JP2007119760A - Propylene-based polymer and molded foam product - Google Patents

Propylene-based polymer and molded foam product Download PDF

Info

Publication number
JP2007119760A
JP2007119760A JP2006264516A JP2006264516A JP2007119760A JP 2007119760 A JP2007119760 A JP 2007119760A JP 2006264516 A JP2006264516 A JP 2006264516A JP 2006264516 A JP2006264516 A JP 2006264516A JP 2007119760 A JP2007119760 A JP 2007119760A
Authority
JP
Japan
Prior art keywords
propylene
polymer
polymerization
component
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006264516A
Other languages
Japanese (ja)
Other versions
JP5203587B2 (en
Inventor
Masayuki Shinohara
正之 篠原
Riyouichi Tsunori
良一 津乗
Tomomi Hasegawa
智巳 長谷川
Yasuhiko Otsuki
安彦 大槻
Minoru Sugawara
稔 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP2006264516A priority Critical patent/JP5203587B2/en
Publication of JP2007119760A publication Critical patent/JP2007119760A/en
Application granted granted Critical
Publication of JP5203587B2 publication Critical patent/JP5203587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propylene-based polymer able to form a molded foam product having microcells in high expansion ratio. <P>SOLUTION: The polypropylene-based polymer has ≥0.1g/10 minutes melt flow rate (at 230°C, 2.16kg load) and satisfies equation (1) [wherein η<SB>e</SB>expresses viscosity of the propylene-based polymer, ε expresses a strain rate and η<SB>e</SB>is a measured value when ε is 10sec<SP>-1</SP>and 100sec<SP>-1</SP>]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プロピレン系重合体及び発泡成形体に関する。   The present invention relates to a propylene-based polymer and a foamed molded product.

プロピレン系重合体の発泡製品は、その耐熱性、耐油性、環境適性等の特徴を生かし、各分野で使用量が増加している。押出発泡シート等の発泡倍率が3倍程度の低発泡分野では、プロピレン系重合体の一軸伸長粘度の歪硬化性を大きくすることで発泡性能の向上が行われている。一方、数十倍程度の高発泡分野においては、通常の発泡シート用のプロピレン系重合体では発泡性能が不充分であり、優れた発泡性能を有する重合体が要望されている。   Propylene-based polymer foam products have been used in various fields, taking advantage of their heat resistance, oil resistance and environmental suitability. In the low foaming field where the foaming ratio is about 3 times, such as an extruded foam sheet, the foaming performance is improved by increasing the strain hardening property of the uniaxial elongational viscosity of the propylene polymer. On the other hand, in the high foaming field of several tens of times, the propylene-based polymer for ordinary foamed sheets is insufficient in foaming performance, and a polymer having excellent foaming performance is desired.

このような材料については、例えば、非共役ジエンとプロピレンの共重合が開示されている(例えば、特許文献1参照。)。また、長鎖分岐PP製造技術が開示されている(例えば、特許文献2−6参照。)。さらに、予備重合により高分子量成分を付与する方法が開示されている(例えば、特許文献7−10参照。)。
しかしながら、これらの技術により製造したポリプロピレン(PP)は一軸伸長粘度の歪硬化性が大きく、発泡倍率が3倍程度の低発泡製品は成形可能であるが、二酸化炭素等による30倍程度の高発泡は破泡が起こり製品を得ることができなかった。
For such a material, for example, a copolymerization of a non-conjugated diene and propylene is disclosed (for example, see Patent Document 1). In addition, a technique for producing a long-chain branched PP is disclosed (for example, see Patent Documents 2-6). Furthermore, a method for imparting a high molecular weight component by prepolymerization is disclosed (for example, see Patent Documents 7 to 10).
However, polypropylene (PP) produced by these techniques has a large strain-hardening property of uniaxial elongation viscosity, and a low-foamed product with a foaming ratio of about 3 times can be molded, but a high foaming of about 30 times with carbon dioxide or the like. Failed to obtain a product.

また、分子量の大きく異なる成分をブレンドする手法(特許文献11参照)も検討されているが、ゲルが多発し発泡製品としての商品性に劣っていた。
また、多段重合により高分子量成分を付与する方法が開示されている(例えば、特許文献12−19参照。)。
この技術では、MgCl担持触媒により2槽以上の重合槽を用い高分子量成分を付与する方法が行われている。
しかしながら、高分子量成分の高分子量化が不十分であり、一軸伸長粘度の歪硬化性が大きく改善されず、結果的に発泡性能も一般のPPに比べ大きく改善されなかった。
特開平06−080729号公報 特表2002−542360号公報 特開2000−309670号公報 特開2000−336198号公報 特開2002−012717号公報 特開2002−363355号公報 特表2002−509575号公報 特開平10−279632号公報 特開平11−315178号公報 特開2000−143866号公報 特開2002−309049号公報 特開2001−247616号公報 特開2001−048916号公報 特開2001−055413号公報 特開昭59−172507号公報 特開平05−239149号公報 特開平07−138323号公報 特開平11−228629号公報 特開2000−226478号公報
Moreover, although the method (refer patent document 11) of blending the component from which molecular weight differs greatly is examined, the gel occurred frequently and was inferior to the commercial property as a foamed product.
Moreover, the method of providing a high molecular weight component by multistage polymerization is disclosed (for example, refer patent document 12-19).
In this technique, a method of applying a high molecular weight component using two or more polymerization tanks with an MgCl 2 supported catalyst is performed.
However, the increase in the molecular weight of the high molecular weight component is insufficient, the strain hardening property of the uniaxial elongation viscosity is not greatly improved, and as a result, the foaming performance is not greatly improved as compared with general PP.
Japanese Patent Laid-Open No. 06-080729 Japanese translation of PCT publication No. 2002-542360 JP 2000-309670 A JP 2000-336198 A JP 2002-012717 A JP 2002-363355 A Special table 2002-509575 gazette JP-A-10-279632 JP-A-11-315178 JP 2000-143866 A JP 2002-309049 A JP 2001-247616 A JP 2001-048916 A JP 2001-055413 A JP 59-172507 A JP 05-239149 A JP 07-138323 A JP 11-228629 A JP 2000-226478 A

本発明は上述の問題に鑑みなされたものであり、高発泡、かつ、微細セル(例えば、発泡倍率が30倍で粒径100μm以下)を持った発泡成形体を得ることができるプロピレン系重合体を提供することを目的とする。   The present invention has been made in view of the above problems, and a propylene-based polymer capable of obtaining a foamed molded body having high foaming and fine cells (for example, a foaming ratio of 30 times and a particle size of 100 μm or less). The purpose is to provide.

上記の目的を達成するため、本発明者らは鋭意研究を重ねた結果、高発泡分野用のプロピレン系重合体では、一般のものとは異なる性質が重要であることを見出した。
即ち、一般にプロピレン系重合体の発泡成形では、Meissner型装置等により得られた一軸伸長粘度の歪硬化性が大きいほど発泡成形性良好と言われている。Meissner型装置等で測定可能な歪速度は最大3sec‐1程度の低速領域である。しかしながら、超臨界ガス発泡等ガスが多量に溶解した発泡成形ではセル成長時の歪速度は数百sec‐1以上であり、Meissner型装置等により得られた一軸伸長粘度と該発泡成形の間には関係が無い。
そこで鋭意検討した結果、Cogswell法等により得られる高速伸長時の伸長粘度と超臨界ガス発泡等ガスが多量に溶解した発泡成形の成形性に関係のあることを見出し、本発明を完成した。
In order to achieve the above object, as a result of intensive studies, the present inventors have found that propylene-based polymers for the high foaming field have important properties different from general ones.
That is, in general, in the foam molding of a propylene-based polymer, it is said that the greater the strain hardening property of the uniaxial elongation viscosity obtained by a Meissner type apparatus or the like, the better the foam molding property. The strain rate measurable with a Meissner type apparatus or the like is a low speed region of about 3 sec -1 at the maximum. However, in foam molding in which a large amount of gas such as supercritical gas foam is dissolved, the strain rate at the time of cell growth is several hundred sec- 1 or more, and the uniaxial elongation viscosity obtained by a Meissner type apparatus etc. Is not relevant.
As a result of extensive studies, the present inventors have found that there is a relationship between the elongation viscosity at the time of high-speed elongation obtained by the Cogswell method and the like and the moldability of foam molding in which a large amount of gas such as supercritical gas foaming is dissolved.

本発明によれば、以下のプロピレン系重合体等が提供される。
1.メルトフローレート(230℃、荷重2.16kg)が0.1g/10分よりも大きく、下記式(1)を満たすプロピレン系重合体。

Figure 2007119760
[式中、ηはプロピレン系重合体の伸張粘度、εは歪速度である。ηはεが10sec−1及び100sec−1での測定値である。]
2.前記プロピレン系重合体がプロピレン系多段重合体である1記載のプロピレン系重合体。
3.前記プロピレン系多段重合体が下記(A)及び(B)を含む2記載のプロピレン系重合体。
(A)135℃、テトラリン中での極限粘度[η]が10dL/g超のプロピレン単独重合体成分又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分:20〜30重量%
(B)135℃、テトラリン中での極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分:70〜80重量%
4.前記プロピレン系多段重合体が、1段階目の重合工程にて水素不存在下でプロピレンを重合又はプロピレンと炭素数2〜8のα−オレフィンを共重合させたものである3記載のプロピレン系重合体。
5.上記1〜4のいずれかに記載のプロピレン系重合体からなる、発泡倍率が30倍以上の発泡成形体。 According to the present invention, the following propylene-based polymers and the like are provided.
1. A propylene polymer having a melt flow rate (230 ° C., load 2.16 kg) larger than 0.1 g / 10 min and satisfying the following formula (1).
Figure 2007119760
[Where η e is the extensional viscosity of the propylene polymer, and ε is the strain rate. eta e is ε is measured at 10 sec -1 and 100 sec -1. ]
2. 2. The propylene polymer according to 1, wherein the propylene polymer is a propylene multistage polymer.
3. 3. The propylene polymer according to 2, wherein the propylene multistage polymer includes the following (A) and (B).
(A) Propylene homopolymer component having intrinsic viscosity [η] in tetralin of 135 ° C. or more than 10 dL / g or copolymer component of propylene and α-olefin having 2 to 8 carbon atoms: 20 to 30% by weight
(B) Propylene homopolymer component having intrinsic viscosity [η] in tetralin of 135 ° C. and 0.5 to 3.0 dL / g or copolymer component of propylene and α-olefin having 2 to 8 carbon atoms: 70-80% by weight
4). 4. The propylene-based heavy polymer according to 3, wherein the propylene-based multistage polymer is obtained by polymerizing propylene or copolymerizing propylene and an α-olefin having 2 to 8 carbon atoms in the absence of hydrogen in the first polymerization step. Coalescence.
5. A foamed molded article having a foaming ratio of 30 times or more, comprising the propylene-based polymer according to any one of 1 to 4 above.

本発明では、高発泡で、かつ、微細なセルを持った発泡成形体が得られるプロピレン系重合体を提供できる。   In the present invention, it is possible to provide a propylene-based polymer from which a foamed molded product having high foaming and fine cells can be obtained.

以下、本発明のプロピレン系重合体を具体的に説明する。
本発明のプロピレン系重合体は、メルトフローレート(MFR:230℃、荷重2.16kg)が0.1g/10分よりも大きく、下記式(1)を満たす。

Figure 2007119760
[式中、ηはプロピレン系重合体の伸張粘度、εは歪速度である。ηはεが10sec−1及び100sec−1での測定値である。] Hereinafter, the propylene polymer of the present invention will be specifically described.
The propylene polymer of the present invention has a melt flow rate (MFR: 230 ° C., load 2.16 kg) larger than 0.1 g / 10 min and satisfies the following formula (1).
Figure 2007119760
[Where η e is the extensional viscosity of the propylene polymer, and ε is the strain rate. eta e is ε is measured at 10 sec -1 and 100 sec -1. ]

MFR<0.1g/10分の場合、押出成形が困難となる場合がある。好ましくは、0.5g/10分≦MFR≦5g/10分、より好ましくは、1.0g/10分≦MFR≦2.0g/10分である。   When MFR <0.1 g / 10 min, extrusion molding may be difficult. Preferably, 0.5 g / 10 minutes ≦ MFR ≦ 5 g / 10 minutes, and more preferably 1.0 g / 10 minutes ≦ MFR ≦ 2.0 g / 10 minutes.

上記式(1)の関係を満たさない場合、微細セルを有する高発泡倍率の発泡成形品が得られない。
式(1)中の定数項である5.6は、好ましくは5.8、より好ましくは6.0以上である。5.6未満の場合、30倍以上の高発泡、かつ100μm以下の微細セルを持った発泡成形品が得られない。
式(1)中の乗数である0.8は、好ましくは0.7である。0.8より大きい場合、30倍以上の高発泡、かつ100μm以下の微細セルを持った発泡成形品が得られない。
When the relationship of the above formula (1) is not satisfied, a foamed product with a high expansion ratio having fine cells cannot be obtained.
5.6 which is a constant term in Formula (1) becomes like this. Preferably it is 5.8, More preferably, it is 6.0 or more. If it is less than 5.6, a foamed molded product having 30 times or more high foaming and a fine cell of 100 μm or less cannot be obtained.
0.8 which is a multiplier in the formula (1) is preferably 0.7. When the ratio is larger than 0.8, a foamed molded article having 30 times or more highly foamed and 100 μm or less fine cells cannot be obtained.

式(1)において、プロピレン重合体の伸張粘度(η)及び歪速度(ε)は、Cogswell法により求めた値である。詳細については後述する実施例にて説明する。尚、伸張粘度(η)は、歪速度(ε)が10sec−1以上であるときの測定値を対象とするが、実際の測定においては、10sec−1と100sec−1の2点について測定すればよい。 In the formula (1), the extensional viscosity (η e ) and strain rate (ε) of the propylene polymer are values obtained by the Cogswell method. Details will be described in an embodiment described later. Incidentally, the extensional viscosity (eta e) is strain rate (epsilon) is directed to the measurement of time is 10 sec -1 or more, in the actual measurement, the measurement for two points 10 sec -1 and 100 sec -1 do it.

以下、本発明のプロピレン系重合体を製造する方法の一例として、多段重合法による方法を説明する。
上述したMFR及び式(1)の要件を満たすプロピレン重合体として、下記(A)及び(B)を含むプロピレン系多段重合体がある。
(A)135℃、テトラリン中での極限粘度[η]が10dL/g超のプロピレン単独重合体成分又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分:20〜30重量%
(B)135℃、テトラリン中での極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分:70〜80重量%
この多段重合体は、下記成分(a)及び(b)、又は下記成分(a)、(b)及び(c)からなるオレフィン重合用触媒を用い、2段階以上の重合工程で、プロピレンを重合又はプロピレンと炭素数2〜8のα−オレフィンとを共重合させて製造することができる。
(a)四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタンをエーテル化合物及び電子受容体で処理して得られる固体触媒成分
(b)有機アルミニウム化合物
(c)環状エステル化合物
Hereinafter, as an example of a method for producing the propylene-based polymer of the present invention, a method by a multistage polymerization method will be described.
Examples of the propylene polymer satisfying the requirements of MFR and formula (1) described above include propylene-based multistage polymers including the following (A) and (B).
(A) Propylene homopolymer component having intrinsic viscosity [η] in tetralin of 135 ° C. or more than 10 dL / g or copolymer component of propylene and α-olefin having 2 to 8 carbon atoms: 20 to 30% by weight
(B) Propylene homopolymer component having intrinsic viscosity [η] in tetralin of 135 ° C. and 0.5 to 3.0 dL / g or copolymer component of propylene and α-olefin having 2 to 8 carbon atoms: 70-80% by weight
This multi-stage polymer polymerizes propylene in two or more polymerization steps using the following components (a) and (b), or olefin polymerization catalysts consisting of the following components (a), (b) and (c). Alternatively, it can be produced by copolymerizing propylene and an α-olefin having 2 to 8 carbon atoms.
(A) Solid catalyst component obtained by treating titanium trichloride obtained by reducing titanium tetrachloride with an organoaluminum compound with an ether compound and an electron acceptor (b) Organoaluminum compound (c) Cyclic ester compound

固体触媒成分(a)において、四塩化チタンを還元する有機アルミニウム化合物としては、例えば、(イ)アルキルアルミニウムジハライド、具体的には、メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、及びn−プロピルアルミニウムジクロライド、(ロ)アルキルアルミニウムセスキハライド、具体的には、エチルアルミニウムセスキクロライド、(ハ)ジアルキルアルミニウムハライド、具体的には、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジ−n−プロピルアルミニウムクロライド、及びジエチルアルミニウムブロマイド、(ニ)トリアルキルアルミニウム、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、及びトリイソブチルアルミニウム、(ホ)ジアルキルアルミニウムハイドライド、具体的には、ジエチルアルミニウムハイドライド等を挙げることができる。ここで、「アルキル」は、メチル、エチル、プロピル、ブチル等の低級アルキルである。また、「ハライド」は、クロライド又はブロマイドであり、特に前者が普通である。   In the solid catalyst component (a), examples of the organoaluminum compound that reduces titanium tetrachloride include (a) alkylaluminum dihalide, specifically, methylaluminum dichloride, ethylaluminum dichloride, and n-propylaluminum dichloride, (B) Alkyl aluminum sesquihalide, specifically, ethylaluminum sesquichloride, (c) Dialkylaluminum halide, specifically, dimethylaluminum chloride, diethylaluminum chloride, di-n-propylaluminum chloride, and diethylaluminum bromide (D) trialkylaluminum, specifically, trimethylaluminum, triethylaluminum, and triisobutylaluminum, (e) dialkyl Rumi bromide hydride, specifically, may be mentioned diethyl aluminum hydride and the like. Here, “alkyl” is lower alkyl such as methyl, ethyl, propyl, butyl and the like. The “halide” is chloride or bromide, and the former is particularly common.

