JP2007119570A - Friction material and method for producing the same - Google Patents

Friction material and method for producing the same Download PDF

Info

Publication number
JP2007119570A
JP2007119570A JP2005312523A JP2005312523A JP2007119570A JP 2007119570 A JP2007119570 A JP 2007119570A JP 2005312523 A JP2005312523 A JP 2005312523A JP 2005312523 A JP2005312523 A JP 2005312523A JP 2007119570 A JP2007119570 A JP 2007119570A
Authority
JP
Japan
Prior art keywords
friction
friction material
resin
friction surface
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005312523A
Other languages
Japanese (ja)
Other versions
JP4260156B2 (en
Inventor
Hiroaki Hiramatsu
宏章 平松
Masaki Tominaga
政紀 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2005312523A priority Critical patent/JP4260156B2/en
Publication of JP2007119570A publication Critical patent/JP2007119570A/en
Application granted granted Critical
Publication of JP4260156B2 publication Critical patent/JP4260156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction material capable of attaining excellent initial characteristics and a high positive μ-V gradient while keeping ultra-high heat resistance without undergoing strength decrease. <P>SOLUTION: Base fibers and a filler are made into a paper-like sheet (S10). The paper-like sheet is impregnated with a thermosetting resin (S11), and the impregnated sheet is dried in a fashion in which the temperature of a friction surface is lower, and the temperature of a surface opposite to the friction surface is higher (S12). Because the resin in the friction material moves from the lower temperature part to the higher temperature part as the result of pull by the solvent which moves to the higher temperature part and becomes dry, the distribution of resin quantities in the thickness direction can be highest near the surface opposite to the friction material and can be lowest near the friction surface. The thermosetting resin is heat-cured (S13), and, of the part made entirely of the resin on the friction surface, an about 10±5 μm ultrasurface part is removed by grind with an abrasive (S14). The thus obtained friction material 1 can attain an excellent positive μ-V gradient because of the reduced influence of the resin as well as the low resin concentration near the surface of the friction surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車等の自動変速機やオートバイ等の変速機等に用いられる複数または単数の摩擦板を設けた摩擦材係合装置用の摩擦材及びその製造方法に関するものである。   The present invention relates to a friction material for a friction material engaging device provided with a plurality of or a single friction plate used in an automatic transmission such as an automobile or a transmission such as a motorcycle, and a method of manufacturing the friction material.

潤滑油中で使用される多板形クラッチ等の湿式摩擦係合装置において、湿式摩擦プレートの湿式摩擦材としては、燒結合金系、カーボン系、あるいはコルク系等の湿式摩擦材も知られているが、「ペーパー摩擦材」とも呼ばれるペーパー系湿式摩擦材が一般的に用いられている。   In wet friction engagement devices such as multi-plate clutches used in lubricating oil, wet friction materials such as saddle-bonded gold, carbon or cork are also known as wet friction materials for wet friction plates. However, a paper-type wet friction material also called “paper friction material” is generally used.

この湿式摩擦材は、パルプやアラミド繊維等の基材繊維と摩擦調整剤や体質充填材等の充填材とを抄造して得た抄紙体に、熱硬化性樹脂からなる樹脂結合剤を含浸し、加熱硬化して形成したものであり、軽量で安価であるだけでなく、材質が多孔質で比較的弾性にも富むため油吸収性が高く、しかも、耐熱性、耐摩耗性等にも比較的優れている等の特長を有している。   This wet friction material is made by impregnating a paper binder obtained by making a base fiber such as pulp or aramid fiber and a filler such as a friction modifier or a body filler with a resin binder made of a thermosetting resin. It is formed by heat-curing and is not only lightweight and inexpensive, but also has a high oil absorbency because it is porous and relatively elastic, and it is also compared with heat resistance, wear resistance, etc. It has features such as excellent performance.

ここで、摩擦材の摩擦表面付近の樹脂の存在は、摩擦材の耐熱性(特に、耐ヒートスポット性)を決定する要因の一つであり、摩擦表面付近の樹脂量が多いと摩擦材が硬くなり耐熱性が低下するため、摩擦表面付近の樹脂量は少ないことが望ましいと考えられているが、摩擦表面付近の樹脂量を減らすため摩擦材中の樹脂量を減らせば摩擦材としての強度を維持することができなくなるため、必要最小限の樹脂を配合することにより、耐熱性と強度のバランスを確保している。しかし近年、摩擦材には、さらなる超高耐熱性が要求されている。   Here, the presence of resin near the friction surface of the friction material is one of the factors that determine the heat resistance (particularly heat spot resistance) of the friction material. It is thought that it is desirable that the amount of resin near the friction surface is small because it becomes harder and heat resistance decreases, but if the amount of resin in the friction material is reduced to reduce the amount of resin near the friction surface, the strength as a friction material Therefore, the balance between heat resistance and strength is ensured by blending the minimum necessary resin. In recent years, however, the friction material has been required to have even higher heat resistance.

そこで、特許文献1においては、摩擦材の摩擦表面付近の樹脂量を摩擦材の厚み方向の樹脂量分布において樹脂量が最も高い部分よりも低くすることによって、強度低下を起こすことなく低コストで超高耐熱性を有する摩擦材とその製造方法の発明について開示されている。   Therefore, in Patent Document 1, the resin amount in the vicinity of the friction surface of the friction material is made lower than the portion having the highest resin amount in the resin amount distribution in the thickness direction of the friction material, thereby reducing the strength without causing a decrease in strength. An invention of a friction material having ultra-high heat resistance and a manufacturing method thereof is disclosed.

また、特許文献2には、摩擦表面を摺動時の圧力及び摩擦熱により処理する平坦面と、その平坦面上に形成された複数個の溝と、その平坦面とその溝の側面との間に形成された研磨角部とからなる研磨面のみを用いて研磨することを特徴とする湿式摩擦部材の初期ならし方法の特許発明について開示されている。かかる初期ならし方法によって、従来の初期ならし装置を用いる場合に比較して短時間かつ低コストで湿式摩擦部材の初期ならしを行うことができる。
特開2004−205036号公報 特許第3658168号公報
Patent Document 2 discloses a flat surface for treating a friction surface with sliding pressure and frictional heat, a plurality of grooves formed on the flat surface, the flat surface, and a side surface of the groove. A patent invention of an initial smoothing method for a wet friction member characterized in that polishing is performed using only a polishing surface composed of a polishing corner portion formed therebetween. By such an initial leveling method, it is possible to perform the initial leveling of the wet friction member in a shorter time and at a lower cost than when using a conventional initial leveling device.
JP 2004-205036 A Japanese Patent No. 3658168

しかしながら、摩擦材には超高耐熱性と同時に良好な摩擦特性(μ−V正勾配性、初期特性、等)が要求される。上記特許文献1に記載の摩擦材においてもある程度良好な摩擦特性が得られるが、さらに高いμ−V正勾配性が要求されている。また、上記特許文献2に記載の特許発明は、初期特性を安定させるものではあるが、高いμ−V正勾配性が得られるといった効果は期待できない。   However, the friction material is required to have excellent friction characteristics (μ-V positive gradient, initial characteristics, etc.) as well as ultra-high heat resistance. The friction material described in the above-mentioned Patent Document 1 can also obtain a certain level of good friction characteristics, but still requires a higher μ-V positive gradient. Moreover, although the patent invention described in Patent Document 2 stabilizes the initial characteristics, it cannot be expected to have an effect of obtaining a high μ-V positive gradient.

そこで、本発明は、強度低下を起こすことなく超高耐熱性を維持しつつ優れた初期特性と高いμ−V正勾配性を得ることができる摩擦材及びその製造方法を提供することを課題とするものである。   Then, this invention makes it a subject to provide the friction material which can obtain the outstanding initial characteristic and high micro-V positive gradient property, and its manufacturing method, maintaining ultrahigh heat resistance, without raise | generating strength reduction. To do.

請求項1の発明にかかる摩擦材は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布は摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低く形成され、空気中で前記摩擦表面の極表層部が研磨されてなるものである。   In the friction material according to the first aspect of the present invention, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is formed lower in the vicinity of the friction surface than the portion with the highest resin amount in the thickness direction. The extreme surface layer portion of the friction surface is polished in air.

ここで、「空気中で」とは、上記特許文献2に記載の特許発明のように液体(潤滑油)中で研磨するのではなく、ドライの状態で研磨することを意味する。また、「極表層部」とは摩擦表面の極めて薄い表層の部分を意味するものであり、数値的には摩擦表面から数μm〜数十μmの範囲内である。   Here, “in air” means that polishing is not performed in a liquid (lubricating oil) as in the patent invention described in Patent Document 2, but is performed in a dry state. Further, the “pole surface layer portion” means a surface layer portion having a very thin friction surface, and numerically falls within the range of several μm to several tens μm from the friction surface.

請求項2の発明にかかる摩擦材は、請求項1の構成において、前記摩擦材の樹脂量は摩擦表面側と反摩擦面側とで摩擦表面側が5%以上低くされているものである。   The friction material according to a second aspect of the present invention is the friction material according to the first aspect, wherein the resin amount of the friction material is lower by 5% or more on the friction surface side and the anti-friction surface side.

請求項3の発明にかかる摩擦材は、請求項1の構成において、前記摩擦材の樹脂量は摩擦表面側と摩擦材内部とで摩擦表面側が5%以上低くされているものである。   A friction material according to a third aspect of the present invention is the friction material according to the first aspect, wherein the amount of resin of the friction material is reduced by 5% or more on the friction surface side between the friction surface side and the friction material side.

請求項4の発明にかかる摩擦材は、請求項1乃至請求項3のいずれか1つの構成において、前記摩擦材の樹脂量の分布は連続的に変化させたものである。   The friction material according to a fourth aspect of the present invention is the friction material according to any one of the first to third aspects, wherein the distribution of the resin amount of the friction material is continuously changed.

請求項5の発明にかかる摩擦材は、請求項1乃至請求項3のいずれか1つの構成において、前記摩擦材の樹脂量の分布は不連続的に変化させたものである。   The friction material according to a fifth aspect of the present invention is the friction material according to any one of the first to third aspects, wherein the distribution of the resin amount of the friction material is changed discontinuously.

請求項6の発明にかかる摩擦材の製造方法は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程と、空気中で前記摩擦表面の極表層部を表面研磨する工程とを具備するものである。   In the method for manufacturing a friction material according to the sixth aspect of the present invention, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is greater than the portion of the resin amount in the vicinity of the friction surface having the highest resin amount in the thickness direction. And a step of surface polishing the extreme surface layer portion of the friction surface in the air.

請求項7の発明にかかる摩擦材の製造方法は、請求項6の構成において、前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、前記摩擦材を乾燥する際に一方の表面の温度を低くし及び/またはもう一方の表面の温度を高くする工程を含むものである。   According to a seventh aspect of the present invention, there is provided a friction material manufacturing method according to the sixth aspect of the present invention, wherein the distribution of the amount of resin in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is in the thickness direction. The step of forming the resin so as to be lower than the highest resin amount portion includes a step of lowering the temperature of one surface and / or increasing the temperature of the other surface when drying the friction material. .

請求項8の発明にかかる摩擦材の製造方法は、請求項6の構成において、前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、前記摩擦材を乾燥する際に、2枚の摩擦材の摩擦表面同士を重ね合わせたまま乾燥した後、別々にしてまたは重ね合わせたまま高温で硬化させる工程を含むものである。   The friction material manufacturing method according to the invention of claim 8 is the structure according to claim 6, wherein the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is such that the vicinity of the friction surface is in the thickness direction. The step of forming the resin material so as to be lower than the portion with the highest resin amount is to dry the friction material with the friction surfaces of the two friction materials being overlapped with each other and then separately or overlapping. It includes a step of curing at a high temperature while keeping them together.

請求項9の発明にかかる摩擦材の製造方法は、請求項6の構成において、前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、2枚以上の樹脂量を異にする摩擦材を形成し、少なくとも、それらの1以上の樹脂量を異にする摩擦材の乾燥完了前に重ね合わせて一体化する工程を含むものである。   According to a ninth aspect of the present invention, there is provided the friction material manufacturing method according to the sixth aspect of the present invention, wherein the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is the vicinity of the friction surface in the thickness direction. The step of forming the resin material so as to be lower than the highest resin amount portion forms a friction material having two or more different resin amounts, and at least the friction material having one or more different resin amounts. It includes a step of superimposing and integrating before drying is completed.

請求項10の発明にかかる摩擦材の製造方法は、請求項6の構成において、前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、前記摩擦材の一方の面に樹脂を追加含浸させた後に摩擦材を乾燥する際に前記摩擦材の樹脂を追加含浸させた側を外側として、その厚み方向に遠心力を付与しながら、所定の温度条件で乾燥させる工程を含むものである。   According to a tenth aspect of the present invention, there is provided a friction material manufacturing method according to the sixth aspect, wherein the resin material distribution in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is such that the vicinity of the friction surface is in the thickness direction. The step of forming the resin material so as to be lower than the highest resin amount portion of the friction material is further impregnated with the resin of the friction material when the friction material is dried after the resin is additionally impregnated on one surface of the friction material. The process includes a step of drying under a predetermined temperature condition while applying centrifugal force in the thickness direction with the side as the outside.

請求項11の発明にかかる摩擦材の製造方法は、請求項6乃至請求項10のいずれか1つの構成において、前記摩擦表面を空気中で極表層部を表面研磨する工程は、前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程の後に、前記摩擦材の摩擦表面を10μm±5μmだけ研磨する工程であるものである。   The method for manufacturing a friction material according to an invention of claim 11 is the method according to any one of claims 6 to 10, wherein the step of polishing the surface of the extreme surface layer of the friction surface in air is performed by the friction material. After the step of forming the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side so that the vicinity of the friction surface is lower than the portion of the highest resin amount in the thickness direction, the friction surface of the friction material Is a step of polishing 10 μm ± 5 μm.

請求項1の発明にかかる摩擦材は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布は摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低く形成され、空気中で摩擦表面の極表層部が研磨されてなる。ここで、極表層部とは摩擦表面の極めて薄い表層の部分を意味し、具体的な深さとしては摩擦表面から数μm〜数十μmの範囲内である。   In the friction material according to the first aspect of the present invention, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is formed so that the vicinity of the friction surface is lower than the portion with the highest resin amount in the thickness direction. The extreme surface layer portion of the friction surface is polished in air. Here, the extreme surface layer portion means a surface layer portion having an extremely thin friction surface, and the specific depth is within a range of several μm to several tens μm from the friction surface.

高いμ−V正勾配性を得るための手法として、摩擦材表層部の柔軟性の向上や、摩擦材に含まれている樹脂の影響を抑制することが有効である。したがって、このように摩擦表面付近の樹脂量を低くするとともに、摩擦表面の極表層部の樹脂のみの部分を研磨して除去することによって、摩擦表面付近の樹脂濃度が低下して柔軟性が向上するとともに樹脂の影響が減るために摩擦特性が向上して、超高耐熱性を維持しながら優れた初期特性と高いμ−V正勾配性を得ることができる。   As a method for obtaining a high μ-V positive gradient, it is effective to improve the flexibility of the surface layer of the friction material and to suppress the influence of the resin contained in the friction material. Therefore, by reducing the amount of resin near the friction surface in this way and polishing and removing only the resin on the extreme surface portion of the friction surface, the resin concentration near the friction surface is reduced and flexibility is improved. In addition, since the influence of the resin is reduced, the friction characteristics are improved, and excellent initial characteristics and high μ-V positive gradient characteristics can be obtained while maintaining ultrahigh heat resistance.

