JP2007120823A - Cooling storage cabinet with automatic ice making machine - Google Patents

Cooling storage cabinet with automatic ice making machine Download PDF

Info

Publication number
JP2007120823A
JP2007120823A JP2005311749A JP2005311749A JP2007120823A JP 2007120823 A JP2007120823 A JP 2007120823A JP 2005311749 A JP2005311749 A JP 2005311749A JP 2005311749 A JP2005311749 A JP 2005311749A JP 2007120823 A JP2007120823 A JP 2007120823A
Authority
JP
Japan
Prior art keywords
ice making
ice
temperature
blower
cold air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005311749A
Other languages
Japanese (ja)
Other versions
JP4804108B2 (en
Inventor
Masashi Toyoshima
昌志 豊嶋
Tatsuhiko Yamaguchi
竜彦 山口
Masahiro Kikukawa
政宏 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005311749A priority Critical patent/JP4804108B2/en
Publication of JP2007120823A publication Critical patent/JP2007120823A/en
Application granted granted Critical
Publication of JP4804108B2 publication Critical patent/JP4804108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out ice making completion determination without using a thermistor, to carry out control of emphasizing a value during OFF time of a blower when carrying out ON-OFF actions of the blower supplying cold air to a freezing temperature chamber installed with an automatic ice making machine, and to provide control based upon a detected voltage of a non-contact type sensor even when ON time of the blower during an ice making process becomes long, even though a conventional one is provided with an infrared ray sensor corresponding to an ice tray and a thermistor detecting a self-temperature of the infrared ray sensor, and ice making completion is determined on the basis of both outputs. <P>SOLUTION: By using an average value S of voltage outputs based upon detection of the non-contact type sensor within a predetermined time as a reference temperature, control is carried out to change from the ice making process to an ice separating process if there is a drop of a predetermined temperature from the reference temperature. The average value S in the ON-OFF actions of the blower supplying cold air to the freezing temperature chamber during the ice making process is a weighted value so as to emphasize the value during the OFF time of the blower more than a value during ON time of the blower supplying cold air to the freezing temperature chamber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非接触型センサによって製氷皿の水の凍結状態を検出する制御を行う自動製氷機付き冷却貯蔵庫に関する。   The present invention relates to a cooling storage with an automatic ice maker that performs control for detecting a frozen state of water in an ice tray by a non-contact type sensor.

冷蔵庫に搭載される自動製氷機であって、その製氷皿に温度センサを取り付け、マイクロコンピュータ式の制御装置のプログラムによって、給水前の検出温度と給水後の検出温度に基づく温度信号をサンプリングし、両検出温度信号の偏差値が標準偏差値以下の場合に、製氷皿内に「水無し」と判定するものがある。(例えば、特許文献1参照)。   It is an automatic ice maker mounted in a refrigerator, a temperature sensor is attached to the ice tray, and a temperature signal based on a detected temperature before water supply and a detected temperature after water supply is sampled by a program of a microcomputer type control device, When the deviation value of both detected temperature signals is equal to or smaller than the standard deviation value, some ice trays determine that there is no water. (For example, refer to Patent Document 1).

この特許文献1の自動製氷機は、製氷皿に温度センサを取り付けているため、製氷皿の取り外しは困難である。これに対して、冷蔵庫に搭載される自動製氷機であって、その製氷皿を着脱できる構成とするために、製氷皿に給水された水から発せられる赤外線を検知する赤外線センサを配置し、この赤外線センサの出力電圧から得られる水の温度が所定温度以下であるなら、氷が生成されたと判断する製氷完了判定手段を備えたものがある。(例えば、特許文献2参照)。   Since the automatic ice making machine of Patent Document 1 has a temperature sensor attached to the ice tray, it is difficult to remove the ice tray. On the other hand, an automatic ice maker mounted on the refrigerator is provided with an infrared sensor that detects infrared rays emitted from the water supplied to the ice tray in order to make the ice tray removable. Some have ice making completion determination means for determining that ice has been generated if the temperature of water obtained from the output voltage of the infrared sensor is equal to or lower than a predetermined temperature. (For example, refer to Patent Document 2).

この特許文献2の自動製氷機は、単に、赤外線センサによって製氷皿に給水された水から発せられる赤外線を検知するだけでは、冷蔵庫の霜取り制御やドアの開閉などによる急激な温度変化があった場合は、赤外線センサの設置環境の温度が急に高くなって、赤外線センサの検出温度が高くなり、温度が急に低くなると、赤外線センサは温度に対する応答性が速いため、赤外線センサの検出温度が低くなり、水や氷から発せられる赤外線を正確に検出できず、製氷皿に給水された水が未凍結のままの状態でも製氷完了判定をしてしまう。これの防止のために、赤外線センサの自己温度を検出するサーミスタを設け、サーミスタの出力電圧と赤外線センサの出力電圧から得られる温度が、あらかじめ定めた温度以下の場合に、製氷完了判定を行うようにするものである。
特許第2552571号公報 特開2005−98537号公報
In the automatic ice maker of Patent Document 2, simply detecting infrared rays emitted from the water supplied to the ice tray by the infrared sensor causes a sudden temperature change due to defrosting control of the refrigerator or opening / closing of the door. When the temperature of the infrared sensor installation environment suddenly increases, the detection temperature of the infrared sensor increases, and when the temperature decreases suddenly, the infrared sensor is responsive to temperature, so the detection temperature of the infrared sensor is low. Therefore, infrared rays emitted from water and ice cannot be detected accurately, and the completion of ice making is determined even when the water supplied to the ice tray remains unfrozen. In order to prevent this, a thermistor that detects the self-temperature of the infrared sensor is provided so that the completion of ice making is determined when the temperature obtained from the output voltage of the thermistor and the output voltage of the infrared sensor is equal to or lower than a predetermined temperature. It is to make.
Japanese Patent No. 2552571 JP 2005-98537 A

このように、特許文献2の発明は、赤外線センサの他に赤外線センサの自己温度を検出するサーミスタが必要であるが、本発明では、このようなサーミスタを用いることなく、製氷完了判定を行うようにする制御方式を提供するものである。   As described above, the invention of Patent Document 2 requires a thermistor that detects the self-temperature of the infrared sensor in addition to the infrared sensor, but in the present invention, it is determined that ice making completion is determined without using such a thermistor. It provides a control method to make.

自動製氷機の製氷工程中において、製氷皿内の水の状態と氷の状態を非接触型センサによって検出し、所定時間内の非接触型センサの検出に基づく電圧出力の平均値Sを基準温度として、そこから所定温度下がれば製氷工程から脱氷工程へ移行するよう制御する方式を採用した場合、自動製氷機が設置された冷凍温度室へ冷気を供給する送風機が、常に製氷工程期間中OFFしている場合には、非接触型センサによって検出される温度に係る電圧は、極端に偏移することがなく安定した温度検出ができるが、通常は、送風機は製氷工程期間中においてON−OFF動作をするが、製氷皿への給水によって冷凍温度室の温度が上昇して送風機がONするため、ON時間が長くなる場合がある。送風機がONした場合には、供給される冷気によって非接触型センサが冷却されるため、製氷皿内の水の状態と氷の状態を正確に検出することができなくなる場合がある。   During the ice making process of the automatic ice maker, the state of water and ice in the ice tray is detected by a non-contact sensor, and the average value S of the voltage output based on the detection of the non-contact sensor within a predetermined time is used as a reference temperature. As a result, when a system is used to control the transition from the ice making process to the deicing process when the temperature falls from there, the blower that supplies cold air to the freezing temperature chamber where the automatic ice making machine is installed is always OFF during the ice making process. In this case, the voltage related to the temperature detected by the non-contact type sensor can be detected stably without extreme deviation. Normally, the blower is turned on and off during the ice making process. Although it operates, since the temperature of the freezing temperature chamber rises due to the water supply to the ice tray and the blower is turned on, the ON time may be longer. When the blower is turned on, the non-contact type sensor is cooled by the supplied cold air, so that it may not be possible to accurately detect the water state and ice state in the ice tray.

そこで、安定した検出ができる送風機OFFのときの検出電圧に対して、安定度が劣る送風機ONのときの検出電圧の重みが小さくなるようにして、送風機のOFF時間中における値を重要視する制御を行うようにし、製氷工程期間中の送風機のON時間が長くなる場合にも、非接触型センサの検出電圧に基づく制御が可能なようにするものである。   Therefore, control that places importance on the value during the OFF time of the blower so that the weight of the detection voltage when the blower ON is inferior in stability is reduced with respect to the detection voltage when the blower OFF is capable of stable detection. Thus, the control based on the detection voltage of the non-contact type sensor is made possible even when the ON time of the blower during the ice making process becomes long.

本願の第1発明の自動製氷機付き冷却貯蔵庫は、電動機構によって回転駆動される製氷皿を備えた自動製氷機が冷凍温度室に組み込まれ、前記製氷皿内の水と氷から発せられる温度に関連する出力電圧を発生する非接触型センサを備え、この非接触型センサの出力電圧に基づき前記自動製氷機の製氷工程と脱氷工程の制御を行う制御回路部を備えた冷却貯蔵庫において、前記制御回路部は、所定時間内の前記非接触型センサの検出に基づく出力電圧の平均値Sを基準温度として、そこから所定温度下がれば製氷工程から脱氷工程へ移行するよう制御するものであって、前記製氷工程中の前記冷凍温度室へ冷気を供給する送風機のON−OFF動作における前記平均値Sは、前記冷凍温度室へ冷気を供給する送風機のON時間中における値よりも前記送風機のOFF時間中における値を重要視するように重み付けした値である。   The cooling storage with an automatic ice maker according to the first invention of the present application is such that an automatic ice maker equipped with an ice tray that is rotationally driven by an electric mechanism is incorporated in a freezing temperature chamber, and the temperature is generated from water and ice in the ice tray. In a cooling storage comprising a non-contact type sensor that generates an associated output voltage, and a control circuit unit that controls an ice making process and a de-ice process of the automatic ice maker based on the output voltage of the non-contact type sensor, The control circuit unit controls the average value S of the output voltage based on the detection of the non-contact sensor within a predetermined time as a reference temperature, and shifts from the ice making process to the deicing process when the temperature falls from the average value S. The average value S in the ON-OFF operation of the blower that supplies cold air to the refrigeration temperature chamber during the ice making process is the value during the ON time of the blower that supplies cold air to the refrigeration temperature chamber. Is a weighted value to emphasize values in the OFF time of the blower.

また第2の発明は、電動機構によって回転駆動される製氷皿を備えた自動製氷機が冷凍温度室に組み込まれ、前記製氷皿内の水と氷から発せられる温度に関連する出力電圧を発生する非接触型センサを備え、この非接触型センサの出力電圧に基づき前記自動製氷機の製氷工程と脱氷工程の制御を行う制御回路部を備えた冷却貯蔵庫において、前記制御回路部は、所定時間内の前記非接触型センサの検出に基づく出力電圧の平均値Sを基準温度として、そこから所定温度下がれば製氷工程から脱氷工程へ移行するよう制御するものであって、前記製氷工程中の前記冷凍温度室へ冷気を供給する送風機のON−OFF動作における前記平均値Sは、前記冷凍温度室へ冷気を供給する送風機のOFF時間中における所定時間内の前記非接触型センサの出力電圧の平均値S1と、前記送風機のON時間中における所定時間内の前記非接触型センサの出力電圧の平均値S2との平均値であって、前記平均値S2は前記平均値S1よりも軽く重み付けされた値である。   According to a second aspect of the present invention, an automatic ice maker having an ice tray rotated by an electric mechanism is incorporated in a freezing temperature chamber, and generates an output voltage related to the temperature generated from water and ice in the ice tray. In a cooling storage having a non-contact type sensor and having a control circuit unit for controlling an ice making process and a de-icing process of the automatic ice maker based on an output voltage of the non-contact type sensor, the control circuit unit has a predetermined time The average value S of the output voltage based on the detection of the non-contact type sensor is set as a reference temperature, and when the temperature falls from the average value S, control is performed so as to shift from the ice making process to the deicing process. The average value S in the ON-OFF operation of the blower supplying cold air to the refrigeration temperature chamber is the non-contact sensor within a predetermined time during the OFF time of the blower supplying cold air to the refrigeration temperature chamber. The average value S1 of the output voltage and the average value S2 of the output voltage of the non-contact sensor within a predetermined time during the ON time of the blower, the average value S2 being more than the average value S1 It is a lightly weighted value.

第1の発明では、非接触型センサで製氷皿内の温度を検出するとき、所定時間での非接触型センサの出力の平均値を略0℃の温度とし、これを基準として、ここから所定温度下がれば、製氷工程から脱氷工程へ移行する制御を行うため、安定した制御ができるものとなる。この場合、製氷工程中の冷凍温度室へ冷気を供給する送風機のON−OFF動作における平均値Sを採用する場合、送風機のON時間中における値よりも送風機のOFF時間中における値を重要視するように重み付けした値に基づくため、製氷工程における送風機のON時間が長い場合でも、送風機のONによる検出誤差は薄まり、製氷工程から脱氷工程へ移行する安定制御ができるものとなる。   In the first invention, when the temperature in the ice tray is detected by the non-contact type sensor, the average value of the output of the non-contact type sensor for a predetermined time is set to a temperature of about 0 ° C., and this is used as a reference from here. If the temperature falls, the control to shift from the ice making process to the deicing process is performed, so that stable control can be performed. In this case, when the average value S in the ON / OFF operation of the blower that supplies cold air to the freezing temperature chamber during the ice making process is adopted, the value during the blower OFF time is more important than the value during the blower ON time. Based on the weighted values as described above, even when the blower is turned on for a long time in the ice making process, the detection error caused by turning on the blower is reduced, and stable control for shifting from the ice making process to the deicing process can be performed.

第2の発明は、送風機のOFF時間中における平均値S1と、送風機のON時間中における平均値S2との平均値であって、平均値S2は平均値S1よりも軽く重み付けされた値である。この重み付けは、例えば、送風機のOFF時間中における非接触型センサの出力のサンプリング値又はその平均値に0.9を掛け算し、送風機のON時間中における非接触型センサの出力のサンプリング値又はその平均値に0.1を掛け算し、これを加算した値の平均値でもって製氷工程から脱氷工程へ移行する制御を行うか、又は重み付けする他の方法によって行うことができるため、第1の発明と同様の効果を奏することができるものとなる。   The second invention is an average value of the average value S1 during the blower OFF time and the average value S2 during the blower ON time, and the average value S2 is a value weighted lighter than the average value S1. . This weighting is performed by, for example, multiplying the sampling value of the output of the non-contact type sensor during the blower OFF time or an average value thereof by 0.9, and the sampling value of the output of the non-contact type sensor during the ON time of the blower or its Since the average value is multiplied by 0.1, and the average value obtained by adding the average value can be controlled to shift from the ice making process to the deicing process, or can be performed by another method of weighting, the first The same effects as the invention can be obtained.

本発明は、電動機構によって回転駆動される製氷皿を備えた自動製氷機が冷凍温度室に組み込まれ、前記製氷皿内の水と氷から発せられる温度に関連する出力電圧を発生する非接触型センサを備え、この非接触型センサの出力電圧に基づき前記自動製氷機の製氷工程と脱氷工程の制御を行う制御回路部を備えた冷却貯蔵庫において、前記制御回路部は、所定時間内の前記非接触型センサの検出に基づく出力電圧の平均値Sを基準温度として、そこから所定温度下がれば製氷工程から脱氷工程へ移行するよう制御するものであって、前記冷凍温度室へ冷気を供給する送風機の前記製氷工程におけるON−OFF動作における前記平均値Sは、前記冷凍温度室へ冷気を供給する送風機のON時間中における値よりも前記送風機のOFF時間中における値を重要視するように重み付けした値であり、本発明の実施例を以下に記載する。   The present invention relates to a non-contact type in which an automatic ice maker having an ice tray rotated by an electric mechanism is incorporated in a freezing temperature chamber and generates an output voltage related to the temperature generated from water and ice in the ice tray. In a cooling storage comprising a sensor and a control circuit unit that controls an ice making process and a deicing process of the automatic ice maker based on an output voltage of the non-contact sensor, the control circuit unit includes the control circuit unit within a predetermined time. The average value S of the output voltage based on the detection of the non-contact type sensor is used as a reference temperature, and control is performed so as to shift from the ice-making process to the de-icing process when the temperature falls below a predetermined temperature, and cool air is supplied to the freezing temperature chamber The average value S in the ON-OFF operation in the ice making process of the blowing fan is larger during the OFF time of the blower than the value during the ON time of the blower that supplies cold air to the freezing temperature chamber. That value is weighted values to emphasize, that described embodiments of the invention below.

本発明の実施の形態について説明する。図1は冷却貯蔵庫の正面図、図2は冷却貯蔵庫本体を正面から見た説明図、図3は冷却貯蔵庫の縦断側面図、図4は自動製氷機に係る部分の断面図、図5は製氷皿の平面図、図6は制御回路構成図、図7は自動製氷機の給水・製氷・脱氷における温度変化状態を示す図である。   Embodiments of the present invention will be described. 1 is a front view of a cooling storage, FIG. 2 is an explanatory view of the cooling storage body viewed from the front, FIG. 3 is a longitudinal side view of the cooling storage, FIG. 4 is a cross-sectional view of a portion related to an automatic ice maker, and FIG. FIG. 6 is a configuration diagram of the control circuit, and FIG. 7 is a diagram showing a temperature change state in water supply / ice making / deicing of the automatic ice making machine.

図1乃至図3において、1は本発明の冷却貯蔵庫であり、冷凍冷蔵庫の形態を示している。冷却貯蔵庫1は、前面開口の本体2内を区画して複数の貯蔵室を形成し、これら各貯蔵室の前面は扉で開閉できる構成である。冷却貯蔵庫本体2は、外箱(外壁板)2Aと内箱(内壁板)2Bとの間に発泡断熱材2Cを充填した断熱構造である。冷却貯蔵庫本体2内には、上部に冷蔵室3、その下方に冷凍温度室として冷凍室5と製氷室6が横並びに設けられ、その下方に野菜室4が配置された構成である。   In FIG. 1 thru | or FIG. 3, 1 is the cooling storage of this invention, and has shown the form of the refrigerator-freezer. The cooling storage 1 has a configuration in which the inside of the main body 2 having a front opening is partitioned to form a plurality of storage chambers, and the front surfaces of these storage chambers can be opened and closed by doors. The cooling storage body 2 is a heat insulating structure in which a foam heat insulating material 2C is filled between an outer box (outer wall plate) 2A and an inner box (inner wall plate) 2B. The cooling storage body 2 has a structure in which a refrigeration room 3 is provided at the top, a freezing room 5 and an ice making room 6 are provided side by side as a freezing temperature room, and a vegetable room 4 is disposed therebelow.

冷蔵室3内には冷蔵室3の側壁に形成した棚受けに載置した複数段の棚3Aが設けられている。冷蔵室3の前面開口は、冷却貯蔵庫本体2の一側部にヒンジ装置にて横方向に回動する回動式の冷蔵室扉10にて開閉される。野菜室4の前面開口は、野菜室4内に設けた左右のレール18Aとローラ18Bによる支持装置18によって前後方向へ引き出し可能に支持した野菜容器15と共に前方へ引き出される引き出し式扉11にて閉塞されている。冷凍室5と製氷室6の前面開口は、冷却貯蔵庫本体2の一側部にヒンジ装置にて横方向に回動する回動式の扉12にて閉塞されているが、冷凍室5と製氷室6の前面開口は、それぞれ別個の扉12A、12B(図示せず)で閉じられるように構成してもよい。この場合、冷凍室5は野菜室4と同様に、冷凍室5内に設けた左右のレールに対して、前後方向へ引き出し可能に支持した容器を扉12Aと共に前方へ引き出される引き出し式とし、また、製氷室6は野菜室4と同様に、製氷室6内に設けた左右のレールに対して、前後方向へ引き出し可能に支持した後述の貯氷容器を扉12Bと共に前方へ引き出される引き出し式とする構成でもよい。   A plurality of shelves 3 </ b> A are provided in the refrigerator compartment 3 so as to be placed on a shelf holder formed on the side wall of the refrigerator compartment 3. The front opening of the refrigerating room 3 is opened and closed by a revolving refrigerating room door 10 that is rotated laterally by a hinge device at one side of the cooling storage body 2. The front opening of the vegetable compartment 4 is closed by a pull-out door 11 that is drawn forward together with the vegetable container 15 supported so that it can be pulled out in the front-rear direction by a support device 18 by left and right rails 18A and rollers 18B provided in the vegetable compartment 4. Has been. The front openings of the freezer compartment 5 and the ice making chamber 6 are closed at one side of the cooling storage body 2 by a pivotable door 12 that pivots laterally by a hinge device. The front opening of the chamber 6 may be configured to be closed by separate doors 12A and 12B (not shown). In this case, similarly to the vegetable compartment 4, the freezer compartment 5 is a drawer type in which a container supported so as to be able to be drawn out in the front-rear direction with respect to the left and right rails provided in the freezer compartment 5 is drawn out together with the door 12A. As with the vegetable compartment 4, the ice making chamber 6 is a drawer type in which an ice storage container, which will be described later, is supported with respect to the left and right rails provided in the ice making chamber 6 so that it can be pulled out in the front-rear direction. It may be configured.

上部に位置する冷蔵室3と、その下部に位置する横並びの冷凍室5並びに製氷室6との間は断熱仕切り壁17Aにて区画されており、横並びの冷凍室5並びに製氷室6とその下方の野菜室4との間は断熱仕切り壁17Bにて区画されている。45は冷却貯蔵庫本体2の背壁の前面側に配設した冷蔵室3の背壁部材であり、合成樹脂製背面板とその裏側に取り付けた発泡スチロール等の断熱材との組み合わせで構成され、冷蔵室3の背面側に上下方向の冷気通路(冷気ダクト)43と、その左右両側に冷気通路(冷気ダクト)43A、43Bを形成している。   The refrigerator compartment 3 located in the upper part and the side-by-side freezing room 5 and ice making room 6 located in the lower part are partitioned by a heat insulating partition wall 17A, and the side-by-side freezing room 5 and ice making room 6 and below The vegetable compartment 4 is partitioned by a heat insulating partition wall 17B. 45 is a back wall member of the refrigerating chamber 3 disposed on the front side of the back wall of the cooling storage body 2 and is composed of a combination of a synthetic resin back plate and a heat insulating material such as styrofoam attached to the back side. A cold air passage (cold air duct) 43 in the vertical direction is formed on the back side of the chamber 3, and cold air passages (cold air ducts) 43 </ b> A and 43 </ b> B are formed on the left and right sides thereof.

冷凍室5と製氷室6は区画板47Aによって左側に冷凍温度に保たれる前面開口の製氷室6が、そして右側に冷凍温度に保たれる冷凍室5が区画形成され、製氷室6内には上部に自動製氷機7が配置され、その自動製氷機7の下方には上面開口の貯氷容器8が配置されている。貯氷容器8は、製氷室6の左右側壁に設けたレール6Aに前後方向へ引き出し自在に支持されている。自動製氷機7は電動機構7Aによって回転駆動される製氷皿7Bを備えており、製氷工程によって製氷皿7B内に作られた氷は、制御回路部300からの制御信号によって、電動機構によって製氷皿7Bを捻りつつ反転させてその中の氷を下方の貯氷容器8へ離脱させた後、逆回転によって再び正規の状態に復帰し、後述のソレノイド式開閉弁装置51Aの動作によって、所定量の水が供給されるように動作するものである。   The freezing chamber 5 and the ice making chamber 6 are divided into a front opening ice making chamber 6 which is kept at the freezing temperature on the left side by a partition plate 47A, and a freezing chamber 5 which is kept at the freezing temperature on the right side. An automatic ice maker 7 is disposed at the top, and an ice storage container 8 having an upper surface opening is disposed below the automatic ice maker 7. The ice storage container 8 is supported by a rail 6A provided on the left and right side walls of the ice making chamber 6 so as to be drawn out in the front-rear direction. The automatic ice making machine 7 includes an ice tray 7B that is rotationally driven by an electric mechanism 7A. The ice made in the ice tray 7B by the ice making process is generated by the electric mechanism according to a control signal from the control circuit unit 300. 7B is twisted and reversed to disengage the ice in the ice storage container 8 below, and then returned to the normal state by reverse rotation, and a predetermined amount of water is returned by the operation of a solenoid type on-off valve device 51A described later. Is operated so as to be supplied.

9は自動製氷機7へ供給する製氷用水を貯める給水容器(貯水容器ともいう)であり、横幅に比して奥行きが長い矩形状をなし、冷蔵室3内を区画壁47Bで仕切って形成した小室46に配置されており、冷蔵室3内の温度で冷却され、冷蔵室3の前面扉10を開くことによって前方へ取り出すことができる。区画壁47Bで仕切った小室46の隣には、特定低温室13が併設されている。   Reference numeral 9 denotes a water supply container (also referred to as a water storage container) for storing ice making water supplied to the automatic ice making machine 7, which has a rectangular shape whose depth is longer than the horizontal width, and is formed by partitioning the inside of the refrigerator compartment 3 with a partition wall 47B. It is arrange | positioned at the small chamber 46, it cools with the temperature in the refrigerator compartment 3, and it can take out ahead by opening the front door 10 of the refrigerator compartment 3. The specific low temperature chamber 13 is provided next to the small chamber 46 partitioned by the partition wall 47B.

図3に示すように、冷却貯蔵庫本体2の底部には機械室28が形成され、この機械室28には、冷却貯蔵庫1の冷凍装置を構成する冷媒を圧縮する電動圧縮機24、除霜水を蒸発させるための放熱器25Bを備えた蒸発皿26、及び送風機81等がベース板83上に配置されている。この送風機81からの風によって、機械室28内の電動圧縮機24、及び蒸発皿26は熱交換されて放熱する。29、30は冷却庫内を冷却するために設けた冷凍装置の冷媒の蒸発器(冷却器)である。31は冷凍室用冷却器である第1蒸発器(冷却器)29で冷却した冷気を冷却庫内、即ち冷凍室5と製氷室6へ循環する第1送風機である。32は冷蔵室用冷却器である第2蒸発器(冷却器)30で冷却した冷気を冷却庫内、即ち冷蔵室3、野菜室4及び特定低温室13へ循環する第2送風機である。33は第1蒸発器(冷却器)29の除霜用ガラス管ヒータ、34は、第2蒸発器(冷却器)30の除霜用ガラス管ヒータである。第1蒸発器(冷却器)29及び第2蒸発器(冷却器)30の除霜水は排水管23を通って蒸発皿26へ導かれてそこで蒸発する。   As shown in FIG. 3, a machine room 28 is formed at the bottom of the cooling storage body 2, and in this machine room 28, an electric compressor 24 that compresses the refrigerant constituting the refrigeration apparatus of the cooling storage 1, defrosted water The evaporating dish 26 provided with a radiator 25B for evaporating the air, the blower 81, and the like are disposed on the base plate 83. By the wind from the blower 81, the electric compressor 24 and the evaporating dish 26 in the machine room 28 are heat-exchanged to dissipate heat. Reference numerals 29 and 30 denote refrigerant evaporators (coolers) of the refrigeration apparatus provided for cooling the inside of the refrigerator. Reference numeral 31 denotes a first blower that circulates the cold air cooled by a first evaporator (cooler) 29 serving as a freezer cooler into the refrigerator, that is, to the freezer compartment 5 and the ice making chamber 6. Reference numeral 32 denotes a second blower that circulates the cold air cooled by the second evaporator (cooler) 30, which is a refrigerator for the refrigerator compartment, into the refrigerator, that is, the refrigerator compartment 3, the vegetable compartment 4, and the specific low temperature compartment 13. Reference numeral 33 denotes a defrosting glass tube heater of the first evaporator (cooler) 29, and reference numeral 34 denotes a defrosting glass tube heater of the second evaporator (cooler) 30. The defrosted water from the first evaporator (cooler) 29 and the second evaporator (cooler) 30 is led to the evaporating dish 26 through the drain pipe 23 and evaporated there.

圧縮機24、送風機31、送風機32、送風機81が運転(ON)されると、圧縮機24で圧縮された高温高圧の冷媒ガスは、放熱器25Bを含む放熱器(図示せず)で放熱され、蒸発皿26内の除霜水を蒸発させる。放熱器を出た冷媒は、それぞれ第1電動式膨張弁71の回路と、第2電動式膨張弁72の回路を通って減圧されて温度が低下し、それぞれ冷凍室用蒸発器(冷却器)29と冷蔵室用蒸発器(冷却器)30へ流入する。第1蒸発器(冷却器)29と第2蒸発器(冷却器)30へ流入した液冷媒は、そこで蒸発して周囲の空気を冷却する。第1蒸発器(冷却器)29で蒸発したガス冷媒は、圧縮機24の吸い込み側へ流入して圧縮される。また、第2蒸発器(冷却器)30で蒸発したガス冷媒は、圧縮機24の吸い込み側へ流入して再び圧縮され、上記の冷媒循環を行う。   When the compressor 24, the blower 31, the blower 32, and the blower 81 are operated (ON), the high-temperature and high-pressure refrigerant gas compressed by the compressor 24 is radiated by a radiator (not shown) including the radiator 25B. The defrost water in the evaporating dish 26 is evaporated. The refrigerant exiting the radiator is reduced in pressure through the circuit of the first electric expansion valve 71 and the circuit of the second electric expansion valve 72, respectively, and the temperature is lowered. 29 and the cold room evaporator (cooler) 30. The liquid refrigerant that has flowed into the first evaporator (cooler) 29 and the second evaporator (cooler) 30 evaporates there and cools the surrounding air. The gas refrigerant evaporated in the first evaporator (cooler) 29 flows into the suction side of the compressor 24 and is compressed. Further, the gas refrigerant evaporated in the second evaporator (cooler) 30 flows into the suction side of the compressor 24 and is compressed again to perform the above-described refrigerant circulation.

上記の冷却貯蔵庫1において、電動式膨張弁71は、制御回路部300からの制御信号によって正転と逆転の動作をするステッピングモータによって、駆動弁が動作してその弁開度が調節されるものであり、蒸発器(冷却器)29の出口温度又は冷凍室5の温度に応じて制御回路部300に設定したデータに基づき、ステッピングモータが正転又は逆転して駆動弁が動作してその弁開度が調節され、適正な冷媒膨張が行われるように制御される。また、電動式膨張弁72は、制御信号によって正転と逆転の動作をするステッピングモータによって、駆動弁が動作してその弁開度が調節されるものであり、蒸発器(冷却器)30の入口、出口温度に応じて制御回路部300に設定したデータに基づき、ステッピングモータが正転又は逆転して駆動弁が動作してその弁開度が調節され、適正な冷媒膨張が行われるように制御される。   In the cooling storage 1 described above, the electric expansion valve 71 is a valve whose opening degree is adjusted by operating a drive valve by a stepping motor that performs forward and reverse operations according to a control signal from the control circuit unit 300. Based on the data set in the control circuit unit 300 in accordance with the outlet temperature of the evaporator (cooler) 29 or the temperature of the freezer 5, the stepping motor rotates forward or reverse to operate the drive valve, and the valve The opening degree is adjusted and control is performed so that proper refrigerant expansion is performed. In addition, the electric expansion valve 72 is a valve in which the drive valve is operated and the opening degree of the evaporator (cooler) 30 is adjusted by a stepping motor that performs forward rotation and reverse rotation according to a control signal. Based on the data set in the control circuit unit 300 in accordance with the inlet and outlet temperatures, the stepping motor rotates forward or backward to operate the drive valve so that the valve opening is adjusted and proper refrigerant expansion is performed. Be controlled.

この冷却貯蔵庫1の冷却運転を説明する。この冷却貯蔵庫1では、冷却運転は、冷凍室5の温度によって開始される。冷凍温度室センサによって検出した冷凍室5の温度が所定の上限設定温度に上昇すると、制御回路部300は冷却運転を開始する。この開始時に、制御回路部300は、冷蔵室センサによって冷蔵室3の温度を検知し、冷蔵室3の温度が所定の上限設定温度を超えている場合は、冷蔵室3の冷却を冷凍室5の冷却より先に行い、この冷蔵室3の温度が所定の上限設定温度を超えていない場合は、冷凍室5の冷却を行う。ここで、冷蔵室3の温度が所定の上限設定温度を超えているとする。したがって、制御回路部300は、まず冷蔵室3の冷却を行う。即ち、制御回路部300は、圧縮機24を運転(ON)し、電動式膨張弁72を前回の冷蔵室冷却時の開度まで開け、第2送風機32を運転(ON)する。そして、冷蔵室3が所定の下限設定温度まで低下すると、冷蔵室3の冷却から冷凍室5の冷却に切り替わる。制御回路部300は、この時の電動式膨張弁72の開度の値を格納すると共に、電動式膨張弁72を全閉し、第2送風機32を停止(OFF)し、電動式膨張弁71を前回の冷凍室冷却時の開度まで開け、第1送風機31を運転(ON)する。これにより、冷凍室5と製氷室6が冷却される。冷凍室5が所定の下限設定温度まで低下すると、冷凍運転を終了する。制御回路部300は、この時の電動式膨張弁71の開度の値を格納すると共に、電動式膨張弁71を全閉し、第1送風機31を停止(OFF)し、圧縮機24を停止(OFF)する。   The cooling operation of the cooling storage 1 will be described. In the cooling storage 1, the cooling operation is started by the temperature of the freezer compartment 5. When the temperature of the freezer compartment 5 detected by the freezer temperature chamber sensor rises to a predetermined upper limit set temperature, the control circuit unit 300 starts the cooling operation. At the start, the control circuit unit 300 detects the temperature of the refrigerating room 3 by the refrigerating room sensor, and when the temperature of the refrigerating room 3 exceeds a predetermined upper limit set temperature, the refrigerating room 5 cools the refrigerating room 3. If the temperature of the refrigerator compartment 3 does not exceed the predetermined upper limit set temperature, the freezer compartment 5 is cooled. Here, it is assumed that the temperature of the refrigerator compartment 3 exceeds a predetermined upper limit set temperature. Therefore, the control circuit unit 300 first cools the refrigerator compartment 3. That is, the control circuit unit 300 operates (ON) the compressor 24, opens the electric expansion valve 72 to the opening degree at the previous cooling room cooling, and operates (ON) the second blower 32. And if the refrigerator compartment 3 falls to predetermined | prescribed lower limit setting temperature, it will switch from cooling of the refrigerator compartment 3 to cooling of the freezer compartment 5. FIG. The control circuit unit 300 stores the value of the opening degree of the electric expansion valve 72 at this time, fully closes the electric expansion valve 72, stops the second blower 32, and turns off the electric expansion valve 71. Is opened to the opening at the time of the previous freezer cooling, and the first blower 31 is operated (ON). Thereby, the freezer compartment 5 and the ice making compartment 6 are cooled. When the freezer compartment 5 is lowered to a predetermined lower limit set temperature, the freezing operation is terminated. The control circuit unit 300 stores the opening value of the electric expansion valve 71 at this time, fully closes the electric expansion valve 71, stops the first blower 31, and stops the compressor 24. (OFF).

次に、図2及び図3を参照して冷気の循環について説明する。35は第2蒸発器(冷却器)30で冷却された冷気が第2送風機32から導かれる冷気通路(冷気ダクト)であり、冷蔵室3の上壁に沿って幅広く配置され、その前端は冷蔵室3の前面開口部の上面に形成した冷気吹き出し口36へ連通している。この冷気吹き出し口36から吹き出す冷気は、冷蔵室3の前面開口部を矢印のように上から下へ流れる冷気カーテン37を形成する。第1蒸発器(冷却器)29で冷却した冷気と第2蒸発器(冷却器)30で冷却した冷気は、夫々第1送風機31及び第2送風機32によって矢印のように循環して各室を所定温度に冷却する。   Next, the circulation of cold air will be described with reference to FIGS. Reference numeral 35 denotes a cold air passage (cold air duct) through which the cold air cooled by the second evaporator (cooler) 30 is guided from the second blower 32, and is widely arranged along the upper wall of the refrigerator compartment 3, the front end of which is refrigerated. It communicates with a cold air outlet 36 formed on the upper surface of the front opening of the chamber 3. The cold air blown out from the cold air outlet 36 forms a cold air curtain 37 that flows from the top to the bottom as indicated by the arrow in the front opening of the refrigerator compartment 3. The cold air cooled by the first evaporator (cooler) 29 and the cold air cooled by the second evaporator (cooler) 30 are circulated as indicated by arrows by the first blower 31 and the second blower 32, respectively, and each chamber is circulated. Cool to a predetermined temperature.

第2蒸発器(冷却器)30で冷却した冷気を第2送風機32によって冷蔵室3と野菜室4とに循環させる冷気循環経路の形成に関し、冷蔵室3の背面部には、冷気通路(冷気ダクト)43が形成され、この左右両側に冷気通路(冷気ダクト)43A、43Bが形成され、冷気供給通路(冷気ダクト)43には第2蒸発器(冷却器)30が収納されて冷却器室を構成している。また、第2蒸発器(冷却器)30から上方へ延びた冷媒パイプに配置した電動式膨張弁72が、冷気供給通路(冷気ダクト)43の背面の窪みにゴム製カバー90で覆われた状態でネジにて取り付けられている。   Regarding the formation of a cold air circulation path in which the cold air cooled by the second evaporator (cooler) 30 is circulated to the refrigerator compartment 3 and the vegetable compartment 4 by the second blower 32, a cold air passage (cold air) is provided at the back of the refrigerator compartment 3. Duct) 43 is formed, and cold air passages (cold air ducts) 43A and 43B are formed on both the left and right sides, and the second evaporator (cooler) 30 is accommodated in the cold air supply passage (cold air duct) 43 and the cooler chamber. Is configured. In addition, the electric expansion valve 72 disposed on the refrigerant pipe extending upward from the second evaporator (cooler) 30 is covered with the rubber cover 90 in the recess on the back surface of the cold air supply passage (cold air duct) 43. It is attached with screws.

第2蒸発器(冷却器)30で冷却した冷気は、第2送風機32によって冷蔵室3とその一部分である特定低温室13とに循環される。その経路は、第2送風機32を通過した冷気は、一部が冷気通路(冷気ダクト)35を通って冷気吹き出し口36から吹き出す。第2送風機32を通過した冷気の他の部分は、冷蔵室3の背面板45の裏側の左右の冷気通路43A、43Bを通って、冷蔵室3の背面板45に形成した冷気吹き出し口39から冷蔵室3へ吹き出し、冷気通路43Bを更に下方へ流れた冷気が冷気吹き出し口39Aから特定低温室13へ吹き出す。冷蔵室3と特定低温室13へ流入した冷気は、冷蔵室3の下部の吸い込み口50、即ち小室46と特定低温室13の背壁に形成した吸い込み口50から吸込まれ、冷気通路(冷気ダクト)43の第2蒸発器(冷却器)30の下部の冷気吸い込み側に流入し、再び第2蒸発器(冷却器)30で冷却される循環をする。   The cold air cooled by the second evaporator (cooler) 30 is circulated by the second blower 32 to the refrigerating chamber 3 and the specific low temperature chamber 13 which is a part thereof. In the path, a part of the cold air that has passed through the second blower 32 blows out from the cold air outlet 36 through the cold air passage (cold air duct) 35. The other part of the cool air that has passed through the second blower 32 passes through the left and right cool air passages 43A and 43B on the back side of the back plate 45 of the refrigerating chamber 3 and from the cold air outlet 39 formed in the back plate 45 of the refrigerating chamber 3. The cool air blown out to the refrigerating chamber 3 and further flows downward through the cool air passage 43B blows out from the cool air outlet 39A to the specific low temperature chamber 13. The cold air that has flowed into the refrigerator compartment 3 and the specific low temperature chamber 13 is sucked from the suction port 50 at the lower part of the refrigerator compartment 3, that is, the suction port 50 formed in the back wall of the small chamber 46 and the specific low temperature chamber 13. ) 43 flows into the cold air suction side below the second evaporator (cooler) 30 and circulates again by the second evaporator (cooler) 30.

一方、冷蔵室3へ流入した冷気に一部は、野菜室4へ循環する構成である。図2及び図3では、特定低温室13へ流入した冷気の一部が、特定低温室13の背壁に形成した吸い込み口40から吸込まれ、冷却貯蔵庫本体2の背壁に形成した冷気通路(冷気ダクト)41Aを通って吹き出し口42Aから野菜室4へ流出する。野菜室4へ流入した冷気は、野菜室4を流れて野菜室4の天井壁に近接した背壁に形成した冷気吸い込み口42Bから冷気帰還通路(冷気帰還ダクト)41Bを通って、冷気通路(冷気ダクト)43の第2蒸発器(冷却器)30の下部の冷気吸い込み側に流入し、再び第2蒸発器(冷却器)30で冷却される循環をする。   On the other hand, a part of the cold air flowing into the refrigerator compartment 3 is circulated to the vegetable compartment 4. 2 and 3, a part of the cold air flowing into the specific low temperature chamber 13 is sucked from the suction port 40 formed in the back wall of the specific low temperature chamber 13, and the cold air passage formed in the back wall of the cooling storage body 2 ( Cold air duct) 41A flows out from the outlet 42A to the vegetable compartment 4. The cold air flowing into the vegetable room 4 flows through the vegetable room 4 and from the cold air inlet 42B formed in the back wall close to the ceiling wall of the vegetable room 4 through the cold air return passage (cold air return duct) 41B. It flows into the cold air suction side of the lower part of the second evaporator (cooler) 30 of the cold air duct) 43 and circulates again cooled by the second evaporator (cooler) 30.

第1蒸発器(冷却器)29で冷却した冷気を第1送風機31によって冷凍室5へ循環させる冷気循環経路の形成に関し、冷凍室5の背面部には、冷気通路(冷気ダクト)48が形成され、この冷気供給通路(冷気ダクト)48には第1蒸発器(冷却器)29が収納されて冷却器室を構成している。また、第1蒸発器(冷却器)29から上方へ延びた冷媒パイプに配置した電動式膨張弁71が、冷気供給通路(冷気ダクト)48の背面の窪みにゴム製カバー91で覆われた状態でネジにて取り付けられている。   Regarding the formation of a cold air circulation path for circulating the cold air cooled by the first evaporator (cooler) 29 to the freezer compartment 5 by the first blower 31, a cold air passage (cold air duct) 48 is formed in the back surface of the freezer compartment 5. In this cold air supply passage (cold air duct) 48, a first evaporator (cooler) 29 is accommodated to constitute a cooler chamber. In addition, the electric expansion valve 71 disposed on the refrigerant pipe extending upward from the first evaporator (cooler) 29 is covered with a rubber cover 91 in a recess on the back surface of the cold air supply passage (cold air duct) 48. It is attached with screws.

第1蒸発器(冷却器)29で冷却した冷気は、第1送風機31によって冷気吹き出し口37Aから冷凍室5へ供給され、冷気吹き出し口37Bから製氷室6へ供給され、それぞれ吸い込み口38から吸込まれて、第1蒸発器(冷却器)29の下部の冷気吸い込み側に流入し、再び第1蒸発器(冷却器)29で冷却される循環をする。   The cold air cooled by the first evaporator (cooler) 29 is supplied from the cold air outlet 37A to the freezer compartment 5 by the first blower 31, supplied from the cold air outlet 37B to the ice making chamber 6, and sucked from the inlet 38, respectively. Rarely, it flows into the cold air suction side below the first evaporator (cooler) 29, and circulates again cooled by the first evaporator (cooler) 29.

上記のように、自動製氷機7は電動機構7Aと電動機構7Aによって回転駆動される製氷皿7Bを備えている。電動機構7Aとこの電動機構7Aによって回転駆動される製氷皿7Bを一体に組立てたものを電動機構7Aへの給電ラインの自動着脱を含めて冷却貯蔵庫外に引き出しにて取り外し自在に構成して、自動製氷機7は電動機構7Aと製氷皿7Bを一緒に冷却貯蔵庫1の前方へ引き出しにて取り外し可能である。   As described above, the automatic ice making machine 7 includes the electric mechanism 7A and the ice tray 7B that is rotationally driven by the electric mechanism 7A. An assembly of the electric mechanism 7A and the ice tray 7B that is rotationally driven by the electric mechanism 7A is configured to be removable by pulling it out of the cooling storage, including automatic attachment and detachment of the power supply line to the electric mechanism 7A. The automatic ice maker 7 can be detached by pulling the electric mechanism 7A and the ice tray 7B together to the front of the cooling storage 1.

図2及び図4において、自動製氷機7は、電動機構7Aと製氷皿7Bを取り囲むハウジングを形成したベース部材100に電動機構7Aと製氷皿7Bが取り付けられ、ベース部材100の後部には、冷却貯蔵庫本体2側に設けたコネクタに着脱自在に接続されるコネクタを備えた構成である。また、ベース部材100は、略製氷室6の左右幅に渡る横幅を有して製氷室6の天井面に沿うように製氷室6の天井面に当接または近接して配置され、ベース部材100の左右両側部分は、製氷室6の天井面近傍の左右両側部分に設けたレールとなる支持部分6Bに載置されて、ベース部材100は製氷室6の前方へ引き出し自在であると共に、ベース部材100は製氷室6内へ収納自在である。このような構成によって、電動機構7Aと製氷皿7Bを含めて自動製氷機7は、ベース部材100によって冷却貯蔵庫1の前方へ引き出しにて取り外し可能であり、また冷却貯蔵庫1内へ収納可能である。このため、製氷皿7Bの洗浄も便利であり、また、自動製氷機7を取り外して製氷室6を冷凍室として利用することも可能となる。100Dはベース部材100のカバー部材である。   2 and 4, the automatic ice maker 7 has an electric mechanism 7A and an ice tray 7B attached to a base member 100 in which a housing surrounding the electric mechanism 7A and the ice tray 7B is formed. It is the structure provided with the connector detachably connected to the connector provided in the storage body 2 side. In addition, the base member 100 has a lateral width that extends substantially across the width of the ice making chamber 6 and is disposed in contact with or close to the ceiling surface of the ice making chamber 6 along the ceiling surface of the ice making chamber 6. The left and right side portions are placed on support portions 6B serving as rails provided on the left and right side portions in the vicinity of the ceiling surface of the ice making chamber 6, and the base member 100 can be pulled out forward of the ice making chamber 6 and the base member. 100 can be stored in the ice making chamber 6. With such a configuration, the automatic ice maker 7 including the electric mechanism 7A and the ice tray 7B can be removed by being pulled forward of the cooling storage 1 by the base member 100, and can be stored in the cooling storage 1. . For this reason, it is convenient to wash the ice tray 7B, and it is also possible to remove the automatic ice making machine 7 and use the ice making chamber 6 as a freezing chamber. 100D is a cover member of the base member 100.

また、ベース部材100が製氷室6の所定位置に収納された状態を保つ保持機構160が設けられている。その具体的な構成は、製氷室6の天井壁30には上方へ窪んだ係止部152が形成され、ベース部材100の前面にはベース部材100の支持孔153に軸部154が挿入支持されたロック摘み155が、回転自在に取り付けられている。ロック摘み155には外周の一部に突起部156を形成している。   In addition, a holding mechanism 160 that keeps the base member 100 in a state where it is stored in a predetermined position of the ice making chamber 6 is provided. Specifically, the ceiling wall 30 of the ice making chamber 6 is formed with a locking portion 152 that is recessed upward, and a shaft portion 154 is inserted and supported in the support hole 153 of the base member 100 on the front surface of the base member 100. A lock knob 155 is rotatably attached. The lock knob 155 has a protrusion 156 formed on a part of the outer periphery.