三塩化チタンを得るための、有機アルミニウム化合物による還元反応は、−60〜60℃、好ましくは−30〜30℃の温度範囲で行うことが普通である。上記温度範囲未満の場合には、還元反応に長時間が必要であり、また、上記温度超過の場合には、部分的に過還元が生じるので好ましくない。還元反応は、ペンタン、ヘキサン、ヘプタン、オクタン及びデカン等の不活性炭化水素溶媒中で行うのが好ましい。   The reduction reaction with an organoaluminum compound to obtain titanium trichloride is usually carried out in the temperature range of −60 to 60 ° C., preferably −30 to 30 ° C. When the temperature is below the above temperature range, a long time is required for the reduction reaction, and when the temperature is above the temperature, it is not preferable because partial reduction occurs partially. The reduction reaction is preferably performed in an inert hydrocarbon solvent such as pentane, hexane, heptane, octane and decane.

さらに、四塩化チタンの有機アルミニウム化合物による還元反応によって得られた三塩化チタンに対し、さらにエーテル処理及び電子受容体処理を施すことが好ましい。
前記三塩化チタンのエーテル処理で好ましく用いられるエーテル化合物としては、ジエチルエーテル、ジ−n−プロピルエーテル、ジ−n−ブチルエーテル、ジイソアミルエーテル、ジネオペンチルエーテル、ジ−n−ヘキシルエーテル、ジ−n−オクチルエーテル、ジ−2−エチルヘキシルエーテル、メチル−n−ブチルエーテル及びエチル−イソブチルエーテル等の各炭化水素残基が炭素数2〜8の鎖状炭化水素であるエーテル化合物が挙げられ、これらの中でも特にジ−n−ブチルエーテルを用いることが好適である。
Furthermore, it is preferable that the titanium trichloride obtained by the reduction reaction of titanium tetrachloride with an organoaluminum compound is further subjected to ether treatment and electron acceptor treatment.
Examples of the ether compound preferably used in the ether treatment of titanium trichloride include diethyl ether, di-n-propyl ether, di-n-butyl ether, diisoamyl ether, dineopentyl ether, di-n-hexyl ether, di- Examples include ether compounds in which each hydrocarbon residue is a chain hydrocarbon having 2 to 8 carbon atoms, such as n-octyl ether, di-2-ethylhexyl ether, methyl-n-butyl ether, and ethyl-isobutyl ether. Among them, it is particularly preferable to use di-n-butyl ether.

三塩化チタンの処理で用いられる電子受容体としては、周期律表第III族〜第IV族及び第VIII族の元素のハロゲン化合物が好ましく、具体的には、四塩化チタン、四塩化ケイ素、三フッ化ホウ素、三塩化ホウ素、五塩化アンチモン、三塩化ガリウム、三塩化鉄、二塩化テルル、四塩化スズ、三塩化リン、五塩化リン、四塩化バナジウム及び四塩化ジルコニウム等を挙げることができる。固体触媒成分(a)を調製する際に、三塩化チタンのエーテル化合物及び電子受容体による処理は、両処理剤の混合物を用いて行ってもよく、また、一方による処理後に、他方による処理を行ってもよい。これらのうちでは、後者が好ましく、エーテル処理後に電子受容体処理を行うことがさらに好ましい。   As the electron acceptor used in the treatment of titanium trichloride, halogen compounds of elements of Group III to Group IV and Group VIII of the periodic table are preferable. Specifically, titanium tetrachloride, silicon tetrachloride, three Examples thereof include boron fluoride, boron trichloride, antimony pentachloride, gallium trichloride, iron trichloride, tellurium dichloride, tin tetrachloride, phosphorus trichloride, phosphorus pentachloride, vanadium tetrachloride, and zirconium tetrachloride. When preparing the solid catalyst component (a), the treatment with the ether compound of titanium trichloride and the electron acceptor may be carried out using a mixture of both treatment agents, and after treatment with one, treatment with the other. You may go. Among these, the latter is preferable, and it is more preferable to perform the electron acceptor treatment after the ether treatment.

エーテル化合物及び電子受容体による処理の前に、三塩化チタンを炭化水素で洗浄することが一般に望ましい。前記三塩化チタンのエーテル処理は、該三塩化チタンと前記エーテル化合物を接触させることによって行われる。また、エーテル化合物による三塩化チタンの処理は、希釈剤の存在下で両者を接触させることによって行うのが有利である。このような希釈剤には、ヘキサン、ヘプタン、オクタン、デカン、ベンゼン及びトルエン等の不活性炭化水素化合物を使用することが好適である。エーテル処理における処理温度は、0〜100℃であることが好ましい。処理時間については特に制限されないが、通常20分〜5時間の範囲で行われる。   It is generally desirable to wash the titanium trichloride with a hydrocarbon prior to treatment with the ether compound and electron acceptor. The ether treatment of titanium trichloride is performed by bringing the titanium trichloride into contact with the ether compound. The treatment of titanium trichloride with an ether compound is advantageously performed by bringing both into contact in the presence of a diluent. As such a diluent, it is preferable to use an inert hydrocarbon compound such as hexane, heptane, octane, decane, benzene and toluene. The treatment temperature in the ether treatment is preferably 0 to 100 ° C. Although it does not restrict | limit especially about processing time, Usually, it carries out in the range of 20 minutes-5 hours.

エーテル化合物の使用量は、三塩化チタン1モル当たり、一般に0.05〜3.0モル、好ましくは0.5〜1.5モルの範囲である。エーテル化合物の使用量が上記範囲未満の場合は、生成重合体の立体規則性を十分に向上させることができなくなるので好ましくない。また、上記範囲超過の場合は、生成重合体の立体規則性を十分向上させることができるが、収率が低下してしまうので好ましくない。尚、有機アルミニウム化合物やエーテル化合物で処理した三塩化チタンは、厳密に言えば、三塩化チタンを主成分とする組成物である。
本発明では、このような固体触媒成分(a)として、Solvay型三塩化チタンを好適に用いることができる。
The amount of the ether compound used is generally in the range of 0.05 to 3.0 mol, preferably 0.5 to 1.5 mol, per 1 mol of titanium trichloride. When the amount of the ether compound used is less than the above range, the stereoregularity of the produced polymer cannot be sufficiently improved, which is not preferable. Moreover, when the said range is exceeded, although the stereoregularity of a production | generation polymer can fully be improved, since a yield will fall, it is unpreferable. Strictly speaking, titanium trichloride treated with an organoaluminum compound or an ether compound is a composition mainly composed of titanium trichloride.
In the present invention, Solvay type titanium trichloride can be suitably used as such a solid catalyst component (a).

有機アルミニウム化合物(b)としては、上記と同様の化合物が挙げられる。   Examples of the organoaluminum compound (b) include the same compounds as described above.

環状エステル化合物(c)としては、例えば、γ−ラクトン、δ−ラクトン、ε−ラクトン等が挙げられる。このうち、好ましくは、ε−ラクトンである。   Examples of the cyclic ester compound (c) include γ-lactone, δ-lactone, ε-lactone, and the like. Of these, ε-lactone is preferable.

プロピレン重合体の製造で用いるオレフィン重合用触媒は、上記(a)〜(c)成分を混合することにより調製できる。   The olefin polymerization catalyst used in the production of the propylene polymer can be prepared by mixing the components (a) to (c).

この製造方法では、2段階以上の重合工程のうち、1段階目に、水素不存在下で、プロピレンを重合又はプロピレンと炭素数2〜8のα−オレフィンとを共重合させることが好ましい。
このような水素不存在下でプロピレンの重合又はプロピレンとα−オレフィンとの共重合を行うことにより、超高分子量プロピレン系重合体、即ち、本発明の多段重合体における(A)成分を製造することができる。また、本発明の製造方法では、多段重合体の(B)成分を、2段階目以降に製造することが好ましい。この理由を以下に説明する。
In this production method, it is preferable to polymerize propylene or copolymerize propylene and an α-olefin having 2 to 8 carbon atoms in the absence of hydrogen in the first stage of the two or more polymerization steps.
By carrying out the polymerization of propylene or the copolymerization of propylene and α-olefin in the absence of such hydrogen, the ultrahigh molecular weight propylene polymer, that is, the component (A) in the multistage polymer of the present invention is produced. be able to. Moreover, in the manufacturing method of this invention, it is preferable to manufacture the (B) component of a multistage polymer in the 2nd stage or later. The reason for this will be described below.

プロピレン系多段重合体では、高分子量成分と低分子量成分との分子量差が大きく、フィッシュアイの発生量に課題がある。さらに、連続重合方法によって製造する場合、滞留時間分布によって重合粒子間の組成ムラが生じ、フィッシュアイ発生量はより増加する。一方、高分子量成分と低分子量成分、言い換えれば、水素不存在下と水素存在下での重合反応速度を比較すると、後者の方が数倍速い。そのため、この低分子量成分の重合反応を1段目の重合工程で行った場合、重合履歴による失活がなく重合反応速度は著しく速くなることから、反応量比を調整するために滞留時間を短縮する必要が生じる。その結果、1段階目の重合反応をショートパスする触媒粒子の存在確立が増加し、1段階目に高分子量成分を重合する場合に比較して重合粒子間の組成ムラが激しくなる。この組成ムラは高分子量成分の分散性を顕著に悪化させ、溶融張力の向上効果を阻害し、得られたプロピレン系多段重合体の発泡特性を低下させるおそれがあるからである。   The propylene-based multistage polymer has a large molecular weight difference between a high molecular weight component and a low molecular weight component, and there is a problem in the amount of fish eye generated. Furthermore, when manufacturing by a continuous polymerization method, the composition unevenness between polymerization particles arises by residence time distribution, and the amount of fish eye generation | occurrence | production increases more. On the other hand, comparing the polymerization reaction rate in the high molecular weight component and the low molecular weight component, in other words, in the absence of hydrogen and in the presence of hydrogen, the latter is several times faster. Therefore, when this low molecular weight component polymerization reaction is performed in the first stage polymerization step, the polymerization reaction rate is remarkably increased without deactivation due to the polymerization history, so the residence time is shortened to adjust the reaction amount ratio. Need to do. As a result, the presence of catalyst particles that short-pass the first-stage polymerization reaction is increased, and the composition unevenness among the polymer particles becomes more intense than when the high-molecular weight component is polymerized in the first stage. This is because the composition unevenness significantly deteriorates the dispersibility of the high molecular weight component, impairs the effect of improving the melt tension, and may lower the foaming characteristics of the obtained propylene-based multistage polymer.

尚、「水素不存在下」とは、実質的に水素不存在下という意味であり、水素が全く存在しない場合だけではなく、水素が極微量存在する場合(例えば、10molppm程度)も含まれる。要は、135℃テトラリン中で測定した、1段階目のプロピレン系重合体又はプロピレン系共重合体の極限粘度が10dL/g以下にならない程度に、水素を含む場合でも「水素不存在下」の意味に含まれる。   Note that “in the absence of hydrogen” means substantially in the absence of hydrogen, and includes not only the case where no hydrogen is present at all, but also the case where a very small amount of hydrogen is present (for example, about 10 molppm). In short, even in the case where hydrogen is contained to the extent that the intrinsic viscosity of the first stage propylene polymer or propylene copolymer measured in 135 ° C. tetralin does not become 10 dL / g or less, “in the absence of hydrogen” Included in the meaning.

本発明の製造方法において、(A)成分の製造条件としては、水素不存在下で、原料モノマーを重合温度として、好ましくは20〜80℃、より好ましくは40〜70℃、重合圧力として、一般に常圧〜1.47MPa、好ましくは0.39〜1.18MPaの条件下でスラリー重合して製造することが好ましい。
また、(B)成分の製造条件としては、上記オレフィン重合用触媒を使用すること以外は特に制限されないが、原料モノマーを、重合温度として、好ましくは20〜80℃、より好ましくは60〜70℃、重合圧力として、一般に常圧〜1.47MPa、好ましくは0.19〜1.18MPa、分子量調節剤としての水素が存在する条件下で重合して製造することが好ましい。
In the production method of the present invention, the production conditions for the component (A) are as follows. In the absence of hydrogen, the raw material monomer is the polymerization temperature, preferably 20 to 80 ° C., more preferably 40 to 70 ° C., and the polymerization pressure is generally It is preferably produced by slurry polymerization under conditions of normal pressure to 1.47 MPa, preferably 0.39 to 1.18 MPa.
In addition, the production conditions for the component (B) are not particularly limited except that the above olefin polymerization catalyst is used, but the raw material monomer is preferably 20 to 80 ° C., more preferably 60 to 70 ° C. as the polymerization temperature. The polymerization pressure is generally from atmospheric pressure to 1.47 MPa, preferably from 0.19 to 1.18 MPa, and it is preferable to carry out the polymerization under conditions where hydrogen as a molecular weight regulator exists.

上記の条件下、反応時間等を適宜調整することにより、1段目の重合工程で、135℃、テトラリン中での極限粘度[η]が10dL/g超のプロピレン単独重合体成分、又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分を、全重合体中に20〜30重量%生成させ、2段目の重合工程で、135℃、テトラリン中での極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分、又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分を、全重合体中に70〜80重量%生成させる。
尚、(A)成分は、全重合体中に22〜28重量%あることが好ましく、極限粘度[η]は、12〜18dL/gであることが好ましい。
また、(B)成分は、全重合体中に73〜77重量%あることが好ましく、極限粘度[η]は、1.0〜2.0dL/gであることが好ましい。
Under the above conditions, by appropriately adjusting the reaction time and the like, in the first stage polymerization step, propylene homopolymer component having an intrinsic viscosity [η] in tetralin of 135 ° C. and greater than 10 dL / g, or propylene A copolymer component with an α-olefin having 2 to 8 carbon atoms is produced in an overall polymer in an amount of 20 to 30% by weight, and the intrinsic viscosity [η] in tetralin at 135 ° C. in the second stage polymerization step. The propylene homopolymer component having a molecular weight of 0.5 to 3.0 dL / g or the copolymer component of propylene and an α-olefin having 2 to 8 carbon atoms is produced in an amount of 70 to 80% by weight in the whole polymer.
In addition, it is preferable that (A) component is 22 to 28 weight% in all the polymers, and it is preferable that intrinsic viscosity [(eta)] is 12 to 18 dL / g.
Moreover, it is preferable that (B) component is 73 to 77 weight% in all the polymers, and it is preferable that intrinsic viscosity [(eta)] is 1.0-2.0 dL / g.

この製造方法では、本重合を行う前に、予備重合を行ってもよい。予備重合を行うと、パウダーモルフォロジーを良好に維持できる。予備重合は、一般的に、重合温度として、好ましくは0〜80℃、より好ましくは10〜60℃、重合量として、固体触媒成分1g当たり、好ましくは0.001〜100g、より好ましくは0.1〜10gのプロピレンを重合又はプロピレンと炭素数2〜8のα−オレフィンを共重合させることが好ましい。   In this production method, preliminary polymerization may be performed before the main polymerization. When the prepolymerization is performed, the powder morphology can be maintained well. In the prepolymerization, generally, the polymerization temperature is preferably 0 to 80 ° C., more preferably 10 to 60 ° C., and the polymerization amount is preferably 0.001 to 100 g, more preferably 0. It is preferable to polymerize 1 to 10 g of propylene or copolymerize propylene and an α-olefin having 2 to 8 carbon atoms.

上述した多段重合体の他に、本発明のプロピレン重合体としては、例えば以下のものがある。
1.超高分子量ポリエチレンを含有した分子量の高いプロピレン系重合体
2.架橋用過酸化物を用いた分子量の高い変性プロピレン系重合体
3.分子量の高い、電子線照射等による片側自由末端長鎖分岐プロピレン系重合体及び架橋プロピレン系重合体
4.非共役ジエン等を共重合させた分子量の高い長鎖分岐プロピレン系重合体
これらのプロピレン系重合体では、添加物の配合量や処理時間等を適宜調整することによって、MFR及び上記式(1)を満たすことができる。
In addition to the multistage polymer described above, examples of the propylene polymer of the present invention include the following.
1. 1. High molecular weight propylene polymer containing ultrahigh molecular weight polyethylene 2. A modified propylene polymer having a high molecular weight using a crosslinking peroxide; 3. High molecular weight one-side free-end long-chain branched propylene polymer and crosslinked propylene polymer by electron beam irradiation or the like A long-chain branched propylene polymer having a high molecular weight obtained by copolymerizing a non-conjugated diene or the like. In these propylene polymers, the MFR and the above formula (1) are adjusted by appropriately adjusting the blending amount of the additive, the processing time, and the like. Can be met.

本発明のプロピレン系重合体は、押出成形、射出成形、発泡成形、中空成形その他の各種成形法により成形することができる。好ましくは、押出発泡成形等の発泡成形により成形する。
本発明のプロピレン系重合体を発泡成形する場合には、二酸化炭素、ブタン、窒素、重曹等の各種発泡剤を使用することができる。
本発明の多段重合体又は組成物を射出発泡成形する場合は、発泡剤として超臨界二酸化炭素又は超臨界窒素を用いることが好ましい。
本発明のプロピレン系重合体は、高発泡成形用の樹脂として特に優れているため、得られる射出発泡成形品、押出発泡成形品の発泡倍率は、30倍以上にすることができる。尚、30倍以下の発泡成形品も製造可能である。
The propylene-based polymer of the present invention can be molded by various molding methods such as extrusion molding, injection molding, foam molding, hollow molding and the like. Preferably, it shape | molds by foam molding, such as extrusion foam molding.
When foaming the propylene polymer of the present invention, various foaming agents such as carbon dioxide, butane, nitrogen, baking soda and the like can be used.
When injection-molding the multistage polymer or composition of the present invention, it is preferable to use supercritical carbon dioxide or supercritical nitrogen as a foaming agent.
Since the propylene-based polymer of the present invention is particularly excellent as a resin for high foam molding, the expansion ratio of the obtained injection foam molded article and extruded foam molded article can be 30 times or more. It is also possible to manufacture a foamed molded product of 30 times or less.