このようにして、強度低下を起こすことなく超高耐熱性を維持しつつ優れた初期特性と高いμ−V正勾配性を得ることができる摩擦材となる。   In this way, the friction material can obtain excellent initial characteristics and high μ-V positive gradient properties while maintaining ultrahigh heat resistance without causing a decrease in strength.

請求項2の発明にかかる摩擦材においては、摩擦材の樹脂量は摩擦表面側と反摩擦面側とで摩擦表面側が5%以上低くされている。したがって、請求項1に記載の効果に加えて、摩擦表面付近の樹脂量が反摩擦表面付近よりも低くなっているため、耐熱性、耐ヒートスポット性が格段に向上し、超高耐熱性の摩擦材となる。しかも、摩擦材の厚み方向の樹脂量の分布は摩擦材の乾燥工程で決定することができるから、強度低下を起こすことなく、低コストで超高耐熱性の摩擦材とすることができる。   In the friction material according to the invention of claim 2, the resin amount of the friction material is lowered by 5% or more on the friction surface side between the friction surface side and the anti-friction surface side. Therefore, in addition to the effect of claim 1, since the amount of resin near the friction surface is lower than that near the anti-friction surface, the heat resistance and heat spot resistance are remarkably improved, and the super high heat resistance It becomes a friction material. In addition, since the distribution of the resin amount in the thickness direction of the friction material can be determined in the drying step of the friction material, it is possible to obtain an ultra-high heat resistance friction material at low cost without causing a decrease in strength.

請求項3の発明にかかる摩擦材においては、摩擦材の樹脂量は摩擦表面側と摩擦材内部とで摩擦表面側が5%以上低くされている。したがって、請求項1に記載の効果に加えて、摩擦表面付近の樹脂量が摩擦材内部よりも低くなっているため、耐熱性、耐ヒートスポット性が格段に向上し、超高耐熱性の摩擦材となる。しかも、摩擦材の厚み方向の樹脂量の分布は摩擦材の乾燥工程で決定することができるから、強度低下を起こすことなく、低コストで超高耐熱性の摩擦材とすることができる。   In the friction material according to the invention of claim 3, the resin amount of the friction material is reduced by 5% or more on the friction surface side between the friction surface side and the friction material side. Therefore, in addition to the effect of claim 1, since the amount of resin near the friction surface is lower than the inside of the friction material, the heat resistance and heat spot resistance are remarkably improved, and the friction of ultra high heat resistance Become a material. In addition, since the distribution of the resin amount in the thickness direction of the friction material can be determined in the drying step of the friction material, it is possible to obtain an ultra-high heat resistance friction material at low cost without causing a decrease in strength.

請求項4の発明にかかる摩擦材においては、摩擦材の樹脂量の分布は連続的に変化させたものである。したがって、請求項1乃至請求項3のいずれか1つに記載の効果に加えて、摩擦材の樹脂量の分布を連続的に変化させたことにより、耐熱性、耐ヒートスポット性が格段に向上し、超高耐熱性の摩擦材となる。しかも、摩擦材の厚み方向の樹脂量の分布は摩擦材の乾燥工程で決定でき、強度低下を起こすことなく、低コストで超高耐熱性を持たせることができる。また、摩擦材の樹脂量の分布が連続的に変化するから、特定の部分に機械的ストレスが集中して加わることがない。   In the friction material according to the invention of claim 4, the distribution of the resin amount of the friction material is continuously changed. Therefore, in addition to the effect according to any one of claims 1 to 3, the heat resistance and heat spot resistance are remarkably improved by continuously changing the resin amount distribution of the friction material. And it becomes a friction material with super high heat resistance. In addition, the distribution of the resin amount in the thickness direction of the friction material can be determined in the drying step of the friction material, and ultrahigh heat resistance can be imparted at low cost without causing a decrease in strength. Further, since the distribution of the resin amount of the friction material is continuously changed, mechanical stress is not concentrated on a specific portion.

請求項5の発明にかかる摩擦材においては、摩擦材の樹脂量の分布は不連続的に変化させたものである。したがって、請求項1乃至請求項3のいずれか1つに記載の効果に加えて、摩擦材の樹脂量の分布を不連続的に変化させたことにより、摩擦材の厚み方向の樹脂量の分布は重ね合わせによって決定でき、任意の低コストで、耐熱性、耐ヒートスポット性が格段に向上し、超高耐熱性の摩擦材となる。   In the friction material according to the invention of claim 5, the distribution of the resin amount of the friction material is changed discontinuously. Therefore, in addition to the effect according to any one of claims 1 to 3, the resin amount distribution in the thickness direction of the friction material is obtained by discontinuously changing the resin amount distribution of the friction material. Can be determined by superposition, and at an arbitrarily low cost, the heat resistance and heat spot resistance are remarkably improved, resulting in an ultra-high heat resistance friction material.

請求項6の発明にかかる摩擦材の製造方法は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程と、空気中で摩擦表面の極表層部を表面研磨する工程とを具備する。   In the friction material manufacturing method according to the sixth aspect of the present invention, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is greater than that of the portion having the highest resin amount in the thickness direction near the friction surface. A step of forming the surface to be lowered, and a step of surface polishing the extreme surface layer portion of the friction surface in air.

高いμ−V正勾配性を得るための手法として、摩擦材表層部の柔軟性の向上や、摩擦材に含まれている樹脂の影響を抑制することが有効である。したがって、このように摩擦表面付近の樹脂量が低くなるように形成するとともに、摩擦表面の極表層部の樹脂のみの部分を表面研磨して除去することによって、摩擦表面付近の樹脂濃度が低下して柔軟性が向上するとともに樹脂の影響が減るために摩擦特性が向上して、超高耐熱性を維持しながら優れた初期特性と高いμ−V正勾配性が得られる摩擦材を製造することができる。   As a method for obtaining a high μ-V positive gradient, it is effective to improve the flexibility of the surface layer of the friction material and to suppress the influence of the resin contained in the friction material. Therefore, the resin concentration in the vicinity of the friction surface is reduced by forming the resin in the vicinity of the friction surface to be low and removing only the resin on the extreme surface layer portion of the friction surface by polishing the surface. To produce a friction material with improved initial characteristics and high μ-V positive gradient property while maintaining ultra-high heat resistance with improved flexibility and reduced influence of resin. Can do.

このようにして、強度低下を起こすことなく超高耐熱性を維持しつつ優れた初期特性と高いμ−V正勾配性を得ることができる摩擦材の製造方法となる。   In this way, the friction material manufacturing method can obtain excellent initial characteristics and high μ-V positive gradient characteristics while maintaining ultrahigh heat resistance without causing strength reduction.

請求項7の発明にかかる摩擦材の製造方法は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、摩擦材を乾燥する際に一方の表面の温度を低くし及び/またはもう一方の表面の温度を高くする工程を含む。   In the friction material manufacturing method according to the seventh aspect of the present invention, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is greater than the portion of the resin amount in the vicinity of the friction surface having the highest resin amount in the thickness direction. The step of forming the friction material includes a step of lowering the temperature of one surface and / or increasing the temperature of the other surface when the friction material is dried.

このように摩擦材の両面に高低の温度差を付けることによって、請求項6に記載の効果に加えて、摩擦材中の樹脂は高温部へ移動して乾燥していく溶剤に引きずられて低温部から高温部へ移動する性質を有するため、厚み方向の樹脂量の分布が一方の表面付近において最も低くなり、超高耐熱性の摩擦材を製造することができる。   In this way, by adding a temperature difference of high and low on both surfaces of the friction material, in addition to the effect of claim 6, the resin in the friction material moves to the high temperature part and is dragged by the solvent that is dried to lower the temperature. Therefore, the distribution of the resin amount in the thickness direction is the lowest in the vicinity of one surface, and an extremely high heat-resistant friction material can be manufactured.

請求項8の発明にかかる摩擦材の製造方法は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、摩擦材を乾燥する際に、2枚の摩擦材の摩擦表面同士を重ね合わせたまま乾燥した後、別々にしてまたは重ね合わせたまま高温で硬化させる工程を含む。   In the friction material manufacturing method according to the eighth aspect of the present invention, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is greater than the portion where the friction surface vicinity has the highest resin amount in the thickness direction. The step of forming the lower friction material includes a step of drying the friction material with the friction surfaces of the two friction materials being overlapped and then being cured at a high temperature separately or overlapping. .

したがって、請求項6に記載の効果に加えて、突き合わされた摩擦表面からは乾燥は起こらず、外側になった反摩擦表面から溶剤が乾燥していくため、摩擦材中の樹脂も引きずられて移動し、厚み方向の樹脂量の分布が反摩擦表面付近において最も高く、摩擦表面付近において最も低くなり、超高耐熱性の摩擦材を製造することができる。   Therefore, in addition to the effect of the sixth aspect, drying does not occur from the abutting friction surfaces, and the solvent dries from the anti-friction surface on the outside, so that the resin in the friction material is also dragged. The distribution of the resin amount in the thickness direction is highest near the anti-friction surface and lowest near the friction surface, and an ultra-high heat-resistant friction material can be manufactured.

請求項9の発明にかかる摩擦材の製造方法は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、2枚以上の樹脂量を異にする摩擦材を形成し、少なくとも、それらの1以上の樹脂量を異にする摩擦材の乾燥完了前に重ね合わせて一体化する工程を含む。   In the friction material manufacturing method according to the ninth aspect of the present invention, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is greater than the portion of the resin amount in the vicinity of the friction surface having the highest resin amount in the thickness direction. In the process of forming the lower friction material, two or more friction materials having different resin amounts are formed, and at least the friction materials having different one or more resin amounts are overlapped and integrated before completion of drying. The process of carrying out is included.

したがって、請求項6に記載の効果に加えて、任意の樹脂量の適当に乾燥した摩擦材を複数形成し、それらを合わせて、厚み方向の樹脂量の分布が反摩擦表面付近において最も高く、摩擦表面付近において最も低く構成するものであるから、超高耐熱性の摩擦材を製造することができる。   Therefore, in addition to the effect described in claim 6, a plurality of appropriately dried friction materials of any resin amount are formed, and they are combined, and the distribution of the resin amount in the thickness direction is the highest near the anti-friction surface, Since it is the lowest in the vicinity of the friction surface, an ultra-high heat-resistant friction material can be manufactured.

請求項10の発明にかかる摩擦材の製造方法は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、摩擦材の一方の面に樹脂を追加含浸させた後に摩擦材を乾燥する際に摩擦材の樹脂を追加含浸させた側を外側として、その厚み方向に遠心力を付与しながら、所定の温度条件で乾燥させる工程を含む。   In the friction material manufacturing method according to the invention of claim 10, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is greater than the portion of the resin amount in the vicinity of the friction surface having the highest resin amount in the thickness direction. The step of forming the material to be lowered is that the friction material is additionally impregnated on one side of the friction material and then the friction material is further impregnated on the outer side, and the centrifugal force is applied in the thickness direction. A step of drying at a predetermined temperature condition.

したがって、請求項6に記載の効果に加えて、摩擦材の樹脂を追加含浸させた側の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を、遠心力を利用して摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低く形成することができる。   Therefore, in addition to the effect of the sixth aspect, the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side on the side additionally impregnated with the resin of the friction material is obtained by friction using centrifugal force. The vicinity of the surface can be formed lower than the portion with the highest resin amount in the thickness direction.

請求項11の発明にかかる摩擦材の製造方法においては、空気中で摩擦表面の極表層部を表面研磨する工程は、摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程の後に、摩擦材の摩擦表面を10μm±5μmだけ研磨する工程である。   In the friction material manufacturing method according to the invention of claim 11, the step of surface polishing the extreme surface layer portion of the friction surface in the air is performed by the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material. This is a step of polishing the friction surface of the friction material by 10 μm ± 5 μm after the step of forming the distribution so that the vicinity of the friction surface is lower than the portion with the highest resin amount in the thickness direction.

本発明者らが鋭意実験研究を積み重ねた結果、摩擦材の摩擦表面において樹脂のみが存在する厚さは10μm±5μmであり、摩擦材の摩擦表面を10μm±5μmだけ研磨することによって樹脂の影響を顕著に抑えられることを見出し、この知見に基いて本発明を完成したものである。   As a result of accumulating earnest experimental research, the present inventors have found that the thickness of the resin alone on the friction surface of the friction material is 10 μm ± 5 μm, and the influence of the resin by polishing the friction surface of the friction material by 10 μm ± 5 μm. Has been found to be remarkably suppressed, and the present invention has been completed based on this finding.

このようにして、強度低下を起こすことなく超高耐熱性を維持しつつ高いμ−V正勾配性を得ることができる摩擦材の製造方法となる。   In this way, the friction material manufacturing method can obtain a high μ-V positive gradient property while maintaining ultrahigh heat resistance without causing a decrease in strength.

以下、本発明の実施の形態について、図1乃至図5を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.

図1は本発明の実施の形態にかかる摩擦材の製造方法の概略を示すフローチャートである。図2は本発明の実施の形態にかかる摩擦材の実施例1について、異なる面圧において摩擦特性を測定した結果のμ−V正勾配性を、比較例と比較して示す図である。図3は本発明の実施の形態にかかる摩擦材の実施例2について、異なる面圧において摩擦特性を測定した結果のμ−V正勾配性を、比較例と比較して示す図である。図4は本発明の実施の形態にかかる摩擦材の摩擦特性向上のメカニズムを示す模式図である。図5は本発明の実施の形態にかかる摩擦材における処理の面圧に対する寄与率を示す図である。   FIG. 1 is a flowchart showing an outline of a method for manufacturing a friction material according to an embodiment of the present invention. FIG. 2 is a diagram showing the μ-V positive gradient property as a result of measuring the friction characteristics at different surface pressures in Example 1 of the friction material according to the embodiment of the present invention in comparison with the comparative example. FIG. 3 is a diagram showing the μ-V positive gradient as a result of measuring the friction characteristics at different surface pressures in Example 2 of the friction material according to the embodiment of the present invention, in comparison with the comparative example. FIG. 4 is a schematic diagram showing a mechanism for improving the friction characteristics of the friction material according to the embodiment of the present invention. FIG. 5 is a diagram showing a contribution ratio of the friction material according to the embodiment of the present invention to the surface pressure of the treatment.

まず、本実施の形態にかかる摩擦材の製造方法について、図1を参照して説明する。   First, a method for manufacturing a friction material according to the present embodiment will be described with reference to FIG.

図1に示されるように、本実施の形態の摩擦材1は樹脂含浸タイプのペーパー系湿式摩擦材であって、まず基材繊維(パルプやアラミド繊維等)と充填材(摩擦調整剤や体質充填材等)とを抄造して抄紙体を得る(ステップS10)。次に、この抄紙体に熱硬化性樹脂を含浸する(ステップS11)が、本実施の形態においては熱硬化性樹脂としてフェノール樹脂を用いている。   As shown in FIG. 1, the friction material 1 of the present embodiment is a resin-impregnated type paper-based wet friction material. First, the base fiber (pulp, aramid fiber, etc.) and the filler (friction modifier or constitution) To make a paper body (step S10). Next, the papermaking body is impregnated with a thermosetting resin (step S11). In this embodiment, a phenol resin is used as the thermosetting resin.

続いて、摩擦表面の温度を低くし、反摩擦表面の温度を高くして乾燥する(ステップS12)。摩擦材中の樹脂は、高温部へ移動して乾燥していく溶剤に引きずられて低温部から高温部へ移動する性質を有するため、厚み方向の樹脂量の分布が反摩擦表面付近において最も高く、摩擦表面付近において最も低くなる。以下、このステップS12におけるような、厚み方向の樹脂量の分布を摩擦表面付近において低くなるようにする処理を「マイグレーション」と呼ぶ。   Subsequently, the temperature of the friction surface is lowered and the temperature of the anti-friction surface is raised and dried (step S12). Since the resin in the friction material has the property of moving from the low temperature part to the high temperature part by being dragged by the solvent that moves to the high temperature part and dries, the distribution of the resin amount in the thickness direction is the highest near the anti-friction surface. It becomes the lowest near the friction surface. Hereinafter, the process of reducing the distribution of the resin amount in the thickness direction in the vicinity of the friction surface as in step S12 is referred to as “migration”.

次に、摩擦材全体をさらに高温に加熱して熱硬化性樹脂を加熱硬化させた(ステップS13)後、研磨材によって摩擦表面を研磨する(ステップS14)。本実施の形態においては、この表面研磨工程は、摩擦表面を約10μm±5μmの極表層部だけ研磨するものである。この理由は、摩擦表面付近において熱硬化性樹脂のみが存在する部分は摩擦表面の約10μm±5μmの極表層部だけであり、この部分のみを研磨して除去するだけで樹脂の影響を著しく低減できるためである。このようにして、本実施の形態にかかる摩擦材1が製造される。   Next, the entire friction material is further heated to a high temperature to heat and cure the thermosetting resin (step S13), and then the friction surface is polished with an abrasive (step S14). In the present embodiment, this surface polishing step polishes the friction surface only at the extreme surface layer portion of about 10 μm ± 5 μm. The reason for this is that the portion of the friction surface where only the thermosetting resin exists is only about 10 μm ± 5 μm of the surface of the friction surface, and the effect of the resin is greatly reduced by polishing and removing only this portion. This is because it can. Thus, the friction material 1 according to the present embodiment is manufactured.

ここで、ステップS12のマイグレーションの方法としては、他にも種々の方法があり、例えば、2枚の摩擦材の摩擦表面同士を重ね合わせたまま24時間以上自然乾燥した後、別々にしてまたは重ね合わせたまま高温で硬化させることによっても製造することができる。この場合も、突き合わされた摩擦表面からは乾燥は起こらず、外側になった反摩擦表面から溶剤が乾燥していくため、厚み方向の樹脂量の分布が反摩擦表面付近において最も高く、摩擦表面付近において最も低くなる。   Here, there are various other methods as the migration method in step S12. For example, after naturally drying for 24 hours or more with the friction surfaces of the two friction materials overlapped, they are separated or overlapped. It can also be produced by curing at a high temperature together. Also in this case, drying does not occur from the abutted friction surface, and the solvent is dried from the anti-friction surface on the outer side, so the resin amount distribution in the thickness direction is the highest near the anti-friction surface, and the friction surface The lowest in the vicinity.

摩擦表面付近の樹脂量を少なくする方法は、これら2つの方法に限らず、他にも減圧,加圧,遠心分離,スプレー,リッピング,ローラー等の片面塗布等、種々の方法によることができる。また、本実施の形態においては樹脂含浸タイプの摩擦材を例に挙げて説明したが、本発明の摩擦材は樹脂含浸タイプに限られず、樹脂積層タイプを始めとして樹脂を成分として含むものであればどのような摩擦材にも適用される。   The method for reducing the amount of resin near the friction surface is not limited to these two methods, but may be various other methods such as decompression, pressurization, centrifugal separation, spraying, ripping, roller single-sided coating, and the like. Further, in this embodiment, the resin-impregnated friction material has been described as an example. However, the friction material of the present invention is not limited to the resin-impregnated type, and may contain a resin as a component including a resin laminate type. It applies to any friction material.

次に、このようにして製造した本実施の形態にかかる摩擦材1の摩擦特性(μ−V特性)を、LVFAテスターを用いて測定した。本実施の形態にかかる摩擦材1としては、全体として比較的高樹脂率・高密度の実施例1と、比較的低樹脂率・低密度の実施例2との二種類の実施品を製造して摩擦特性を測定した。   Next, the friction characteristic (μ-V characteristic) of the friction material 1 according to the present embodiment manufactured as described above was measured using an LVFA tester. As the friction material 1 according to the present embodiment, two types of manufactured products are manufactured: Example 1 with a relatively high resin rate and high density as a whole and Example 2 with a relatively low resin rate and low density. The friction characteristics were measured.

比較のために、実施例1と同じ高樹脂率・高密度でマイグレーションも表面研磨も行わなかった比較例1、マイグレーションは行わず表面研磨のみを行なった比較例2、マイグレーションは行ったが表面研磨は行わなかった比較例3、及び実施例2と同じ低樹脂率・低密度でマイグレーションも表面研磨も行わなかった比較例4、マイグレーションは行わず表面研磨のみを行なった比較例5、マイグレーションは行ったが表面研磨は行わなかった比較例6、の六種類の摩擦材をも製造して、摩擦特性を測定した。   For comparison, the same high resin ratio and high density as in Example 1, Comparative Example 1 in which neither migration nor surface polishing was performed, Comparative Example 2 in which migration was not performed and only surface polishing was performed, Migration was performed but surface polishing was performed Comparative Example 3 which was not performed, Comparative Example 4 which was the same low resin ratio and low density as in Example 2 and which was not subjected to migration or surface polishing, Comparative Example 5 which was subjected only to surface polishing without performing migration, and migration was performed However, six types of friction materials of Comparative Example 6 that were not subjected to surface polishing were also manufactured, and the friction characteristics were measured.

測定条件は、摩擦材寸法が外径130mm,内径110mm、潤滑油ATF、潤滑油量500ml/min、油温40℃,80℃,120℃、摩擦回転数0rpm→400rpm→0rpm、面圧0.4MPa,1.0MPa,1.4MPaで行った。   The measurement conditions were as follows: the friction material size was 130 mm outer diameter, 110 mm inner diameter, lubricating oil ATF, lubricating oil amount 500 ml / min, oil temperature 40 ° C., 80 ° C., 120 ° C., friction rotation speed 0 rpm → 400 rpm → 0 rpm, surface pressure 0. It was performed at 4 MPa, 1.0 MPa, and 1.4 MPa.

まず、実施例1,比較例1,比較例2,比較例3の油温40℃の場合の測定結果について、図2を参照して説明する。なお、「勾配量」として、摩擦回転数400rpmの時のμの値から摩擦回転数50rpmの時のμの値を差し引いた値を示した。   First, the measurement result in the case of the oil temperature of 40 degreeC of Example 1, Comparative example 1, Comparative example 2, and Comparative example 3 is demonstrated with reference to FIG. As the “gradient amount”, a value obtained by subtracting the value of μ at the frictional rotation speed of 50 rpm from the value of μ at the frictional rotation speed of 400 rpm is shown.

図2に示されるように、マイグレーションも表面研磨も行わなかった比較例1においては、顕著なμ−V負勾配性を示しており、面圧が高くなるにしたがって勾配量の負の値も大きくなっている。表面研磨のみを行った比較例2においては、どの面圧においてもほぼ勾配はゼロに近く、比較例1よりは改善が見られるが、勾配量はやはり僅かながら負の値である。マイグレーションのみを行った比較例3においては、面圧0.4MPaの場合にはほぼ勾配はゼロに近いが、面圧が高くなるにしたがって勾配量の負の値が大きくなっている。   As shown in FIG. 2, in Comparative Example 1 in which neither migration nor surface polishing was performed, a remarkable μ-V negative gradient property was exhibited, and the negative value of the gradient amount increased as the surface pressure increased. It has become. In Comparative Example 2 in which only surface polishing was performed, the gradient was almost zero at any surface pressure, and an improvement was seen compared to Comparative Example 1, but the gradient amount was still a slightly negative value. In Comparative Example 3 in which only migration was performed, the slope was almost zero when the surface pressure was 0.4 MPa, but the negative value of the slope amount increased as the surface pressure increased.