この構成において、突起部156が下向きに位置した状態で、電動機構7Aと製氷皿7Bとロック摘み155が取り付けられたベース部材100を製氷室6の所定位置に収納する。この状態で、ロック摘み155を回転して突起部156を係止部152内に位置させることによって、ベース部材100を製氷室6の所定位置に保持でき、この状態では、ベース部材100は製氷室6の前方へ引き出しできず、また、振動によってもベース部材100は製氷室6の前方へ移動して脱落することはない。ロック摘み155を回転して突起部156を係止部152外に位置させることによって、ベース部材100を製氷室6の前方へ引き出すことができる。またベース部材100には、給水管51から流下する製氷用水が製氷皿7Bへ供給される位置に開口100Eが形成されている。   In this configuration, the base member 100 to which the electric mechanism 7 </ b> A, the ice tray 7 </ b> B, and the lock knob 155 are attached is stored in a predetermined position in the ice making chamber 6 with the protruding portion 156 positioned downward. In this state, by rotating the lock knob 155 to position the protrusion 156 in the locking portion 152, the base member 100 can be held at a predetermined position in the ice making chamber 6. In this state, the base member 100 is in the ice making chamber. The base member 100 does not move to the front of the ice making chamber 6 and drop off due to vibration. The base member 100 can be pulled out to the front of the ice making chamber 6 by rotating the lock knob 155 and positioning the protruding portion 156 outside the locking portion 152. The base member 100 has an opening 100E at a position where ice-making water flowing down from the water supply pipe 51 is supplied to the ice tray 7B.

電動機構7Aの下側には、電動機構7Aを下側から保持すると共に電動機構7Aの下側を覆う電動機構部カバー101Aが配置され、ベース部材100の上側からネジ等の固定手段150によって、電動機構部カバー101Aをベース部材100に取り付けている。これによって、電動機構7Aは電動機構部カバー101Aによって下側を支えられた状態でベース部材100に支持される。ベース部材100の下側には電動機構7Aの前側に取っ手部100Cの窪みが形成されているため、電動機構部カバー101Aはこの窪みに沿った形状に形成され、電動機構部カバー101Aが取っ手部100Cの窪みの一部である上面と後面を形成している。   An electric mechanism portion cover 101A that holds the electric mechanism 7A from the lower side and covers the lower side of the electric mechanism 7A is disposed below the electric mechanism 7A, and is fixed from the upper side of the base member 100 by fixing means 150 such as screws. The electric mechanism cover 101 </ b> A is attached to the base member 100. Thus, the electric mechanism 7A is supported by the base member 100 in a state where the lower side is supported by the electric mechanism portion cover 101A. Since the recess of the handle portion 100C is formed on the lower side of the base member 100 on the front side of the electric mechanism 7A, the electric mechanism portion cover 101A is formed in a shape along the recess, and the electric mechanism portion cover 101A is the handle portion. An upper surface and a rear surface, which are a part of the recess of 100C, are formed.

自動製氷機7は冷却貯蔵庫の前方へ引き出しにて取り外し可能に製氷室6の左右支持部分6Bにベース部材100が載置されているが、洗浄などをし易いように、製氷皿7Bはベース部材100から容易に取り外し可能である。その構造として、製氷皿7Bの電動機構7A側の駆動側端部には、電動機構7Aから突出した回転駆動軸105と共に回転するように回転駆動軸105と結合する駆動側結合部106を備え、回転駆動軸105が駆動側結合部106に空回りしないように両者が非円形結合構造でもって着脱自在に嵌り込んだ構成である。   Although the base member 100 is placed on the left and right support portions 6B of the ice making chamber 6 so that the automatic ice maker 7 can be removed by pulling it forward of the cooling storage, the ice tray 7B is a base member so that it can be easily cleaned. It is easily removable from 100. As its structure, the drive side end of the ice tray 7B on the side of the electric mechanism 7A is provided with a drive side coupling portion 106 that is coupled to the rotation drive shaft 105 so as to rotate together with the rotation drive shaft 105 protruding from the electric mechanism 7A. In order to prevent the rotary drive shaft 105 from spinning around the drive side coupling portion 106, both are detachably fitted with a non-circular coupling structure.

製氷皿7Bの電動機構7A側の反対側の従動側端部には、合成樹脂製ベース部材100のハウジング部分に設けた軸受け部107に回転可能に支持された突出軸108を備え、この突出軸108はこの軸受け部107に着脱自在に組み合わされ、軸受け部107は、ベース部材100のハウジング部分に取り付けた保持部材110によって、着脱自在に保持されている。ベース部材100を製氷室6の左右支持部分6Bから引き出して、保持部材110を後方へ引くことによって、軸受け部107がベース部材100から外れるため、駆動側結合部106を回転駆動軸105の後方へ外すことができる。これによって、製氷皿7Bはベース部材100から容易に取り外し可能である。   The driven side end of the ice tray 7B opposite to the electric mechanism 7A side is provided with a protruding shaft 108 rotatably supported by a bearing portion 107 provided in the housing portion of the synthetic resin base member 100. 108 is detachably combined with the bearing portion 107, and the bearing portion 107 is detachably held by a holding member 110 attached to the housing portion of the base member 100. Since the base member 100 is pulled out from the left and right support portions 6B of the ice making chamber 6 and the holding member 110 is pulled backward, the bearing portion 107 is detached from the base member 100, so that the drive side coupling portion 106 is moved to the rear of the rotary drive shaft 105. Can be removed. Thus, the ice tray 7B can be easily detached from the base member 100.

本発明では、電動機構7Aとこの電動機構7Aによって回転駆動される製氷皿7Bとを備えた自動製氷機7が冷却貯蔵庫1内の製氷室6に前後方向に着脱自在に設けられるものである。図4に示すように、製氷室6の上壁28には、自動製氷機7の前後方向着脱経路よりも上方位置において、製氷皿7B内の温度を検知する非接触型センサ200を配置した構成である。   In the present invention, an automatic ice making machine 7 including an electric mechanism 7A and an ice tray 7B that is rotationally driven by the electric mechanism 7A is detachably provided in the ice making chamber 6 in the cooling storage 1 in the front-rear direction. As shown in FIG. 4, the upper wall 28 of the ice making chamber 6 is provided with a non-contact sensor 200 that detects the temperature in the ice tray 7 </ b> B at a position above the front / rear direction attaching / detaching path of the automatic ice making machine 7. It is.

これを上記の構成において説明すれば、製氷室6の左右支持部分104に対してベース部材100が、略水平状態に前後方向へ引き出しまた収納自在に載置されているため、ベース部材100の引き出しによって自動製氷機7が前方へ引き出され、ベース部材100の押し込みによって自動製氷機7が所定位置へ収納される。このような自動製氷機7の前後方向着脱経路よりも上方位置に、非接触型センサ200が配置されているため、非接触型センサ200は自動製氷機7の着脱の障害とならない。具体的には、製氷室6の上壁である断熱仕切り壁17Aの下面に上方へ窪んだ窪みが形成され、非接触型センサ200は、断熱仕切り壁17Aから下方へ突出しない状態でこの窪みに取り付けられている。   If this is described in the above configuration, the base member 100 is pulled out in the front-rear direction and stored in a substantially horizontal state with respect to the left and right support portions 104 of the ice making chamber 6. Thus, the automatic ice maker 7 is pulled forward, and the automatic ice maker 7 is stored in a predetermined position by pushing the base member 100. Since the non-contact type sensor 200 is arranged at a position above the front-rear direction attaching / detaching path of the automatic ice making machine 7, the non-contact type sensor 200 does not obstruct the attachment / detachment of the automatic ice making machine 7. Specifically, a depression that is recessed upward is formed on the lower surface of the heat insulating partition wall 17A, which is the upper wall of the ice making chamber 6, and the non-contact sensor 200 is not recessed from the heat insulating partition wall 17A. It is attached.

何らかの原因で1回の規定給水量が供給されない場合や、製氷皿7への給水量を時間制御で行う方式において給水容器9内の貯水量が製氷皿7へ供給する1回の規定給水量よりも少ない場合では、製氷皿7が規定水量に満たない状況となる。このような場合、そのままの状態で待機させれば、次の製氷動作においてこの上に規定水量が供給されれば、製氷用水が製氷皿7Bからオーバーフローして、その水が下方の貯氷容器8や製氷室6に落ちてそこで凍ることになり、好ましくない。このため、このように製氷皿7が規定水量に満たない場合でも、所定の製氷工程と脱氷工程を行うようにして、製氷皿7Bを正常な空の状態に戻すようにすることが望ましい。   When the specified water supply amount is not supplied for some reason, or when the amount of water supplied to the ice tray 7 is controlled by time control, the amount of water stored in the water supply container 9 is less than the single specified water supply amount supplied to the ice tray 7. If the amount is too small, the ice tray 7 is less than the specified amount of water. In such a case, if the standby state is kept as it is, if a specified amount of water is supplied on the ice making operation in the next ice making operation, the ice making water overflows from the ice making tray 7B, and the water is stored in the lower ice storage container 8 or It falls into the ice making chamber 6 and freezes there, which is not preferable. For this reason, even when the ice tray 7 is less than the specified amount of water, it is desirable to return the ice tray 7B to a normal empty state by performing a predetermined ice making step and deicing step.

そのために、本発明では、製氷皿7Bの製氷小室7B1のうち、特定の製氷小室7B11へ給水路51Aからの製氷用水が導入されるように、製氷皿7Bと給水路51Aとの位置関係を形成し、この製氷用水が最初に導入される特定の製氷小室7B11の温度を検知するように非接触型センサ200を配置して、特定の製氷小室7B11に溜まった製氷用水の凍結を非接触型センサ200で検出することによって、製氷終了動作を完結できるようにしている。具体的には、製氷室6の上壁である断熱仕切り壁17Aの下面に上方へ窪んだ窪みが形成され、非接触型センサ200は、断熱仕切り壁17Aから下方へ突出しない状態でこの窪み内において、開口100Eを通して製氷小室7B11に向くように斜め下後方に向けて取り付けられている。   Therefore, in the present invention, the positional relationship between the ice tray 7B and the water supply channel 51A is formed so that the ice making water from the water supply channel 51A is introduced into a specific ice making chamber 7B11 in the ice making chamber 7B1 of the ice tray 7B. Then, the non-contact type sensor 200 is arranged so as to detect the temperature of the specific ice making chamber 7B11 where the ice making water is first introduced, and the ice making water accumulated in the specific ice making chamber 7B11 is frozen. By detecting at 200, the ice making end operation can be completed. Specifically, a depression that is depressed upward is formed on the lower surface of the heat insulating partition wall 17A, which is the upper wall of the ice making chamber 6, and the non-contact sensor 200 does not protrude downward from the heat insulating partition wall 17A. Are attached obliquely downward and rearward so as to face the ice making chamber 7B11 through the opening 100E.

非接触型センサ200の代表的なものとして、赤外線センサがある。その構成は、製氷皿7B内の水と氷から発せられる温度に関連する赤外線放射エネルギーを検知して電気抵抗が変化するサーミスタAと、このような赤外線放射エネルギーを検知しないように隠蔽された状態で周囲温度を検知して電気抵抗が変化するもう一つのサーミスタBとで構成され、この両サーミスタA、Bの抵抗値の差によって生じる電圧差が出力され、この出力に基づき制御回路部300によって製氷皿7B内の水の温度が何℃であるかの検出をしており、制御回路部300によって製氷皿7B内の水が凍結したことを判定して、脱氷工程に入るように制御することができる。   A typical non-contact sensor 200 is an infrared sensor. The structure is a thermistor A in which the electrical resistance changes by detecting infrared radiation energy related to the temperature emitted from the water and ice in the ice tray 7B, and a state concealed so as not to detect such infrared radiation energy. And another thermistor B whose electric resistance changes by detecting the ambient temperature, and a voltage difference generated by the difference in resistance value between the thermistors A and B is output. Based on this output, the control circuit unit 300 outputs the voltage difference. The temperature of the water in the ice tray 7B is detected, and the control circuit unit 300 determines that the water in the ice tray 7B has been frozen and controls to enter the deicing process. be able to.

