP (1) JP4730658B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986116B2 (en) 2007-12-21 2011-07-26 Denso Corporation Apparatus for controlling torque of electric rotating machine
EP2626999A1 (en) * 2012-02-10 2013-08-14 Siemens Aktiengesellschaft Drive regulator for an electric machine and method for regulating an electrical machine
JP2022542529A (en) * 2020-07-09 2022-10-05 浙江大学 Permanent magnet synchronous motor vector field weakening control system in electric drive system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182398A (en) * 1994-12-27 1996-07-12 Fuji Electric Co Ltd Driving device for permanent magnet-type synchronous motor
JP2003047793A (en) * 2001-08-07 2003-02-18 Matsushita Electric Ind Co Ltd Motor drive apparatus of washing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182398A (en) * 1994-12-27 1996-07-12 Fuji Electric Co Ltd Driving device for permanent magnet-type synchronous motor
JP2003047793A (en) * 2001-08-07 2003-02-18 Matsushita Electric Ind Co Ltd Motor drive apparatus of washing machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986116B2 (en) 2007-12-21 2011-07-26 Denso Corporation Apparatus for controlling torque of electric rotating machine
EP2626999A1 (en) * 2012-02-10 2013-08-14 Siemens Aktiengesellschaft Drive regulator for an electric machine and method for regulating an electrical machine
JP2022542529A (en) * 2020-07-09 2022-10-05 浙江大学 Permanent magnet synchronous motor vector field weakening control system in electric drive system
JP7313081B2 (en) 2020-07-09 2023-07-24 浙江大学 Permanent magnet synchronous motor vector field weakening control system in electric drive system

Also Published As

Publication number Publication date
JP4730658B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US6900613B2 (en) Motor control apparatus
WO2011145334A1 (en) Control device without a rotation sensor
JP5933810B2 (en) Motor control device
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
JPWO2009040884A1 (en) Electric motor control device
JP2007189766A (en) Motor drive controller and motor drive system
WO2013080292A1 (en) Control device of rotating mechanism and inductance measurement method of rotating mechanism
US8754603B2 (en) Methods, systems and apparatus for reducing power loss in an electric motor drive system
JP5509167B2 (en) Synchronous motor control system
WO2012153794A1 (en) Position sensorless control device for permanent magnet synchronous motor
JP5920067B2 (en) Motor control device
JP2014110708A (en) Magnetic pole position detection device for synchronous motor
JP4730658B2 (en) Synchronous motor controller
JP2010279095A (en) Sensorless control device for ac electric motors
JP2008079489A (en) Motor control device
JP4881038B2 (en) Control device for permanent magnet synchronous motor
JP5791848B2 (en) Control device for permanent magnet motor
JP2004129381A (en) Control device of permanent magnet synchronous motor
JP2005033932A (en) Motor controller
JP2019115114A (en) Motor control method and motor control device
JP2005137052A (en) Apparatus and method for controlling motor
JP5060393B2 (en) Inverter control device
JP6963172B2 (en) Synchronous motor control device and control method
JP2002233193A (en) Wind power generator
US9054622B2 (en) Method of controlling a current of a motor and control device of a motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees