JP2007120308A - Draining pipe unit and circulating liquid tub device - Google Patents

Draining pipe unit and circulating liquid tub device Download PDF

Info

Publication number
JP2007120308A
JP2007120308A JP2005309410A JP2005309410A JP2007120308A JP 2007120308 A JP2007120308 A JP 2007120308A JP 2005309410 A JP2005309410 A JP 2005309410A JP 2005309410 A JP2005309410 A JP 2005309410A JP 2007120308 A JP2007120308 A JP 2007120308A
Authority
JP
Japan
Prior art keywords
vortex chamber
liquid tank
inflow pipe
pipe
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005309410A
Other languages
Japanese (ja)
Other versions
JP4560630B2 (en
Inventor
Hideki Yoshitomi
秀樹 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2005309410A priority Critical patent/JP4560630B2/en
Publication of JP2007120308A publication Critical patent/JP2007120308A/en
Application granted granted Critical
Publication of JP4560630B2 publication Critical patent/JP4560630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a draining pipe unit for further improving safety by further remarkably reducing suction pressure in suction in addition to a characteristic of relatively easy in installation work with a simple constitution without risk of failure in maintenance-free by wholly eliminating a mechanical movable part and an electric contact point. <P>SOLUTION: This opposed liquid draining pipe unit 1 is composed of a cross-sectional circular vortex chamber 2, a first inflow pipe 3a of communicating and connecting the one end side 32a with and to the vortex chamber 2, a second inflow pipe 3b of communicating and connecting one end side 32b with and to the vortex chamber 2 and a liquid delivery pipe 41 installed in the axial direction on one side surface 23 of the vortex chamber 2, and is formed by respectively communicating and connecting the one end sides 32a and 32b with and to the vortex chamber 2 by linearly opposing the first inflow pipe 3a and the second inflow pipe 3b from the right and left in the tangent direction of an inner peripheral part predetermined position of the vortex chamber 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プールや浴槽等の液槽に使用される排液管ユニット及びこの排液管ユニットを用いた循環式液槽装置に関する。   The present invention relates to a drainage pipe unit used for a liquid tank such as a pool or a bathtub, and a circulation type liquid tank apparatus using the drainage pipe unit.

遊泳用のプールには、水を循環するための排水口や、掃除・修理のときに水を抜くための排水口が設けられている。この排水口に児童が体を吸着されるという痛ましい事故が起こっている。事故防止対策としては、排水口に格子状の蓋を設置するのが一般的であるが、遊泳者が故意に蓋を外したり、あるいは水中の塩素によって止め金具が腐食して蓋が外れたりすることがあり、その結果事故に至った例が実際に報告されている。   The swimming pool has a drain for circulating water and a drain for draining water during cleaning and repair. A painful accident in which a child is adsorbed by this drainage outlet has occurred. As a measure to prevent accidents, it is common to install a grid-like lid at the drain outlet, but a swimmer may intentionally remove the lid, or the stopper may be corroded by chlorine in water and the lid may come off. In some cases, accidents have been reported.

また、人間が入浴するための浴槽にはジェットバス等の循環式浴槽装置が設置されていることがある。この循環式浴槽装置にも湯を循環するための排水口が設けられている。この排水口に入浴者の体が吸着されたり、髪の毛が吸込まれるという事故も発生している。   Moreover, a circulating bath apparatus such as a jet bath may be installed in a bathtub for a human to take a bath. This circulation bathtub apparatus is also provided with a drain outlet for circulating hot water. There are also accidents in which the body of the bather is adsorbed or the hair is sucked into the drain.

遊泳用プールにおける上記課題を解決するために、例えば、特許文献1記載の「プールの排水口における危険防止システム」が提案されている。この危険防止システムは、循環用ポンプによりプールの排水口から排水させる水を再びプール内に循環させて再利用するようにしたプールにおいて、前記排水口を覆う透水性カバーの背面またはその近傍に、このカバーの後方向きの部分的または全体的な偏位によって作動するロードセルからなるセンサを取付け、このセンサで検出される圧力変化の入力信号に基づいて、排水口を異物等が塞ぐ異常な事態と判断された場合に、危険防止手段を作動させる信号を発する制御回路を設ける構成としたものである。これによって、プールの底部の排水口において、人体等の異物の吸い込み等の危険な事態が発生した際に、直ちにこれに対処して事故防止を図ることができる、とされている。   In order to solve the above-mentioned problems in the swimming pool, for example, a “danger prevention system at the drain of a pool” described in Patent Document 1 has been proposed. This danger prevention system, in a pool where water drained from the pool outlet by the circulation pump is circulated again into the pool and reused, on the back of the water-permeable cover covering the drain outlet or in the vicinity thereof, A sensor that consists of a load cell that operates by partial or total displacement of the cover facing backward is installed, and an abnormal situation in which foreign matter or the like blocks the drainage port based on an input signal of pressure change detected by this sensor. In this case, a control circuit is provided that generates a signal for operating the danger prevention means when it is determined. As a result, when a dangerous situation such as inhalation of foreign matter such as a human body occurs at the drain outlet at the bottom of the pool, it is possible to immediately cope with this and prevent accidents.

しかし、特許文献1記載の「プールの排水口における危険防止システム」は、機械的に構成された可動部を電気的に制御しており、定期的なメンテナンスが必要不可欠であった。また、メンテナンスを十分行っていたとしてもシステムが故障する可能性が依然として残り、安全性が十分とはいえないものであった。さらに、設備自体が高価になりがちであり、取付け工事自体も手間と費用がかかるものであった。   However, the “danger prevention system at the drain of a pool” described in Patent Document 1 electrically controls a mechanically configured movable part, and regular maintenance is indispensable. Moreover, even if maintenance is sufficiently performed, there is still a possibility that the system will fail, and safety cannot be said to be sufficient. Furthermore, the equipment itself tends to be expensive, and the installation work itself is laborious and expensive.

一方、循環式浴槽装置における上記課題を解決するために、例えば、特許文献2記載の「ジェットバス用安全装置」が提案されている。この安全装置は、バスタブ内の湯を吸込口から吸込配管を介してポンプに取り込み噴流口から噴流させるジェットバス装置に設けられ、前記吸込口から異物を吸い込んだ時の安全を確保する安全装置であって、前記吸込口とは別に設けられたバイパス吸込口と、前記吸込配管とバイパス吸込口とを接続するバイパス配管と、バイパス配管内に設けられ吸込配管側が一定以上の負圧になったときに開弁する負圧作動弁と、を備えた構成としたものである。これによって、吸込口から異物を吸込んで一定以上の負圧が生じると負圧作動弁が開弁して、バイパス吸込口からバイパス配管を通して湯が吸込側配管へ供給されるので、前記吸込口の負圧は小さくなり、異物を吸込口から容易に離すことができるができる、とされている。   On the other hand, in order to solve the above-mentioned problem in the circulating bath apparatus, for example, a “jet bath safety device” described in Patent Document 2 has been proposed. This safety device is provided in a jet bath device that takes hot water in the bathtub from the suction port into the pump through the suction pipe and jets it from the jet port, and is a safety device that ensures safety when foreign objects are sucked from the suction port. The bypass suction port provided separately from the suction port, the bypass piping connecting the suction piping and the bypass suction port, and the suction piping side provided in the bypass piping has a negative pressure of a certain level or more. And a negative pressure actuating valve that opens at a low pressure. As a result, when a negative pressure of a certain level or more is generated by sucking foreign matter from the suction port, the negative pressure operation valve opens and hot water is supplied from the bypass suction port to the suction side piping through the bypass piping. It is said that the negative pressure becomes small, and foreign substances can be easily separated from the suction port.

しかし、特許文献2記載の「ジェットバス用安全装置」も、機械的可動部を有する負圧弁を利用しており、定期的なメンテナンスが必要である等、特許文献1記載の発明と同様の問題点を抱えていた。   However, the “safety device for jet baths” described in Patent Document 2 also uses a negative pressure valve having a mechanically movable part, and has the same problems as the invention described in Patent Document 1, such as requiring regular maintenance. I had a point.

これらの課題を一挙に解決するため、本願発明者らは、非特許文献1において、流体自体の流れで吸着時の吸引圧力を制御する排液管ユニットを提案した。この排液管ユニットは流体素子の一種である渦型流体素子の特性を応用したものであり、その構造概念図を図10に示す。本図に示すように、内部空間形状が薄い円柱型の渦室8の外周に、接線方向に平行に取付けられた二本の流入管9a,9bが液槽底面51の二個の排液口53a,53bにつながっており、また、渦室8の片側面83の中心部に軸方向に取付けられた吐液管41が図示しない排液管路につながっているという構成である(以降、この排液管ユニットを「平行型排液管ユニット」と呼ぶ)。   In order to solve these problems all at once, the inventors of the present application proposed a drain pipe unit that controls the suction pressure at the time of adsorption by the flow of the fluid itself in Non-Patent Document 1. This drain pipe unit applies the characteristics of a vortex fluid element, which is a kind of fluid element, and its conceptual structure is shown in FIG. As shown in the figure, two inflow pipes 9a and 9b attached in parallel to the tangential direction on the outer periphery of a cylindrical vortex chamber 8 having a thin inner space shape are two drainage ports on the bottom 51 of the liquid tank. 53a and 53b, and a discharge pipe 41 attached in the axial direction to the center of one side 83 of the vortex chamber 8 is connected to a drainage pipe (not shown). The drainage pipe unit is called “parallel drainage pipe unit”).

上記構成とすることによって、一方の排液口53bに入浴者等の異物(図10では、円柱状異物55)が吸着されると、もう一方の排液口53aから渦室8へ流入する流れが渦質内部で強い旋回流を発生することになる。この旋回流による遠心力場により、渦室内部は外周から中心に向かって負の強い圧力勾配が生じ、外周における圧力は排液口53aの流入部の圧力すなわち液槽底面51の液圧に近い値となる。その結果、排液口53bの吸着部分の下流圧力も液槽底面51の圧力(液圧)に近い値となり、吸着部分の上流と下流の圧力差が減少する。この圧力差が小さくなれば、吸着時の吸引圧力(吸着した排液口側の流入管圧力)は弱まり、入浴者等は吸着状態から離脱できるのである。本願発明者らが過去に提案した上記平行型排液管ユニット7は、機械的可動部や電気的接点が一切無く、メンテナンスフリーで故障の心配もなく、簡単な構成で取付け工事も比較的容易であるという優れた特徴を有するのである。なお、以降、「吸着時の吸引圧力」を単に「吸着時吸引力」と呼ぶ。   With the above configuration, when a foreign substance such as a bather (columnar foreign substance 55 in FIG. 10) is adsorbed to one drainage port 53b, the flow flows into the vortex chamber 8 from the other drainage port 53a. Will generate a strong swirling flow inside the vortex. Due to this centrifugal force field due to the swirling flow, a strong negative pressure gradient is generated in the vortex chamber from the outer periphery toward the center, and the pressure in the outer periphery is close to the pressure of the inflow portion of the drainage port 53a, that is, the liquid pressure of the liquid tank bottom surface 51. Value. As a result, the downstream pressure of the adsorption portion of the drainage port 53b is also close to the pressure (hydraulic pressure) of the liquid tank bottom surface 51, and the pressure difference between the upstream and downstream of the adsorption portion is reduced. If this pressure difference becomes small, the suction pressure at the time of adsorption (inlet pipe pressure on the side of the drainage that has been adsorbed) becomes weak, and bathers and the like can leave the adsorption state. The parallel drainage pipe unit 7 previously proposed by the inventors of the present application has no mechanical moving parts or electrical contacts, is maintenance-free, does not have a risk of failure, and has a simple configuration and is relatively easy to install. It has the excellent feature of being. Hereinafter, the “suction pressure at the time of suction” is simply referred to as “suction force at the time of suction”.

上記の様な特徴を有する従来の平行型排液管ユニット7であるが、より一層の安全性確保のため、さらなる吸着時吸引力の低減が切望されていた。   Although it is the conventional parallel type drainage unit 7 which has the above characteristics, in order to secure further safety, reduction of the suction power at the time of adsorption was earnestly desired.

特開2001−73576号公報(請求項1、第1図)JP 2001-73576 A (Claim 1, FIG. 1) 特開平8−224284号公報(第2図)JP-A-8-224284 (FIG. 2) 吉富 秀樹、外2名、“流体自身の流れで吸引力を制御する渦室付排水管の研究”2002年4月、空気調和・衛生工学会論文集No.85Hidetomi Yoshitomi and two others, “Study on a drain tube with a vortex chamber that controls suction force by the flow of the fluid itself” April 2002, Proceedings of the Society of Air Conditioning and Sanitation Engineering No.85

本発明は、従来の平行型排液管ユニットの安全性を飛躍的に向上させたものである。すなわち、機械的可動部や電気的接点が一切無く、メンテナンスフリーで故障の心配もなく、かつ簡単な構成で取付け工事も比較的容易であるという従来の平行型排液管ユニットの特徴はそのままで、さらに吸着時吸引力を著しく低減させ、より一層安全性が向上した排液管ユニット及びこのような排液管ユニットを用いた循環式液槽装置を提供することを目的とする。   The present invention drastically improves the safety of a conventional parallel drainage pipe unit. In other words, there are no mechanical moving parts or electrical contacts, maintenance-free, no worry of failure, simple construction, and relatively easy installation work. Another object of the present invention is to provide a drainage pipe unit in which the suction force at the time of adsorption is significantly reduced and the safety is further improved, and a circulating liquid tank apparatus using such a drainage pipe unit.

上記課題は、液槽内部に貯留した液体を排出するための排液管ユニットであって、断面円形状の渦室と、該渦室に一端側(流出口側)を連通接続した第一の流入管と、前記渦室に一端側(流出口側)を連通接続した第二の流入管と、前記渦室の片側面中央部を軸線方向に貫穿した吐液口とからなり、前記第一の流入管と前記第二の流入管は、前記渦室の内周部所定位置の接線方向左右から直線的に対向して、前記渦室に一端側(流出口側)をそれぞれ連通接続したことを特徴とする排液管ユニットを提供することで解決される。第一の流入管の他端側(流入口側)および第二の流入管の他端側(流入口側)は液槽と連通接続される。これによって、液槽に貯留した液体は両流入口側から流入管に流れ込み、渦室を経由して吐液口から排出されることになる。そして、第一の流入管と第二の流入管のどちらかが液槽内部側から人体等の異物を吸着した場合には、吸着していない側の流入管を介して渦室内部に接線方向から流入する液体が渦室内部で強い旋回流を引き起し、後述するように、従来の平行型排液管ユニットと比して、吸着時吸引力をより一層低減することができるのである。ここで、「旋回流」とは、断面円形状の渦室に内周部所定位置の接線方向から流入した液体が、渦室内部を旋回する流れのことをいう。なお、第一の流入管の他端側(流入口側)を液槽に連通接続する位置と、第二の流入管の他端側(流入口側)を液槽に連通接続する位置とは、両者異なる位置となる。   The above-mentioned problem is a drainage pipe unit for discharging the liquid stored in the liquid tank, and is a first vortex chamber having a circular cross section and one end side (outlet side) connected to the vortex chamber. An inflow pipe, a second inflow pipe having one end side (outlet side) connected to the vortex chamber, and a spout opening penetrating the central portion of one side surface of the vortex chamber in the axial direction. The inflow pipe and the second inflow pipe are linearly opposed from the left and right in the tangential direction at a predetermined position on the inner periphery of the vortex chamber, and one end side (outlet side) is connected to the vortex chamber in communication with each other. This is solved by providing a drainage pipe unit characterized by the following. The other end side (inlet side) of the first inflow pipe and the other end side (inlet side) of the second inflow pipe are connected in communication with the liquid tank. As a result, the liquid stored in the liquid tank flows into the inflow pipe from both the inlets, and is discharged from the discharge port through the vortex chamber. When either the first inflow pipe or the second inflow pipe adsorbs foreign matter such as a human body from the inside of the liquid tank, the tangential direction enters the vortex chamber through the inflow pipe on the non-adsorbed side. The liquid flowing in from the inside causes a strong swirling flow in the vortex chamber, and as will be described later, the suction force during adsorption can be further reduced as compared with a conventional parallel drainage pipe unit. Here, the “swirl flow” refers to a flow in which the liquid that has flowed into the vortex chamber having a circular cross-section from the tangential direction at a predetermined position on the inner periphery swirls in the vortex chamber. The position where the other end side (inlet side) of the first inlet pipe is connected to the liquid tank and the position where the other end side (inlet side) of the second inlet pipe is connected to the liquid tank are , Both will be in different positions.

本願発明者は、より安全な排液管ユニットを求め、図10に示す従来の平行型排液管ユニット7よりも吸着時吸引力をより一層低減させるために鋭意研究開発を重ねた。その結果、図1に例示される対向型排液管ユニット1を完成させたのである。通常であれば、二本の流入管3a,3bの一端側(流出口側)32a,32bをそれぞれ対向させることは、排液同士の干渉によりエネルギー損失が生じて排液効率が低下するおそれがあり、当業者の避けるところである。しかし、本願発明者は、第一の流入管3aと第二の流入管3bは、渦室2の内周部所定位置の接線方向左右から直線的に対向して、渦室2に一端側(流出口側)32a,32bをそれぞれ連通接続したという本発明の特徴的構成をあえて採用することで、驚くべきことに、吸着時吸引力を著しく低減させることに成功したのである。これによって、より一層安全性が向上した排液管ユニットを提供することができる。   The inventor of the present application has sought for a safer drainage pipe unit and conducted extensive research and development in order to further reduce the suction force during adsorption as compared with the conventional parallel drainage pipe unit 7 shown in FIG. As a result, the opposed drainage unit 1 illustrated in FIG. 1 was completed. Normally, if one end side (outlet side) 32a and 32b of the two inflow pipes 3a and 3b are opposed to each other, energy loss may occur due to interference between the drainage liquids, and the drainage efficiency may decrease. Yes, and will be avoided by those skilled in the art. However, the inventor of the present application indicates that the first inflow pipe 3a and the second inflow pipe 3b are linearly opposed from the left and right in the tangential direction at a predetermined position of the inner peripheral portion of the vortex chamber 2, and are one end side ( Surprisingly, the suction force at the time of adsorption was remarkably reduced by adopting the characteristic configuration of the present invention in which the outlet side 32a and 32b were connected in communication. As a result, it is possible to provide a drainage pipe unit with further improved safety.

ここで、「液槽」とは、浴槽やプール槽のみならず、魚類観賞用水槽や化学プラント液貯槽などの一般用タンクを含む概念である。また、「排出」とは、液槽中の液体を外へ出すことをいい、外へ出した液体をその後再び液槽内に戻す場合であっても、液槽中の液体を外へ出すこと自体は「排出」に該当する。さらに「排出」には、重力の作用によって液槽中の液体を外へ出すことのみならず、液槽外部から吸引して外へ出すことも含む。さらにまた、「断面円形状の渦室」とは、渦室の内周部所定位置の接線方向から流入する液体が、渦室内部を旋回する流れ(旋回流)を引き起すように、内部空間が断面円形状に形成された渦室をいい、薄い円柱型のみならず、厚い円柱型や円錐型および算盤玉型等の内部空間形状である渦室も含む概念である。   Here, the “liquid tank” is a concept including not only a bathtub and a pool tank but also a general tank such as a fish appreciation water tank or a chemical plant liquid storage tank. “Draining” means to discharge the liquid in the liquid tank to the outside. Even if the liquid that has been discharged is returned to the liquid tank again, the liquid in the liquid tank is discharged to the outside. As such, it falls under “emission”. Furthermore, “discharge” includes not only discharging the liquid in the liquid tank to the outside by the action of gravity but also sucking it out from the liquid tank and discharging it to the outside. Furthermore, the “circular cross-sectional vortex chamber” means that the liquid flowing in from the tangential direction at a predetermined position on the inner periphery of the vortex chamber causes a flow (swirl flow) that swirls in the vortex chamber. Refers to a vortex chamber having a circular cross section, and includes not only a thin cylindrical shape but also a vortex chamber having an internal space shape such as a thick cylindrical shape, a conical shape, and an abacus bead shape.

また、上記対向型排液管ユニットを配設した循環式液槽装置としては、液槽内部に貯留した液体を排出した後、液槽内部に戻して循環させるように構成した循環式液槽装置であって、液槽外部に配設した断面円形状の渦室と、前記液槽内部に貯留した液体が前記渦室内部に流入するように、前記渦室に一端側(流出口側)を連通接続し、前記液槽に貫穿した第一の排液口に他端側(流入口側)を連通接続した第一の流入管と、前記液槽内部に貯留した液体が前記渦室内部に流入するように、前記渦室に一端側(流出口側)を連通接続し、前記液槽に貫穿した第二の排液口に他端側(流入口側)を連通接続した第二の流入管と、前記渦室の片側面中央部を軸線方向に貫穿した吐液口と、該吐液口に接続した循環用ポンプを備え、前記第一の流入管と前記第二の流入管は、前記渦室の内周部所定位置の接線方向左右から直線的に対向して、前記渦室に一端側(流出口側)をそれぞれ連通接続したことを特徴とする循環式液槽装置を提示する。ここで、「吐液口に接続した循環用ポンプ」における「接続」とは、吐液口に循環用ポンプを直接的に接続した場合だけでなく、他の配管等を間に介して間接的に接続した場合も含む。なお、流入管は、他端側(流入口側)を排液口に連通接続していることから、本発明の循環式液槽装置では、排液口に人体等の異物が吸着されることと、流入管に人体等の異物が吸着されることは同じ現象である。   Moreover, as the circulation type liquid tank apparatus provided with the above-mentioned opposed drain pipe unit, the circulation type liquid tank apparatus configured to discharge the liquid stored in the liquid tank and then circulate it back into the liquid tank. The vortex chamber having a circular cross section disposed outside the liquid tank, and one end side (outlet side) of the vortex chamber so that the liquid stored inside the liquid tank flows into the vortex chamber. A first inflow pipe connected in communication and connected to the first drainage port penetrating the liquid tank at the other end side (inlet side), and the liquid stored in the liquid tank inside the vortex chamber A second inflow in which one end side (outlet side) is connected to the vortex chamber so as to flow in, and the other end side (inlet side) is connected to a second drainage port penetrating the liquid tank. A first pump that includes a pipe, a liquid discharge port that penetrates the central portion of one side surface of the vortex chamber in the axial direction, and a circulation pump that is connected to the liquid discharge port. And the second inflow pipe are linearly opposed from the left and right in the tangential direction at a predetermined position on the inner periphery of the vortex chamber, and one end side (outlet side) is connected to the vortex chamber in communication with each other. A circulating liquid tank apparatus is presented. Here, the “connection” in the “circulation pump connected to the discharge port” is not only when the circulation pump is directly connected to the discharge port, but also indirectly through other piping or the like. Including the case of connecting to. In addition, since the other end side (inlet side) of the inflow pipe is connected to the drain port, foreign substances such as a human body are adsorbed to the drain port in the circulation type liquid tank apparatus of the present invention. It is the same phenomenon that foreign matter such as a human body is adsorbed to the inflow pipe.

このとき、第一の排液口と第二の排液口を、断面円形状の渦室の内径以上の間隔をあけて液槽に貫穿した循環式液槽装置とすることが好ましい。ここで、「内径」とは、断面円形状の渦室の内側の直径をいい、例えば円錐型のように、軸線方向で渦室の内側の直径が変化する場合には、最も長い箇所の内側の直径をいう。   At this time, it is preferable that the first drainage port and the second drainage port be a circulation type liquid tank apparatus that penetrates into the liquid tank at an interval equal to or larger than the inner diameter of the vortex chamber having a circular cross section. Here, the “inner diameter” refers to the inner diameter of the vortex chamber having a circular cross section. For example, when the inner diameter of the vortex chamber changes in the axial direction, such as a conical shape, the inner diameter of the longest portion. The diameter of

これによって、流入管の施工が簡単、かつ流入管内部でのエネルギー損失の小さい状態で、循環式液槽装置の安全性をより高めることができる。   This makes it possible to further improve the safety of the circulating liquid tank apparatus while the construction of the inflow pipe is simple and the energy loss inside the inflow pipe is small.

本発明の対向型排液管ユニットを配設した循環式液槽装置においても、従来の平行型排液管ユニットを配設した場合と同様、二個の排液口のうち片方にのみ人体等の異物が吸着された場合に吸着時吸引力の低減効果が発現する。しかし、万が一、人体等が二個の排液口に同時に吸着された場合には吸着時吸引力の低減効果が期待できない。これを考慮すると、二個の排液口をできるだけ離れた位置に設け、人体等が二個の排液口に同時に吸着されないようにすることが好ましい。   Also in the circulation type liquid tank apparatus in which the opposed drainage unit of the present invention is arranged, the human body etc. only in one of the two drainage ports, as in the case where the conventional parallel drainage pipe unit is arranged. When the foreign matter is adsorbed, the effect of reducing the suction force during adsorption is manifested. However, in the unlikely event that a human body or the like is adsorbed simultaneously by the two drainage ports, the effect of reducing the suction force during adsorption cannot be expected. Considering this, it is preferable to provide the two drainage ports as far apart as possible so that the human body or the like is not simultaneously adsorbed by the two drainage ports.

しかし、従来の平行型排液管ユニット(図10参照)を配設した循環式液槽装置において、二個の排液口53a,53bの間隔を渦室8の内径程度以上に広げると、図11に示すように、第一の流入管9aおよび第二の流入管9bの屈曲箇所が多くなって取り回しが複雑になるばかりか、液体が流入管内を流れる際のエネルギー損失が増加し円滑な流れが阻害される場合があった。ところが、本発明の対向型排液管ユニットを配設した循環式液槽装置においては、二個の排液口の間隔を渦室の内径程度以上に広げた場合であっても、図5に示す様に、従来の平行型排液管ユニットを配設した場合(図11)と比較して、第一の流入管3aおよび第二の流入管3b(以降、両流入管3a,3bと呼ぶ場合がある)の屈曲箇所を少なく構成できる。これによって、両流入管3a,3bの取り回しが簡素化され、より施工が簡単、かつ両流入管内部でのエネルギー損失の小さい状態で、循環式液槽装置の安全性をより高めることができるのである。   However, when the interval between the two drainage ports 53a and 53b is increased beyond the inner diameter of the vortex chamber 8 in the circulation type liquid tank apparatus provided with the conventional parallel drainage pipe unit (see FIG. 10), As shown in Fig. 11, not only the first inflow pipe 9a and the second inflow pipe 9b are bent, but the handling is complicated, and the energy loss when the liquid flows in the inflow pipe increases, resulting in a smooth flow. Was sometimes inhibited. However, in the circulation type liquid tank apparatus provided with the opposed drainage pipe unit of the present invention, even when the interval between the two drainage ports is widened to about the inner diameter of the vortex chamber, FIG. As shown, the first inflow pipe 3a and the second inflow pipe 3b (hereinafter referred to as both inflow pipes 3a and 3b) as compared with the case where a conventional parallel drainage pipe unit is provided (FIG. 11). In some cases, the number of bent portions can be reduced. This simplifies the handling of both inflow pipes 3a and 3b, makes the construction easier, and increases the safety of the circulating liquid tank device with less energy loss inside both inflow pipes. is there.

また、渦室を液槽外部に縦型に配設した循環式液槽装置とすることができる。これによって、少ない設置面積で渦室を配設でき、例えばバスルーム等、設置スペースの狭い場所でも容易に設置可能な循環式液槽装置とすることができる。   Moreover, it can be set as the circulation-type liquid tank apparatus which arrange | positioned the vortex chamber in the vertical type outside the liquid tank. Accordingly, the vortex chamber can be arranged with a small installation area, and a circulating liquid tank apparatus that can be easily installed even in a small installation space such as a bathroom can be obtained.

このとき、第一の流入管と第二の流入管は、渦室の内周部上端位置の接線方向左右から直線的に対向して、渦室に一端側(流出口側)をそれぞれ連通接続した循環式液槽装置とすることが好ましい。   At this time, the first inflow pipe and the second inflow pipe are linearly opposed from the left and right in the tangential direction of the inner peripheral upper end position of the vortex chamber, and one end side (outlet side) is connected to the vortex chamber in communication with each other. It is preferable to use a circulating liquid tank apparatus.

渦室を縦型に設置する場合には、渦室内部に空気が入り込むと、上端部に空気だまりとして残る可能性があった。この空気だまりが旋回流を阻害して、思った様な吸着時吸引力の低減効果が得られないことがあった。上記構成とすることで、渦室内部に空気が入り込んでも、上端部に残った空気だまりを挟み込んで押しつぶすように、上端部左右から浴槽内の液体が流入するため、空気だまりが下方に破裂拡散して吐液口から排出されることになる。これによって、安定した吸着時吸引力の低減効果が得られるのである。従来の平行型排液管ユニットで渦室を縦型に配設した場合にはこのような効果は期待できない。すなわち、本発明の対向型排液管ユニットにおいて渦室を縦型に配設した場合に、上記構成とすることで安定した吸着時吸引力の低減効果を得ることができるのである。   When the vortex chamber is installed in a vertical shape, if air enters the vortex chamber, there is a possibility that it remains as a pool of air at the upper end. This air pool obstructs the swirling flow, and the suction force reduction effect as expected may not be obtained. With the above configuration, even if air enters the vortex chamber, the liquid in the bathtub flows from the left and right of the upper end so that the air remaining in the upper end is sandwiched and crushed. And discharged from the spout. As a result, a stable effect of reducing the suction force during adsorption can be obtained. Such an effect cannot be expected when the vortex chambers are arranged vertically in a conventional parallel drainage pipe unit. That is, when the vortex chamber is arranged vertically in the opposed drainage pipe unit of the present invention, a stable effect of reducing the suction force at the time of adsorption can be obtained with the above configuration.

渦室を液槽外部に横型に配設した循環式液槽装置とすることもできる。渦室を液槽の下側に配設する場合や、ある程度設置スペースに余裕がある場合は、渦室を横型に配設することが好ましい。渦室を横型に配設すると渦室内部における流れの位置ヘッドがほぼ等しくなり、旋回流を生じる際に重力の影響を受けにくくなる。これによって、より渦室内部での旋回流がスムーズになり、吸着時吸引力の低減効果が高い循環式液槽装置とすることができる。渦室内径が大きい循環式液槽装置であればある程、渦室を横型に配設することで旋回流がスムーズになる。   A circulation type liquid tank apparatus in which the vortex chamber is disposed laterally outside the liquid tank may be used. When the vortex chamber is disposed below the liquid tank or when there is a certain amount of installation space, the vortex chamber is preferably disposed in a horizontal shape. If the vortex chambers are arranged horizontally, the position heads of the flow in the vortex chamber are almost equal, and are less susceptible to the influence of gravity when a swirl flow is generated. Thereby, the swirl flow in the inside of the vortex chamber becomes smoother, and a circulation type liquid tank apparatus having a high effect of reducing the suction force during adsorption can be obtained. The larger the vortex chamber diameter, the smoother the swirl flow by arranging the vortex chamber in a horizontal shape.

渦室のケーシングと循環用ポンプのケーシングを一体的に形成することで、渦室と循環用ポンプをユニット化した循環式液槽装置とすることもできる。これによって、小型でコンパクトかつ設置しやすい循環式液槽装置となる。   By integrally forming the casing of the vortex chamber and the casing of the circulation pump, a circulation type liquid tank apparatus in which the vortex chamber and the circulation pump are unitized can be obtained. As a result, the circulation type liquid tank apparatus is small, compact and easy to install.

本発明によって、機械的可動部や電気的接点が一切無く、メンテナンスフリーで故障の心配もなく、かつ簡単な構成で取付け工事も比較的容易であるという従来の平行型排液管ユニットの特徴に加えて、さらに吸着時吸引力を著しく低減させ、より一層安全性が向上した排液管ユニット、及びこのような排液管ユニットを配設した循環式液槽装置を提供することができる。   According to the present invention, there is no mechanical moving part or electrical contact, maintenance-free, no worry of failure, simple construction and relatively easy installation work. In addition, it is possible to provide a drainage pipe unit in which the suction force at the time of adsorption is remarkably reduced and the safety is further improved, and a circulation type liquid tank apparatus provided with such a drainage pipe unit.

以下、図面を用い、本発明の対向型排液管ユニット及び循環式液槽装置を例示して、具体的に説明する。図1〜図4は本発明の対向型排液管ユニットを説明するための図であり、図5〜図9は本発明の対向型排液管ユニットを配設した循環式液槽装置を説明するための図である。一方、図10は従来の平行型排液管ユニットを説明するための図であり、図11と図12は従来の平行型排液管ユニットを配設した循環式液槽装置を説明するための図である。また、図13〜図15は本発明の対向型排液管ユニットにおいて吸着時吸引力が低下するメカニズム等を説明するための図である。   Hereinafter, the opposing drainage pipe unit and the circulation type liquid tank apparatus of the present invention will be described in detail with reference to the drawings. 1-4 is a figure for demonstrating the opposing drainage pipe unit of this invention, and FIGS. 5-9 demonstrates the circulation type liquid tank apparatus which arrange | positioned the opposing drainage pipe unit of this invention. It is a figure for doing. On the other hand, FIG. 10 is a diagram for explaining a conventional parallel drainage pipe unit, and FIGS. 11 and 12 are diagrams for explaining a circulation type liquid tank apparatus provided with a conventional parallel drainage pipe unit. FIG. FIGS. 13 to 15 are views for explaining a mechanism and the like in which the suction force at the time of adsorption decreases in the opposed drainage unit of the present invention.

まず、図1〜図4を用いて、本発明の対向型排液管ユニット1について例示説明する。これらの図において、第一の流入管3aは図の右側方に、第二の流入管3bは図の左側方に延在しているが説明の都合上省略してある。図1および図2に示すように、本発明の対向型排液管ユニット1は、吐液口24が貫穿された渦室2と、第一の流入管3aと、第二の流入管3bとからなるものである。以下、本発明の対向型排液管ユニット1を構成する上記構成要素について順に説明する。なお、本例では吐液口24に吐液管41が接続された構成である。   First, the opposing drainage pipe unit 1 of the present invention will be described with reference to FIGS. In these figures, the first inflow pipe 3a extends to the right side of the figure and the second inflow pipe 3b extends to the left side of the figure, but is omitted for convenience of explanation. As shown in FIG. 1 and FIG. 2, the opposing drainage pipe unit 1 of the present invention includes a vortex chamber 2 through which a discharge port 24 penetrates, a first inflow pipe 3a, and a second inflow pipe 3b. It consists of Hereafter, the said component which comprises the opposing drainage pipe unit 1 of this invention is demonstrated in order. In this example, the liquid discharge pipe 41 is connected to the liquid discharge port 24.

[排液管ユニット:渦室]
渦室2の内部空間形状は断面が円形状である。これによって、後述するように、第一の流入管3a又は第二の流入管3bのうちどちらかが人体等の異物を吸着した場合に、他方の流入管を介して接線方向から渦室内部20に流入した液体が、渦室内部20で旋回流を引き起すことになる(図1では×印を用いて、第二の流入管3bが異物を吸着した状態を模式的に示してある)。渦室2の内部空間形状は図1に示すような薄い円柱型に限定されず、図4に示すように、算盤玉型( a)、厚い円柱型( b)、円錐型( c)、中央部にかけて陥没した円柱型( d)等、種々の形状とすることができる。すなわち、渦室2の内部空間形状は、内周部の接線方向から渦室2に流入した液体が旋回流を引き起すように断面が円形状であればよい。また、図2に示す様に、渦室外周壁21には、第一の流入管3aと第二の流入管3bを、渦室2の内周部所定位置(本図では、内周部上端位置)の接線方向左右から直線的に対向させて、流出口側(一端側)32a,32bから渦室2にそれぞれ連通接続するために、二つの接続孔22a,22bを互いに隣接して貫穿している。
[Drainage pipe unit: Vortex chamber]
The internal space of the vortex chamber 2 has a circular cross section. Thus, as will be described later, when either the first inflow pipe 3a or the second inflow pipe 3b adsorbs a foreign substance such as a human body, the vortex chamber portion 20 from the tangential direction through the other inflow pipe 20 The liquid that flows into the vortex chamber causes a swirling flow in the vortex chamber 20 (in FIG. 1, a state where the second inflow pipe 3b has adsorbed foreign matter is schematically shown using a cross x). The internal space shape of the vortex chamber 2 is not limited to the thin cylindrical shape as shown in FIG. 1, but as shown in FIG. 4, the abacus bead shape (a), the thick cylindrical shape (b), the conical shape (c), the center Various shapes such as a columnar shape (d) recessed over the part can be used. That is, the internal space shape of the vortex chamber 2 only needs to be circular in cross section so that the liquid flowing into the vortex chamber 2 from the tangential direction of the inner peripheral portion causes a swirling flow. As shown in FIG. 2, the first inflow pipe 3a and the second inflow pipe 3b are provided on the outer peripheral wall 21 of the vortex chamber at a predetermined position on the inner periphery of the vortex chamber 2 (in this figure, the upper end position of the inner periphery). In order to communicate with the vortex chamber 2 from the outlet side (one end side) 32a, 32b, respectively, the two connecting holes 22a, 22b are penetrated adjacent to each other. Yes.

また、渦室2には、片側面23の中央部を軸線方向に、渦室2の内部から外部まで貫穿した吐液口24が設けられており、液槽内部から両流入管3a,3bを介して渦室内部20に流入した液体がこの吐液口24から排出される。本実施形態では、吐液口24に吐液管41が接続されており、液槽内部から渦室内部20に流入した液体は吐液管41から排出される構成であるが、吐液管41を設けなくてもよい。   Further, the vortex chamber 2 is provided with a liquid discharge port 24 penetrating from the inside of the vortex chamber 2 to the outside in the axial direction at the center of the one side surface 23. Both inflow pipes 3a and 3b are connected from the inside of the liquid tank. The liquid that has flowed into the vortex chamber 20 through the discharge port 24 is discharged. In the present embodiment, the liquid discharge pipe 41 is connected to the liquid discharge port 24, and the liquid flowing into the vortex chamber 20 from the inside of the liquid tank is discharged from the liquid discharge pipe 41. May not be provided.

渦室2を構成する材料について、液体に浸食されなければ特に制限されない。液体が水であれば、ステンレスや硬質塩化ビニル樹脂で外装部(ケーシング)を構成すればよい。   The material constituting the vortex chamber 2 is not particularly limited as long as it is not eroded by the liquid. If the liquid is water, the exterior part (casing) may be made of stainless steel or hard vinyl chloride resin.

断面円形状の渦室2の内径は特に制限されず、現実的には液槽の大きさや、両流入管3a,3bの内径等を考慮して決定されることになる。例えば、家庭用の浴槽に配設する場合には、渦室2の内径は8〜25cmであることが好ましい。内径が8cmより小さいと通常時のエネルギー損失が増えて好ましくなく、25cmより大きいと設置スペースが確保しにくくなるばかりか、渦室自体も高価になる。家庭用の浴槽に配設する場合、渦室2の内径は、より好ましくは10〜20cmである。また、プールに配設する場合には、渦室2の内径は50〜130cmであることが好ましく、より好ましくは60〜100cmである。   The inner diameter of the vortex chamber 2 having a circular cross section is not particularly limited, and is actually determined in consideration of the size of the liquid tank, the inner diameters of both the inflow pipes 3a and 3b, and the like. For example, when arrange | positioning in a household bathtub, it is preferable that the internal diameter of the vortex chamber 2 is 8-25 cm. If the inner diameter is smaller than 8 cm, energy loss in the normal state increases, which is not preferable. If the inner diameter is larger than 25 cm, it is difficult to secure an installation space, and the vortex chamber itself is expensive. When arrange | positioning in a domestic bathtub, the internal diameter of the vortex chamber 2 becomes like this. More preferably, it is 10-20cm. Moreover, when arrange | positioning in a pool, it is preferable that the internal diameter of the vortex chamber 2 is 50-130 cm, More preferably, it is 60-100 cm.

渦室2の内部厚みLも特に制限されない。渦室2が円柱型の場合、渦室2の内径Dvとの比率L/Dvは0.1〜1が好ましい。L/Dvが0.1より小さいと通常流れにおけるエネルギー損失が大きくなる。L/Dvが1より大きいと吸着時吸引力が増加する。渦室2の内径との比率L/Dvは好ましくは、0.15〜0.5であり、より好ましくは0.2〜0.4である。また、渦室2の内部厚みLは、後述する両流入管3a,3bの内径と同じか、それより大きいことが好ましい。   The internal thickness L of the vortex chamber 2 is not particularly limited. When the vortex chamber 2 is cylindrical, the ratio L / Dv to the inner diameter Dv of the vortex chamber 2 is preferably 0.1 to 1. When L / Dv is less than 0.1, energy loss in normal flow increases. When L / Dv is greater than 1, the suction force during adsorption increases. The ratio L / Dv to the inner diameter of the vortex chamber 2 is preferably 0.15 to 0.5, more preferably 0.2 to 0.4. The internal thickness L of the vortex chamber 2 is preferably the same as or larger than the inner diameters of both inflow pipes 3a and 3b described later.

吐液口24の内径Deについても特に制限されないが、渦室2の内径Dvとの比率De/Dvで0.05〜0.7が好ましい。De/Dv が0.05より小さいと通常時の流れにおけるエネルギー損失が大きくなる。De/Dvが0.7より大きいと吸着時吸引力が増加する。渦室2の内径との比率は好ましくは、0.1〜0.5であり、より好ましくは0.15〜0.4である。   The inner diameter De of the spout 24 is not particularly limited, but is preferably 0.05 to 0.7 in the ratio De / Dv with the inner diameter Dv of the vortex chamber 2. When De / Dv is less than 0.05, the energy loss in the normal flow increases. If De / Dv is greater than 0.7, the suction force during adsorption increases. The ratio with the inner diameter of the vortex chamber 2 is preferably 0.1 to 0.5, more preferably 0.15 to 0.4.

[排液管ユニット:第一の流入管及び第二の流入管]
第一の流入管3a及び第二の流入管3bは、液槽内部に貯留した液体が渦室内部20に流入するように、液槽内部と渦室内部20をそれぞれ連通する。より詳細には、図2及び図3に示すように、第一の流入管3aと第二の流入管3bを介して渦室内部20に流入する液体が、渦室2の内周部所定位置26(図2及び図3では、内周部上端位置)における接線方向左右の対向する方向からそれぞれ渦室内部20に流入するように、第一の流入管3aと第二の流入管3bは、渦室2の内周部所定位置の接線方向左右から直線的に対向して、渦室2に流出口側(一端側)32a,32bをそれぞれ連通接続している。そして、両流入管3a,3bの流出口側(一端側)32a,32bは、渦室2の内周部形状に合わせて円弧状に切り欠かれて鋭角的に形成されており、図3に示す様に、鋭角的に形成された両流入管3a,3b同士の先端部対抗位置33が、渦室2の前記内周部所定位置26とほぼ等しい位置になるように渦室2に流出口側(一端側)32a,32bをそれぞれ連通接続している。
[Drainage pipe unit: first inflow pipe and second inflow pipe]
The first inflow pipe 3a and the second inflow pipe 3b communicate with the inside of the liquid tank and the inside of the vortex chamber 20 so that the liquid stored inside the liquid tank flows into the inside of the vortex chamber 20. More specifically, as shown in FIGS. 2 and 3, the liquid flowing into the vortex chamber 20 through the first inflow pipe 3 a and the second inflow pipe 3 b is located at a predetermined position on the inner periphery of the vortex chamber 2. The first inflow pipe 3a and the second inflow pipe 3b are respectively introduced into the vortex chamber 20 from opposite directions on the left and right in the tangential direction at 26 (in FIG. 2 and FIG. 3, the inner peripheral upper end position). Outflow side (one end side) 32a and 32b are connected in communication with the vortex chamber 2 so as to be linearly opposed from the left and right in the tangential direction at a predetermined position on the inner peripheral portion of the vortex chamber 2. And the outflow side (one end side) 32a, 32b of both inflow pipes 3a, 3b is notched in an arc shape according to the inner peripheral part shape of the vortex chamber 2, and is formed at an acute angle. As shown in the figure, the outlet portion 33 of the inflow pipes 3a, 3b formed at an acute angle faces the vortex chamber 2 so that the tip portion facing position 33 is substantially equal to the predetermined position 26 of the inner peripheral portion of the vortex chamber 2. The side (one end side) 32a and 32b are connected in communication.

第一の流入管3aは、液槽に貫穿した第一の排液口に流入口側(他端側)が接続されることで、液槽内部と渦室内部20を連通することになる。同様に、また、第二の流入管3bは、液槽に貫穿した第二の排液口に流入口側(他端側)が接続されることで、液槽内部と渦室内部20を連通することになる。   The first inflow pipe 3a connects the inside of the liquid tank and the inside of the vortex chamber 20 by connecting the inlet side (the other end side) to the first drainage port penetrating the liquid tank. Similarly, the second inflow pipe 3b communicates the inside of the liquid tank and the vortex chamber 20 by connecting the inlet side (the other end side) to a second drainage port penetrating the liquid tank. Will do.

両流入管3a,3bの材質は、液体に浸食されなければ特に制限されない。液体が水であれば、ステンレス製や硬質塩化ビニル樹脂製の流入管を使用することができる。両流入管3a,3bの内径も特に制限されないが、渦室2の内部厚みL以下であることが好ましく、この条件下において0.1〜20cm 程度の範囲で選択できる。両流入管3a,3bの内径は、好ましくは0.2〜10cmであり、より好ましくは0.4〜5cmである。   The material of both the inflow pipes 3a and 3b is not particularly limited as long as it is not eroded by the liquid. If the liquid is water, an inflow pipe made of stainless steel or hard vinyl chloride resin can be used. The inner diameters of both inflow pipes 3a and 3b are not particularly limited, but are preferably equal to or less than the internal thickness L of the vortex chamber 2, and can be selected within a range of about 0.1 to 20 cm under these conditions. The inner diameters of both inflow pipes 3a and 3b are preferably 0.2 to 10 cm, and more preferably 0.4 to 5 cm.

次に図5〜図9を用いて、本発明の対向型排液管ユニット1を配設した循環式液槽装置について説明する。なお、図5及び図6では、説明の都合上、液槽5は液槽底面51の一部についてのみ二点鎖線で表現している。よって、液槽底面51の上方空間は液槽内部50となる。まず、図5を用いて本循環式液槽装置の第一実施形態について説明する。   Next, with reference to FIGS. 5 to 9, a circulation type liquid tank apparatus provided with the opposed drainage pipe unit 1 of the present invention will be described. 5 and 6, for convenience of explanation, the liquid tank 5 is represented by a two-dot chain line only for a part of the liquid tank bottom surface 51. Therefore, the space above the liquid tank bottom 51 is the liquid tank interior 50. First, the first embodiment of the present circulation type liquid tank apparatus will be described with reference to FIG.

[循環式液槽装置:第一実施形態]
図5に示す第一実施形態では、液槽5の下側に対向型排液管ユニット1を配設している。渦室2は液槽5の下側に縦型に配設されている。液槽底面51には所定間隔53Lを隔てて第一の排液口53aと第二の排液口53b(以降、両排液口53a,53bと呼ぶ場合がある)が貫穿されている。そして、液槽内部に貯留した液体が第一の排液口53aから流出して渦室内部に流入するように、渦室2に流出口側(一端側)32aを連通接続した第一の流入管3aの流入口側(他端側)31aが、第一の排液口53aに連通接続している。また、同じく、液槽内部に貯留した液体が第二の排液口53bから流出して渦室内部に流入するように、渦室2に流出口側(一端側)32bを連通接続した第二の流入管3bの流入口側(他端側)31bが、第一の排液口53bに連通接続している。これによって、第一の流入管3aおよび第二の流入管3bは、液槽内部50に貯留した液体が渦室内部に流入するようにそれぞれ液槽内部50と渦室内部を連通していることになる。本図のように、両流入管3a,3bを左右対称に形成し、対向型排液管ユニット1が左右対称になるように渦室2と両流入管3a,3bを配設することが好ましい。
[Circulating liquid tank apparatus: first embodiment]
In the first embodiment shown in FIG. 5, the opposing drainage pipe unit 1 is disposed below the liquid tank 5. The vortex chamber 2 is arranged vertically on the lower side of the liquid tank 5. A first drainage port 53a and a second drainage port 53b (hereinafter may be referred to as both drainage ports 53a and 53b) are penetrated through the bottom surface 51 of the liquid tank at a predetermined interval 53L. And the 1st inflow which connected the outflow side (one end side) 32a to the vortex chamber 2 so that the liquid stored in the liquid tank might flow out from the 1st drainage port 53a and may flow in into the vortex chamber. The inlet side (other end side) 31a of the pipe 3a is connected in communication with the first drainage port 53a. Similarly, the second outlet 32b is connected to the vortex chamber 2 so that the liquid stored in the liquid tank flows out of the second drainage port 53b and flows into the vortex chamber. The inlet side (other end side) 31b of the inflow pipe 3b is connected to the first drainage port 53b. As a result, the first inflow pipe 3a and the second inflow pipe 3b communicate with the liquid tank interior 50 and the inside of the vortex chamber so that the liquid stored in the liquid tank interior 50 flows into the vortex chamber. become. As shown in this figure, it is preferable to form both inflow pipes 3a and 3b symmetrically, and to arrange the vortex chamber 2 and both inflow pipes 3a and 3b so that the opposing drainage pipe unit 1 is symmetrical. .

そして、第一の流入管3aと第二の流入管3bは、渦室2の内周部所定位置の接線方向左右から直線的に対向して、流出口側(一端側)32a,32bをそれぞれ渦室2に連通接続している。これにより、第一の流入管3a又は第二の流入管3bのうちどちらかが人体等の異物を吸着した場合に、他方の流入管を介して接線方向から渦室内部に流入した液体が旋回流を引き起し、吸着時吸引力を低減することになる。渦室内部に流れ込んだ液体は、片側面23の中央部を軸線方向に貫穿した吐液口24から吐液管41を介して循環用ポンプ(図示せず)へ流れ、配管(図示せず)を通って再び液槽内部50に戻ることになる。また、本第一実施形態では、断面円形状の渦室2の内径2Rよりも、第一の排液口53aと第二の排液口53bの間隔53Lが広く構成されている。   The first inflow pipe 3a and the second inflow pipe 3b are linearly opposed from the left and right in the tangential direction at a predetermined position on the inner peripheral portion of the vortex chamber 2, and the outlet side (one end side) 32a and 32b are respectively The vortex chamber 2 is connected in communication. Thus, when either the first inflow pipe 3a or the second inflow pipe 3b adsorbs foreign matter such as a human body, the liquid flowing into the vortex chamber from the tangential direction via the other inflow pipe swirls. This causes a flow and reduces the suction force during adsorption. The liquid that has flowed into the vortex chamber flows from the discharge port 24 that penetrates the central portion of the one side surface 23 in the axial direction to the circulation pump (not shown) via the discharge tube 41, and is connected to the piping (not shown). It will return to the inside 50 of a liquid tank through again. In the first embodiment, the interval 53L between the first drainage port 53a and the second drainage port 53b is wider than the inner diameter 2R of the vortex chamber 2 having a circular cross section.

液槽底面51に設けた両排液口53a,53bの間隔53Lはできるだけ広くする方が安全であり、30cm以上が好ましい。これによって入浴者等が両排液口53a,53bに同時に吸着される可能性を低減できる。両排液口53a,53bの間隔53Lは、より好ましくは50cm以上である。この間隔が広いほど入浴者等が両排液口53a,53bに同時に吸着される可能性が低減できるが、その上限値は液槽5の大きさによって主に制限される。入浴者等が両排液口53a,53bに同時に吸着される可能性を低減しようとすると、両排液口53a,53bの間隔53Lは断面円形状の渦室2の内径2Rより広くなる場合が多い。   It is safer to make the gap 53L between the drainage ports 53a and 53b provided on the bottom 51 of the liquid tank as wide as possible, and is preferably 30 cm or more. As a result, it is possible to reduce the possibility that the bather or the like is simultaneously adsorbed by both the drainage ports 53a and 53b. The distance 53L between the drainage ports 53a and 53b is more preferably 50 cm or more. The wider this interval, the lower the possibility that the bather or the like will be simultaneously adsorbed by the two drainage ports 53a, 53b, but the upper limit is mainly limited by the size of the liquid tank 5. In order to reduce the possibility of bathers and the like being simultaneously adsorbed by both drainage ports 53a and 53b, the interval 53L between the drainage ports 53a and 53b may be wider than the inner diameter 2R of the vortex chamber 2 having a circular cross section. Many.

図11に、図5における本発明の対向型排液管ユニット1に代えて、従来の平行型排液管ユニット7を配設した場合を示す。本図でも、説明の都合上、液槽5は、液槽底面51の一部についてのみ二点鎖線で表現している。図5に示すように、本発明の対向型排液管ユニット1を設置した方が、両流入管3a,3b(9a,9b)の屈曲箇所を少なく構成できる。これによって、施工が容易となるばかりか、流入管内部でエネルギー損失が少なくなり、よりスムーズに液体を流すことができるのである。   FIG. 11 shows a case where a conventional parallel drain pipe unit 7 is provided in place of the opposed drain pipe unit 1 of the present invention in FIG. Also in this figure, for convenience of explanation, the liquid tank 5 is expressed by a two-dot chain line for only a part of the liquid tank bottom surface 51. As shown in FIG. 5, when the opposed drainage unit 1 of the present invention is installed, the bent portions of both inflow pipes 3a, 3b (9a, 9b) can be configured to be small. This not only facilitates construction, but also reduces energy loss inside the inflow pipe, allowing the liquid to flow more smoothly.

図5に示した本第一実施形態では、渦室2が縦型に配設されているがこれに限定されず、横型に配設してもよいし(第二実施形態で後述)、斜めに傾斜させて配設してもよい。しかし、設置面積の狭い場合には、本第一実施形態のように、縦型に配設することが好ましい。また、本第一実施形態では、渦室2の内周部上端位置で両流入管3a,3bを連通接続しているが、これに限定されず、例えば、渦室2の内周部下端位置で両流入管3a,3b を連通接続してもよい。しかし、本第一実施形態のように構成した方が、渦室内部20の上端部に空気が入り込んだ場合でも容易に外部に抜けるため、安定した吸引力低減効果が得られ好ましい。さらに、本第一実施形態では、両排液口53a,53bを液槽底面51に設けたが、これに限定されす、液槽5の壁面に設けてもよい(第三実施形態で後述)。なお、本第一実施形態は循環式液槽装置についてものであるが、本発明の対向型排液管ユニット1を設置するのは循環式液槽装置に限定されず、吐液管41を通った液体を、循環用ポンプを介して液槽内部50に戻すことなく、下水道等に流す場合でもよい。   In the first embodiment shown in FIG. 5, the vortex chamber 2 is arranged vertically, but is not limited to this, and may be arranged horizontally (described later in the second embodiment) or obliquely. You may incline and arrange | position. However, when the installation area is small, it is preferable to arrange in a vertical shape as in the first embodiment. Moreover, in this 1st embodiment, although both inflow pipes 3a and 3b are connected in communication by the inner peripheral part upper end position of the vortex chamber 2, it is not limited to this, For example, the inner peripheral part lower end position of the vortex chamber 2 The two inflow pipes 3a and 3b may be connected in communication. However, the configuration as in the first embodiment is preferable because a stable suction force reducing effect can be obtained because air can easily escape to the outside even when air enters the upper end of the vortex chamber 20. Further, in the first embodiment, both the drainage ports 53a and 53b are provided on the bottom surface 51 of the liquid tank, but may be provided on the wall surface of the liquid tank 5 (which will be described later in the third embodiment). . In addition, although this 1st embodiment is a thing about a circulation-type liquid tank apparatus, installing the opposing drainage pipe unit 1 of this invention is not limited to a circulation-type liquid tank apparatus, it passes through the discharge pipe 41. Alternatively, the liquid may be allowed to flow into the sewer or the like without being returned to the liquid tank interior 50 via the circulation pump.

[循環式液槽装置:第二実施形態]
次に、図6を用いて本発明の対向型排液管ユニット1を配設した循環式液槽装置の第二実施形態について説明する。前記第一の実施形態との大きな違いは、渦室2を横型に配設している点である。
[Circulating liquid tank device: second embodiment]
Next, a second embodiment of the circulation type liquid tank apparatus in which the opposing drainage pipe unit 1 of the present invention is disposed will be described with reference to FIG. A major difference from the first embodiment is that the vortex chamber 2 is arranged horizontally.

渦室2を横型に配設したことによって、渦室内部で旋回流が生じる際に重力の影響を受けにくくなる。このため、旋回流がよりスムーズになり、吸引力低減効果のより高い循環式液槽装置とすることができる。   By arranging the vortex chamber 2 horizontally, it becomes difficult to be affected by gravity when a swirl flow is generated in the vortex chamber. For this reason, a swirl flow becomes smoother and it can be set as the circulation type liquid tank apparatus with a higher suction force reduction effect.

図7〜図9は本発明の対向型排液管ユニット1を浴槽6に配設した循環式液槽(浴槽)装置を例示する図である。まず、図7を用いて本発明の対向型排液管ユニット1を配設した循環式液槽装置の第三実施形態について説明する。   7-9 is a figure which illustrates the circulation type liquid tank (tub) apparatus which arrange | positioned the opposing drainage pipe unit 1 of this invention in the bathtub 6. FIG. First, the third embodiment of the circulation type liquid tank apparatus in which the opposing drainage pipe unit 1 of the present invention is disposed will be described with reference to FIG.

[循環式液槽装置:第三実施形態]
図7に示す第三実施形態は、浴槽内部60に貯留した水を排出した後、浴槽内部60に戻して循環させるように構成した循環式液槽(浴槽)装置であって、浴槽6の手前側外壁面64aに隣接させて縦型に配設した断面円形状の渦室2と、前記浴槽内部60に貯留した水が前記渦室内部に流入するように、前記渦室2に一端側(流出口側)32aを連通接続し、前記浴槽6の右側壁62aに貫穿した第一の排水口に他端側(流入口側)31aを連通接続した第一の流入管3aと、前記浴槽内部60に貯留した水が前記渦室内部に流入するように、前記渦室2に一端側(流出口側)32bを連通接続し、前記浴槽6の左側壁62bに貫穿した第二の排水口に他端側(流入口側)31bを連通接続した第二の流入管3bと、前記渦室2の片側面23の中央部を軸線方向に貫穿した吐水口と、該吐水口に接続した循環用ポンプ(図示せず)を備え、前記第一の流入管3aと前記第二の流入管3bは、前記渦室2の内周部所定位置の接線方向左右から直線的に対向して、前記渦室2に一端側(流出口側)32a,32bをそれぞれ連通接続したことを特徴とする循環式液槽(浴槽)装置を例示したものである。
[Circulating liquid tank device: third embodiment]
The third embodiment shown in FIG. 7 is a circulation type liquid tank (tub) device configured to discharge water stored in the bathtub interior 60 and then circulate it back to the bathtub interior 60. A vortex chamber 2 having a circular cross section disposed vertically adjacent to the side outer wall surface 64a, and one end side of the vortex chamber 2 so that water stored in the bathtub interior 60 flows into the vortex chamber ( A first inflow pipe 3a in which the other outlet side (inlet side) 31a is connected in communication with the first drainage port which is pierced through the right side wall 62a of the bathtub 6; One end side (outlet side) 32b is connected to the vortex chamber 2 so that the water stored in the vortex chamber flows into the vortex chamber, and a second drainage port penetrating the left side wall 62b of the bathtub 6 is provided. A second inflow pipe 3b in communication with the other end side (inlet side) 31b, a water outlet that penetrates the center of one side surface 23 of the vortex chamber 2 in the axial direction, and the water discharge The first inflow pipe 3a and the second inflow pipe 3b are linearly opposed from the left and right in the tangential direction of the inner peripheral portion of the vortex chamber 2 at a predetermined position. An example of the circulation type liquid tank (tub) device is characterized in that one end side (outlet side) 32a, 32b is connected to the vortex chamber 2 in communication.

ここで、「水」とは、H2Oという物質をいうのであり、水と湯といった温度の違いによる使い分けで用いているのではない。すなわち、ここでいう水とは、水と湯のいずれも含む。また、「吐水口に接続した循環用ポンプ」における「接続」とは、吐水口に循環用ポンプを直接的に接続した場合だけでなく、図7に示す吐水管41を介して間接的に接続した場合も含む。 Here, “water” refers to a substance called H 2 O, and is not used depending on the temperature difference between water and hot water. That is, the water here includes both water and hot water. The “connection” in the “circulation pump connected to the water discharge port” is not only the case where the circulation pump is directly connected to the water discharge port, but also indirectly connected through the water discharge pipe 41 shown in FIG. This includes cases where

上記構成によって、浴槽内部60に貯留した水が左右の両流入管3a,3bを介して渦室内部に流れ込む。そして、第一の流入管3a又は第二の流入管3bのうちどちらかが入浴者等を吸着した場合に、他方の流入管を介して接線方向から渦室内部に流入した液体が旋回流を引き起し、吸着時吸引力を低減することになる。渦室内部に流れ込んだ水は、渦室2の片側面23に設けた吐水口から吐水管41を介して循環用ポンプ(図示せず)へ流れ、配管(図示せず)を通って再び浴槽内部60に戻るのである。   With the above configuration, the water stored in the bathtub interior 60 flows into the vortex chamber through the left and right inflow pipes 3a and 3b. When either the first inflow pipe 3a or the second inflow pipe 3b adsorbs a bather or the like, the liquid flowing into the vortex chamber from the tangential direction through the other inflow pipe is swirled. This causes the suction force during adsorption to be reduced. The water that has flowed into the vortex chamber flows from the water outlet provided on one side surface 23 of the vortex chamber 2 to the circulation pump (not shown) through the water discharge pipe 41, and again through the pipe (not shown). Return to the interior 60.

本第三実施形態では、渦室2を縦型に設置しているため、設置スペースの狭い浴槽でも対向型排液管ユニット1を設置することができる。また、前記第一実施形態と同様、左右の両流入管3a,3bが渦室2の内周部上端位置の接線方向左右から直線的に対向して渦室2とそれぞれ連通接続していることにより、安定した吸着時吸引力の低減効果が得られる。   In the third embodiment, since the vortex chamber 2 is installed vertically, the opposing drainage pipe unit 1 can be installed even in a bathtub having a small installation space. Further, as in the first embodiment, the left and right inflow pipes 3a and 3b are linearly opposed from the left and right in the tangential direction of the inner peripheral upper end position of the vortex chamber 2 and connected to the vortex chamber 2 in communication with each other. As a result, a stable effect of reducing the suction force during adsorption can be obtained.

図12に、図7における本発明の対向型排液管ユニット1に代えて、従来の平行型排液管ユニット7を配設した場合を示す。本発明の対向型排液管ユニット1を配設した図7の循環式液槽装置の方が、左右の両流入管3a,3b(9a,9b)の屈曲箇所を少なく構成できる。これによって、前記第一実施形態と同様、施工が容易となるばかりか、流入管内部でのエネルギー損失が少なくなり、よりスムーズに液体を流すことができるのである。   FIG. 12 shows a case where a conventional parallel drain pipe unit 7 is provided in place of the opposed drain pipe unit 1 of the present invention in FIG. The circulation type liquid tank apparatus of FIG. 7 provided with the opposed drainage pipe unit 1 of the present invention can be configured with fewer bent portions of the left and right inflow pipes 3a, 3b (9a, 9b). As a result, as in the first embodiment, not only the construction is facilitated, but also the energy loss inside the inflow pipe is reduced and the liquid can flow more smoothly.

本第三実施形態では、渦室2が縦型に配設されているがこれに限定されず、横型に配設してもよいし、斜めに傾斜させて設置してもよい。しかし、前述したように、設置スペースが狭い場合には、本第三実施形態のように、縦型に配設することが好ましい。渦室2の設置スペースに余裕がある場合には、前記第二実施形態と同様に、渦室2を横型に配設すると、より旋回流がスムーズになり吸着時吸引力の低減効果が高まる。また、本第三実施形態では、渦室2の内周部上端位置で両流入管3a,3bを連通接続しているが、これに限定されず、例えば、渦室2の内周部下端位置で両流入管3a,3b を連通接続してもよい。しかし、前述したように、本第三実施形態のように構成した方が安定した吸着時吸引力の低減効果が得られ好ましい。   In the third embodiment, the vortex chamber 2 is arranged in a vertical type, but is not limited to this, and may be arranged in a horizontal type or may be installed obliquely. However, as described above, when the installation space is small, it is preferable to arrange in a vertical type as in the third embodiment. When the vortex chamber 2 has a sufficient installation space, the swirl flow becomes smoother and the effect of reducing the suction force at the time of adsorption is enhanced by arranging the vortex chamber 2 in a horizontal manner as in the second embodiment. Moreover, in this 3rd embodiment, although both inflow pipes 3a and 3b are connected in communication by the inner peripheral part upper end position of the vortex chamber 2, it is not limited to this, For example, the inner peripheral part lower end position of the vortex chamber 2 The two inflow pipes 3a and 3b may be connected in communication. However, as described above, the configuration as in the third embodiment is preferable because a stable suction force reducing effect can be obtained.

[循環式液槽装置:第四実施形態]
最後に、図8〜図9を用いて本発明の対向型排液管ユニット1を配設した循環式液槽(浴槽)装置の第四実施形態について説明する。図9は図8のA−A’線を通って上下に延びる切断面を矢印方向から見た拡大断面図である。
[Circulating liquid tank device: Fourth embodiment]
Finally, a fourth embodiment of the circulation type liquid tank (tub) device in which the opposed drainage unit 1 of the present invention is disposed will be described with reference to FIGS. FIG. 9 is an enlarged cross-sectional view of a cut surface extending vertically through the line AA ′ of FIG.

本第四実施形態では、第三実施形態同様、渦室2を浴槽6の手前側外壁面64aに隣接させて縦型に配設している。そして、図9に示すように、渦室2のケーシング25と循環用ポンプ42のケーシング45を一体的に形成することで渦室2と循環用ポンプ42をユニット化し、吐水口24と循環用ポンプ42の吸引口43とを直接連結したものである。これによって、コンパクトでかつ設置しやすい循環式液槽装置となる。渦室内部20に流れ込んだ水は、吐水口24から直接循環用ポンプ42へ流れ、配管(図示せず)を通って再び浴槽内部に戻るのである。なお、本第四実施形態では、吐水口24 と循環用ポンプ42の吸引口43とを直接連結するため、吐水口24に吐液管41(図7参照)は接続されていない。   In the fourth embodiment, as in the third embodiment, the vortex chamber 2 is disposed vertically adjacent to the front outer wall surface 64a of the bathtub 6. Then, as shown in FIG. 9, the vortex chamber 2 and the circulation pump 42 are unitized by integrally forming the casing 25 of the vortex chamber 2 and the casing 45 of the circulation pump 42, and the spout 24 and the circulation pump. 42 suction ports 43 are directly connected. Thus, the circulation type liquid tank apparatus is compact and easy to install. The water that has flowed into the vortex chamber 20 flows directly from the spout 24 to the circulation pump 42, and returns to the inside of the bathtub again through a pipe (not shown). In the fourth embodiment, since the water outlet 24 and the suction port 43 of the circulation pump 42 are directly connected, the water discharge pipe 41 (see FIG. 7) is not connected to the water outlet 24.

本実施の形態では、渦室2を縦型に配設しているが、これに限定されず、横型に設置してもよい。例えば、吐水口24が上方を向くように渦室を配設し、吸引口43が下方を向く様に上方から循環用ポンプ42を載置連結することができる。また、吐水口24が下方を向くように渦室2を配設し、吸引口43が上方を向く様に下方から循環用ポンプ42を当接させて連結してもよい。   In the present embodiment, the vortex chamber 2 is arranged vertically, but is not limited to this and may be installed horizontally. For example, the vortex chamber can be disposed so that the water discharge port 24 faces upward, and the circulation pump 42 can be mounted and connected from above so that the suction port 43 faces downward. Alternatively, the vortex chamber 2 may be disposed so that the water discharge port 24 faces downward, and the circulation pump 42 may be contacted from below so that the suction port 43 faces upward.

以下、図13及び図14を用いて、従来の平行型排液管ユニットに比べて、本発明の対向型排液管ユニットの吸着時吸引力が弱まるメカニズムを解説する。なお、本解説において、位置ヘッドは考慮していないが、考慮した場合であっても、本発明の対向型排液管ユニットと従来の平行型排液管ユニットとの比較においては、基本的に同様の扱いができる。   Hereinafter, the mechanism by which the suction force at the time of adsorption of the opposed drainage unit of the present invention is weakened as compared with the conventional parallel drainage unit will be described with reference to FIG. 13 and FIG. In this explanation, the position head is not considered, but even if it is taken into consideration, in the comparison between the opposed drainage pipe unit of the present invention and the conventional parallel drainage pipe unit, basically The same treatment can be done.

[吸着時吸引力の低減メカニズム:定性的評価]
流入管に異物が吸着されたときの模式図を図13に示す。このとき吸着された異物にかかる吸着時吸引力は、吸着物(異物)の外面と内面の差圧に管断面積をかけて求められる。
ここに、F:吸着時吸引力、As:流入管断面積、P1:外面の水圧、Pm:流入管内圧力である。
[Reduction mechanism of suction force during adsorption: qualitative evaluation]
FIG. 13 shows a schematic diagram when foreign matter is adsorbed to the inflow pipe. The suction force applied to the foreign matter adsorbed at this time is obtained by multiplying the differential pressure between the outer surface and the inner surface of the adsorbate (foreign matter) by the tube cross-sectional area.
Here, F: suction force during adsorption, A s : cross-sectional area of the inflow pipe, P 1 : water pressure on the outer surface, and P m : pressure in the inflow pipe.

式(1)において流入管断面積Asと水圧P1は流入管の形状と設置位置が決まれば定まる値であるから、吸着時吸引力Fを弱くするためには流入管内圧力Pmを大きくする必要がある。この流入管内圧力Pmを大きくできるという点において、本発明の対向型排液管ユニットは従来の平行型排液管ユニットに比べて優れているのである。以下このことを説明する。 Since the inlet pipe sectional area A s and pressure P 1 is a value determined once the shape and installation position of the inlet pipe in the formula (1), in order to weaken the adsorption upon suction force F is increased inflow pipe pressure P m There is a need to. In that the inlet pipe pressure P m can be increased, opposed drainage tube unit of the present invention is to is superior to conventional parallel-type drainage tube unit. This will be described below.

図14は、二本ある流入管の一方を“基準とする流入管”とし、もう一方の吸着された側の流入管の取付け状態を示した解析モデルである。なお、説明の都合上、従来の平行型排液管ユニットの場合と本発明の対向型排液管ユニットの場合を同じ図に示している。水は上部左側の流入管より流入し、渦室外周部に沿って旋回流となる。上部右側の流入管が対向型排液管ユニットの吸着側流入管であり、下部左側の流入管が平行型排液管ユニットの吸着側流入管となっている。吸着された側の流入管は、渦室外周部の流れの一部がせき止められた状態になっているので、流入管内圧力は渦室外周部の圧力エネルギーに加え、流れの速度エネルギーの一部が圧力として回復したものの和として求められる。すなわち、
流入管内圧力=渦室外周部の圧力エネルギー+回復係数×流れの速度エネルギー
の関係が成り立つ。これを、本発明の対向型排液管ユニットと従来の平行型排液管ユニットについて式で表現すれば以下の2式となる。
ここに、Pm-1:対向型排液管ユニットの流入管内圧力、Pm-2:平行型排液管ユニットの流入管内圧力、V1:Wの位置での流れの速度、V2:Zの位置での流れの速度、β:回復係数(0〜1.0の範囲の値をとるが、実験データを解析したところ0.5となった)、Po:渦室外周部の圧力である。
FIG. 14 is an analytical model showing one of the two inflow pipes as a “reference inflow pipe” and the attachment state of the other adsorbed side inflow pipe. For convenience of explanation, the case of the conventional parallel drainage pipe unit and the case of the opposite drainage pipe unit of the present invention are shown in the same diagram. Water flows in from the upper left inflow pipe and turns into a swirl flow along the outer periphery of the vortex chamber. The upper right inflow pipe is the suction side inflow pipe of the opposed drainage pipe unit, and the lower left inflow pipe is the adsorption side inflow pipe of the parallel drainage pipe unit. The adsorbed side inflow pipe is in a state where a part of the flow in the outer periphery of the vortex chamber is blocked, so the pressure in the inflow pipe is a part of the velocity energy of the flow in addition to the pressure energy in the outer periphery of the vortex chamber. Is the sum of those recovered as pressure. That is,
The relationship of inflow pipe pressure = pressure energy at the outer periphery of the vortex chamber + recovery coefficient × flow velocity energy is established. This can be expressed by the following two formulas for the opposing drainage pipe unit of the present invention and the conventional parallel drainage pipe unit.
Where P m-1 is the pressure in the inflow pipe of the opposing drainage pipe unit, P m-2 is the pressure in the inflow pipe of the parallel drainage pipe unit, V 1 is the flow velocity at the position W, and V 2 is Flow velocity at position Z, β: recovery factor (takes a value in the range of 0 to 1.0, but when experimental data was analyzed, it was 0.5), Po : pressure at the outer periphery of the vortex chamber.

ここで、Zの位置は、Wの位置から渦室外周に沿って円周の半分だけ回った位置であるから、この間に流れは外周壁との摩擦により速度が減少する。すなわち、
の関係が成り立つことになる。
つまり、式(2)と式(3)の速度エネルギーの項は、本発明の対向型排液管ユニットの方が大きいので、流入管内圧力も対向型排液管ユニットの方が大きい。その結果、式(1)で求められる吸着時吸引力は対向型排液管ユニットの方が弱くなるのである。
Here, since the Z position is a position rotated by half the circumference along the outer periphery of the vortex chamber from the W position, the velocity of the flow decreases during this time due to friction with the outer peripheral wall. That is,
The relationship will be established.
That is, the term of velocity energy in the equations (2) and (3) is larger in the opposed drainage pipe unit of the present invention, and therefore the pressure in the inflow pipe is larger in the opposed drainage pipe unit. As a result, the suction force at the time of adsorption calculated by the equation (1) is weaker in the opposed drainage pipe unit.

[吸着時吸引力の低減メカニズム:定量的評価]
次に、本発明の対向型排液管ユニットと従来の平行型排液管ユニットの吸着時吸引力を理論的に解析し、定量的評価を行なう。
[Reduction mechanism of suction force during adsorption: quantitative evaluation]
Next, the suction force at the time of adsorption of the opposing drainage pipe unit of the present invention and the conventional parallel drainage pipe unit is theoretically analyzed, and quantitative evaluation is performed.

まず、図14の解析モデルにおいて液槽から上部左側流入管への流入過程を解析する。流量をQ、流入管断面積をAsとすれば、流入管内の流速VSは次式で与えられる。
液槽底面すなわち流入管入口部の水圧をP1とすると、流入管内の全圧Pstは次式より求められる。
ここで、ρは水の密度である。また、ζは吸込み管の損失係数であるが、実験データを解析したところレイノルズ数Reの関数として次式で求められる。
なお、レイノルズ数Reは次のように定義する。
ここに、Dvは渦室内径、νは水の動粘性係数である。
また、上部左側流入管内の静圧Psは、
より求められる。
First, the inflow process from the liquid tank to the upper left inflow pipe is analyzed in the analysis model of FIG. If the flow rate Q, the inlet pipe cross-sectional area as A s, the flow velocity V S of the inflow tube is given by the following equation.
When the pressure of the liquid tank bottom i.e. inlet pipe inlet and P 1, the total pressure P st of inflow tube is determined from the following equation.
Here, ρ is the density of water. Ζ is a loss coefficient of the suction pipe. When experimental data is analyzed, it is obtained by the following equation as a function of the Reynolds number Re.
The Reynolds number Re is defined as follows.
Here, Dv is the vortex chamber diameter and ν is the kinematic viscosity coefficient of water.
The static pressure P s in the upper left inflow pipe is
More demanded.

対向型排液管ユニットの吸着側流入管内圧力Pm-1は、前述のように式(2)で求める。式(2)を再掲すれば式(10) である。
ここで、流速V1は、図14のようにWの位置の流速であるから、これは上部左側流入管内の流速VSに等しいと近似してよい。よって、
である。また、渦室外周部の圧力Poは上部左側流入管内の静圧Psに等しいと見なせる。よって、
である。なお、回復係数は前述したように0.5であるから、式(11)と式(12)を式(10)へ代入すれば対向型排液管ユニットの吸着側流入管内圧力Pm-1を求めることができる。そして、Pm-1を求めれば、吸着時吸引力F1は式(1)で示したように、
によって計算できる。
The suction side inflow pipe pressure P m-1 of the opposed drainage pipe unit is obtained by the equation (2) as described above. If equation (2) is reprinted, equation (10) is obtained.
Here, since the flow velocity V 1 is the flow velocity at the position W as shown in FIG. 14, it may be approximated to be equal to the flow velocity V S in the upper left inflow pipe. Therefore,
It is. Further, the pressure P o of the vortex chamber outer peripheral portion can be regarded as equal to the static pressure P s of the upper left inlet pipe. Therefore,
It is. Since the recovery coefficient is 0.5 as described above, if the equations (11) and (12) are substituted into the equation (10), the suction side inflow pipe pressure P m-1 of the opposed drainage unit is obtained. be able to. And if P m-1 is obtained, the suction force F 1 at the time of adsorption is as shown in the equation (1),
Can be calculated by

次に、平行型排液管ユニットの吸着側流入管内圧力と吸着時吸引力を求める。まず、平行型排液管ユニットの流速V2を求める。図14に示す渦室外周壁について、Wの位置からZの位置までの網状ハッチングを施した部分について考える。上部左側流入管を通過した流れは、Wの位置では速度VSで渦室外周部へ接線方向から流入し、外周壁に沿って半円周分だけ旋回しZの位置に到達する。この外周部の網状ハッチングを施した部分の旋回流について、境界層理論を適用し、外周壁の摩擦を考慮すれば、角運動量保存の関係より次式が成り立つ。
ここに、rvは渦室半径、Vθは外周部の旋回速度、τwは外周壁の摩擦応力である。また、Lは図5の網状ハッチングを施した部分の壁面の幅であり、図14の記号を用いて表せば、
である。
式(14)の右辺の摩擦応力τwを定めるため、外周壁を近似的に平板と見なし、平板に沿った乱流境界層を考える。乱流境界層の速度分布は、円管内乱流の1/7乗則に従うと仮定すると、摩擦応力は次のようになる。
ここに、Uは主流速度、δは境界層厚さである。一方、平板上の境界層の厚さδは、前縁からの距離をxとすると次式より求めることができる。
図5において、Wの位置からの旋回角度をθとすると距離xはx=rvθとなる。一方、Zの位置までの旋回角度は円周の半分に相当するθ=πであるから、Zまでの距離はx=rvπとなる。これを式(17)へ代入すれば次のようになる。
以上より、Uを外周部の旋回速度Vθ、τw を渦室外周壁の摩擦応力と見なし、式(16)に式(18)を代入し、これを式(14)へ代入する。そして、Vθ= V2と書き換えれば流速V2は、
となる。ここに、μは水の粘性係数である。
また、渦室外周部の圧力Poは上部左側流入管内の静圧Psに等しいと見なせるから、
である。
これで、流速V2と圧力Poが定まったので、平行型排液管ユニットの吸着側流入管内圧力Pm-2は、前述のように式(3)で求められる。再掲すれば、
となる。
そこで、平行型排液管ユニットの吸着時吸引力は、
によって計算できる。
Next, the suction-side inflow pipe pressure and suction suction force of the parallel drainage pipe unit are obtained. First, the flow velocity V 2 of the parallel-type drainage tube unit. Consider the part of the vortex chamber outer peripheral wall shown in FIG. 14 that has been hatched from the W position to the Z position. The flow that has passed through the upper left inlet pipe flows from the tangential direction into the outer periphery of the vortex chamber at the speed V S at the position W, swirls along the outer peripheral wall by a semicircular circumference, and reaches the position Z. If the boundary layer theory is applied to the swirling flow of the outer peripheral portion where the mesh hatching is applied and the friction of the outer peripheral wall is taken into consideration, the following equation is established from the relation of angular momentum conservation.
Here, r v is the vortex chamber radius, V θ is the rotational speed of the outer peripheral portion, and τ w is the friction stress of the outer peripheral wall. L is the width of the wall surface of the hatched portion in FIG. 5, and can be expressed using the symbols in FIG.
It is.
In order to determine the frictional stress τ w on the right side of Equation (14), the outer peripheral wall is approximately regarded as a flat plate, and a turbulent boundary layer along the flat plate is considered. Assuming that the velocity distribution of the turbulent boundary layer follows the 1 / 7th law of turbulent flow in a circular pipe, the frictional stress is as follows.
Here, U is the main flow velocity, and δ is the boundary layer thickness. On the other hand, the thickness δ of the boundary layer on the flat plate can be obtained from the following equation where x is the distance from the leading edge.
In FIG. 5, if the turning angle from the position of W is θ, the distance x is x = r v θ. On the other hand, since the turning angle to the position of Z is θ = π corresponding to half of the circumference, the distance to Z is x = r v π. Substituting this into equation (17) gives the following.
From the above, assuming that U is the swirl velocity V θ and τ w of the outer peripheral portion as the frictional stress of the outer wall of the vortex chamber, Equation (18) is substituted into Equation (16), and this is substituted into Equation (14). And if rewritten as V θ = V 2 , the flow velocity V 2 is
It becomes. Here, μ is the viscosity coefficient of water.
Further, since the pressure P o of the vortex chamber outer peripheral portion can be regarded as equal to the static pressure P s of the upper left inlet pipe,
It is.
Since the flow velocity V 2 and the pressure Po are now determined, the suction side inflow pipe pressure P m-2 of the parallel drainage pipe unit is obtained by the equation (3) as described above. Once again,
It becomes.
Therefore, the suction force of the parallel drainage pipe unit during suction is
Can be calculated by

図15に、渦室内径120mm、渦室の内部厚み13mmの薄い円柱型渦室と、内径13mmの流入管を使用した排液管ユニットについて、入口圧力P1が109.53kPaのときの吸着時吸引力の計算結果を、従来の平行型排液管ユニットと本発明の対向型排液管ユニットの双方について示す。同一の流入管内流速において、本発明の対向型排液管ユニットは従来の平行型排液管ユニットに比べて吸着時吸引力を10〜15%程度低減できることがわかる。 Fig. 15 shows the suction during suction when the inlet pressure P 1 is 109.53 kPa for a drain tube unit using a thin cylindrical vortex chamber with a vortex chamber diameter of 120 mm and a vortex chamber inner thickness of 13 mm and an inlet pipe with an inner diameter of 13 mm. The force calculation results are shown for both the conventional parallel drainage unit and the opposed drainage unit of the present invention. It can be seen that at the same flow rate in the inflow pipe, the suction type suction pipe unit of the present invention can reduce the suction force during adsorption by about 10 to 15% as compared with the conventional parallel type drainage pipe unit.

以上、特定の実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではなく、当該技術分野における熟練者等により、本出願の願書に添付された特許請求の範囲から逸脱することなく、種々の変更及び修正が可能であるとの点に留意すべきである。   Although the present invention has been described above with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and claims attached to the application of the present application by those skilled in the art or the like. It should be noted that various changes and modifications can be made without departing from the scope of the present invention.