自動製氷機7の製氷皿7Bへの製氷用水の供給は、制御回路部300からの制御信号によってソレノイド66に所定時間通電することによって、永久磁石を内蔵した作動部材90が上昇して開閉弁装置51Aが所定時間開き、給水容器9から自然落下方式によって給水路51を通って製氷用水が供給される。製氷皿7Bは、長手方向を列方向として製氷小室7B1が1列4個が2列配置、製氷小室7B1が1列5個が2列配置、製氷小室7B1が1列6個が2列配置、又は小さい氷をつくるように製氷小室7B1が1列8個が3列配置のように、複数の製氷小室7B1に区分されて8乃至24個の角型氷が作られる合成樹脂製である。また、貯氷容器8は、白色、透明、半透明又はその他の色の合成樹脂製であり、奥行きが左右幅に比して長い上面開口の箱状である。   Supplying ice-making water to the ice tray 7B of the automatic ice making machine 7 is energized to the solenoid 66 for a predetermined time by a control signal from the control circuit unit 300, so that the operating member 90 having a built-in permanent magnet rises and the on-off valve device. 51A opens for a predetermined time, and ice-making water is supplied from the water supply container 9 through the water supply channel 51 by a natural drop method. In the ice tray 7B, the longitudinal direction is the row direction, the ice making chambers 7B1 are arranged in two rows in four rows, the ice making chambers 7B1 are arranged in two rows in five rows, the ice making chambers 7B1 are arranged in two rows in six rows, Alternatively, it is made of a synthetic resin in which 8 to 24 square ice pieces are made by dividing into a plurality of ice making chambers 7B1 such that 8 ice making chambers 7B1 are arranged in 3 rows so as to make small ice. The ice storage container 8 is made of a white, transparent, translucent or other color synthetic resin, and has a box shape with a top opening that is longer than the left and right widths.

図5に示すように、各製氷小室7B1間の区画壁の上端部には、この区画壁の一部を切り欠いて通水路7B2が形成されている。これによって、製氷小室7B1のうちの特定の製氷小室7B11へ給水路51からの製氷用水が供給されるとき、製氷小室7B11をオーバーフローする製氷用水が通水路7B2を通って隣の製氷小室7B1へ流入する。このようにして製氷用水は順次隣の製氷小室7B1へ流入して、各製氷小室7B1が製氷用水で満たされる。この製氷用水の供給は上記のように時間制御されるものである。   As shown in FIG. 5, a water passage 7B2 is formed by cutting out a part of the partition wall at the upper end of the partition wall between the ice making chambers 7B1. Accordingly, when ice-making water from the water supply channel 51 is supplied to a specific ice-making chamber 7B11 in the ice-making chamber 7B1, ice-making water that overflows the ice-making chamber 7B11 flows into the adjacent ice-making chamber 7B1 through the water passage 7B2. To do. In this way, the ice making water sequentially flows into the adjacent ice making chamber 7B1, and each ice making chamber 7B1 is filled with the ice making water. This supply of ice making water is time-controlled as described above.

給水容器9が前記弾性部材に係止されて所定位置に保持されたとき、冷蔵室3の背壁32の内側に設けた給水容器検知スイッチ9X(図示せず)がONするようになり、このスイッチのONに基づき制御回路部によって後述の製氷サイクルが始動可能とすることができる。   When the water supply container 9 is locked to the elastic member and held in a predetermined position, a water supply container detection switch 9X (not shown) provided inside the back wall 32 of the refrigerator compartment 3 is turned on. An ice making cycle, which will be described later, can be started by the control circuit unit based on the ON state of the switch.

図7を参照して自動製氷機7の動作を説明する。自動製氷機7の製氷運転は、冷却貯蔵庫1に設けた制御回路部300によって制御される製氷工程と脱氷工程から構成される。所定量の製氷用水が注入されている給水容器9を冷却貯蔵庫1の所定位置へ収納することにより、前記給水容器検知スイッチがONする。この状態において、前記冷凍温度室センサの検出温度が所定の低温以下、例えば、−11℃(マイナス11℃)以下であれば、手動操作にて製氷始動スイッチをONすると、図7の左側に示すT1時点で制御回路部300によって脱氷工程が開始し、電動機構7Aが始動して製氷小室7B1が下側を向くように製氷皿7Bを反転して捻った後、製氷小室7B1が上面を向くように製氷皿7Bを正規の状態に復帰させる。これは、前回の製氷によって製氷皿7Bに氷が残っておれば、その上に給水すると水が下方の貯氷容器8へオーバーフローするため、これを防止するためである。製氷皿7Bが正規の状態に復帰したとき製氷皿位置検知スイッチ(図示せず)が動作し、制御回路部300によって製氷工程が開始する。製氷工程の開始によって、制御回路部300によってソレノイド66へ所定時間通電され、作動部材90が上昇して開閉弁装置51Aが開き、給水容器9から製氷皿7Bへ一回の製氷に要する所定量の製氷用水が自然落下にて自動給水される。ソレノイド66が所定時間(図7のT2〜T3の時間)の通電後に非通電になると、開閉弁装置51Aが閉じる。   The operation of the automatic ice maker 7 will be described with reference to FIG. The ice making operation of the automatic ice making machine 7 includes an ice making process and a deicing process controlled by the control circuit unit 300 provided in the cooling storage 1. By storing the water supply container 9 into which a predetermined amount of ice-making water is injected into a predetermined position of the cooling storage 1, the water supply container detection switch is turned on. In this state, if the detected temperature of the freezing temperature chamber sensor is lower than a predetermined low temperature, for example, −11 ° C. (minus 11 ° C.) or lower, when the ice making start switch is turned on manually, the left side of FIG. At time T1, the control circuit unit 300 starts the deicing process, the electric mechanism 7A is started, and the ice tray 7B is inverted and twisted so that the ice making chamber 7B1 faces downward, and then the ice making chamber 7B1 faces the upper surface. Thus, the ice tray 7B is returned to the normal state. This is to prevent any ice remaining in the ice tray 7B from the previous ice making, since water overflows into the ice storage container 8 when water is supplied on the ice tray 7B. When the ice tray 7B returns to the normal state, an ice tray position detection switch (not shown) operates, and the control circuit unit 300 starts the ice making process. When the ice making process is started, the solenoid 66 is energized for a predetermined time by the control circuit unit 300, the operating member 90 is raised, the on-off valve device 51A is opened, and a predetermined amount of ice required for one ice making from the water supply container 9 to the ice tray 7B. Ice making water is automatically supplied by natural fall. When the solenoid 66 is de-energized after energization for a predetermined time (T2 to T3 in FIG. 7), the on-off valve device 51A is closed.

この製氷皿7Bへの給水によって、製氷小室7B1の温度が急速に上昇して0℃の点T4を越えるが、製氷室6の温度によって冷却されて略0℃の状態TMとなる。この状態で、製氷小室7B11の製氷用水の凍結状態は時々刻々非接触型センサ200で検出する。製氷工程の進行に伴って製氷皿7B内の水が表面から徐々に凍結され、製氷小室7B1の水が凍結して氷となると、非接触型センサ200で検出する製氷小室7B11の温度が急速に低下する。それを非接触型センサ200が検知し、この温度がTMよりも所定温度TP下がれば、例えば、11℃下がれば、制御回路部300によって製氷工程から脱氷工程へ移行する(図7の右側に示すT1時点)。脱氷工程が開始すると、電動機構7Aが始動して製氷皿7Bを反転して捻り、製氷皿7B内の氷を下方の貯氷容器8へ落下せしめた後、製氷小室7B1が上面に向くように製氷皿7Bを復帰させ、前記製氷皿位置検知スイッチ(図示せず)が動作し、制御回路部300によって脱氷工程を終了し製氷工程が開始する(図7に示す右側のT2時点)。   With the water supply to the ice tray 7B, the temperature of the ice making chamber 7B1 rapidly rises and exceeds the point T4 of 0 ° C., but is cooled by the temperature of the ice making chamber 6 to become a state TM of approximately 0 ° C. In this state, the freezing state of the ice making water in the ice making chamber 7B11 is detected by the non-contact sensor 200 every moment. As the ice making process proceeds, the water in the ice tray 7B is gradually frozen from the surface, and when the water in the ice making chamber 7B1 freezes to become ice, the temperature of the ice making chamber 7B11 detected by the non-contact sensor 200 rapidly increases. descend. The non-contact sensor 200 detects this, and if this temperature falls below the predetermined temperature TP from TM, for example, if it falls by 11 ° C., the control circuit unit 300 moves from the ice making process to the deicing process (on the right side of FIG. 7). T1 time point shown). When the deicing process starts, the electric mechanism 7A is started, the ice tray 7B is inverted and twisted, and the ice in the ice tray 7B is dropped into the lower ice storage container 8 so that the ice making chamber 7B1 faces the upper surface. The ice tray 7B is returned, the ice tray position detection switch (not shown) is operated, the deicing process is terminated by the control circuit unit 300, and the ice making process is started (at time T2 on the right side in FIG. 7).

製氷工程の開始によって、上記同様に制御回路部300によってソレノイド66へ所定時間通電され、作動部材90が上昇して開閉弁装置51Aが開き、給水容器9から製氷皿7Bへ一回の製氷に要する所定量の製氷用水が自然落下にて自動給水される。ソレノイド66が所定時間(図7の右側に示すT2〜T3の時間)の通電後に非通電になると、開閉弁装置51Aが閉じる。この製氷皿7Bへの給水によって、製氷小室7B1の温度が急速に上昇して0℃の点T4を越えるが、製氷室6の温度によって冷却されて略0℃の状態TMとなる。この状態で、上記同様に、製氷小室7B11の製氷用水の凍結状態は時々刻々非接触型センサ200で検出する。製氷工程の進行に伴って製氷皿7B内の水が凍結して氷となると、非接触型センサ200によって検出する製氷小室7B11の温度が急速に低下する。それを非接触型センサ200が検知し、この温度がTMよりも所定の温度TP下がれば、例えば、11℃下がれば、上記同様に、制御回路部300によって製氷工程から脱氷工程へ移行する。以下、同様にして、製氷工程と脱氷工程の繰り返しによって、貯氷容器8へ氷が蓄えられる。   At the start of the ice making process, the solenoid 66 is energized for a predetermined time by the control circuit unit 300 as described above, the operating member 90 is raised and the on-off valve device 51A is opened, and one ice making from the water supply container 9 to the ice tray 7B is required. A predetermined amount of ice making water is automatically supplied by natural fall. When the solenoid 66 is de-energized after energization for a predetermined time (T2 to T3 shown on the right side of FIG. 7), the on-off valve device 51A is closed. With the water supply to the ice tray 7B, the temperature of the ice making chamber 7B1 rapidly rises and exceeds the point T4 of 0 ° C., but is cooled by the temperature of the ice making chamber 6 to become a state TM of approximately 0 ° C. In this state, similarly to the above, the non-contact sensor 200 detects the frozen state of the ice making water in the ice making chamber 7B11. When the water in the ice tray 7B freezes and becomes ice as the ice making process progresses, the temperature of the ice making chamber 7B11 detected by the non-contact sensor 200 rapidly decreases. The non-contact sensor 200 detects this, and if this temperature falls below a predetermined temperature TP from TM, for example, if it falls by 11 ° C., the control circuit unit 300 shifts from the ice making process to the deicing process as described above. Hereinafter, similarly, ice is stored in the ice storage container 8 by repeating the ice making process and the deicing process.

貯氷容器8内の氷の量は、図4に示すように、脱氷工程ごとに電動機構7Aによって点線位置から実線位置へ向けて下降する検氷レバー7Cを備えている。検氷レバー7Cは製氷皿7Bの回動の邪魔にならないように製氷皿7Bの側方に配置されている。貯氷容器8内の氷の量は規定の満杯になると、この検氷レバー7Cがその氷によって下降が制限されるため、この状態を電気的に検知して次回の製氷工程へ入る前の製氷皿7Bへの給水を制御回路部300によって中止する仕組みである。   As shown in FIG. 4, the amount of ice in the ice storage container 8 includes an ice detecting lever 7C that descends from the dotted line position toward the solid line position by the electric mechanism 7A for each deicing process. The ice detecting lever 7C is arranged on the side of the ice tray 7B so as not to obstruct the rotation of the ice tray 7B. When the amount of ice in the ice storage container 8 becomes full, the ice detecting lever 7C is restricted from descending by the ice, so this state is electrically detected and the ice making tray before entering the next ice making process. This is a mechanism in which water supply to 7B is stopped by the control circuit unit 300.

冷却貯蔵庫1の各室の温度、各種の機能、各種の操作手順、非接触型センサ200の検知に基づく自動製氷機7の運転状態等を、制御回路部300によって冷却貯蔵庫1の前面等に設けた液晶等による表示部400に表示することができる。   The temperature of each chamber of the cooling storage 1, various functions, various operating procedures, the operating state of the automatic ice making machine 7 based on the detection by the non-contact type sensor 200, etc. are provided on the front surface of the cooling storage 1 by the control circuit unit 300. It can be displayed on the display unit 400 using a liquid crystal or the like.

非接触型センサ200によって製氷小室7B11の温度を検出しているが、この製氷小室7B11内の水(又は氷)の表面温度を検出していることとなる。冷却貯蔵庫1では、通常は、電動圧縮機24と第1送風機31が冷凍温度室センサの温度検出によって、製氷工程期間中においてもON−OFF動作をするが、製氷皿7Bへの給水によって冷凍温度室の温度が上昇すると第1送風機31がONするため、ON時間が長くなる場合がある。第1送風機31がONした場合には、供給される冷気によって非接触型センサ200が冷却されるため、第1送風機31がOFFの場合のように、製氷皿7B内の水の状態と氷の状態を正確に検出することができなくなる場合がある。このように、送風機31のON・OFFによる検出出力にバラツキが生じた場合には、製氷工程から脱氷工程への所期の移行制御ができなくなるため、第1送風機31が停止(OFF)しているときの非接触型センサ200の検出出力を採用すれば安定した制御ができるが、上記のように製氷工程期間中においては、第1送風機31のON時間が長くなる場合があるため、送風機31のOFF時間の検出出力のみでの制御には制限が生じるため、このON時間での非接触型センサ200の検出出力も採用した制御とする。   Although the temperature of the ice making chamber 7B11 is detected by the non-contact type sensor 200, the surface temperature of water (or ice) in the ice making chamber 7B11 is detected. In the cooling storage 1, the electric compressor 24 and the first blower 31 are normally turned on and off during the ice making process by detecting the temperature of the freezing temperature chamber sensor, but the freezing temperature is obtained by supplying water to the ice tray 7B. When the temperature of the chamber rises, the first blower 31 is turned on, so the ON time may be longer. When the first blower 31 is turned on, the non-contact type sensor 200 is cooled by the supplied cold air, so that the state of water in the ice tray 7B and the ice state are the same as when the first blower 31 is turned off. The state may not be detected accurately. As described above, when the detection output due to ON / OFF of the blower 31 varies, the intended transition control from the ice making process to the deicing process cannot be performed, so the first blower 31 stops (OFF). If the detection output of the non-contact type sensor 200 is used, stable control can be performed. However, since the ON time of the first blower 31 may become longer during the ice making process as described above, the blower Since control is limited only by the detection output of the OFF time 31, the detection output of the non-contact type sensor 200 during this ON time is also adopted.

上記のように、非接触型センサ200の検出出力である電圧によって、制御回路部300は、製氷皿7B内の水の温度が何℃であるかの検出動作をするが、この動作のために、制御回路部300は、非接触型センサ200の検出出力である電圧を増幅するアンプ(増幅器)301を備えている。このアンプ(増幅器)301ごとの特性のバラツキによる悪影響や、途中で入ってきた雑音による悪影響がないようにするために、所定期間に亘って検出した非接触型センサ200の検出出力をサンプリングした値の平均値を採用する。   As described above, the control circuit unit 300 detects the temperature of the water in the ice tray 7B according to the voltage that is the detection output of the non-contact type sensor 200. For this operation, The control circuit unit 300 includes an amplifier 301 that amplifies a voltage that is a detection output of the non-contact sensor 200. A value obtained by sampling the detection output of the non-contact type sensor 200 detected over a predetermined period so as not to have an adverse effect due to variations in characteristics of each amplifier (amplifier) 301 or an adverse effect due to noise that has entered in the middle. The average value of is adopted.

この方式を説明する。冷却貯蔵庫1におけるアンプ(増幅器)301の出力302については、製氷時間中において、非接触型センサ200で製氷小室7B11の温度を検出するとき、所定時間内、例えば、給水後の5分経過時から35分までの30分の間に所定時間ごとに検出する出力302の平均値Sを0℃又は略0℃の温度TM(符合303で示す)とし、制御回路部300は、これを基準温度TMとして、上記のように、ここから所定温度TP下がれば(例えば、11℃下がれば)製氷工程から脱氷工程へ移行する制御を行うようにする。上記30分の間における出力302の平均値Sの算出は1回のみでよいが、繰り返し行って更新した平均値Sデータを採用してもよい。制御回路部300はマイクロコンピュータ方式であるため、あらかじめ定めた動作プログラムによってこれらの動作をするように構成しておけばよい。   This method will be described. Regarding the output 302 of the amplifier (amplifier) 301 in the cooling storage 1, when the temperature of the ice making chamber 7B11 is detected by the non-contact sensor 200 during the ice making time, for example, from the time when 5 minutes have passed since the water supply. The average value S of the output 302 detected every predetermined time for 30 minutes up to 35 minutes is set to a temperature TM (indicated by reference numeral 303) of 0 ° C. or substantially 0 ° C., and the control circuit unit 300 uses this as the reference temperature TM. As described above, when the temperature falls from the predetermined temperature TP (for example, when the temperature falls by 11 ° C.), control is performed to shift from the ice making process to the deicing process. The average value S of the output 302 during the 30 minutes may be calculated only once, but the average value S data updated by repetition may be adopted. Since the control circuit unit 300 is a microcomputer system, it may be configured to perform these operations according to a predetermined operation program.

上記の方式において、非接触型センサ200による製氷小室7B11の温度検出は、サンプリングを行うために、例えば、クロックパルスによって10msecごとに非接触型センサ200が出力する製氷小室7B11の温度検出データ(電圧)を読み込み、この温度検出データを所定時間(例えば100msec)ごとに平均し、この平均値Sを非接触型センサ200による製氷小室7B11の温度検出データとして採用し、これをアンプ(増幅器)301によって増幅し、これによって上記の制御を行うようにしている。このように所定期間での平均したデータを採用することにより、途中で雑音が入ってきてもそれが無視されるようになり、非接触型センサ200による製氷小室7B11の温度検出が安定したものとなる。また、上記の基準温度TMを氷点温度0℃とすることによって、制御回路部300による安定動作が得られる。   In the above method, the temperature detection of the ice making chamber 7B11 by the non-contact type sensor 200 is performed by sampling, for example, the temperature detection data (voltage) of the ice making chamber 7B11 output by the non-contact type sensor 200 by a clock pulse every 10 msec. ), And this temperature detection data is averaged every predetermined time (for example, 100 msec), and this average value S is adopted as temperature detection data of the ice making chamber 7B11 by the non-contact type sensor 200. Amplification is performed so that the above control is performed. By adopting data averaged over a predetermined period in this way, even if noise enters in the middle, it will be ignored, and the temperature detection of the ice making chamber 7B11 by the non-contact type sensor 200 will be stable. Become. Further, by setting the reference temperature TM to the freezing point temperature of 0 ° C., stable operation by the control circuit unit 300 can be obtained.

この場合、平均値Sを基準温度TMとして、そこから所定温度(11℃)下がれば製氷工程から脱氷工程へ移行するよう制御するものであるが、平均値Sは、製氷工程中の冷凍温度室へ冷気を供給する送風機31のON−OFF動作における平均値とし、送風機31のON時間中における値よりも送風機31のOFF時間中における値を重要視するように重み付けした値とする。   In this case, the average value S is used as a reference temperature TM, and if the temperature falls from the average temperature S by a predetermined temperature (11 ° C.), control is performed so as to shift from the ice making process to the deicing process. The average value in the ON-OFF operation of the blower 31 for supplying cold air to the room is set to a value weighted so that the value during the OFF time of the blower 31 is more important than the value during the ON time of the blower 31.

その重み付けの一つの方法を記載する。即ち、上記平均値Sは、送風機31のOFF時間中における所定時間内の非接触型センサ200の電圧出力の平均値S1と、送風機31のON時間中における所定時間内の非接触型センサ200の電圧出力の平均値S2との両方の平均値であって、平均値S2は平均値S1よりも軽く重み付けされた値である。このため、送風機31のOFF時間中において、クロックパルスによって10msecごとに非接触型センサ200が出力する製氷小室7B11の温度検出データ(電圧)を読み込み、この温度検出データを所定時間(例えば100msec)ごとに平均し、この平均値S1を例えば、0.9倍したものを非接触型センサ200による製氷小室7B11の温度検出データとして採用し、これをアンプ(増幅器)301によって増幅する。また、送風機31のON時間中において、クロックパルスによって10msecごとに非接触型センサ200が出力する製氷小室7B11の温度検出データ(電圧)を読み込み、この温度検出データを所定時間(例えば100msec)ごとに平均し、この平均値S2を例えば、0.1倍したものを非接触型センサ200による製氷小室7B11の温度検出データとして採用し、これをアンプ(増幅器)301によって増幅する。そして、アンプ(増幅器)301によって増幅した1.9倍の平均値S1と01.倍の平均値S2の平均値を上記平均値Sとする。上記の非接触型センサ200の検出による出力電圧に基づき、重み付けに至るまでの方法と、これに基づく製氷工程から脱氷工程へ移行する制御は、制御回路部300によって行われる。   One method of weighting is described. That is, the average value S is the average value S1 of the voltage output of the non-contact type sensor 200 within a predetermined time during the OFF time of the blower 31 and the non-contact type sensor 200 within the predetermined time during the ON time of the blower 31. The average value S2 is an average value of both of the voltage output average values S2, and the average value S2 is a value weighted lighter than the average value S1. Therefore, during the OFF time of the blower 31, temperature detection data (voltage) of the ice making chamber 7B11 output by the non-contact sensor 200 is read every 10 msec by a clock pulse, and this temperature detection data is read every predetermined time (for example, 100 msec). The average value S1 multiplied by 0.9, for example, is used as temperature detection data of the ice making chamber 7B11 by the non-contact sensor 200, and is amplified by an amplifier 301. Further, during the ON time of the blower 31, the temperature detection data (voltage) of the ice making chamber 7B11 output by the non-contact type sensor 200 is read every 10 msec by a clock pulse, and this temperature detection data is read every predetermined time (for example, 100 msec). The average value S2 multiplied by 0.1, for example, is used as temperature detection data of the ice making chamber 7B11 by the non-contact type sensor 200, and is amplified by an amplifier (amplifier) 301. Then, an average value S1 of 1.9 times amplified by the amplifier (amplifier) 301 and an average value S2 of 01.times. Based on the output voltage detected by the non-contact sensor 200 described above, the control circuit unit 300 performs a method up to weighting and control for shifting from the ice making process to the deicing process based on the method.

重み付けの方法は上記以外に他の方式を採用してもよい。本発明によって、非接触型センサ200で製氷皿7B内の温度を検出するとき、所定時間での非接触型センサ200の出力の平均値を略0℃の温度とし、これを基準として、ここから所定温度下がれば、製氷工程から脱氷工程へ移行する制御を行うため、安定した制御ができるものとなる。この場合、製氷工程中の冷凍温度室へ冷気を供給する送風機31のON−OFF動作における平均値Sを採用する場合、送風機31のON時間中における値よりも送風機31のOFF時間中における値を重要視するように重み付けした値に基づくため、製氷工程における送風機31のON時間が長い場合でも、送風機31のONによる検出誤差は薄まり、製氷工程から脱氷工程へ移行する安定制御ができるものとなる。   Other methods besides the above may be used as the weighting method. According to the present invention, when the temperature in the ice tray 7B is detected by the non-contact type sensor 200, the average value of the output of the non-contact type sensor 200 in a predetermined time is set to a temperature of about 0 ° C. If the temperature falls below a predetermined temperature, control to shift from the ice making process to the deicing process is performed, so that stable control can be performed. In this case, when the average value S in the ON-OFF operation of the blower 31 that supplies cold air to the freezing temperature chamber during the ice making process is adopted, the value during the OFF time of the blower 31 is set to a value during the ON time of the blower 31. Since it is based on weighted values so as to be important, even if the ON time of the blower 31 in the ice making process is long, the detection error due to the ON of the blower 31 is thinned, and stable control to shift from the ice making process to the deicing process can be performed. Become.