これに対して、本実施の形態にかかる実施例1においては、顕著なμ−V正勾配性を示しており、初期特性も良好であり、面圧が高くなっても顕著なμ−V正勾配性を維持している。   On the other hand, in Example 1 according to the present embodiment, a remarkable μ-V positive gradient is shown, the initial characteristics are good, and even if the surface pressure increases, a significant μ-V positive gradient is obtained. The gradient is maintained.

次に、実施例2,比較例4,比較例5,比較例6の油温40℃の場合の測定結果について、図3を参照して説明する。図3に示されるように、マイグレーションも表面研磨も行わなかった比較例4においては、面圧0.4MPaの場合にはほぼ勾配はゼロに近いが、面圧が高くなるにしたがって勾配量の負の値が大きくなり、顕著なμ−V負勾配性を示している。   Next, the measurement result in the case of the oil temperature of 40 degreeC of Example 2, Comparative example 4, Comparative example 5, and Comparative example 6 is demonstrated with reference to FIG. As shown in FIG. 3, in Comparative Example 4 in which neither migration nor surface polishing was performed, the slope was nearly zero when the surface pressure was 0.4 MPa, but the slope amount decreased as the surface pressure increased. The value of becomes larger, indicating a remarkable μ-V negative gradient.

一方、表面研磨のみを行った比較例5においては、面圧0.4MPaの場合にはμ−V正勾配性を示しているが、面圧が高くなるにしたがって勾配量の値は負となり、ほぼ勾配はゼロに近くなってしまう。また、マイグレーションのみを行った比較例6においては、面圧0.4MPaの場合には顕著なμ−V正勾配性を示しているが、面圧が高くなるにしたがって勾配量の値は負となり、面圧が大きいほど顕著なμ−V負勾配性を示している。   On the other hand, in Comparative Example 5 in which only surface polishing was performed, a μ-V positive gradient was shown in the case of a surface pressure of 0.4 MPa, but the value of the gradient amount became negative as the surface pressure increased, The gradient is almost zero. Further, in Comparative Example 6 in which only migration was performed, a remarkable μ-V positive gradient was exhibited when the surface pressure was 0.4 MPa, but the value of the gradient amount became negative as the surface pressure increased. The larger the surface pressure, the more remarkable μ-V negative gradient.

これに対して、本実施の形態にかかる実施例2においては、非常に顕著なμ−V正勾配性を示し、初期特性も良好であり、面圧が高くなっても顕著なμ−V正勾配性を維持しており、勾配量の正の値は実施例1の場合よりも大きくなっている。以上のように、図2と図3とを比較して明らかな通り、実施例1,2についても、比較例1〜比較例6についても、比較的低樹脂率・低密度の摩擦材を用いた図3の方が、全体的に良い結果となっている。   On the other hand, in Example 2 according to the present embodiment, a very remarkable μ-V positive gradient property is exhibited, the initial characteristics are good, and even when the surface pressure is increased, a remarkable μ-V positive gradient is obtained. The gradient is maintained, and the positive value of the gradient amount is larger than that in the first embodiment. As described above, as is clear by comparing FIG. 2 and FIG. 3, the friction material having a relatively low resin ratio and low density is used for Examples 1 and 2 and Comparative Examples 1 to 6 as well. The result of FIG. 3 was better overall.

この理由としては、低樹脂率であることによって樹脂の影響がより小さくなるとともに、低密度であることから気孔率が高くなり、油吸収性がより高くなっているためと考えられる。   The reason for this is considered to be that the influence of the resin becomes smaller due to the low resin ratio, and the porosity increases due to the low density, and the oil absorbability becomes higher.

次に、本実施の形態にかかる摩擦材1における摩擦特性向上のメカニズムについて、図4を参照して説明する。図1のステップS13の段階においては、製造途中の摩擦材1の内部は、図4の上部の図に模式的に示されるような断面構造となっている。即ち、基材繊維3と充填材4が絡み合った抄紙体構造に熱硬化性樹脂2が含浸された後に、図1のステップS12においてマイグレーションが行われた結果、表面付近ほど樹脂濃度が低く、接着面に近づくほど樹脂濃度が高くなっている。   Next, a mechanism for improving friction characteristics in the friction material 1 according to the present embodiment will be described with reference to FIG. In the stage of step S13 in FIG. 1, the inside of the friction material 1 being manufactured has a cross-sectional structure as schematically shown in the upper diagram of FIG. That is, after the thermosetting resin 2 is impregnated into the paper body structure in which the base fiber 3 and the filler 4 are intertwined, the migration is performed in step S12 of FIG. The closer to the surface, the higher the resin concentration.

このマイグレーションによる効果だけでも、樹脂濃度が低い表面付近は柔軟性が向上して摩擦特性が向上するが、さらに特性の向上を図るためには、図4の上部の図に示されるように表面付近に存在する樹脂のみの部分を、図1のステップS14に示されるように表面研磨することによって削り落として、図4の下部の図に示されるように、摩擦面に基材繊維3や充填材4が表れるようにする。このようにして得られた摩擦材1は、表面付近の樹脂濃度が低いだけでなく樹脂の影響を低減することができるため、図2及び図3に示したような優れた摩擦特性が得られるものと考えられる。   Even with the effect of this migration alone, near the surface where the resin concentration is low, the flexibility is improved and the friction characteristics are improved. However, in order to further improve the characteristics, as shown in the upper diagram of FIG. 1 is scraped off by surface polishing as shown in step S14 of FIG. 1, and the base fiber 3 and filler are formed on the friction surface as shown in the lower diagram of FIG. Make 4 appear. The friction material 1 obtained in this way not only has a low resin concentration in the vicinity of the surface but also can reduce the influence of the resin, so that excellent friction characteristics as shown in FIGS. 2 and 3 can be obtained. It is considered a thing.

次に、このようなマイグレーションと表面研磨という二段階の処理が本実施の形態にかかる摩擦材1における摩擦特性の向上に、それぞれどのように貢献しているかについて、図5を参照して説明する。   Next, how these two-stage processes of migration and surface polishing contribute to the improvement of the friction characteristics of the friction material 1 according to the present embodiment will be described with reference to FIG. .

先に説明した図2(材質が高樹脂率・高密度)及び図3(材質が低樹脂率・低密度)に示した摩擦特性について、本実施の形態にかかる摩擦材1の場合に、三段階の各面圧において、マイグレーションと表面研磨という二種類の処理がそれぞれ寄与している割合(寄与率)について、実験計画法の手法を用いて分析した結果を表1に示す。
In the case of the friction material 1 according to the present embodiment, the friction characteristics shown in FIG. 2 (material is high resin ratio / high density) and FIG. 3 (material is low resin ratio / low density) are three. Table 1 shows the results of analyzing the ratio (contribution rate) that the two types of treatments, migration and surface polishing, contribute to each surface pressure at each stage using the method of the experimental design method.

Figure 2007119570
Figure 2007119570

なお、表1の各数値の後にアステリスク(*)が付されているものは、より信頼性が高いデータであることを示す。表1に示されるように、低面圧(0.4MPa)の場合には、マイグレーション及び材質(低樹脂率・低密度)の寄与率が高く、中面圧(1.0MPa)の場合には逆にマイグレーション及び材質の寄与率が低くなって表面摩擦の寄与率が著しく高くなり、さらに高面圧(1.4MPa)の場合には材質には関係なく、より表面摩擦の寄与率が高くなっている。   It should be noted that an asterisk (*) after each numerical value in Table 1 indicates data with higher reliability. As shown in Table 1, in the case of low surface pressure (0.4 MPa), the contribution ratio of migration and material (low resin ratio / low density) is high, and in the case of medium surface pressure (1.0 MPa). On the contrary, the contribution ratio of migration and material becomes low and the contribution ratio of surface friction becomes remarkably high. Furthermore, in the case of high surface pressure (1.4 MPa), the contribution ratio of surface friction becomes higher regardless of the material. ing.