本発明の対向型排液管ユニットの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the opposing drainage unit of this invention. 図1の対向型排液管ユニットの分解斜視図である。It is a disassembled perspective view of the opposing drainage pipe unit of FIG. 図1の対向型排液管ユニットの縦断面図である。It is a longitudinal cross-sectional view of the opposing drainage pipe unit of FIG. 本発明の対向型排液管ユニットの他の実施形態を例示した斜視図である。It is the perspective view which illustrated other embodiment of the opposite type drainage unit of the present invention. 本発明の対向型排液管ユニットを配設した循環式液槽装置の第一実施形態を説明するための斜視図である。It is a perspective view for demonstrating 1st embodiment of the circulation type liquid tank apparatus which arrange | positioned the opposing drainage pipe unit of this invention. 本発明の対向型排液管ユニットを配設した循環式液槽装置の第二実施形態を説明するための斜視図である。It is a perspective view for demonstrating 2nd embodiment of the circulation type liquid tank apparatus which arrange | positioned the opposing drainage pipe unit of this invention. 本発明の対向型排液管ユニットを配設した循環式液槽装置の第三実施形態を説明するための斜視図である。It is a perspective view for demonstrating 3rd embodiment of the circulation type liquid tank apparatus which arrange | positioned the opposing drainage pipe unit of this invention. 本発明の対向型排液管ユニットを配設した循環式液槽装置の第四実施形態を説明するための斜視図である。It is a perspective view for demonstrating 4th embodiment of the circulation type liquid tank apparatus which arrange | positioned the opposing drainage pipe unit of this invention. 図8におけるA−A’線を通って上下に延びる切断面を矢印方向から見た拡大断面図である。It is the expanded sectional view which looked at the cut surface extended up and down through the A-A 'line in FIG. 8 from the arrow direction. 従来の平行型排液管ユニットの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the conventional parallel type drainage unit. 従来の平行型排液管ユニットを配設した循環式液槽装置の第一実施形態を説明するための斜視図である。It is a perspective view for demonstrating 1st embodiment of the circulation type liquid tank apparatus which arrange | positioned the conventional parallel type drainage pipe unit. 従来の平行型排液管ユニットを配設した循環式液槽装置の第二実施形態を説明するための斜視図である。It is a perspective view for demonstrating 2nd embodiment of the circulation type liquid tank apparatus which arrange | positioned the conventional parallel type drainage pipe unit. 流入管に異物が吸着されたときの状態を模式的に示した斜視図である。It is the perspective view which showed typically the state when a foreign material is adsorbed | sucked to an inflow pipe. 本発明の対向型排液管ユニットと従来の平行型排液管ユニットの吸着時吸引力を解析するための解析モデルを示す図である。It is a figure which shows the analysis model for analyzing the suction | attraction force at the time of adsorption | suction of the opposing drainage pipe unit of this invention, and the conventional parallel drainage pipe unit. 本発明の対向型排液管ユニットと従来の平行型排液管ユニットの吸着時吸引力を比較したグラフである。It is the graph which compared the attraction | suction power at the time of adsorption | suction of the opposite type drainage unit of this invention, and the conventional parallel type drainage unit.

符号の説明Explanation of symbols

1 対向型排液管ユニット(本発明)
2,8 渦室
2R 渦室内径
24 吐液口(吐水口)
3a,3b 流入管
32a,32b 一端側(流出口側)
31a,31b 他端側(流入口側)
41 吐液管(吐水管)
42 循環用ポンプ
5 液槽
51 液槽底面
53a,53b 排液口
53L 排液口の間隔
6 浴槽
62a,62b側壁
7 平行型排液管ユニット(従来品)
9a,9b 流入管
1 Opposite drainage unit (present invention)
2,8 Vortex chamber
2R Vortex chamber diameter
24 Outlet (outlet)
3a, 3b Inflow pipe
32a, 32b One end side (outlet side)
31a, 31b The other end (inlet side)
41 Discharge tube (water discharge tube)
42 Circulating pump 5 Liquid tank
51 Bottom of liquid tank
53a, 53b Drain outlet
53L Drainage interval 6 Bathtub
62a, 62b Side wall 7 Parallel drainage unit (conventional product)
9a, 9b Inlet pipe

Claims (7)

液槽内部に貯留した液体を排出するための排液管ユニットであって、
断面円形状の渦室と、
該渦室に一端側を連通接続した第一の流入管と、
前記渦室に一端側を連通接続した第二の流入管と、
前記渦室の片側面中央部を軸線方向に貫穿した吐液口とからなり、
前記第一の流入管と前記第二の流入管は、前記渦室の内周部所定位置の接線方向左右から直線的に対向して、前記渦室に一端側をそれぞれ連通接続したことを特徴とする排液管ユニット。
A drainage pipe unit for discharging the liquid stored in the liquid tank,
A vortex chamber with a circular cross section;
A first inflow pipe having one end connected in communication with the vortex chamber;
A second inflow pipe having one end connected in communication with the vortex chamber;
It consists of a spout that penetrates the central part of one side of the vortex chamber in the axial direction,
The first inflow pipe and the second inflow pipe are linearly opposed from the left and right in the tangential direction at a predetermined position of the inner peripheral portion of the vortex chamber, and one end side thereof is connected to the vortex chamber. A drain pipe unit.
液槽内部に貯留した液体を排出した後、液槽内部に戻して循環させるように構成した循環式液槽装置であって、
液槽外部に配設した断面円形状の渦室と、
前記液槽内部に貯留した液体が前記渦室内部に流入するように、前記渦室に一端側を連通接続し、前記液槽に貫穿した第一の排液口に他端側を連通接続した第一の流入管と、
前記液槽内部に貯留した液体が前記渦室内部に流入するように、前記渦室に一端側を連通接続し、前記液槽に貫穿した第二の排液口に他端側を連通接続した第二の流入管と、
前記渦室の片側面中央部を軸線方向に貫穿した吐液口と、
該吐液口に接続した循環用ポンプを備え、
前記第一の流入管と前記第二の流入管は、前記渦室の内周部所定位置の接線方向左右から直線的に対向して、前記渦室に一端側をそれぞれ連通接続したことを特徴とする循環式液槽装置。
After discharging the liquid stored in the liquid tank, it is a circulation type liquid tank apparatus configured to return and circulate inside the liquid tank,
A vortex chamber having a circular cross section disposed outside the liquid tank;
One end side is connected to the vortex chamber so that the liquid stored in the liquid tank flows into the vortex chamber, and the other end side is connected to the first drainage port penetrating the liquid tank. A first inlet pipe;
One end side is connected to the vortex chamber so that the liquid stored in the liquid tank flows into the vortex chamber, and the other end side is connected to the second drainage port penetrating the liquid tank. A second inlet pipe,
A spout opening through the central portion of one side of the vortex chamber in the axial direction;
A circulation pump connected to the spout,
The first inflow pipe and the second inflow pipe are linearly opposed from the left and right in the tangential direction at a predetermined position of the inner peripheral portion of the vortex chamber, and one end side thereof is connected to the vortex chamber. Circulating liquid tank device.
第一の排液口と第二の排液口を、断面円形状の渦室の内径以上の間隔をあけて液槽に貫穿した請求項2記載の循環式液槽装置。 The circulation type liquid tank apparatus according to claim 2, wherein the first liquid discharge port and the second liquid discharge port are penetrated into the liquid tank at an interval equal to or larger than the inner diameter of the circular vortex chamber. 渦室を液槽外部に縦型に配設した請求項2又は3記載の循環式液槽装置。 The circulation type liquid tank apparatus according to claim 2 or 3, wherein the vortex chamber is vertically arranged outside the liquid tank. 第一の流入管と第二の流入管は、渦室の内周部上端位置の接線方向左右から直線的に対向して、渦室に一端側をそれぞれ連通接続した請求項4記載の循環式液槽装置。 The circulation type according to claim 4, wherein the first inflow pipe and the second inflow pipe are linearly opposed from the left and right in the tangential direction at the upper end position of the inner periphery of the vortex chamber, and one end side thereof is connected to the vortex chamber. Liquid tank device. 渦室を液槽外部に横型に配設した請求項2又は3記載の循環式液槽装置。 The circulation type liquid tank apparatus according to claim 2 or 3, wherein the vortex chamber is disposed laterally outside the liquid tank. 渦室のケーシングと循環用ポンプのケーシングを一体的に形成することで、渦室と循環用ポンプをユニット化した請求項2〜6のいずれか記載の循環式液槽装置。 The circulation type liquid tank apparatus according to any one of claims 2 to 6, wherein the vortex chamber and the circulation pump are integrally formed by integrally forming a vortex chamber casing and a circulation pump casing.
JP2005309410A 2005-10-25 2005-10-25 Circulating liquid tank device Active JP4560630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309410A JP4560630B2 (en) 2005-10-25 2005-10-25 Circulating liquid tank device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309410A JP4560630B2 (en) 2005-10-25 2005-10-25 Circulating liquid tank device

Publications (2)

Publication Number Publication Date
JP2007120308A true JP2007120308A (en) 2007-05-17
JP4560630B2 JP4560630B2 (en) 2010-10-13

Family

ID=38144421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309410A Active JP4560630B2 (en) 2005-10-25 2005-10-25 Circulating liquid tank device

Country Status (1)

Country Link
JP (1) JP4560630B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021501A (en) * 2009-07-14 2011-02-03 Yukio Ota Centrifugal pump and pump unit
JP2017096402A (en) * 2015-11-24 2017-06-01 国立研究開発法人 海上・港湾・航空技術研究所 Frictional resistance reducing method, structure with reduced frictional resistance and method for forming electrodes for reducing frictional resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224284A (en) * 1995-02-22 1996-09-03 Yamaha Living Tec Kk Safety device for jet bath
JP2001073576A (en) * 1999-09-06 2001-03-21 Nichigi Engineering Co Ltd Danger preventive system at drain outlet of pool
JP2001095873A (en) * 1999-09-30 2001-04-10 Inax Corp Bubbled water jetting device for bathroom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224284A (en) * 1995-02-22 1996-09-03 Yamaha Living Tec Kk Safety device for jet bath
JP2001073576A (en) * 1999-09-06 2001-03-21 Nichigi Engineering Co Ltd Danger preventive system at drain outlet of pool
JP2001095873A (en) * 1999-09-30 2001-04-10 Inax Corp Bubbled water jetting device for bathroom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009060725, "流体自身の流れで吸引力を制御する渦室付排水管の研究", 空気調和・衛生工学会論文集, 20020425, 85 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021501A (en) * 2009-07-14 2011-02-03 Yukio Ota Centrifugal pump and pump unit
JP2017096402A (en) * 2015-11-24 2017-06-01 国立研究開発法人 海上・港湾・航空技術研究所 Frictional resistance reducing method, structure with reduced frictional resistance and method for forming electrodes for reducing frictional resistance

Also Published As

Publication number Publication date
JP4560630B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP6564092B2 (en) Gas-liquid dissolution tank and fine bubble generator
WO2007042549A3 (en) Rotatable liquid reservoir for computer cooling
JP5990423B2 (en) Septic tank wastewater treatment system
JP4560630B2 (en) Circulating liquid tank device
US9945141B2 (en) Systems, methods, and apparatuses for relieving excessive suction within swimming pool skimmers
EP2693146A1 (en) Heat exchanger for sewer riser
JP5703824B2 (en) Drain trap
CN109098961B (en) A kind of block-proof type floating pump
JP4834564B2 (en) Float drain trap
JP4399522B2 (en) Overflow device
JP2010203167A (en) Bathroom draining device
CN207538175U (en) A kind of spiral hydrocone type huge discharge floor drain
JP4145862B2 (en) Sewage relay pump equipment
KR101181866B1 (en) Apparatus for preventing a blockage of a pipe
JP2002213396A (en) Water suction device of pump
JP6722999B2 (en) Storage tank and siphon drainage system
CN205340413U (en) A dust collecting equipment that is used for dust collecting equipment&#39;s liquid case and has it
JP2002030637A (en) Energy absorber
KR101688981B1 (en) Pipe cleaning system using a impeller device
JP2006132191A (en) Sewage relay pump equipment
JP2005054468A (en) Header for drainage
CN205269299U (en) A dust collecting equipment that is used for dust collecting equipment&#39;s liquid case and has it
JPS5837513Y2 (en) water treatment equipment
JP4502670B2 (en) Double strainer structure of submersible pump
JP2005180002A (en) Drainage system for use in both bathtub and bathroom

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150