本発明は、自動製氷機付き冷却貯蔵庫であるが、冷蔵室、冷凍室の配置関係は上記形態に限定されず、自動製氷機の構造は上記に限定されない。このため、本発明の技術的範囲を逸脱しない限り種々の自動製氷機及び冷却貯蔵庫に適用できるものである。   The present invention is a cooling storage with an automatic ice making machine, but the arrangement relationship between the refrigerator compartment and the freezing room is not limited to the above form, and the structure of the automatic ice making machine is not limited to the above. Therefore, the present invention can be applied to various automatic ice makers and cooling storages without departing from the technical scope of the present invention.

本発明に係る冷却貯蔵庫の正面図である。(実施例1)It is a front view of the cooling storage which concerns on this invention. Example 1 本発明に係る冷却貯蔵庫本体を正面から見た説明図である。(実施例1)It is explanatory drawing which looked at the cooling storage main body which concerns on this invention from the front. Example 1 本発明に係る冷却貯蔵庫の縦断側面図である。(実施例1)It is a vertical side view of the cooling storehouse which concerns on this invention. Example 1 本発明に係る自動製氷機に係る部分の断面図である。(実施例1)It is sectional drawing of the part which concerns on the automatic ice making machine which concerns on this invention. Example 1 本発明に係る製氷皿の平面図である。(実施例1)It is a top view of the ice tray which concerns on this invention. Example 1 本発明に係る制御回路構成図である。(実施例1)It is a control circuit block diagram based on this invention. Example 1 本発明に係る自動製氷機の給水・製氷・脱氷における温度変化状態を示す図である。(実施例1)It is a figure which shows the temperature change state in water supply, ice making, and deicing of the automatic ice making machine which concerns on this invention. Example 1

符号の説明Explanation of symbols

1・・・冷却貯蔵庫
2・・・冷却貯蔵庫本体
3・・・冷蔵室
4・・・野菜室
5・・・冷凍室
6・・・製氷室
7・・・自動製氷機
7A・・電動機構
7B・・製氷皿
7B1・・製氷小室
7B11・・特定の製氷小室
8・・・貯氷容器
9・・・給水容器
24・・・・電動圧縮機
29・・・・第1蒸発器(冷却器)
30・・・・第2蒸発器(冷却器)
31・・・・第1送風機
32・・・・第2送風機
51・・・・給水路
51A・・・開閉弁装置
200・・・非接触型センサ
300・・・制御回路部
301・・・アンプ(増幅器)
302・・・アンプ(増幅器)の出力
DESCRIPTION OF SYMBOLS 1 ... Cooling storage 2 ... Cooling storage main body 3 ... Refrigeration room 4 ... Vegetable room 5 ... Freezing room 6 ... Ice making room 7 ... Automatic ice making machine 7A ... Electric mechanism 7B ··· Ice tray 7B1 · · Ice making chamber 7B11 · · Specific ice making chamber 8 · · · ice storage container 9 · · · water supply container 24 · · · electric compressor 29 · · · first evaporator (cooler)
30 ... Second evaporator (cooler)
DESCRIPTION OF SYMBOLS 31 ...... 1st blower 32 ...... 2nd blower 51 ...... Water supply channel 51A ... On-off valve device 200 ... Non-contact type sensor 300 ... Control circuit part 301 ... Amplifier (amplifier)
302 ... Output of amplifier (amplifier)

Claims (2)

電動機構によって回転駆動される製氷皿を備えた自動製氷機が冷凍温度室に組み込まれ、前記製氷皿内の水と氷から発せられる温度に関連する出力電圧を発生する非接触型センサを備え、この非接触型センサの出力電圧に基づき前記自動製氷機の製氷工程と脱氷工程の制御を行う制御回路部を備えた冷却貯蔵庫において、前記制御回路部は、所定時間内の前記非接触型センサの検出に基づく出力電圧の平均値Sを基準温度として、そこから所定温度下がれば製氷工程から脱氷工程へ移行するよう制御するものであって、前記製氷工程中の前記冷凍温度室へ冷気を供給する送風機のON−OFF動作における前記平均値Sは、前記冷凍温度室へ冷気を供給する送風機のON時間中における値よりも前記送風機のOFF時間中における値を重要視するように重み付けした値であることを特徴とする自動製氷機付き冷却貯蔵庫。   An automatic ice maker equipped with an ice tray rotated by an electric mechanism is incorporated in a freezing temperature chamber, and includes a non-contact type sensor that generates an output voltage related to a temperature generated from water and ice in the ice tray, In a cooling storehouse having a control circuit unit for controlling an ice making process and a deicing process of the automatic ice maker based on an output voltage of the non-contact sensor, the control circuit unit includes the non-contact sensor within a predetermined time. The average value S of the output voltage based on the detection of the above is used as a reference temperature, and when the temperature falls from the average temperature S, control is performed so as to shift from the ice making process to the deicing process, and cold air is supplied to the freezing temperature chamber during the ice making process. In the ON-OFF operation of the blower to be supplied, the average value S is more important for the value during the OFF time of the blower than the value during the ON time of the blower supplying cold air to the refrigeration temperature chamber. Automatic ice maker with cooling storage, which is a value obtained by weighted so that. 電動機構によって回転駆動される製氷皿を備えた自動製氷機が冷凍温度室に組み込まれ、前記製氷皿内の水と氷から発せられる温度に関連する出力電圧を発生する非接触型センサを備え、この非接触型センサの出力電圧に基づき前記自動製氷機の製氷工程と脱氷工程の制御を行う制御回路部を備えた冷却貯蔵庫において、前記制御回路部は、所定時間内の前記非接触型センサの検出に基づく出力電圧の平均値Sを基準温度として、そこから所定温度下がれば製氷工程から脱氷工程へ移行するよう制御するものであって、前記製氷工程中の前記冷凍温度室へ冷気を供給する送風機のON−OFF動作における前記平均値Sは、前記冷凍温度室へ冷気を供給する送風機のOFF時間中における所定時間内の前記非接触型センサの出力電圧の平均値S1と、前記送風機のON時間中における所定時間内の前記非接触型センサの出力電圧の平均値S2との平均値であって、前記平均値S2は前記平均値S1よりも軽く重み付けされた値であることを特徴とする自動製氷機付き冷却貯蔵庫。   An automatic ice maker equipped with an ice tray rotated by an electric mechanism is incorporated in a freezing temperature chamber, and includes a non-contact type sensor that generates an output voltage related to a temperature generated from water and ice in the ice tray, In a cooling storehouse having a control circuit unit for controlling an ice making process and a deicing process of the automatic ice maker based on an output voltage of the non-contact sensor, the control circuit unit includes the non-contact sensor within a predetermined time. The average value S of the output voltage based on the detection of the above is used as a reference temperature, and when the temperature falls from the average temperature S, control is performed so as to shift from the ice making process to the deicing process. The average value S in the ON-OFF operation of the blower to be supplied is the average value of the output voltage of the non-contact sensor within a predetermined time during the OFF time of the blower that supplies cold air to the freezing temperature chamber. 1 and an average value S2 of the output voltage of the non-contact sensor within a predetermined time during the ON time of the blower, the average value S2 being a value weighted lighter than the average value S1 A cooling storage room with an automatic ice maker.
JP2005311749A 2005-10-26 2005-10-26 Cooling storage with automatic ice machine Active JP4804108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311749A JP4804108B2 (en) 2005-10-26 2005-10-26 Cooling storage with automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311749A JP4804108B2 (en) 2005-10-26 2005-10-26 Cooling storage with automatic ice machine

Publications (2)

Publication Number Publication Date
JP2007120823A true JP2007120823A (en) 2007-05-17
JP4804108B2 JP4804108B2 (en) 2011-11-02

Family

ID=38144861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311749A Active JP4804108B2 (en) 2005-10-26 2005-10-26 Cooling storage with automatic ice machine

Country Status (1)

Country Link
JP (1) JP4804108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181067A (en) * 2009-02-04 2010-08-19 Sharp Corp Refrigerator
CN101852526A (en) * 2010-07-08 2010-10-06 合肥美的荣事达电冰箱有限公司 Automatic ice maker and refrigerator having same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150128A (en) * 1985-12-24 1987-07-04 Fujitsu Ltd Apparatus for processing infrared image signal
JPH02146481A (en) * 1988-11-28 1990-06-05 Mitsubishi Electric Corp Ice making completion detecting device for freezer refrigerator
JPH09250858A (en) * 1996-03-19 1997-09-22 Sanyo Electric Co Ltd Refrigerator
JP2002228353A (en) * 2001-01-29 2002-08-14 Toshiba Corp Cooling cooking chamber
JP2004271046A (en) * 2003-03-07 2004-09-30 Matsushita Electric Ind Co Ltd Automatic ice plant
JP2005024202A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Automatic ice machine
JP2005201533A (en) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd Storage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150128A (en) * 1985-12-24 1987-07-04 Fujitsu Ltd Apparatus for processing infrared image signal
JPH02146481A (en) * 1988-11-28 1990-06-05 Mitsubishi Electric Corp Ice making completion detecting device for freezer refrigerator
JPH09250858A (en) * 1996-03-19 1997-09-22 Sanyo Electric Co Ltd Refrigerator
JP2002228353A (en) * 2001-01-29 2002-08-14 Toshiba Corp Cooling cooking chamber
JP2004271046A (en) * 2003-03-07 2004-09-30 Matsushita Electric Ind Co Ltd Automatic ice plant
JP2005024202A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Automatic ice machine
JP2005201533A (en) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd Storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181067A (en) * 2009-02-04 2010-08-19 Sharp Corp Refrigerator
CN101852526A (en) * 2010-07-08 2010-10-06 合肥美的荣事达电冰箱有限公司 Automatic ice maker and refrigerator having same

Also Published As

Publication number Publication date
JP4804108B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
KR101523251B1 (en) Ice making apparatus and refrigerator having the same
CA2638349C (en) Ice in bucket detection for an icemaker
KR20140137354A (en) Ice maker for a refrigeration appliance
KR101668302B1 (en) Refrigerator
JPH1114230A (en) Refrigerator
KR100348068B1 (en) Controlling method of refrigerator
JP4804108B2 (en) Cooling storage with automatic ice machine
JP4804094B2 (en) Cooling storage with automatic ice machine
JP2008107067A (en) Cooling storage
JP4293875B2 (en) Water storage device for refrigerator with automatic ice maker
JP2006105479A (en) Automatic ice maker and freezing refrigerator equipped therewith
JP4097642B2 (en) Automatic ice maker and freezer refrigerator equipped with automatic ice maker
JP4011314B2 (en) refrigerator
JP4663425B2 (en) Automatic ice maker and refrigerator with automatic ice maker
JP4049766B2 (en) Refrigerator with automatic ice machine
JP2007127288A (en) Cooling storage with automatic ice making machine
JP2008107068A (en) Cooling storage
JP3813478B2 (en) Cooling storage
KR20000034726A (en) Air curtain device of home bar room
JP2003083661A (en) Controller for refrigerator with deep freezer
JP4471826B2 (en) Automatic ice maker and freezer refrigerator equipped with automatic ice maker
JP2008107069A (en) Cooling storage
JP4097650B2 (en) Refrigerator with automatic ice machine
JP2008104442A (en) Hot matter freezing-type cooling storehouse
JP4090440B2 (en) Refrigerator with automatic ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R151 Written notification of patent or utility model registration

Ref document number: 4804108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250