JP2007119296A - Heat-resistant container made of iridium - Google Patents

Heat-resistant container made of iridium Download PDF

Info

Publication number
JP2007119296A
JP2007119296A JP2005313607A JP2005313607A JP2007119296A JP 2007119296 A JP2007119296 A JP 2007119296A JP 2005313607 A JP2005313607 A JP 2005313607A JP 2005313607 A JP2005313607 A JP 2005313607A JP 2007119296 A JP2007119296 A JP 2007119296A
Authority
JP
Japan
Prior art keywords
iridium
heat
molten salt
resistant container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005313607A
Other languages
Japanese (ja)
Inventor
Noriaki Hara
範明 原
Ken Hagiwara
謙 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2005313607A priority Critical patent/JP2007119296A/en
Publication of JP2007119296A publication Critical patent/JP2007119296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-wall heat-resistant container having long service life, usable at a higher temperature than heretofore and applicable to a Bridgman crucible or the like. <P>SOLUTION: This heat-resistant thin container made of iridium has a thickness of ≤0.3 mm and is formed by electrolysis of a molten salt including iridium salt. In the constituent material of the container, it is preferable that the total content of impurity elements except noble metals is ≤100 ppm and further, that of noble metals except iridium is ≤10,000 ppm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、イリジウムからなる薄肉の耐熱容器に関する。詳しくは、ブリッジマンるつぼ、熱分析装置の試料セル等の高温環境下で使用される容器に関する。   The present invention relates to a thin heat-resistant container made of iridium. Specifically, the present invention relates to a container used in a high-temperature environment such as a Bridgeman crucible or a sample cell of a thermal analyzer.

単結晶製造法の一つであるブリッジマン法で使用されるるつぼ(アンプル)や、物質の加熱状態における状態を分析する熱質量−示差熱(TG−DTA)分析で使用される試料セルのような小型の耐熱容器には、白金又は白金合金からなる薄肉の耐熱容器が用いられることが多い。これらの用途においては、比較的高温環境に晒されることが多く、容器自体の強度低下、酸化による質量変化に加え、内容物への汚染を防止するため、高温強度、耐食性が要求される。そして、白金は、高耐食性、耐熱性を有し、薄肉のものであっても強度が高い。
特開2003−171198号公報
Like a crucible (ampoule) used in the Bridgeman method, which is one of the single crystal manufacturing methods, and a sample cell used in thermal mass-differential heat (TG-DTA) analysis for analyzing the state of a substance in the heated state For such a small heat-resistant container, a thin heat-resistant container made of platinum or a platinum alloy is often used. In these applications, the container is often exposed to a relatively high temperature environment, and in addition to a decrease in strength of the container itself and a change in mass due to oxidation, high temperature strength and corrosion resistance are required in order to prevent contamination of the contents. And platinum has high corrosion resistance and heat resistance, and has high strength even if it is thin.
JP 2003-171198 A

しかし、従来の白金又は白金合金製容器であっても、使用に伴い破断・変形が生じる場合がある。これは、使用温度の高低の問題というよりは、長期使用、繰り返し使用による使用時間の増大によることが多い。   However, even a conventional container made of platinum or a platinum alloy may break or deform with use. This is often due to an increase in use time due to long-term use and repeated use, rather than a problem of high or low use temperature.

また、従来の白金又は白金合金製容器は、上記した用途において、今後の要求に十分応えられない可能性がある。例えば、ブリッジマン法による単結晶製造の分野では、これまで1000℃程度以下の材料の単結晶製造が主流であったが、ブリッジマン法には格子欠陥の少ない単結晶を製造することができるという利点があることから、今後その適用材料の拡大が検討されており、サファイア、ルチル等のような高融点単結晶材料への応用が研究されている。一方、白金は、1000〜1500℃程度の高温までは十分な耐久性があるが、サファイアの単結晶製造では2000℃以上の高温加熱が必要であり、白金又は白金合金は使用できない。   Further, conventional platinum or platinum alloy containers may not be able to sufficiently meet future demands in the above-described applications. For example, in the field of single crystal manufacturing by the Bridgman method, single crystal production of materials having a temperature of about 1000 ° C. or lower has been the mainstream so far, but the Bridgman method can produce single crystals with few lattice defects. Since there is an advantage, the expansion of the applicable material is examined in the future, and the application to high melting point single crystal materials such as sapphire and rutile is being studied. On the other hand, platinum has sufficient durability up to a high temperature of about 1000 to 1500 ° C. However, high temperature heating of 2000 ° C. or more is necessary in the production of a single crystal of sapphire, and platinum or a platinum alloy cannot be used.

そこで、本発明は、従来の薄肉の耐熱容器に対して、長寿命であり、より高温での使用が可能なものを提供することを目的とする。   Therefore, an object of the present invention is to provide a long heat-resistant container that can be used at a higher temperature than a conventional thin-walled heat-resistant container.

上記課題に対して有効な対策として最も一般的なものとしては、材質変更がある。本発明者等は、従来の白金、白金合金に替えて、イリジウム(純イリジウム)を構成材料とすることについて検討を行った。イリジウムは、融点2400℃超であり、白金よりも高温での使用を可能とするものであり、また、機械的性質においても十分なものがある。   The most common countermeasure effective for the above problem is a material change. The inventors of the present invention studied to use iridium (pure iridium) as a constituent material instead of conventional platinum and platinum alloys. Iridium has a melting point of over 2400 ° C., can be used at a higher temperature than platinum, and has sufficient mechanical properties.

一方、イリジウムを薄肉の耐熱容器とする場合、クリアすべき問題としてその加工性の問題がある。イリジウムは、高強度ではあるが、その分、加工性において劣る面があり、薄肉の板材、筒体への塑性加工が困難である。また、可能な限り薄肉化した材料を容器形状にするため加工する場合、その過程(切断加工、曲げ加工等)において割れ、クラックが発生しやすく、更に、溶接も困難である。   On the other hand, when iridium is used as a thin heat-resistant container, there is a problem of workability as a problem to be cleared. Although iridium has high strength, it has an inferior workability, and plastic processing to a thin plate or cylinder is difficult. Further, when processing a thinned material as much as possible into a container shape, cracks and cracks are likely to occur during the process (cutting, bending, etc.), and welding is also difficult.

また、イリジウムは高強度の材料であるが、これをブリッジマンるつぼ等の耐熱容器に適用しても、必ずしも長期使用を可能にするとは限らない。ブリッジマンるつぼ等の場合、使用過程で負荷される応力は、容器自体の自重と内部の単結晶の重量(分析装置用セルの場合には試料)との和になるが、それはさほど大きなものではなく、また、応力のかかり方も静的なものである。このように、静的な低応力負荷がかかる材料には、単純に強度(クリープ破断強度)が高いことではなく、柔軟性を有する(破断強度は低くても、耐久時間が長いこと又は耐久温度が高いこと)ことが要求される。   Iridium is a high-strength material, but even if it is applied to a heat-resistant container such as a Bridgman crucible, it does not always enable long-term use. In the case of Bridgman crucibles, etc., the stress applied in the process of use is the sum of the weight of the container itself and the weight of the internal single crystal (sample in the case of an analyzer cell), but it is not so large. In addition, the method of applying stress is static. As described above, a material subjected to a static low stress load is not simply high in strength (creep rupture strength) but has flexibility (even if the rupture strength is low, the durability time is long or the durability temperature is low). Be high).

そこで、本発明者等は、イリジウムを適用しつつ、加工性が改善され、かつ、静的な負荷のかかる容器に応じた高温特性を有するものを見出すべく更なる検討を行い、本発明に想到した。   Therefore, the present inventors have further studied to find a product having improved high processability and a high temperature characteristic corresponding to a statically loaded container while applying iridium, and arrived at the present invention. did.

即ち、本発明は、イリジウムからなり、厚さ0.3mm以下の薄肉の耐熱容器であって、イリジウム塩を含む溶融塩の溶融塩電解により形成されるイリジウム製耐熱容器である。   That is, the present invention is an iridium heat-resistant container made of iridium and having a thickness of 0.3 mm or less and formed by molten salt electrolysis of a molten salt containing an iridium salt.

溶融塩電解とは、溶融塩を電解質とする電気鋳造法のことであり、電解質中の金属(イリジウム)を陰極表面に析出させてバルク金属を回収する方法である。この溶融塩電解においては、陰極の寸法、形状に追従した析出物を得ることができ、また、その厚さも電解条件(電流密度、電解時間)により調整することができる。従って、製品の形状制御が容易であり、材料の加工性を意識することなく薄肉の容器を製造することができる。   Molten salt electrolysis is an electrocasting method using molten salt as an electrolyte, and is a method of depositing metal (iridium) in the electrolyte on the cathode surface and recovering bulk metal. In this molten salt electrolysis, a precipitate following the size and shape of the cathode can be obtained, and the thickness can also be adjusted by the electrolysis conditions (current density, electrolysis time). Therefore, the shape of the product can be easily controlled, and a thin container can be manufactured without being aware of the workability of the material.

更に、溶融塩電解により製造されるイリジウムは、その材料特性において高温耐熱容器として好ましいものを有し、通常の鋳造、圧延等を経た材料よりも、破断強度こそ低く柔らかいものの、破断時間が大きいという特性を有する。本発明者等は、この要因として、溶融塩電解により製造されるイリジウムは、その結晶粒径が比較的大きいこと、及び、後述のように不純物が極めて少ないため結晶粒界の不純物の偏析が少ないこと、等の理由から負荷がかかる際の粒界すべりよりも粒内すべりが優先する傾向があることによるものと考えている。   Furthermore, iridium produced by molten salt electrolysis has a material that is preferable as a high-temperature heat-resistant container in its material properties, and it has a low breaking strength and is softer than a material that has undergone normal casting, rolling, etc., but it has a long breaking time. Has characteristics. As a cause of this, the present inventors have found that iridium produced by molten salt electrolysis has a relatively large crystal grain size, and since there are very few impurities as described later, there is little segregation of impurities at the grain boundaries. This is considered to be due to the tendency that intragranular slip has priority over intergranular slip when a load is applied.

本発明に係る溶融塩電解により製造されるイリジウム製容器は、不純物含有量の少ない高純度なイリジウムからなり、内部欠陥が極めて少ない。電解法は析出電位差を利用した分離析出法であることによる。ここで、本発明においては、貴金属を除く不純物元素の合計濃度が100ppm以下であることが好ましく、また、イリジウムを除く貴金属(白金、金、銀、ルテニウム、パラジウム、オスミウム)の合計濃度が10000ppm以下であるものがより好ましい。   The iridium container produced by molten salt electrolysis according to the present invention is made of high-purity iridium with a low impurity content and has very few internal defects. This is because the electrolytic method is a separation precipitation method using a precipitation potential difference. Here, in the present invention, the total concentration of impurity elements excluding noble metals is preferably 100 ppm or less, and the total concentration of noble metals excluding iridium (platinum, gold, silver, ruthenium, palladium, osmium) is 10000 ppm or less. Is more preferable.

ここで、溶融塩電解によりイリジウムを析出させるための溶融塩としては、イリジウム塩を含むことは当然であるが、これに溶媒塩として塩化物、シアン化合物等の溶融塩を含むものが好ましい。これら溶媒塩は電解工程においてイオン電導体としての役割を果たすものであり、このような溶媒塩を含む混合溶融塩を電解することにより、溶融塩温度を即ち操作温度を低減しつつ、効率的にイリジウムを析出させることが可能となる。溶媒塩としては、塩化ナトリウムと塩化カリウムと塩化セシウムとの3種の塩化物の混合塩を用いることが好ましい。これらの混合塩は、イリジウム塩を容易に溶解させることができ、この混合溶融塩を用いることで、内部応力が小さく、不純物が含有されることのない析出物を得ることができる。混合溶融塩の組成は、塩化ナトリウム25〜35mol%、塩化カリウム20〜30mol%、塩化セシウム40〜50mol%の範囲とするのが好ましく、塩化ナトリウム30mol%、塩化カリウム24.5mol%、塩化セシウム45.5mol%とするのが特に好ましい。この範囲であれば、イリジウム塩の溶解が容易だからである。   Here, as a molten salt for depositing iridium by molten salt electrolysis, it is natural to include an iridium salt, but a solvent salt containing a molten salt such as a chloride or a cyanide is preferable. These solvent salts play a role as ionic conductors in the electrolysis process, and by electrolyzing the mixed molten salt containing such solvent salts, the molten salt temperature can be efficiently reduced while reducing the operating temperature. It becomes possible to deposit iridium. As the solvent salt, it is preferable to use a mixed salt of three kinds of chlorides of sodium chloride, potassium chloride and cesium chloride. These mixed salts can easily dissolve the iridium salt. By using this mixed molten salt, it is possible to obtain a precipitate having a small internal stress and containing no impurities. The composition of the mixed molten salt is preferably in the range of 25 to 35 mol% sodium chloride, 20 to 30 mol% potassium chloride, 40 to 50 mol% cesium chloride, 30 mol% sodium chloride, 24.5 mol% potassium chloride, 45 cesium chloride. It is particularly preferable that the amount be 5 mol%. This is because the iridium salt is easily dissolved within this range.

尚、溶融塩電解時における溶融塩温度としては、450〜650℃とするのが好ましく、500〜550℃とするのが特に好ましい。450℃未満では溶融塩が凝固しやすく溶融状態の維持が困難となり、650℃を超えると連続した析出物が得られなくなるからである。また、500〜550℃の範囲を最適とするのは、析出物の表面性状(表面粗さ)を良好にすることができるからである。   In addition, as molten salt temperature at the time of molten salt electrolysis, it is preferable to set it as 450-650 degreeC, and it is especially preferable to set it as 500-550 degreeC. If the temperature is lower than 450 ° C., the molten salt tends to solidify and it is difficult to maintain the molten state. If the temperature exceeds 650 ° C., continuous precipitates cannot be obtained. Moreover, the reason why the range of 500 to 550 ° C. is optimized is that the surface properties (surface roughness) of the precipitate can be improved.

また、電解条件については、製造される容器の寸法、肉厚によりに調整されるが、電流密度1〜5A/dmとするのが好ましい。1A/dm未満では析出速度が遅くなり電解時間が増大するからであり、5A/dmを超えると析出物の表面性状に乱れが生じ、容器の厚さ分布が不均一となるからである。尚、電解時間は、5〜24時間とするのが好ましい。 As for the electrolysis conditions, the dimensions of the container to be produced, is adjusted to a more thicker, preferably the current density 1-5A / dm 2. This is because if it is less than 1 A / dm 2 , the deposition rate becomes slow and the electrolysis time increases, and if it exceeds 5 A / dm 2 , the surface properties of the precipitate are disturbed and the thickness distribution of the container becomes uneven. . The electrolysis time is preferably 5 to 24 hours.

以上説明したように、本発明によれば、イリジウムを構成材料とすることにより、従来の耐熱容器では対応できない高温での使用の要求に応えることができる。本発明では、加工性の悪いイリジウムからなるが、溶融塩電解により薄肉の容器としたものであり製造効率が良好である。そして、溶融塩電解により製造される容器は、静的な応力負荷の下で使用される耐熱容器に必要な(機械的)特性を有する。   As described above, according to the present invention, by using iridium as a constituent material, it is possible to meet a demand for use at a high temperature that cannot be handled by a conventional heat-resistant container. In the present invention, although it is made of iridium having poor processability, it is made into a thin container by molten salt electrolysis, and the production efficiency is good. And the container manufactured by molten salt electrolysis has a (mechanical) characteristic required for the heat-resistant container used under a static stress load.