プロピレン系重合体の成形にあたり、必要に応じて、酸化防止剤、中和剤、難燃剤、等の添加剤を使用することができる。添加剤の割合は特に制限されず、適宜調節することが可能である。
また、粉末又は繊維状多孔質フィラーとして、シリカ、活性炭、ゼオライト、シリカゲル又は繊維状活性炭を配合してもよい。
また、分解型発泡剤として、重炭酸ナトリウム等の重炭酸塩、クエン酸等の有機酸又はその塩との組合せ、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン等の有機系発泡剤を配合してもよい。これらの発泡剤は単独で、又は2種以上組み合わせて使用することができる。また、気泡調整剤として、タルク、重炭酸ナトリウム、クエン酸等を添加することもできる。
また、結晶化核剤として、タルク、有機カルボン酸塩、有機リン酸塩、ソルビトール系核剤を配合してもよい。
In forming the propylene-based polymer, additives such as an antioxidant, a neutralizing agent, a flame retardant and the like can be used as necessary. The ratio of the additive is not particularly limited and can be adjusted as appropriate.
Moreover, you may mix | blend a silica, activated carbon, a zeolite, a silica gel, or fibrous activated carbon as a powder or a fibrous porous filler.
Also, as a decomposable foaming agent, a bicarbonate such as sodium bicarbonate, an organic acid such as citric acid or a combination thereof, or an organic foaming agent such as azodicarbonamide or dinitrosopentamethylenetetramine may be blended. Good. These foaming agents can be used alone or in combination of two or more. Moreover, talc, sodium bicarbonate, citric acid, etc. can also be added as a bubble regulator.
Moreover, you may mix | blend talc, organic carboxylate, organic phosphate, and a sorbitol type | system | group nucleating agent as a crystallization nucleating agent.

以下、本発明を実施例によってさらに具体的に説明する。
尚、各例においては試料を以下の方法で評価又は調製した。
(1)一段階目のプロピレン重合体成分(成分A)及び二段階目のプロピレン重合体成分(成分B)の重量分率
重合時に連続的に供給するプロピレンの流量計積算値を用いた物質収支から求めた。
Hereinafter, the present invention will be described more specifically with reference to examples.
In each example, the sample was evaluated or prepared by the following method.
(1) Weight fraction of the first stage propylene polymer component (component A) and the second stage propylene polymer component (component B) Material balance using flow meter integrated value of propylene continuously supplied during polymerization I asked for it.

(2)極限粘度[η]
135℃、テトラリン中で行った。
尚、成分Bの極限粘度[η]は、下記式よりより計算した値である。
[η]=([η]total×100−[η]×W)/W
[η]total:プロピレン重合体全体の極限粘度
[η]:成分Aの極限粘度
:成分Aの重量分率(重量%)
:成分Bの重量分率(重量%)
(2) Intrinsic viscosity [η]
Performed at 135 ° C. in tetralin.
The intrinsic viscosity [η] 2 of component B is a value calculated from the following formula.
[Η] 2 = ([η] total × 100− [η] 1 × W 1 ) / W 2
[Η] total : Intrinsic viscosity of the entire propylene polymer [η] 1 : Intrinsic viscosity of component A W 1 : Weight fraction (% by weight) of component A
W 2 : Weight fraction of component B (% by weight)

(3)メルトフローレート(MFR)
JIS K7201に準拠し、温度230℃、荷重2.16kgfで測定した。
(4)発泡倍率
発泡成形品の発泡倍率は、成形品の重量を水没法により求めた体積で除することにより密度を求め算出した。
(5)発泡成形体の平均セル径
ASDM D3576−3577に準拠して測定した。
(3) Melt flow rate (MFR)
According to JIS K7201, the measurement was performed at a temperature of 230 ° C. and a load of 2.16 kgf.
(4) Foaming ratio The foaming ratio of the foamed molded product was calculated by calculating the density by dividing the weight of the molded product by the volume determined by the submerging method.
(5) Average cell diameter of foam-molded article Measured according to ASDM D3576-3577.

(6)プロピレン重合体ペレットの作製
得られたプロピレン重合体100重量部に対して、イルガノックス1010(商品名、チバ・スペシャルティー・ケミカルズ(株)製)を0.15重量部、イルガフォス168(商品名、チバ・スペシャルティー・ケミカルズ(株)製)を0.15重量部、ステアリン酸カルシウムを0.06重量部、DHT−4A(商品名、協和化学工業(株))を0.06重量部加えて混合し、東洋精機(株)製のラボプラストミル単軸押出機(20mmφ)で230℃で溶融混練し、造粒した。
(6) Production of propylene polymer pellets With respect to 100 parts by weight of the obtained propylene polymer, Irganox 1010 (trade name, manufactured by Ciba Specialty Chemicals) 0.15 parts by weight, Irgafos 168 ( 0.15 parts by weight of trade name, manufactured by Ciba Specialty Chemicals Co., Ltd., 0.06 parts by weight of calcium stearate, 0.06 parts by weight of DHT-4A (trade name, Kyowa Chemical Industry Co., Ltd.) In addition, they were mixed, melt kneaded and granulated at 230 ° C. with a Laboplast mill single screw extruder (20 mmφ) manufactured by Toyo Seiki Co., Ltd.

(7)発泡成形品の成形
発泡成形品は、上記(5)で作製したペレットを使用して、以下の射出成形機から単純に押し出すことにより得た。
成形機:日本製鋼製、J180EL−MuCell
射出時間:5秒
シリンダー設定温度:180℃
ガス量:7wt%(二酸化炭素)
尚、上記ペレット100重量部に対し、発泡剤(永和化成(株)製、EE205)を0.5部配合したものを使用した。
(7) Molding of foam molded product The foam molded product was obtained by simply extruding from the following injection molding machine using the pellets prepared in (5) above.
Molding machine: Japan Steel, J180EL-MuCell
Injection time: 5 seconds Cylinder set temperature: 180 ° C
Gas amount: 7wt% (carbon dioxide)
In addition, what mixed 0.5 part of foaming agents (Eiwa Chemical Co., Ltd. product, EE205) with respect to 100 weight part of said pellets was used.

(8)式(1)の算出方法
8−1 Cogswell法伸長粘度
式(1)において、プロピレン重合体の伸張粘度(η:単位:Pa・s)及び歪速度(ε:単位:sec−1)は、それぞれ下記式(2)及び(3)で算出される。

Figure 2007119760
[式中、τはせん断応力(単位:Pa)、γはせん断速度(単位:sec−1)、nはn値、ΔPは入り口流入圧(単位:Pa)である。] (8) Calculation Method of Formula (1) 8-1 Cogswell Method Elongation Viscosity In formula (1), the elongation viscosity (η e : unit: Pa · s) and strain rate (ε: unit: sec −1 ) of the propylene polymer. ) Is calculated by the following formulas (2) and (3), respectively.
Figure 2007119760
Wherein, tau w is the shear stress (unit: Pa), gamma is the shear rate (unit: sec -1), n is n value, the [Delta] P e entrance inflow pressure (unit: Pa) is. ]

せん断応力及びせん断速度を、キャピラリ−レオメータ(東洋精器製キャピログラフ1B)にて、測定温度を230℃、オリフィス(長さ/直径:mm)として、30/1,40/1,50/1の3本を使用し測定した。また、n値と入り口流入圧は、下記のように算出した。
・入り口流入圧ΔPeの算出
各オリフィスで測定したせん断速度同一時の圧力損失3点のデータからキャピラリー長さと圧力損失の一次式を算出し、長さ0mmのときの値(切片)を入り口流入圧ΔPeとした。
・n値の算出
オリフィス50/1(mm)の圧力値から入り口流入圧を引くことで、真の流動に要する圧力を求めせん断応力を求めた(Baglay補正)。log(せん断速度)とlog(せん断応力)を一次近似することで傾きnを求めた。
The shear stress and shear rate were 30/1, 40/1, 50/1 with a capillary rheometer (Capillograph 1B manufactured by Toyo Seiki Co., Ltd.) at a measurement temperature of 230 ° C. and an orifice (length / diameter: mm). Measurements were made using three tubes. The n value and the inlet inflow pressure were calculated as follows.
・ Calculation of inlet inflow pressure ΔPe Calculate the primary expression of capillary length and pressure loss from the data of three pressure loss at the same shear rate measured at each orifice, and the value (intercept) at 0 mm length is the inlet inflow pressure. ΔPe.
-Calculation of n value By subtracting the inlet inflow pressure from the pressure value of the orifice 50/1 (mm), the pressure required for the true flow was determined to determine the shear stress (Balay correction). The slope n was obtained by linearly approximating log (shear rate) and log (shear stress).

実施例1
(1)予備重合
内容積5リットルの攪拌機付きの三つ口フラスコを十分に乾燥し窒素ガスで置換した後、脱水処理したヘプタンを4リットル、ジエチルアルミニウムクロライド140グラムを加え市販のSolvay型三塩化チタン触媒(東ソー・ファインケム社製)20gを加えた。内温を20℃に保持し、攪拌しながらプロピレンを連続的に導入した。80分後、攪拌を停止し結果的に固体触媒1g当たり0.8gのプロピレンが重合した予備重合触媒成分を得た。
Example 1
(1) Prepolymerization A three-necked flask with an internal volume of 5 liters equipped with a stirrer was thoroughly dried and replaced with nitrogen gas. 20 g of a titanium catalyst (manufactured by Tosoh Finechem) was added. The internal temperature was kept at 20 ° C., and propylene was continuously introduced while stirring. After 80 minutes, stirring was stopped, and as a result, a prepolymerized catalyst component in which 0.8 g of propylene was polymerized per 1 g of the solid catalyst was obtained.

(2)プロピレン重合
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し窒素ガスで置換した後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、攪拌しながらプロピレンを導入して内温50℃、全圧0.78MPaに系内が安定した後、上記予備重合触媒成分を固体触媒換算で0.75グラム含んだヘプタンスラリー200ミリリットルを加えて重合開始とした。プロピレンを1.7時間連続的に供給した時のプロピレン流量積算値から求めた重合体生成量は1150gであり、その一部をサンプリングして分析した結果、極限粘度は15.4dL/gであった。その後、内温を40℃以下にまで降温し攪拌を弱め、脱圧を行った。
再び、内温を65℃として水素を0.10MPa加えて攪拌しながらプロピレンを導入した。全圧0.78MPaでプロピレンを連続的に供給しながら65℃で4時間重合を行った。この時、重合体の一部をサンプリングして分析した結果、極限粘度は4.94dL/gであった。
重合終了後、50ミリリットルのメタノールを添加し降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し、1−ブタノールを100ミリリットル加え、85℃で1時間撹拌した後に固液分離した。さらに、85℃のヘプタン6リットルで固体部を2回洗浄し、真空乾燥してプロピレン重合体3.4kgを得た。
以上の結果、第一段目と第二段目の重合成分の重量比は25.3:74.7であり、第二段目にて生成した重合体の極限粘度は1.40dL/gと求められた。
(2) Propylene Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene. Thereafter, propylene was introduced while stirring, and the system was stabilized at an internal temperature of 50 ° C. and a total pressure of 0.78 MPa. Then, 200 ml of heptane slurry containing 0.75 g of the prepolymerized catalyst component in terms of solid catalyst was added. The polymerization was started. The polymer production amount obtained from the propylene flow rate integrated value when propylene was continuously supplied for 1.7 hours was 1150 g. As a result of sampling and analyzing a part thereof, the intrinsic viscosity was 15.4 dL / g. It was. Thereafter, the internal temperature was lowered to 40 ° C. or lower, stirring was weakened, and depressurization was performed.
Again, the internal temperature was 65 ° C., 0.10 MPa of hydrogen was added, and propylene was introduced while stirring. Polymerization was carried out at 65 ° C. for 4 hours while continuously supplying propylene at a total pressure of 0.78 MPa. At this time, as a result of sampling and analyzing a part of the polymer, the intrinsic viscosity was 4.94 dL / g.
After completion of the polymerization, 50 ml of methanol was added, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank equipped with a filter, 100 ml of 1-butanol was added, and the mixture was stirred at 85 ° C. for 1 hour, followed by solid-liquid separation. Further, the solid part was washed twice with 6 liters of heptane at 85 ° C. and vacuum-dried to obtain 3.4 kg of a propylene polymer.
As a result, the weight ratio of the first stage and second stage polymerization components was 25.3: 74.7, and the intrinsic viscosity of the polymer produced in the second stage was 1.40 dL / g. I was asked.

(3)造粒、発泡成形、評価
得られたパウダー状プロピレン重合体に前述の添加剤を添加し、ペレタイズ、発泡成形を行った。また、ペレット100gで高歪速度領域(εが10sec−1及び100sec−1の場合)の伸長粘度を測定した。
実施例1及び後述する実施例2,3及び比較例1〜3の重合体の物性、樹脂特性及び発泡成形体の性状を表1に示す。
(3) Granulation, foam molding, evaluation The above-mentioned additives were added to the obtained powdery propylene polymer, and pelletizing and foam molding were performed. Further, the high strain rate region pellets 100 g (epsilon is the case of 10 sec -1 and 100 sec -1) was measured elongation viscosity.
Table 1 shows the physical properties, resin characteristics, and properties of the foamed molded product of Example 1 and the polymers of Examples 2 and 3 and Comparative Examples 1 to 3 described later.

Figure 2007119760
Figure 2007119760

実施例2
実施例1においてプロピレン重合の内、1段目の重合時間を1.4時間とした以外は同様の方法で重合を行った。その結果、プロピレン重合体3.4kgを得た。この時の第一段目と第二段目の重合重量比は22.2:77.8であり第一段目にて生成した重合体の極限粘度は15.8dL/g、第二段目にて生成した重合体の極限粘度は1.42dL/gと求められた。
Example 2
Polymerization was carried out in the same manner as in Example 1 except that the polymerization time for the first stage was 1.4 hours in the propylene polymerization. As a result, 3.4 kg of a propylene polymer was obtained. At this time, the polymerization weight ratio of the first stage and the second stage is 22.2: 77.8, and the intrinsic viscosity of the polymer produced in the first stage is 15.8 dL / g. The intrinsic viscosity of the polymer produced in 1) was determined to be 1.42 dL / g.

実施例3
実施例1においてプロピレン重合の内、1段目の重合時間を2.4時間とした以外は同様の方法で重合を行った。その結果、プロピレン重合体3.5kgを得た。この時の第一段目と第二段目の重合重量比は29.0:71.0であり第一段目にて生成した重合体の極限粘度は14.6dL/g、第二段目にて生成した重合体の極限粘度は1.45dL/gと求められた。
Example 3
Polymerization was carried out in the same manner as in Example 1 except that the polymerization time for the first stage was 2.4 hours in the propylene polymerization. As a result, 3.5 kg of a propylene polymer was obtained. At this time, the polymerization weight ratio of the first stage and the second stage was 29.0: 71.0, and the intrinsic viscosity of the polymer produced in the first stage was 14.6 dL / g. The intrinsic viscosity of the polymer produced in 1) was determined to be 1.45 dL / g.

比較例1
実施例1においてプロピレン重合の内、1段目の重合時間を1.0時間とした以外は同様の方法で重合を行った。その結果、プロピレン重合体3.3kgを得た。この時の第一段目と第二段目の重合重量比は16.9:83.1であり第一段目にて生成した重合体の極限粘度は15.4dL/g、第二段目にて生成した重合体の極限粘度は1.38dL/gと求められた。
Comparative Example 1
Polymerization was carried out in the same manner as in Example 1 except that the propylene polymerization time was 1.0 hour in the first stage. As a result, 3.3 kg of a propylene polymer was obtained. The polymerization weight ratio of the first stage and the second stage at this time is 16.9: 83.1, and the intrinsic viscosity of the polymer produced in the first stage is 15.4 dL / g, and the second stage The intrinsic viscosity of the polymer produced in 1) was determined to be 1.38 dL / g.

比較例2
(1)予備重合
実施例1(1)と同様にして予備重合触媒成分を得た。
Comparative Example 2
(1) Prepolymerization A prepolymerization catalyst component was obtained in the same manner as in Example 1 (1).

(2)プロピレン重合
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し窒素ガスで置換した後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。
続いて、水素を0.01MPa導入し、その後、攪拌しながらプロピレンを導入して、内温60℃、全圧0.78MPaに系内が安定した後、上記予備重合触媒成分を固体触媒換算で1.5グラム含んだヘプタンスラリー400ミリリットルを加えて重合開始とした。プロピレンを4時間連続的に供給した。
重合終了後、50ミリリットルのメタノールを添加し降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し、1−ブタノールを100ミリリットル加え、85℃で1時間撹拌した後に固液分離した。さらに、85℃のヘプタン6リットルで固体部を2回洗浄し、真空乾燥してプロピレン重合体3.8kgを得た。
この重合体の極限粘度は4.1dL/gであった。
(2) Propylene Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene.
Subsequently, 0.01 MPa of hydrogen was introduced, and then propylene was introduced with stirring. After the system was stabilized at an internal temperature of 60 ° C. and a total pressure of 0.78 MPa, the prepolymerized catalyst component was converted into a solid catalyst. The polymerization was started by adding 400 ml of heptane slurry containing 1.5 grams. Propylene was continuously fed for 4 hours.
After completion of the polymerization, 50 ml of methanol was added, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank equipped with a filter, 100 ml of 1-butanol was added, and the mixture was stirred at 85 ° C. for 1 hour, followed by solid-liquid separation. Further, the solid part was washed twice with 6 liters of heptane at 85 ° C. and vacuum-dried to obtain 3.8 kg of a propylene polymer.
The intrinsic viscosity of this polymer was 4.1 dL / g.

比較例3
実施例1においてプロピレン重合の内、1段目の重合温度を40℃、重合時間を5.0時間とし、2段目の重合時間を3時間とした以外は同様の方法で重合を行った。その結果、プロピレン重合体2.4kgを得た。この時の第一段目と第二段目の重合重量比は41.3:58.7であり第一段目にて生成した重合体の極限粘度は17.9dL/g、第二段目にて生成した重合体の極限粘度は1.43dL/gと求められた。
Comparative Example 3
Polymerization was carried out in the same manner as in Example 1 except that the polymerization temperature of the first stage was 40 ° C., the polymerization time was 5.0 hours, and the polymerization time of the second stage was 3 hours. As a result, 2.4 kg of a propylene polymer was obtained. At this time, the polymerization weight ratio of the first stage and the second stage was 41.3: 58.7, and the intrinsic viscosity of the polymer produced in the first stage was 17.9 dL / g. The intrinsic viscosity of the polymer produced in 1) was determined to be 1.43 dL / g.

実施例4
(1)予備重合
実施例1(1)と同様にして予備重合触媒成分を得た。
Example 4
(1) Prepolymerization A prepolymerization catalyst component was obtained in the same manner as in Example 1 (1).

(2)プロピレン重合
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し窒素ガスで置換した後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、攪拌しながらプロピレンを導入して内温40℃、全圧0.78MPaに系内が安定した後、上記予備重合触媒成分を固体触媒換算で0.75グラム含んだヘプタンスラリー200ミリリットルを加えて重合開始とした。プロピレンを2.2時間連続的に供給した時のプロピレン流量積算値から求めた重合体生成量は1190gであり、その一部をサンプリングして分析した結果、極限粘度は19.7dL/gであった。その後、内温を40℃以下にまで降温し攪拌を弱め、脱圧を行った。
再び、内温を65℃として水素を0.10MPa加えて攪拌しながらプロピレンを導入した。全圧0.78MPaでプロピレンを連続的に供給しながら65℃で5.2時間重合を行った。この時、重合体の一部をサンプリングして分析した結果、極限粘度は5.2dL/gであった。
重合終了後、50ミリリットルのメタノールを添加し降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し、1−ブタノールを100ミリリットル加え、85℃で1時間撹拌した後に固液分離した。さらに、85℃のヘプタン6リットルで固体部を2回洗浄し、真空乾燥してプロピレン重合体4.44kgを得た。
以上の結果、第一段目と第二段目の重合成分の重量比は21.1:78.9であり、第二段目にて生成した重合体の極限粘度は1.44dL/gと求められた。
(2) Propylene Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene. Thereafter, propylene was introduced with stirring, and the system was stabilized at an internal temperature of 40 ° C. and a total pressure of 0.78 MPa. Then, 200 ml of heptane slurry containing 0.75 g of the prepolymerized catalyst component in terms of solid catalyst was added. The polymerization was started. The polymer production amount obtained from the propylene flow rate integrated value when propylene was continuously supplied for 2.2 hours was 1190 g. As a result of sampling and analyzing a part thereof, the intrinsic viscosity was 19.7 dL / g. It was. Thereafter, the internal temperature was lowered to 40 ° C. or lower, stirring was weakened, and depressurization was performed.
Again, the internal temperature was 65 ° C., 0.10 MPa of hydrogen was added, and propylene was introduced while stirring. Polymerization was carried out at 65 ° C. for 5.2 hours while continuously supplying propylene at a total pressure of 0.78 MPa. At this time, as a result of sampling and analyzing a part of the polymer, the intrinsic viscosity was 5.2 dL / g.
After completion of the polymerization, 50 ml of methanol was added, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank equipped with a filter, 100 ml of 1-butanol was added, and the mixture was stirred at 85 ° C. for 1 hour, followed by solid-liquid separation. Further, the solid part was washed twice with 6 liters of heptane at 85 ° C. and vacuum-dried to obtain 4.44 kg of a propylene polymer.
As a result, the weight ratio of the first stage and second stage polymerization components was 21.1: 78.9, and the intrinsic viscosity of the polymer produced in the second stage was 1.44 dL / g. I was asked.

(3)造粒、発泡成形、評価
実施例1(3)と同様にして、実施した。
実施例4及び後述する実施例5,6の重合体の物性、樹脂特性及び発泡成形体の性状を表2に示す。
(3) Granulation, foam molding, evaluation It carried out like Example 1 (3).
Table 2 shows the physical properties, resin characteristics, and properties of the foamed molded product of Example 4 and the polymers of Examples 5 and 6 described later.

実施例5
(1)予備重合
実施例1(1)と同様にして予備重合触媒成分を得た。
Example 5
(1) Prepolymerization A prepolymerization catalyst component was obtained in the same manner as in Example 1 (1).

(2)プロピレン重合
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し窒素ガスで置換した後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、攪拌しながらプロピレンを導入して内温65℃、全圧0.78MPaに系内が安定した後、上記予備重合触媒成分を固体触媒換算で0.75グラム含んだヘプタンスラリー200ミリリットルを加えて重合開始とした。プロピレンを1.7時間連続的に供給した時のプロピレン流量積算値から求めた重合体生成量は1190gであり、その一部をサンプリングして分析した結果、極限粘度は12.1dL/gであった。その後、内温を40℃以下にまで降温し攪拌を弱め、脱圧を行った。
再び、内温を65℃として水素を0.10MPa加えて攪拌しながらプロピレンを導入した。全圧0.78MPaでプロピレンを連続的に供給しながら65℃で5.1時間重合を行った。この時、重合体の一部をサンプリングして分析した結果、極限粘度は3.63dL/gであった。
重合終了後、50ミリリットルのメタノールを添加し降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し、1−ブタノールを100ミリリットル加え、85℃で1時間撹拌した後に固液分離した。さらに、85℃のヘプタン6リットルで固体部を2回洗浄し、真空乾燥してプロピレン重合体4.44kgを得た。
以上の結果、第一段目と第二段目の重合成分の重量比は21.1:78.9であり、第二段目にて生成した重合体の極限粘度は1.39dL/gと求められた。
(2) Propylene Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene. Thereafter, propylene was introduced with stirring, and the system was stabilized at an internal temperature of 65 ° C. and a total pressure of 0.78 MPa. Then, 200 ml of heptane slurry containing 0.75 g of the prepolymerized catalyst component in terms of solid catalyst was added. The polymerization was started. The polymer production amount obtained from the propylene flow rate integrated value when propylene was continuously supplied for 1.7 hours was 1190 g. As a result of sampling and analyzing a part thereof, the intrinsic viscosity was 12.1 dL / g. It was. Thereafter, the internal temperature was lowered to 40 ° C. or lower, stirring was weakened, and depressurization was performed.
Again, the internal temperature was 65 ° C., 0.10 MPa of hydrogen was added, and propylene was introduced while stirring. Polymerization was carried out at 65 ° C. for 5.1 hours while continuously supplying propylene at a total pressure of 0.78 MPa. At this time, as a result of sampling and analyzing a part of the polymer, the intrinsic viscosity was 3.63 dL / g.
After completion of the polymerization, 50 ml of methanol was added, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank equipped with a filter, 100 ml of 1-butanol was added, and the mixture was stirred at 85 ° C. for 1 hour, followed by solid-liquid separation. Further, the solid part was washed twice with 6 liters of heptane at 85 ° C. and vacuum-dried to obtain 4.44 kg of a propylene polymer.
As a result, the weight ratio of the first stage and second stage polymerization components was 21.1: 78.9, and the intrinsic viscosity of the polymer produced in the second stage was 1.39 dL / g. I was asked.

実施例6
(1)予備重合
実施例1(1)と同様にして予備重合触媒成分を得た。
Example 6
(1) Prepolymerization A prepolymerization catalyst component was obtained in the same manner as in Example 1 (1).

(2)プロピレン重合
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し窒素ガスで置換した後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、攪拌しながらプロピレンを導入して内温65℃、全圧0.78MPaに系内が安定した後、上記予備重合触媒成分を固体触媒換算で0.75グラム含んだヘプタンスラリー200ミリリットルを加えて重合開始とした。プロピレンを2.2時間連続的に供給した時のプロピレン流量積算値から求めた重合体生成量は1160gであり、その一部をサンプリングして分析した結果、極限粘度は11.9dL/gであった。その後、内温を40℃以下にまで降温し攪拌を弱め、脱圧を行った。
再び、内温を65℃として水素を0.10MPa加えて攪拌しながらプロピレンを導入した。全圧0.78MPaでプロピレンを連続的に供給しながら65℃で3.5時間重合を行った。この時、重合体の一部をサンプリングして分析した結果、極限粘度は4.32dL/gであった。
重合終了後、50ミリリットルのメタノールを添加し降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し、1−ブタノールを100ミリリットル加え、85℃で1時間撹拌した後に固液分離した。さらに、85℃のヘプタン6リットルで固体部を2回洗浄し、真空乾燥してプロピレン重合体3.0kgを得た。
以上の結果、第一段目と第二段目の重合成分の重量比は28.0:72.0であり、第二段目にて生成した重合体の極限粘度は1.40dL/gと求められた。
(2) Propylene Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene. Thereafter, propylene was introduced with stirring, and the system was stabilized at an internal temperature of 65 ° C. and a total pressure of 0.78 MPa. Then, 200 ml of heptane slurry containing 0.75 g of the prepolymerized catalyst component in terms of solid catalyst was added. The polymerization was started. The polymer production amount obtained from the integrated value of the propylene flow rate when propylene was continuously supplied for 2.2 hours was 1160 g. As a result of sampling and analyzing a part thereof, the intrinsic viscosity was 11.9 dL / g. It was. Thereafter, the internal temperature was lowered to 40 ° C. or lower, stirring was weakened, and depressurization was performed.
Again, the internal temperature was 65 ° C., 0.10 MPa of hydrogen was added, and propylene was introduced while stirring. Polymerization was performed at 65 ° C. for 3.5 hours while propylene was continuously supplied at a total pressure of 0.78 MPa. At this time, as a result of sampling and analyzing a part of the polymer, the intrinsic viscosity was 4.32 dL / g.
After completion of the polymerization, 50 ml of methanol was added, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank equipped with a filter, 100 ml of 1-butanol was added, and the mixture was stirred at 85 ° C. for 1 hour, followed by solid-liquid separation. Further, the solid part was washed twice with 6 liters of heptane at 85 ° C. and vacuum-dried to obtain 3.0 kg of a propylene polymer.
As a result, the weight ratio of the first stage and second stage polymerization components was 28.0: 72.0, and the intrinsic viscosity of the polymer produced in the second stage was 1.40 dL / g. I was asked.

Figure 2007119760
Figure 2007119760

本発明のプロピレン重合体は、高発泡倍率(例えば、30倍以上)で微細セルを有する成形体を得ることができるため、発泡シート、建築資材、自動車部材等の分野において好適に使用できる。   The propylene polymer of the present invention can be suitably used in the fields of foamed sheets, building materials, automobile members and the like because a molded body having fine cells can be obtained at a high expansion ratio (for example, 30 times or more).

Claims (5)

メルトフローレート(230℃、荷重2.16kg)が0.1g/10分よりも大きく、下記式(1)を満たすプロピレン系重合体。
Figure 2007119760
[式中、ηはプロピレン系重合体の伸張粘度、εは歪速度である。ηはεが10sec−1及び100sec−1での測定値である。]
A propylene polymer having a melt flow rate (230 ° C., load 2.16 kg) larger than 0.1 g / 10 min and satisfying the following formula (1).
Figure 2007119760
[Where η e is the extensional viscosity of the propylene polymer, and ε is the strain rate. eta e is ε is measured at 10 sec -1 and 100 sec -1. ]
前記プロピレン系重合体がプロピレン系多段重合体である請求項1記載のプロピレン系重合体。   The propylene-based polymer according to claim 1, wherein the propylene-based polymer is a propylene-based multistage polymer. 前記プロピレン系多段重合体が下記(A)及び(B)を含む請求項2記載のプロピレン系重合体。
(A)135℃、テトラリン中での極限粘度[η]が10dL/g超のプロピレン単独重合体成分又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分:20〜30重量%
(B)135℃、テトラリン中での極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分又はプロピレンと炭素数2〜8のα−オレフィンとの共重合体成分:70〜80重量%
The propylene-based polymer according to claim 2, wherein the propylene-based multistage polymer contains the following (A) and (B).
(A) Propylene homopolymer component having intrinsic viscosity [η] in tetralin of 135 ° C. or more than 10 dL / g or copolymer component of propylene and α-olefin having 2 to 8 carbon atoms: 20 to 30% by weight
(B) Propylene homopolymer component having intrinsic viscosity [η] in tetralin of 135 ° C. and 0.5 to 3.0 dL / g or copolymer component of propylene and α-olefin having 2 to 8 carbon atoms: 70-80% by weight
前記プロピレン系多段重合体が、1段階目の重合工程にて水素不存在下でプロピレンを重合又はプロピレンと炭素数2〜8のα−オレフィンを共重合させたものである請求項3記載のプロピレン系重合体。   4. The propylene according to claim 3, wherein the propylene-based multistage polymer is obtained by polymerizing propylene or copolymerizing propylene and an α-olefin having 2 to 8 carbon atoms in the absence of hydrogen in the first polymerization step. Polymer. 請求項1〜4のいずれかに記載のプロピレン系重合体からなる、発泡倍率が30倍以上の発泡成形体。
A foamed molded article comprising the propylene-based polymer according to any one of claims 1 to 4 and having an expansion ratio of 30 times or more.
JP2006264516A 2005-09-30 2006-09-28 Propylene polymer and foam molded article Active JP5203587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264516A JP5203587B2 (en) 2005-09-30 2006-09-28 Propylene polymer and foam molded article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005288313 2005-09-30
JP2005288313 2005-09-30
JP2006264516A JP5203587B2 (en) 2005-09-30 2006-09-28 Propylene polymer and foam molded article

Publications (2)

Publication Number Publication Date
JP2007119760A true JP2007119760A (en) 2007-05-17
JP5203587B2 JP5203587B2 (en) 2013-06-05

Family

ID=38143919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264516A Active JP5203587B2 (en) 2005-09-30 2006-09-28 Propylene polymer and foam molded article

Country Status (1)

Country Link
JP (1) JP5203587B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241517A (en) * 2008-03-31 2009-10-22 Prime Polymer Co Ltd Polypropylene based extrusion foamed article, and its manufacturing method
JP2009275150A (en) * 2008-05-15 2009-11-26 Prime Polymer Co Ltd Polypropylene-based extruded foam and method for producing it
JP2019137847A (en) * 2018-02-09 2019-08-22 株式会社プライムポリマー Propylene-based polymer composition and foamed molded product thereof
JP2019137848A (en) * 2018-02-09 2019-08-22 株式会社プライムポリマー Propylene-based polymer composition and production method thereof
JP2020158652A (en) * 2019-03-27 2020-10-01 株式会社プライムポリマー Propylene-based polymer composition and molding thereof
JP2021024641A (en) * 2019-08-08 2021-02-22 三井化学株式会社 Drawn container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007752A1 (en) * 1997-08-05 1999-02-18 Grand Polymer Co., Ltd. Polypropylene resin composition and use thereof
JPH11181178A (en) * 1997-12-19 1999-07-06 Grand Polymer:Kk Polyolefin resin composition, polyolefin resin composition for foaming and foamed body
JP2001348454A (en) * 2000-04-03 2001-12-18 Sumitomo Chem Co Ltd Thermoplastic resin sheet and container
JP2004322341A (en) * 2003-04-22 2004-11-18 Kawata Mfg Co Ltd Extrusion foam molding method for fine-cellular foam, extrusion foam molding apparatus and the fine-cellular foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007752A1 (en) * 1997-08-05 1999-02-18 Grand Polymer Co., Ltd. Polypropylene resin composition and use thereof
JPH11181178A (en) * 1997-12-19 1999-07-06 Grand Polymer:Kk Polyolefin resin composition, polyolefin resin composition for foaming and foamed body
JP2001348454A (en) * 2000-04-03 2001-12-18 Sumitomo Chem Co Ltd Thermoplastic resin sheet and container
JP2004322341A (en) * 2003-04-22 2004-11-18 Kawata Mfg Co Ltd Extrusion foam molding method for fine-cellular foam, extrusion foam molding apparatus and the fine-cellular foam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241517A (en) * 2008-03-31 2009-10-22 Prime Polymer Co Ltd Polypropylene based extrusion foamed article, and its manufacturing method
JP2009275150A (en) * 2008-05-15 2009-11-26 Prime Polymer Co Ltd Polypropylene-based extruded foam and method for producing it
JP2019137847A (en) * 2018-02-09 2019-08-22 株式会社プライムポリマー Propylene-based polymer composition and foamed molded product thereof
JP2019137848A (en) * 2018-02-09 2019-08-22 株式会社プライムポリマー Propylene-based polymer composition and production method thereof
JP7300839B2 (en) 2018-02-09 2023-06-30 株式会社プライムポリマー Propylene-based polymer composition and expanded molded product thereof
JP7391516B2 (en) 2018-02-09 2023-12-05 株式会社プライムポリマー Propylene polymer composition and method for producing the same
JP2020158652A (en) * 2019-03-27 2020-10-01 株式会社プライムポリマー Propylene-based polymer composition and molding thereof
JP2021024641A (en) * 2019-08-08 2021-02-22 三井化学株式会社 Drawn container

Also Published As

Publication number Publication date
JP5203587B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP4889483B2 (en) Propylene-based multistage polymer, method for producing the same, and propylene-based resin composition
EP1899415B1 (en) Propylene polymers having broad molecular weight distribution
EP2319885B1 (en) Heterophasic polypropylene resin with long chain branching
EP2046846B1 (en) Gas-phase process for preparing heterophasic propylene copolymers
EP2157104B1 (en) Ethylene polymer compositions
KR20190079656A (en) Process for producing polyolefin film composition and film produced therefrom
JP4999463B2 (en) Propylene resin extruded foam and method for producing propylene resin extruded foam
JP4999462B2 (en) Propylene resin extruded foam
JP5203587B2 (en) Propylene polymer and foam molded article
JP5202942B2 (en) Propylene resin extruded foam manufacturing method
EP2133389A1 (en) Polypropylene composition
JP7015635B2 (en) Effervescent polypropylene composition
JP7300839B2 (en) Propylene-based polymer composition and expanded molded product thereof
JP4103213B2 (en) Method for producing pre-expanded particles
JP2006241356A (en) Polypropylene-based resin composition for expansion molding by t die and its expansion molding
JP5301822B2 (en) Propylene resin composition and propylene resin foam molded article
EP4001325A1 (en) Polyethylene resin for secondary battery separator, method for manufacturing the same, and separator to which the same is applied
JP2009221473A (en) Polypropylene-based extrusion foamed article and its production method
JP4085673B2 (en) Propylene polymer composition and foam molded article obtained using the same
JP5123659B2 (en) Propylene resin extruded foam and method for producing propylene resin extruded foam
JP2009241517A (en) Polypropylene based extrusion foamed article, and its manufacturing method
JP2009299056A (en) Polypropylene-based injection foamed article, and method of manufacturing the same
KR20080023304A (en) Propylene polymers having broad molecular weight distribution
JPWO2006054716A1 (en) Propylene resin extruded foam
JP2009275150A (en) Polypropylene-based extruded foam and method for producing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5203587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250