これをグラフに示したものが、図5である。図5に示されるように、マイグレーション及び表面研磨の寄与率は面圧に対してほぼ直線的に変化しており、マイグレーションの寄与率は面圧が高くなるにしたがって低くなり、表面研磨の寄与率は面圧が高くなるにしたがって高くなっている。このように、マイグレーションと表面研磨という二種類の処理の寄与率が、面圧に対して互いに相反する特性を有している結果、低面圧(0.4MPa)から高面圧(1.4MPa)までの全面圧について、図2に示される実施例1及び図3に示される実施例2の通り、顕著なμ−V正勾配性が得られる摩擦材1となる。   This is shown in the graph in FIG. As shown in FIG. 5, the contribution ratio of migration and surface polishing changes almost linearly with respect to the surface pressure, and the contribution ratio of migration decreases as the surface pressure increases. Increases as the surface pressure increases. As described above, the contribution ratios of the two types of treatments, migration and surface polishing, have characteristics that are mutually opposite to the surface pressure. As a result, the low surface pressure (0.4 MPa) to the high surface pressure (1.4 MPa). )), The friction material 1 can obtain a remarkable μ-V positive gradient as in Example 1 shown in FIG. 2 and Example 2 shown in FIG.

また、摩擦表面付近の樹脂量が少ないため、μ−V正勾配性だけでなく係合特性等、実車フィーリングが向上する。さらに、摩擦表面の樹脂量が少ないため初期特性が向上し、これによってATの性能が初期から安定するという効果が得られる。ここで、「摩擦表面付近」とは、本実施の形態においては、摩擦材全体の厚さに対して摩擦表面から約10%の深さまでの範囲内をいう。   In addition, since the amount of resin near the friction surface is small, not only the μ-V positive gradient but also the actual vehicle feeling such as the engagement characteristics is improved. Furthermore, since the amount of the resin on the friction surface is small, the initial characteristics are improved, and this provides the effect that the AT performance is stabilized from the beginning. Here, “in the vicinity of the friction surface” refers to a range from the friction surface to a depth of about 10% with respect to the thickness of the entire friction material in the present embodiment.

また、本実施の形態にかかる摩擦材の製造方法は、摩擦材の乾燥工程において摩擦表面の温度を低くし、反摩擦表面の温度を高くする工程を含むものであるから、これによって、摩擦材中の樹脂は高温部へ移動して乾燥していく溶剤に引きずられて低温部から高温部へ移動する性質を有するため、厚み方向の樹脂量の分布が摩擦表面付近において最も低くなる。したがって、上述の如く優れた摩擦特性を備えた超高耐熱性の摩擦材となる。しかも、本製造方法は従来からある乾燥工程において好ましい樹脂量の分布を形成するもので、工程を追加する必要がないので低コストで実施することができる。   In addition, the friction material manufacturing method according to the present embodiment includes a step of lowering the temperature of the friction surface and increasing the temperature of the anti-friction surface in the drying step of the friction material. Since the resin has the property of moving from the low temperature part to the high temperature part by being dragged by the solvent that moves to the high temperature part and is dried, the distribution of the resin amount in the thickness direction is the lowest in the vicinity of the friction surface. Therefore, it becomes an ultra-high heat-resistant friction material having excellent friction characteristics as described above. In addition, the present production method forms a preferable distribution of the resin amount in the conventional drying process, and can be carried out at a low cost because it is not necessary to add a process.

さらに、本実施の形態における特有の効果として、マイグレーションの方法として摩擦表面と反摩擦表面とに温度差を与えて乾燥させることによって、高温部である反摩擦表面側に樹脂が引きずられて移動する現象を利用したものであるため、摩擦材の厚み方向の樹脂量の分布が連続的になり、特定の部分に機械的ストレスが集中して加わることがないため、強度低下を起こすことがない。   Further, as a specific effect in the present embodiment, the resin is dragged and moved to the anti-friction surface side, which is a high-temperature portion, by drying by applying a temperature difference between the friction surface and the anti-friction surface as a migration method. Since the phenomenon is utilized, the distribution of the resin amount in the thickness direction of the friction material becomes continuous, and mechanical stress is not concentrated on a specific portion, so that the strength is not lowered.

さらに、本実施の形態においては、図4に示すように、摩擦材の樹脂量の分布を連続的に変化させたものであるが、摩擦材の製造工程において、樹脂量を異にする2枚または3枚以上の摩擦材を形成し、少なくとも、それらの1以上の樹脂量を異にする摩擦材の乾燥完了前の適度に乾燥した状態でバインダを用いて接合により重ね合わせ、複数の樹脂量を異にする摩擦材を一体化することによっても製造することができる。   Furthermore, in the present embodiment, as shown in FIG. 4, the distribution of the resin amount of the friction material is continuously changed. In the friction material manufacturing process, two sheets having different resin amounts are used. Alternatively, three or more friction materials are formed, and at least a friction material having a different amount of one or more of them is overlapped by bonding using a binder in a properly dried state before completion of drying, and a plurality of resin amounts It can also be manufactured by integrating friction materials having different diameters.

この場合には、摩擦材の樹脂量の分布を不連続的に変化させたものとなるが、複数の樹脂量を異にする摩擦材における樹脂の含有率を任意に設定でき、耐熱性、耐ヒートスポット性が格段に向上し、超高耐熱性の摩擦材となる。しかも、摩擦材の厚み方向の樹脂量の分布は重ね合わせによって決定でき、任意の低コストで超高耐熱性の摩擦材を得ることができる。   In this case, the resin amount distribution of the friction material is discontinuously changed. However, the resin content in the friction material with different resin amounts can be arbitrarily set, and the heat resistance, The heat spot property is remarkably improved, and it becomes a friction material with ultra high heat resistance. Moreover, the distribution of the resin amount in the thickness direction of the friction material can be determined by superposition, and an ultra-high heat resistance friction material can be obtained at any low cost.

摩擦材のその他の部分の構成、成分、厚さ、形状、数量、材質、大きさ、接続関係等についても、また摩擦材の製造方法のその他の工程についても、本実施の形態に限定されるものではない。   The configuration, components, thickness, shape, quantity, material, size, connection relationship, etc. of the other parts of the friction material, and other steps of the friction material manufacturing method are also limited to the present embodiment. It is not a thing.

図1は本発明の実施の形態にかかる摩擦材の製造方法の概略を示すフローチャートである。FIG. 1 is a flowchart showing an outline of a method for manufacturing a friction material according to an embodiment of the present invention. 図2は本発明の実施の形態にかかる摩擦材の実施例1について、異なる面圧において摩擦特性を測定した結果のμ−V正勾配性を、比較例と比較して示す図である。FIG. 2 is a diagram showing the μ-V positive gradient property as a result of measuring the friction characteristics at different surface pressures in Example 1 of the friction material according to the embodiment of the present invention in comparison with the comparative example. 図3は本発明の実施の形態にかかる摩擦材の実施例2について、異なる面圧において摩擦特性を測定した結果のμ−V正勾配性を、比較例と比較して示す図である。FIG. 3 is a diagram showing the μ-V positive gradient as a result of measuring the friction characteristics at different surface pressures in Example 2 of the friction material according to the embodiment of the present invention, in comparison with the comparative example. 図4は本発明の実施の形態にかかる摩擦材の摩擦特性向上のメカニズムを示す模式図である。FIG. 4 is a schematic diagram showing a mechanism for improving the friction characteristics of the friction material according to the embodiment of the present invention. 図5は本発明の実施の形態にかかる摩擦材における処理の面圧に対する寄与率を示す図である。FIG. 5 is a diagram showing a contribution ratio of the friction material according to the embodiment of the present invention to the surface pressure of the treatment.

符号の説明Explanation of symbols

1 摩擦材
2 樹脂
3 基材繊維
4 充填材
1 Friction material 2 Resin 3 Base fiber 4 Filler

Claims (11)

摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布は、摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低く形成され、空気中で前記摩擦表面の極表層部が研磨されてなることを特徴とする摩擦材。   The distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material is such that the vicinity of the friction surface is formed lower than the portion with the highest resin amount in the thickness direction, and the pole of the friction surface is in air. A friction material having a surface layer polished. 前記摩擦材の樹脂量は、摩擦表面側と反摩擦面側とで摩擦表面側が5%以上低くされていることを特徴とする請求項1に記載の摩擦材。   2. The friction material according to claim 1, wherein the resin amount of the friction material is lower by 5% or more on the friction surface side between the friction surface side and the anti-friction surface side. 前記摩擦材の樹脂量は、摩擦表面側と摩擦材内部とで摩擦表面側が5%以上低くされていることを特徴とする請求項1に記載の摩擦材。   2. The friction material according to claim 1, wherein a resin amount of the friction material is lower by 5% or more on the friction surface side between the friction surface side and the friction material inside. 3. 前記摩擦材の樹脂量の分布は、連続的に変化させたことを特徴とする請求項1乃至請求項3のいずれか1つに記載の摩擦材。   The friction material according to any one of claims 1 to 3, wherein the resin amount distribution of the friction material is continuously changed. 前記摩擦材の樹脂量の分布は、不連続的に変化させたことを特徴とする請求項1乃至請求項3のいずれか1つに記載の摩擦材。   The friction material according to any one of claims 1 to 3, wherein a distribution of a resin amount of the friction material is changed discontinuously. 摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程と、
空気中で前記摩擦表面の極表層部を表面研磨する工程と
を具備することを特徴とする摩擦材の製造方法。
Forming the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material such that the vicinity of the friction surface is lower than the portion of the highest resin amount in the thickness direction;
And a step of polishing the extreme surface layer portion of the friction surface in the air.
前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、前記摩擦材を乾燥する際に一方の表面の温度を低くし及び/またはもう一方の表面の温度を高くする工程を含むことを特徴とする請求項6に記載の摩擦材の製造方法。   The step of forming the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material so that the vicinity of the friction surface is lower than the portion of the highest resin amount in the thickness direction, The method for producing a friction material according to claim 6, comprising a step of lowering the temperature of one surface and / or increasing the temperature of the other surface when drying the material. 前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、前記摩擦材を乾燥する際に、2枚の摩擦材の摩擦表面同士を重ね合わせたまま乾燥した後、別々にしてまたは重ね合わせたまま高温で硬化させる工程を含むことを特徴とする請求項6に記載の摩擦材の製造方法。   The step of forming the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material so that the vicinity of the friction surface is lower than the portion of the highest resin amount in the thickness direction, The method according to claim 6, further comprising: a step of drying the two friction materials while overlapping the friction surfaces and then curing at a high temperature while separately or overlapping. A method for manufacturing a friction material. 前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、2枚以上の樹脂量を異にする摩擦材を形成し、少なくとも、それらの1以上の樹脂量を異にする摩擦材の乾燥完了前に重ね合わせて一体化する工程を含むことを特徴とする請求項6に記載の摩擦材の製造方法。   The step of forming the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material so that the vicinity of the friction surface is lower than the portion of the highest resin amount in the thickness direction is two or more. 7. A friction material having different resin amounts is formed, and at least one friction material having different one or more resin amounts is overlapped and integrated before drying is completed. The manufacturing method of the friction material as described in any one of. 前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程は、前記摩擦材の一方の面に樹脂を追加含浸させた後に摩擦材を乾燥する際に前記摩擦材の樹脂を追加含浸させた側を外側として、その厚み方向に遠心力を付与しながら、所定の温度条件で乾燥させる工程を含むことを特徴とする請求項6に記載の摩擦材の製造方法。   The step of forming the distribution of the resin amount in the thickness direction from the friction surface side to the anti-friction surface side of the friction material so that the vicinity of the friction surface is lower than the portion of the highest resin amount in the thickness direction, When the friction material is dried after additional impregnation of the resin on one side of the surface, the side of the friction material additionally impregnated with the resin is set as the outside, and centrifugal force is applied in the thickness direction at a predetermined temperature condition. The method for producing a friction material according to claim 6, further comprising a drying step. 前記摩擦表面を空気中で極表層部を表面研磨する工程は、前記摩擦材の摩擦表面側から反摩擦面側までの厚み方向の樹脂量の分布を摩擦表面付近が前記厚み方向の最も高い樹脂量の部分よりも低くなるように形成する工程の後に、前記摩擦材の摩擦表面を10μm±5μmだけ研磨する工程であることを特徴とする請求項6乃至請求項10のいずれか1つに記載の摩擦材の製造方法。

The step of polishing the surface of the extreme surface layer in the air in the friction surface is a resin distribution in the thickness direction from the friction surface side to the anti-friction surface side of the friction material. 11. The method according to claim 6, wherein the step of polishing the friction surface of the friction material by 10 μm ± 5 μm is performed after the step of forming the material to be lower than the amount. Manufacturing method of friction material.

JP2005312523A 2005-10-27 2005-10-27 Friction material and manufacturing method thereof Expired - Fee Related JP4260156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312523A JP4260156B2 (en) 2005-10-27 2005-10-27 Friction material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312523A JP4260156B2 (en) 2005-10-27 2005-10-27 Friction material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007119570A true JP2007119570A (en) 2007-05-17
JP4260156B2 JP4260156B2 (en) 2009-04-30

Family

ID=38143750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312523A Expired - Fee Related JP4260156B2 (en) 2005-10-27 2005-10-27 Friction material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4260156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036249A (en) * 2007-07-31 2009-02-19 Jtekt Corp Wet type friction plate
JP2019210463A (en) * 2018-05-31 2019-12-12 ボーグワーナー インコーポレーテッド Friction material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036249A (en) * 2007-07-31 2009-02-19 Jtekt Corp Wet type friction plate
JP2019210463A (en) * 2018-05-31 2019-12-12 ボーグワーナー インコーポレーテッド Friction material

Also Published As

Publication number Publication date
JP4260156B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US8394452B2 (en) Carbon friction materials
JP2007045860A (en) Method for producing wet friction material
CN107620773B (en) Friction material
KR20040019827A (en) Friction material with friction modifying layer
JP2006022964A (en) Saturant for friction material containing friction adjusting layer
US8765266B2 (en) Wet friction member and its manufacturing method
CA2812760A1 (en) Cast fluoropolymer film for bushings
JP2016502048A (en) Thrust washer
JP2009108166A (en) Wet friction material
US7488401B2 (en) Wet-laid friction material, system and method
JP4260156B2 (en) Friction material and manufacturing method thereof
JP2000026837A (en) Wet paper friction material having compatibilized frictional property and compression fatigue strength
JP2007263203A (en) Wet type friction material and its manufacturing method
WO2016098525A1 (en) Green compact and method for producing same
JPWO2010140412A1 (en) Sliding friction material
US7488440B2 (en) Friction material and its manufacturing method
JP2004107661A (en) Underwater slide member, and method for manufacturing the same
JP5178893B2 (en) Friction material and manufacturing method thereof
JP4836927B2 (en) Friction material manufacturing method
JP2014077039A (en) Wet friction material and method for producing the same
JP2004091606A (en) Underwater sliding member and method for producing the same
JPH0874903A (en) Wet frictional material and manufacture of the same
JP2013002624A (en) Wet friction material and method of finishing the same
JP2005042864A (en) Friction material
JP2002173666A (en) Wet friction material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees