JP2007119755A - Exterior material made from resin - Google Patents

Exterior material made from resin Download PDF

Info

Publication number
JP2007119755A
JP2007119755A JP2006263193A JP2006263193A JP2007119755A JP 2007119755 A JP2007119755 A JP 2007119755A JP 2006263193 A JP2006263193 A JP 2006263193A JP 2006263193 A JP2006263193 A JP 2006263193A JP 2007119755 A JP2007119755 A JP 2007119755A
Authority
JP
Japan
Prior art keywords
resin
inorganic filler
exterior material
plastic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006263193A
Other languages
Japanese (ja)
Other versions
JP4863827B2 (en
Inventor
Kenji Oka
健司 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
International Center for Environmental Technology Transfer
Original Assignee
International Center for Environmental Technology Transfer
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Center for Environmental Technology Transfer, Matsushita Electric Works Ltd filed Critical International Center for Environmental Technology Transfer
Priority to JP2006263193A priority Critical patent/JP4863827B2/en
Publication of JP2007119755A publication Critical patent/JP2007119755A/en
Application granted granted Critical
Publication of JP4863827B2 publication Critical patent/JP4863827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exterior material made from a resin, having an excellent strength characteristic and realizing an effective utilization of resources by recycling waste plastics. <P>SOLUTION: This exterior material made from the resin is obtained by molding a mixed/kneaded material obtained by mixing and kneading an inorganic filler obtained by decomposing plastics containing at least the inorganic filler and a resin with subcritical fluid and recovering, with a thermoplastic resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、FRP(ガラス繊維強化プラスチック)などに代表される使用済みの廃プラスチックを処理してリサイクルした樹脂製外装材に関する。   The present invention relates to a resin exterior material that is obtained by treating and recycling used waste plastic represented by, for example, FRP (glass fiber reinforced plastic).

プラスチックは、軽量、高強度であり、防錆性、耐食性、電気絶縁性、成型性、着色性などに優れ、さらに大量生産が可能であるという利点を有することから、浴室材、自動車、航空機などの用途に多用されている。プラスチックの使用量の増加に伴い、使用済みのプラスチックの廃棄量も増加する傾向にあり、使用済みの廃プラスチックをリサイクルして環境への負荷を軽減するために、盛んに研究開発が進められている。   Plastics are lightweight, high-strength, have excellent rust resistance, corrosion resistance, electrical insulation, moldability, colorability, etc., and have the advantage of being capable of mass production. It is widely used for applications. As the amount of plastic used increases, the amount of used plastic discarded also tends to increase. In order to recycle used plastic waste and reduce the burden on the environment, research and development has been actively promoted. Yes.

プラスチックは、熱硬化性樹脂と熱可塑性樹脂とに大別されるが、樹脂単独での使用に加えて、強度が必要な場合には、基材となるエポキシ樹脂又はフェノール樹脂等にガラス繊維やカーボン繊維などの強化材を含めた繊維強化プラスチックス(FRP:Fiber Reinforced Plastics)が用いられている。熱可塑性樹脂は、加熱溶融することで比較的容易に処理されるが、熱硬化性樹脂あるいはFRPなどのプラスチックは加熱溶融による処理が困難である。このため、廃プラスチックを粉砕した後、埋め立てて処理をしているが、将来、埋立地の不足が予想されている。また、廃プラスチックを燃料として利用するサーマルリサイクルも注目されているが、廃プラスチックの燃焼が不完全になると有害物質(例えば、ダイオキシン)が発生するなどの問題をも有していた。このため、廃プラスチックを処理する方法を確立することが急務となっている。   Plastics are broadly classified into thermosetting resins and thermoplastic resins. In addition to the use of the resin alone, if strength is required, glass fiber or Fiber reinforced plastics (FRP: Fiber Reinforced Plastics) including reinforcing materials such as carbon fibers are used. Thermoplastic resins are relatively easily processed by heating and melting, but thermosetting resins or plastics such as FRP are difficult to process by heating and melting. For this reason, waste plastic is crushed and then landfilled, but in the future, a shortage of landfill is expected. In addition, thermal recycling using waste plastic as fuel has attracted attention, but it also has problems such as generation of harmful substances (for example, dioxin) when waste plastic is incompletely combusted. For this reason, there is an urgent need to establish a method for treating waste plastic.

そこで、廃プラスチックを臨界点(臨界温度374℃、臨界圧力22.1MPa)以下の状態とした亜臨界水により分解して、樹脂モノマ又は無機物を回収する方法が開示されている(特許文献1参照)。
特開平11−140224号公報
Therefore, a method is disclosed in which waste plastics are decomposed with subcritical water in a state of a critical point (critical temperature 374 ° C., critical pressure 22.1 MPa) or less to recover a resin monomer or an inorganic substance (see Patent Document 1). ).
JP-A-11-140224

このように亜臨界水を用いて廃プラスチックを処理する方法によれば、廃プラスチックから樹脂モノマ又はオリゴマと無機物とを回収できるという利点を有するものの、回収した無機物を無機充填剤として再利用することは難しかった。   As described above, according to the method of treating waste plastic using subcritical water, the resin monomer or oligomer and the inorganic substance can be recovered from the waste plastic, but the recovered inorganic substance can be reused as an inorganic filler. Was difficult.

また、回収した無機物を無機充填剤としてエポキシ樹脂又はフェノール樹脂等の熱硬化性樹脂に混合して用いたとしても、未使用の無機充填剤を使用した場合に比べて、得られる成型品の強度特性が低下してしまう傾向を有していた。   In addition, even if the recovered inorganic material is used as an inorganic filler mixed with a thermosetting resin such as an epoxy resin or a phenol resin, the strength of the resulting molded product is higher than when an unused inorganic filler is used. There was a tendency for the characteristics to deteriorate.

本発明は、上記課題を解決するためになされたものであり、すなわち、本発明の樹脂製外装材は、無機充填剤と樹脂とを少なくとも含むプラスチックを亜臨界流体により分解して回収された無機充填剤と、熱可塑性樹脂と、を混錬した混錬物を成型して得られたことを要旨とする。   The present invention has been made to solve the above-described problems. That is, the resin exterior material of the present invention is an inorganic material recovered by decomposing a plastic containing at least an inorganic filler and a resin with a subcritical fluid. The gist is obtained by molding a kneaded material obtained by kneading a filler and a thermoplastic resin.

本発明の樹脂製外装材によれば、プラスチックを亜臨界水により加水分解して回収された無機物を無機充填剤として再利用することにより、優れた強度特性が得られ、さらに廃プラスチックのリサイクルにより資源を有効に活用することができる。   According to the resin exterior material of the present invention, excellent strength characteristics can be obtained by reusing the inorganic material recovered by hydrolyzing the plastic with subcritical water as an inorganic filler, and further by recycling the waste plastic. Resources can be used effectively.

以下、本発明の実施の形態に係る樹脂製外装材について説明する。   Hereinafter, the resin exterior material according to the embodiment of the present invention will be described.

本発明の実施の形態に係る樹脂製外装材は、無機充填剤と樹脂とを少なくとも含むプラスチックを亜臨界流体により分解して回収された無機充填剤と、熱可塑性樹脂と、を混錬した混錬物を成型して得られたものである。以下、さらに具体的に説明する。   The resin exterior material according to the embodiment of the present invention is a mixed material obtained by kneading an inorganic filler recovered by decomposing a plastic containing at least an inorganic filler and a resin with a subcritical fluid, and a thermoplastic resin. It was obtained by molding a smelt. More specific description will be given below.

最初に、無機充填剤と樹脂とを少なくとも含むプラスチックを亜臨界流体により加水分解して無機充填剤を回収する。   First, a plastic containing at least an inorganic filler and a resin is hydrolyzed with a subcritical fluid to recover the inorganic filler.

耐熱耐圧性の容器内に、サイズ0.5mm〜10mmに粗粉砕したプラスチックと亜臨界流体とを投入した後、加圧しながら加熱する。すると、プラスチックは、樹脂のモノマ又はオリゴマと、無機充填剤(例えば、炭酸カルシウム)などの無機物とに加水分解される。   Into a heat and pressure resistant container, a plastic and a subcritical fluid coarsely pulverized to a size of 0.5 mm to 10 mm are charged and heated while being pressurized. Then, the plastic is hydrolyzed into a resin monomer or oligomer and an inorganic substance such as an inorganic filler (for example, calcium carbonate).

ここで、プラスチックに含まれる樹脂としては、熱硬化性樹脂あるいは熱可塑性樹脂のいずれをも用いることができる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、アミノ樹脂、フェノール樹脂などが挙げられる。熱可塑性樹脂としては、塩化ビニル樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、アルキド樹脂、ポリカーボネート樹脂、ポリアミド樹脂などが挙げられる。特に、例示した樹脂の中でも、加熱による分解が難しい不飽和ポリエステル樹脂などの熱硬化性樹脂が好ましい。   Here, as the resin contained in the plastic, either a thermosetting resin or a thermoplastic resin can be used. Examples of the thermosetting resin include unsaturated polyester resins, acrylic resins, epoxy resins, polyurethane resins, amino resins, and phenol resins. Examples of the thermoplastic resin include vinyl chloride resin, polyethylene resin, polystyrene resin, polypropylene resin, polybutadiene resin, alkyd resin, polycarbonate resin, and polyamide resin. Particularly, among the exemplified resins, thermosetting resins such as unsaturated polyester resins that are difficult to decompose by heating are preferable.

プラスチックに含まれる無機充填剤としては、ガラス繊維、水酸化カルシウム、炭酸カルシウム、マイカ(金雲母)、シリカ、ケイ酸塩(クレー等)、アルミナ、チタニア、ジルコニア、タルクなどが挙げられるが、特に、無機充填剤としてガラス繊維や水酸化アルミニウム、炭酸カルシウムを含んでいるものが好ましい。無機充填剤としてガラス繊維を用いると成型後の樹脂製外装材の強度が高まるからであり、無機充填剤として水酸化アルミニウムを用いると成型後の樹脂製外装材の難燃性が向上するからである。このような無機充填剤を含有させたプラスチックとして、例えば、基材となるエポキシ樹脂又は不飽和ポリエステル樹脂等にガラス繊維やカーボン繊維などの強化材を含めた繊維強化プラスチックス(FRP)を用いることが好ましい。   Examples of the inorganic filler contained in the plastic include glass fiber, calcium hydroxide, calcium carbonate, mica (phlogopite), silica, silicate (clay, etc.), alumina, titania, zirconia, talc, etc. The inorganic filler preferably contains glass fiber, aluminum hydroxide, or calcium carbonate. This is because the use of glass fiber as the inorganic filler increases the strength of the molded resin exterior material, and the use of aluminum hydroxide as the inorganic filler improves the flame retardancy of the molded resin exterior material. is there. As a plastic containing such an inorganic filler, for example, fiber reinforced plastics (FRP) including a reinforcing material such as glass fiber or carbon fiber in an epoxy resin or unsaturated polyester resin as a base material is used. Is preferred.

無機充填剤は、無機充填剤及び熱可塑性樹脂の総重量に対して、50重量%〜80重量%の比率で含有していることが好ましく、そのうち回収した無機充填剤は、10重量%〜40重量%の比率で含有していることが好ましい。また、残りの成分としては、上記したような無機材料の他、コンクリート粉、ガラス粉、焼却灰などの無機質廃材も用いることができる。   The inorganic filler is preferably contained at a ratio of 50% by weight to 80% by weight with respect to the total weight of the inorganic filler and the thermoplastic resin, and the recovered inorganic filler is 10% by weight to 40%. It is preferable to contain in the ratio of weight%. In addition to the inorganic materials described above, inorganic waste materials such as concrete powder, glass powder, and incinerated ash can be used as the remaining components.

さらに、亜臨界流体により分解する前のプラスチックの平均粒径は、0.5mm〜10mmとすることが好ましく、0.5mm〜2mmとすることが特に好ましい。プラスチックの平均粒径が0.5mm未満になると、亜臨界分解後のプラスチック分解液から無機充填剤をろ過などにより分離することが困難となるからであり、逆に、プラスチックの平均粒径が10mmを超えると、成型が困難となるからである。   Furthermore, the average particle size of the plastic before being decomposed by the subcritical fluid is preferably 0.5 mm to 10 mm, and particularly preferably 0.5 mm to 2 mm. If the average particle size of the plastic is less than 0.5 mm, it becomes difficult to separate the inorganic filler from the plastic decomposition solution after subcritical decomposition by filtration. Conversely, the average particle size of the plastic is 10 mm. This is because it becomes difficult to mold.