本発明に係る耐熱性容器は、単結晶製造のためのブリッジマンるつぼの他、TG−DTA分析機器用のサンプルセル、アフターヒーター、リッド等の耐熱容器として適用可能である。   The heat-resistant container according to the present invention can be applied as a heat-resistant container for sample cells, after heaters, lids, etc. for TG-DTA analyzers, in addition to Bridgeman crucibles for single crystal production.

以下、本発明の実施の形態について説明する。本実施形態では、イリジウム塩を含有する混合溶融塩を用いた電気鋳造法によりイリジウム容器を製造した。本実施形態で用いた混合溶融塩の組成は、表1に示す通りである。   Embodiments of the present invention will be described below. In this embodiment, the iridium container was manufactured by the electrocasting method using the mixed molten salt containing an iridium salt. The composition of the mixed molten salt used in the present embodiment is as shown in Table 1.

この混合溶融塩を電解質として電気鋳造を行なった。電気鋳造は、図1に示す溶融塩電解装置10を用いて行った。溶融塩電解装置10は、図1に示すように、上面部開放の筒状容器11、筒状容器の蓋体となる電極挿入口を備えたフランジ12、グラファイト製電解槽13、及び鋳型となる陰極の回転手段14を備えたものである。また、筒状容器11は仕切り弁15によって2室に分離可能であり、上室を陰極16の装填又は取り出す際の予備排気室としている。尚、陰極には直径50mm、長さ150mmの棒状グラファイトを用いている。そして、電解の際には、イリジウム陽極1を電解槽13の底部に接触するように敷設し、陽極と陰極との極間距離を50mmとなるように設置した。また、電流供給は電解槽13に通電することで電解槽に接触するイリジウム陽極1に通電されるようにした。尚、本実施形態では、陰極に対向させる電極として、可溶性陽極としてイリジウム電極を用いたが、不溶性陽極を使用することもできる。但し、より効率的にイリジウムの析出を図るためには、可溶性陽極の使用が好ましい。可溶性陽極によれば貴金属イオンを陽極から補給させることで、外部からイリジウム塩を補充することなく溶液中のイリジウムイオン濃度を一定に保持させ均一な析出物を得ることが可能となるからである。   Electrocasting was performed using the mixed molten salt as an electrolyte. The electrocasting was performed using the molten salt electrolysis apparatus 10 shown in FIG. As shown in FIG. 1, the molten salt electrolysis apparatus 10 serves as a cylindrical container 11 having an open upper surface, a flange 12 having an electrode insertion port serving as a lid of the cylindrical container, a graphite electrolytic cell 13, and a mold. A cathode rotating means 14 is provided. The cylindrical container 11 can be separated into two chambers by a gate valve 15, and the upper chamber serves as a preliminary exhaust chamber when the cathode 16 is loaded or taken out. Note that rod-shaped graphite having a diameter of 50 mm and a length of 150 mm is used for the cathode. During electrolysis, the iridium anode 1 was laid so as to be in contact with the bottom of the electrolytic cell 13, and the distance between the anode and the cathode was set to 50 mm. In addition, current was supplied to the iridium anode 1 in contact with the electrolytic cell by supplying current to the electrolytic cell 13. In the present embodiment, the iridium electrode is used as the soluble anode as the electrode facing the cathode, but an insoluble anode can also be used. However, it is preferable to use a soluble anode in order to more efficiently deposit iridium. This is because, according to the soluble anode, replenishing noble metal ions from the anode makes it possible to maintain a constant iridium ion concentration in the solution and obtain uniform precipitates without replenishing iridium salts from the outside.

本実施形態における電気鋳造条件は、浴温530℃とし、カソード電流密度を2A/dmとなるようにし、析出時間12時間で電解析出させた。そして、イリジウム析出物は、酸洗い後陰極から剥離させた。以上の操作により、内径50mm、厚さ0.25mm、長さ100mmのイリジウム容器を得た。 The electrocasting conditions in this embodiment were a bath temperature of 530 ° C., a cathode current density of 2 A / dm 2, and electrolytic deposition with a deposition time of 12 hours. The iridium precipitate was peeled off from the cathode after pickling. By the above operation, an iridium container having an inner diameter of 50 mm, a thickness of 0.25 mm, and a length of 100 mm was obtained.

次に、製造した容器より試験片を切り出し、高温クリープ試験及び高温引張試験を行なった。いずれの試験においても、比較として溶解・圧延により製造したイリジウム板材についても試験を行なった。   Next, a test piece was cut out from the manufactured container and subjected to a high temperature creep test and a high temperature tensile test. In any test, as a comparison, an iridium plate material manufactured by melting and rolling was also tested.

図2は、高温クリープ試験の結果を示す。この試験では、試験温度1600℃にて荷重を変化させ、破断時間を測定し、応力−破断時間曲線を作成した。図2から、本実施形態で製造した溶融塩電解によるイリジウム材は、比較の溶解圧延材とは応力−破断時間曲線の傾きが異なることがわかる。そして、溶融塩電解により製造されるイリジウム材は、低荷重域における破断時間が溶解圧延材よりも長くなっている。本実施形態のイリジウム材の応力−破断時間曲線は、y=33.7x−0.15で示され、比較例ではy=71.7x−0.33で示されるが、溶融塩電解で製造されるイリジウム材の応力−破断時間曲線の傾きは、溶解圧延材よりも小さくなっている。尚、本発明者等によれば、溶融塩電解で製造されるイリジウム材の応力−破断時間特性を、図のように両対数表示したときの直線の傾きは、−0.10〜−0.20の範囲内にある。 FIG. 2 shows the results of the high temperature creep test. In this test, the load was changed at a test temperature of 1600 ° C., the rupture time was measured, and a stress-rupture time curve was created. From FIG. 2, it can be seen that the iridium material produced by molten salt electrolysis produced in this embodiment has a different slope of the stress-rupture time curve from the comparative melt-rolled material. And the iridium material manufactured by molten salt electrolysis has the rupture time in a low load area longer than the melt rolling material. Stress iridium material of the present embodiment - the rupture time curve is shown by y = 33.7x -0.15, in the comparative example are shown in y = 71.7x -0.33, produced by molten salt electrolysis The slope of the stress-rupture time curve of the iridium material is smaller than that of the melt-rolled material. According to the present inventors, the slope of the straight line when the stress-rupture time characteristics of an iridium material produced by molten salt electrolysis is logarithmically displayed as shown in the figure is -0.10 to -0. It is in the range of 20.

また、図3、4は、クリープ破断後の両材料の破断面の外観を示す。この図から、溶融塩電解によるイリジウム材は、粒内で破断していることがわかる。また、この材料は、伸びも大きく、溶解圧延材とは異なる機構で破断することが確認された。   3 and 4 show the appearance of fracture surfaces of both materials after creep rupture. From this figure, it can be seen that the iridium material obtained by molten salt electrolysis is broken within the grains. Further, it was confirmed that this material has a large elongation and breaks by a mechanism different from that of the melt-rolled material.

次に、高温引張試験の結果を表2に示す。この試験では、試験温度を1200℃。1500℃とした。図5、6は、各温度における引張試験の結果を示す。また、表2に、この試験で測定された引張強さ、伸び等の特性値を示す。   Next, Table 2 shows the results of the high temperature tensile test. In this test, the test temperature is 1200 ° C. The temperature was 1500 ° C. 5 and 6 show the results of a tensile test at each temperature. Table 2 shows characteristic values such as tensile strength and elongation measured in this test.

図3からわかるように、いずれの試験温度においても、溶融塩電解材は、溶解圧延材よりも引張強さ、降伏応力といった強度面では劣るものの、伸びが著しく大きく展延性を有することがわかる。本発明者等によれば、溶融塩電解材について、複数の試験を行なったところ、試験温度1200℃では、降伏応力が35〜65MPaで伸びが80〜110%となり、1500℃では降伏応力が10〜25MPaで伸びが80〜100%の範囲内となることが確認されている。   As can be seen from FIG. 3, at any test temperature, the molten salt electrolyte material is inferior in strength, such as tensile strength and yield stress, to the melt-rolled material, but the elongation is remarkably large and has ductility. According to the inventors, when a plurality of tests were performed on the molten salt electrolytic material, the yield stress was 35 to 65 MPa and the elongation was 80 to 110% at a test temperature of 1200 ° C., and the yield stress was 10% at 1500 ° C. It has been confirmed that the elongation is in the range of 80 to 100% at ˜25 MPa.

次に、本実施形態に係るイリジウム製容器をブリッジマンるつぼとして単結晶の製造試験を行なった。単結晶製造は、高純度アルミナ粉末(5N)を仮焼結したものを原料とし、これをイリジウムるつぼに単結晶種子と共に封入した。そして、るつぼを2100℃、100mmのホットゾーンを有する円筒電気炉に挿入し、下降速度3mm/hとしてるつぼを下降させた。その後、電気炉を冷却しるつぼを取り出した。   Next, an iridium container according to the present embodiment was used as a Bridgman crucible, and a single crystal production test was conducted. Single crystal production was performed by pre-sintering high-purity alumina powder (5N) and encapsulating it in an iridium crucible with single crystal seeds. Then, the crucible was inserted into a cylindrical electric furnace having a hot zone of 2100 ° C. and 100 mm, and the crucible was lowered at a descending speed of 3 mm / h. Thereafter, the crucible for cooling the electric furnace was taken out.

取り出したるつぼの外観を観察したところ、極度の変形も見られず、また、表面に割れ等の破断も見られなかった。そして、るつぼを破いて内部のサファイア単結晶を回収し外観観察したが、表面は清浄な単結晶材料の外観を呈していた。   When the appearance of the crucible taken out was observed, no extreme deformation was observed, and no breakage such as a crack was observed on the surface. Then, the crucible was broken and the internal sapphire single crystal was recovered and observed for appearance, but the surface had the appearance of a clean single crystal material.

溶融塩電解装置の構成を示す図。The figure which shows the structure of a molten salt electrolysis apparatus. 高温クリープ試験における応力−破断時間曲線を示す図。The figure which shows the stress-rupture time curve in a high temperature creep test. 溶融塩電解材の高温クリープ破断後の破断面を示す写真。The photograph which shows the fracture surface after high temperature creep rupture of molten salt electrolyte material. 溶解・圧延材の高温クリープ破断後の破断面を示す写真。A photograph showing a fracture surface of a melted and rolled material after high temperature creep rupture. 高温引張試験(1200℃)の結果を示す図。The figure which shows the result of a high temperature tensile test (1200 degreeC). 高温引張試験(1500℃)の結果を示す図。The figure which shows the result of a high temperature tensile test (1500 degreeC).

Claims (5)

イリジウムからなり、厚さ0.3mm以下の薄肉の耐熱容器であって、
イリジウム塩を含む溶融塩の溶融塩電解により形成されるイリジウム製耐熱容器。
A thin heat-resistant container made of iridium and having a thickness of 0.3 mm or less,
An iridium heat-resistant container formed by molten salt electrolysis of a molten salt containing an iridium salt.
貴金属を除く不純物元素の合計濃度が100ppm以下である請求項1記載のイリジウム製耐熱容器。 The iridium heat-resistant container according to claim 1, wherein the total concentration of impurity elements excluding noble metals is 100 ppm or less. イリジウムを除く貴金属の合計濃度が10000ppm以下である請求項1又は請求項2記載のイリジウム製耐熱容器。 The heat-resistant container made of iridium according to claim 1 or 2, wherein the total concentration of noble metals excluding iridium is 10,000 ppm or less. 請求項1〜請求項3のいずれか1項に記載のイリジウム製耐熱容器からなるブリッジマンるつぼ。 The Bridgman crucible which consists of an iridium heat-resistant container of any one of Claims 1-3. 請求項1〜請求項3のいずれか1項に記載のイリジウム製耐熱容器からなる熱分析装置用耐熱セル。

The heat-resistant cell for thermal analyzers which consists of an iridium heat-resistant container of any one of Claims 1-3.

JP2005313607A 2005-10-28 2005-10-28 Heat-resistant container made of iridium Pending JP2007119296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313607A JP2007119296A (en) 2005-10-28 2005-10-28 Heat-resistant container made of iridium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313607A JP2007119296A (en) 2005-10-28 2005-10-28 Heat-resistant container made of iridium

Publications (1)

Publication Number Publication Date
JP2007119296A true JP2007119296A (en) 2007-05-17

Family

ID=38143528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313607A Pending JP2007119296A (en) 2005-10-28 2005-10-28 Heat-resistant container made of iridium

Country Status (1)

Country Link
JP (1) JP2007119296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776537A (en) * 2012-07-17 2012-11-14 北京航空航天大学 Method for preparing Ir layer on Pt matrix in chloride fused salt system through electrolytic deposition
CN102928566A (en) * 2012-11-22 2013-02-13 淮南中科储能科技有限公司 Testing type high-temperature molten salt loop

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283293A (en) * 1988-09-20 1990-03-23 Tanaka Kikinzoku Kogyo Kk Production of thin-walled iridium crucible
JPH06279174A (en) * 1993-03-23 1994-10-04 Natl Inst For Res In Inorg Mater Production of oxide single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283293A (en) * 1988-09-20 1990-03-23 Tanaka Kikinzoku Kogyo Kk Production of thin-walled iridium crucible
JPH06279174A (en) * 1993-03-23 1994-10-04 Natl Inst For Res In Inorg Mater Production of oxide single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776537A (en) * 2012-07-17 2012-11-14 北京航空航天大学 Method for preparing Ir layer on Pt matrix in chloride fused salt system through electrolytic deposition
CN102776537B (en) * 2012-07-17 2015-02-18 北京航空航天大学 Method for preparing Ir layer on Pt matrix in chloride fused salt system through electrolytic deposition
CN102928566A (en) * 2012-11-22 2013-02-13 淮南中科储能科技有限公司 Testing type high-temperature molten salt loop

Similar Documents

Publication Publication Date Title
CN1268791C (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in fused salt
US6309595B1 (en) Titanium crystal and titanium
JP5189229B1 (en) Manufacturing method of high purity lanthanum, high purity lanthanum, sputtering target made of high purity lanthanum, and metal gate film mainly composed of high purity lanthanum
CN101680060A (en) Aluminum alloy for anodizing having durability, contamination resistance and productivity, method for producing the same, aluminum alloy member having anodic oxide coating, and plasma processing appar
EP2666877A1 (en) Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component
NO340277B1 (en) A method of reducing a solid metal oxide in an electrolysis cell.
CA1276907C (en) Refining of lithium-containing aluminum scrap
Olsen et al. Three-layer electrorefining of silicon
Liu et al. Direct electrolytic preparation of chromium metal in CaCl2–NaCl eutectic salt
US10266951B2 (en) Method and apparatus for producing solar grade silicon using a SOM electrolysis process
JP2007119296A (en) Heat-resistant container made of iridium
CN100560785C (en) Sputtering target material
JP2017137560A (en) Method for producing porous nickel
US4086082A (en) Copper crystal and process
Zhou et al. The feasibility of electrolytic preparation of Fe-Ni-Cr alloy in molten oxides system
Wesley Preparation of pure nickel by electrolysis of a chloride solution
JP2014181142A (en) Crucible for growing sapphire single crystal
JP6308672B2 (en) Platinum rhodium alloy and method for producing the same
WO1999066099A1 (en) Target material for spattering
WO2023095904A1 (en) Easily crushable electrodeposited copper
Petitjean et al. Glass/Metal Interactions
CN114561671A (en) Rare earth metal electrolytic cathode protection method and cathode
JP2006169085A (en) Apparatus and appliance, which are each made of platinum or platinum alloy and used for manufacturing glass
Gass et al. Low-cost substrates for polycrystalline silicon solar cells by electrodeposition processes. Third quarterly progress report, April 1-June 30, 1980
CN114606540A (en) Rare earth metal electrolytic cathode protection method and cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070604

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090129

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A711 Notification of change in applicant

Effective date: 20100318

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Effective date: 20100812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101203