亜臨界流体としては、水、一価のアルコール、多価のアルコール又はこれらの混合物を用いることができる。一価のアルコールとしては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールなどを挙げることができる。多価のアルコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどのグリコール類を挙げることができるが、例示したアルコールに限定されないのはもちろんである。亜臨界流体として水を用いる場合には、予め脱塩処理することが好ましい。また、分解を促進するために、亜臨界流体としてアルカリ金属の水酸化物の水溶液を用いても良い。   As the subcritical fluid, water, monohydric alcohol, polyhydric alcohol, or a mixture thereof can be used. Examples of the monovalent alcohol include methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol. Examples of the polyhydric alcohol include glycols such as ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol, but the alcohol is not limited to the exemplified alcohols. When water is used as the subcritical fluid, it is preferable to carry out a desalting treatment in advance. In order to accelerate decomposition, an alkali metal hydroxide aqueous solution may be used as the subcritical fluid.

亜臨界流体は、プラスチック100重量%に対して、100重量%〜500重量%の範囲で配合することが好ましい。亜臨界流体の配合量が100重量%未満になると、プラスチックを安定して分解することができず、逆に、亜臨界流体の配合量が500重量%を超えると、分解後の流体の処理コストが高くなるからである。なお、亜臨界流体としてアルカリ金属の水酸化物の水溶液を用いた場合には、アルカリ金属の水酸化物をプラスチック100重量%に対して20〜100重量%の範囲で配合することが好ましい。   The subcritical fluid is preferably blended in the range of 100 wt% to 500 wt% with respect to 100 wt% of the plastic. If the blending amount of the subcritical fluid is less than 100% by weight, the plastic cannot be stably decomposed. Conversely, if the blending amount of the subcritical fluid exceeds 500% by weight, the processing cost of the fluid after the decomposition Because it becomes higher. When an aqueous solution of an alkali metal hydroxide is used as the subcritical fluid, the alkali metal hydroxide is preferably blended in the range of 20 to 100% by weight with respect to 100% by weight of the plastic.

分解時の温度は、180℃〜270℃とすることが好ましい。分解時の温度が180℃未満になると分解処理に長時間を要するからであり、逆に、分解時の温度が270℃を超えると、加水分解よりも熱分解の反応が進行してしまい、樹脂をモノマあるいはオリゴマとして回収することが困難となるからである。   The temperature during decomposition is preferably 180 ° C to 270 ° C. This is because if the temperature at the time of decomposition is less than 180 ° C., it takes a long time for the decomposition treatment. Conversely, if the temperature at the time of decomposition exceeds 270 ° C., the reaction of thermal decomposition proceeds rather than hydrolysis. This is because it becomes difficult to recover the polymer as a monomer or an oligomer.

分解時の時間及び圧力は、特に限定されないが、温度を180℃〜270℃とした場合には、1時間〜4時間、2MPa〜15MPaとすることが好ましい。   The time and pressure at the time of decomposition are not particularly limited, but when the temperature is 180 ° C. to 270 ° C., it is preferably 1 to 4 hours and 2 to 15 MPa.

上記条件下においてプラスチックを亜臨界流体により分解した後、濾過を行い、樹脂のモノマ又はオリゴマと、無機物(炭酸カルシウム、ガラス繊維など)とに分離する。濾過後の濾液として樹脂のモノマ又はオリゴマが溶解した亜臨界流体を回収し、残渣として無機物を回収する。なお、亜臨界流体としてアルカリ金属の水酸化物の水溶液を用いた場合、回収した無機物をそのまま再利用することも可能であるが、濾過後の残渣にはアルカリ金属が付着しているため、アルカリ金属が付着した状態のままの残渣を無機充填剤として樹脂に混錬すると、成型後の樹脂製外装材の酸性雨に対する性能に代表される化学的性能に悪影響を与えてしまう可能性がある。そのため、濾過後の残渣を水で洗浄して、残渣に付着したアルカリ成分を除去して用いるようにしても良い。   Under the above conditions, the plastic is decomposed with a subcritical fluid, followed by filtration to separate the resin monomer or oligomer and inorganic substances (calcium carbonate, glass fiber, etc.). A subcritical fluid in which a resin monomer or oligomer is dissolved is recovered as a filtrate after filtration, and an inorganic substance is recovered as a residue. When an aqueous solution of alkali metal hydroxide is used as the subcritical fluid, the recovered inorganic substance can be reused as it is. However, since alkali metal adheres to the residue after filtration, If the residue with the metal attached is kneaded into the resin as an inorganic filler, there is a possibility of adversely affecting the chemical performance typified by the performance against acid rain of the molded resin exterior material. For this reason, the residue after filtration may be washed with water to remove the alkali component adhering to the residue.

次に、無機充填剤と熱可塑性樹脂とを混錬する方法を説明する。具体的には、ニーダーを用いて、回収した無機充填剤と熱可塑性樹脂とを均一に混錬して樹脂製外装材の原料とする。なお、均一な混錬物とするために、混錬する際に適宜ニーダーを加熱して、熱可塑性樹脂を溶融しながら混錬しても良い。   Next, a method for kneading the inorganic filler and the thermoplastic resin will be described. Specifically, using a kneader, the recovered inorganic filler and the thermoplastic resin are uniformly kneaded to obtain a raw material for the resin exterior material. In order to obtain a uniform kneaded product, the kneader may be appropriately heated during kneading to knead while melting the thermoplastic resin.

ここで、熱可塑性樹脂としては、塩化ビニル樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、アルキド樹脂、ポリカーボネート樹脂、ポリアミド樹脂などを挙げることができるが、これらに限定されるものではない。   Here, examples of the thermoplastic resin include, but are not limited to, vinyl chloride resin, polyethylene resin, polystyrene resin, polypropylene resin, polybutadiene resin, alkyd resin, polycarbonate resin, and polyamide resin.

無機充填剤は、無機充填剤と熱可塑性樹脂との総重量に対して50〜80重量%の比率で配合することが好ましく、そのうち回収した無機充填剤は、総重量に対して10重量%〜40重量%の比率で含有していることが好ましい。回収した無機充填剤が10重量%未満になると、樹脂製外装材の強度が低下するからである。逆に、無機充填剤が40重量%を超えると、成型後の樹脂製外装材の比重が増えて、外装材1枚あたりの重量が大きくなり、施工時の作業性が低下するからである。   The inorganic filler is preferably blended at a ratio of 50 to 80% by weight with respect to the total weight of the inorganic filler and the thermoplastic resin, and the recovered inorganic filler is 10% by weight to the total weight. It is preferable to contain in the ratio of 40 weight%. This is because when the recovered inorganic filler is less than 10% by weight, the strength of the resin exterior material is lowered. On the contrary, if the inorganic filler exceeds 40% by weight, the specific gravity of the molded resin exterior material increases, the weight per exterior material increases, and the workability during construction decreases.

最後に、得られた無機充填剤と熱可塑性樹脂との混錬物を、加熱成型して、壁材、瓦など、建物の外装や屋外に設置されるものに用いられる樹脂製の建材(樹脂製外装材)を製造する。なお、樹脂製外装材の形状に応じて、成型条件(金型温度、プラス圧力等)を適宜設定することができる。   Finally, the kneaded product of the obtained inorganic filler and thermoplastic resin is heat-molded, and it is a resin building material (resin used for building exteriors such as wall materials and roof tiles and outdoors) Manufacturing exterior materials). The molding conditions (mold temperature, plus pressure, etc.) can be appropriately set according to the shape of the resin exterior material.

以下、実施例を用いて具体的に説明する。なお、実施例1〜実施例4では、プラスチックとしてFRP(松下電工(株)社製のFRPバスタブ)を使用した。具体的には、不飽和ポリエステル樹脂20重量%と、強化材としてガラス繊維20重量%、炭酸カルシウム55重量%、その他無機物5重量%を含有したFRPを用いた。なお、本発明の樹脂製外装材は、以下に例示する実施例に限定されるものではない。   Hereinafter, a specific description will be given using examples. In Examples 1 to 4, FRP (FRP bathtub manufactured by Matsushita Electric Works Co., Ltd.) was used as the plastic. Specifically, FRP containing 20% by weight of unsaturated polyester resin and 20% by weight of glass fiber, 55% by weight of calcium carbonate, and 5% by weight of other inorganic substances as a reinforcing material was used. In addition, the resin exterior material of this invention is not limited to the Example illustrated below.

実施例1
圧力容器内に、粗粉砕してサイズ2mmとしたFRP600gと、濃度0.8mol/Lの水酸化カリウム水溶液2400gとを投入した後、ヒータで圧力容器内の水を加熱して亜臨界状態(臨界点(臨界温度374℃、臨界圧力22.1MPa)以下の状態)とし、2時間放置してFPRを加水分解した。
Example 1
In a pressure vessel, 600 g of FRP coarsely pulverized to a size of 2 mm and 2400 g of a 0.8 mol / L potassium hydroxide aqueous solution were added, and then the water in the pressure vessel was heated with a heater to form a subcritical state (critical The FPR was hydrolyzed by setting it to a point (state of a critical temperature of 374 ° C. and a critical pressure of 22.1 MPa) or less and leaving it for 2 hours.

その後、圧力容器を室温まで冷却した後、内容物をブフナー濾斗で濾過して、分解して得られた樹脂のモノマーまたはオリゴマ成分を除去した。   Then, after cooling the pressure vessel to room temperature, the content was filtered with a Buchner funnel to remove the monomer or oligomer component of the resin obtained by decomposition.

次に、洗浄後の残渣を140℃の乾燥機で4時間乾燥し、水分を除去して無機充填剤を回収した。   Next, the washed residue was dried with a dryer at 140 ° C. for 4 hours to remove water and recover the inorganic filler.

回収した無機充填剤20重量%とコンクリート粉45重量%とポリプロピレン樹脂35重量%とをニーダーで230℃に加熱しながら均一となるまで混錬した。得られた混錬物をプレス機により成型して、長さ400mm、幅400mm、厚さ5mmの試験サンプルを得た。なお、この時の成型条件は、チャージ量300g、金型温度120℃、成型圧力6kg/cm2、チャージ時間60秒とした。   The recovered inorganic filler (20% by weight), concrete powder (45% by weight) and polypropylene resin (35% by weight) were kneaded until they became uniform while being heated to 230 ° C. with a kneader. The obtained kneaded material was molded by a press machine to obtain a test sample having a length of 400 mm, a width of 400 mm, and a thickness of 5 mm. The molding conditions at this time were a charge amount of 300 g, a mold temperature of 120 ° C., a molding pressure of 6 kg / cm 2, and a charge time of 60 seconds.

実施例2
実施例2では、粗粉砕してサイズ10mmとしたFRPを用いたこと以外は実施例1と同様の方法を用いて無機充填剤を回収し、実施例1と同様の方法を用いて試験サンプルを得た。
Example 2
In Example 2, the inorganic filler was recovered using the same method as in Example 1 except that FRP coarsely pulverized to a size of 10 mm was used, and the test sample was prepared using the same method as in Example 1. Obtained.

実施例3
実施例3では、粗粉砕してサイズ10mmとしたFRPを用いたこと以外は実施例1と同様の方法を用いて無機充填剤を回収した。そして、回収した無機充填剤20重量%とコンクリート粉40重量%とポリプロピレン樹脂40重量%とをニーダーで230℃に加熱しながら均一となるまで混錬した。得られた混錬物をプレス機により成型して、長さ400mm、幅400mm、厚さ5mmの試験サンプルを得た。なお、この時の成型条件は実施例1と同様とした。
Example 3
In Example 3, the inorganic filler was recovered using the same method as in Example 1 except that FRP coarsely pulverized to a size of 10 mm was used. Then, 20% by weight of the recovered inorganic filler, 40% by weight of concrete powder, and 40% by weight of polypropylene resin were kneaded until they became uniform while being heated to 230 ° C. with a kneader. The obtained kneaded material was molded by a press machine to obtain a test sample having a length of 400 mm, a width of 400 mm, and a thickness of 5 mm. The molding conditions at this time were the same as in Example 1.

実施例4
実施例4では、粗粉砕してサイズ20mmとしたFRPを用いたこと以外は実施例1と同様の方法を用いて無機充填剤を回収し、実施例1と同様の方法を用いて試験サンプルを得た。
Example 4
In Example 4, the inorganic filler was recovered using the same method as in Example 1 except that FRP coarsely pulverized to a size of 20 mm was used, and the test sample was prepared using the same method as in Example 1. Obtained.

上記実施例から得られた各試験サンプルについて、曲げ強度、シャルピー衝撃強度及び、比重の評価を行った。なお、曲げ強度はJIS規格K7171、シャルピー衝撃強度はJIS規格K7111、比重はJIS規格K7112に準拠して、それぞれ試験を行った。   About each test sample obtained from the said Example, bending strength, Charpy impact strength, and specific gravity were evaluated. The bending strength was tested according to JIS standard K7171, the Charpy impact strength was tested according to JIS standard K7111, and the specific gravity was tested according to JIS standard K7112.

得られた評価結果を表1に示す。

Figure 2007119755
The obtained evaluation results are shown in Table 1.
Figure 2007119755

表1に示す結果から、各実施例で得られたサンプルは、一般に外装材として用いられる抄造法で製造したセメント製外装材の曲げ強度12〜13MPa、比重1.1と比べて大差なく、また、その他の項目も物性上大きく問題となる項目はなく、樹脂製外装材として使用できることが判明した。   From the results shown in Table 1, the samples obtained in each example are not much different from the bending strength of 12 to 13 MPa and the specific gravity of 1.1 of the cement-made exterior material manufactured by the papermaking method generally used as the exterior material. As for the other items, it was found that there are no items that are greatly problematic in terms of physical properties, and that they can be used as resin exterior materials.

Claims (6)

無機充填剤と樹脂とを少なくとも含むプラスチックを亜臨界流体により分解して回収された無機充填剤と、熱可塑性樹脂と、を混錬した混錬物を成型して得られたことを特徴とする樹脂製外装材。   It is obtained by molding a kneaded product obtained by kneading a plastic containing at least an inorganic filler and a resin with a subcritical fluid and recovering the inorganic filler and a thermoplastic resin. Resin exterior material. 前記無機充填剤は、ガラス繊維又は炭酸カルシウムであることを特徴とする請求項1記載の樹脂製外装材。   The resinous exterior material according to claim 1, wherein the inorganic filler is glass fiber or calcium carbonate. 前記プラスチックの平均粒径が、0.5mm〜10mmであることを特徴とする請求項1又は2記載の樹脂製外装材。   The resin outer packaging material according to claim 1 or 2, wherein the plastic has an average particle size of 0.5 mm to 10 mm. 前記無機充填剤は、無機充填剤と熱可塑性樹脂との総重量に対して、10重量%〜40重量%の比率で配合されることを特徴とする請求項1乃至3のいずれか1項に記載の樹脂製外装材。   The said inorganic filler is mix | blended in the ratio of 10 weight%-40 weight% with respect to the total weight of an inorganic filler and a thermoplastic resin, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The resin exterior material described. 前記無機充填剤は、水酸化アルミニウムであることを特徴とする請求項1乃至4のいずれか1項に記載の樹脂製外装材。   The resinous exterior material according to any one of claims 1 to 4, wherein the inorganic filler is aluminum hydroxide. 前記プラスチックに含まれる樹脂は、不飽和ポリエステル樹脂であることを特徴とする請求項1乃至5のいずれか1項に記載の樹脂製外装材。   The resin exterior material according to claim 1, wherein the resin contained in the plastic is an unsaturated polyester resin.
JP2006263193A 2005-09-27 2006-09-27 Resin exterior material Expired - Fee Related JP4863827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263193A JP4863827B2 (en) 2005-09-27 2006-09-27 Resin exterior material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005279807 2005-09-27
JP2005279807 2005-09-27
JP2006263193A JP4863827B2 (en) 2005-09-27 2006-09-27 Resin exterior material

Publications (2)

Publication Number Publication Date
JP2007119755A true JP2007119755A (en) 2007-05-17
JP4863827B2 JP4863827B2 (en) 2012-01-25

Family

ID=38143915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263193A Expired - Fee Related JP4863827B2 (en) 2005-09-27 2006-09-27 Resin exterior material

Country Status (1)

Country Link
JP (1) JP4863827B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040014A1 (en) * 2019-08-30 2021-03-04 学校法人早稲田大学 Polymeric material, production method therefor, and polymeric material composition
WO2023068386A1 (en) * 2021-10-18 2023-04-27 주식회사 그린환경 Method for recycling waste plastic by using subcritical hydrothermal treatment
WO2023068385A1 (en) * 2021-10-18 2023-04-27 주식회사 그린환경 Method for recycling waste plastic by using subcritical hydrothermal treatment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087872A (en) * 1996-09-09 1998-04-07 Agency Of Ind Science & Technol Method for recovering and reusing fiber from fiber-reinforced plastic
JP2003103529A (en) * 2001-03-06 2003-04-09 Toray Ind Inc Highly conductive resin molding and its manufacturing method
JP2003190759A (en) * 2001-12-26 2003-07-08 Mitsubishi Rayon Co Ltd Method for manufacturing recycled carbon fiber
JP2004277513A (en) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd Apparatus for decomposing plastic
JP2004358423A (en) * 2003-06-06 2004-12-24 Chubu Electric Power Co Inc Recycling method of metal / resin composite material
JP2005126667A (en) * 2003-03-19 2005-05-19 Sumitomo Bakelite Co Ltd Method for treating and recycling plastic, treated and recovered plastic material, and recycled plastic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087872A (en) * 1996-09-09 1998-04-07 Agency Of Ind Science & Technol Method for recovering and reusing fiber from fiber-reinforced plastic
JP2003103529A (en) * 2001-03-06 2003-04-09 Toray Ind Inc Highly conductive resin molding and its manufacturing method
JP2003190759A (en) * 2001-12-26 2003-07-08 Mitsubishi Rayon Co Ltd Method for manufacturing recycled carbon fiber
JP2004277513A (en) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd Apparatus for decomposing plastic
JP2005126667A (en) * 2003-03-19 2005-05-19 Sumitomo Bakelite Co Ltd Method for treating and recycling plastic, treated and recovered plastic material, and recycled plastic
JP2004358423A (en) * 2003-06-06 2004-12-24 Chubu Electric Power Co Inc Recycling method of metal / resin composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040014A1 (en) * 2019-08-30 2021-03-04 学校法人早稲田大学 Polymeric material, production method therefor, and polymeric material composition
WO2023068386A1 (en) * 2021-10-18 2023-04-27 주식회사 그린환경 Method for recycling waste plastic by using subcritical hydrothermal treatment
WO2023068385A1 (en) * 2021-10-18 2023-04-27 주식회사 그린환경 Method for recycling waste plastic by using subcritical hydrothermal treatment

Also Published As

Publication number Publication date
JP4863827B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
Kazemi et al. State of the art in recycling waste thermoplastics and thermosets and their applications in construction
JP7359405B2 (en) Method for producing carbon fiber and carbon fiber reinforced resin composition
Kim et al. Rubber recycling: challenges and developments
JP2007084713A (en) Method for producing thermoplastic resin composition containing cellulose fiber
CN102229482B (en) Manufacturing method of composite enhanced insulating section bar
JP4863827B2 (en) Resin exterior material
KR100883365B1 (en) Recycling method of waste acrylic resin and a composition for acrylic artificial marble using recycled (meth)acrylic monomer
JP2006206638A (en) Method of decomposing artificial marble
CN101962469A (en) Method for preparing full-degradable lactic acid composite material from secondary fibers of waste newspaper
CN108587019A (en) A kind of plastic master batch, preparation method and plastic products being made from it that paint slag is modified
JP2010168560A (en) Method for decomposing composite material
US20020103266A1 (en) Chemical method of removing paint film on plastic resin using isopropyl alchohol
CN104327377A (en) Circulation box for cyclic utilization production of waste plastics and preparation method of circulation box
JP2008031412A (en) Modified styrene-fumaric acid copolymer, low shrinkage material using it, method of recovery/reuse of thermoplastic resin and manufacturing process of modified styrene-fumaric acid copolymer
JP2008208186A (en) Modified styrene-fumaric acid copolymer for low-shrinkage material of thermosetting resin, method for producing the same, and method for recovering and reusing thermosetting resin
JP4096000B2 (en) Recycling method for organic fiber reinforced plastic waste
CN103160024B (en) Method of utilizing waste polyurethane foaming plastic and nonmetal powder to prepare composite materials
JP2002240037A (en) Method for reusing plastic parts and plastic raw material and plastic molded parts made by the method
KR100265065B1 (en) Waste plastic material texture method
JP4882543B2 (en) Low shrinkage material using modified styrene-fumaric acid copolymer
Perrin et al. Treatment of SMC composite waste for recycling as reinforcing fillers in thermoplastics
JP2009029917A (en) Low shrinkage material for plastic, plastic molded article using the same, method for producing low shrinkage material for plastic, and method for recovering and reusing plastic
JP2004331719A (en) Method for pyrolyzing thermosetting resin and pyrolysis product of thermosetting resin
JP2005081794A (en) Recycled fiber reinforced plastic molding
KR20140109680A (en) Manufacturing Method of Foamed or Non-foame Sheet recycling artificial marble waste

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees