JP2007118478A - Method of manufacturing thermoplastic resin sheet - Google Patents

Method of manufacturing thermoplastic resin sheet Download PDF

Info

Publication number
JP2007118478A
JP2007118478A JP2005315922A JP2005315922A JP2007118478A JP 2007118478 A JP2007118478 A JP 2007118478A JP 2005315922 A JP2005315922 A JP 2005315922A JP 2005315922 A JP2005315922 A JP 2005315922A JP 2007118478 A JP2007118478 A JP 2007118478A
Authority
JP
Japan
Prior art keywords
thickness
sheet
adjusting means
width direction
thickness adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005315922A
Other languages
Japanese (ja)
Inventor
Masatomo Tokieda
正知 時枝
Masatoshi Uno
雅俊 宇野
Yoshihiko Iinuma
良彦 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005315922A priority Critical patent/JP2007118478A/en
Publication of JP2007118478A publication Critical patent/JP2007118478A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a thermoplastic resin sheet which prevents an amount of operation to a thickness adjusting means from diverging so as to stably manufacture a sheet having a minimal thickness fluctuation. <P>SOLUTION: The method of manufacturing the thermoplastic resin sheet comprises the steps of: measuring a thickness distribution in the sheet width direction while the sheet is formed by extruding a material using a die 1 provided with a plurality of thickness adjusting means 2; determining a manipulated variable for outputting to the thickness adjusting means 2 on the basis of the measured value using a process model descriptive of a behavior of a control system; and controlling so that the thickness distribution in the width direction becomes a required thickness distribution by transmitting the manipulated variable to each thickness adjusting means 2, wherein the adjustment of the corresponding relation between a plurality of the thickness adjusting means 2 and measuring points of the thickness distribution in the width direction is performed on the condition that satisfies a predetermined equation after manufacturing at least one roll of the product sheet, and the manipulated variable for inputting to the thickness adjusting means 2 is obtained on the basis of a result of the adjustment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱可塑性樹脂シートの製造方法に関する。   The present invention relates to a method for producing a thermoplastic resin sheet.

従来、熱可塑性樹脂シートの製造方法は、次のようなプロセスにより行われている。   Conventionally, the manufacturing method of a thermoplastic resin sheet is performed by the following process.

図2は、一般的な熱可塑性樹脂シートの製造設備の概略図である。   FIG. 2 is a schematic view of a general thermoplastic resin sheet production facility.

この製造設備は、押し出された溶融樹脂をリップ間隙によってシート状に成形する口金1、シート状に成形された冷却ロール3、シートを縦横方向に延伸する延伸機4、延伸されたシートを連続的に所望の長さまでロール状に巻き取り、かつ連続的に切り換えが可能なターレットワインダ6を備えている。
シートは幅方向に同じ所定厚みを持つことが要求されるが、実際には口金の細い間隙を幅方向に同じ速度で溶融樹脂を通過することが困難であり、かつ延伸においても幅方向で異なるために、シートの厚みは必ずしも幅方向に同じにならない。
This manufacturing equipment includes a die 1 that forms extruded molten resin into a sheet shape by a lip gap, a cooling roll 3 that is formed into a sheet shape, a stretching machine 4 that stretches the sheet vertically and horizontally, and a stretched sheet that is continuously formed. And a turret winder 6 that can be rolled up to a desired length and continuously switched.
The sheet is required to have the same predetermined thickness in the width direction, but in practice, it is difficult to pass the molten resin through the narrow gap of the base at the same speed in the width direction, and the stretching also differs in the width direction. Therefore, the thickness of the sheet is not necessarily the same in the width direction.

このため、口金1はシートに対して幅方向に配列された厚み調整手段2を備えている。厚み調整手段2には、ヒートボルトを用い、これらのボルトの温度を変化させて、ボルトを熱膨張、収縮させることにより口金1のリップ間隙を調整するヒートボルト方式等が使用されている。   For this purpose, the base 1 is provided with thickness adjusting means 2 arranged in the width direction with respect to the sheet. As the thickness adjusting means 2, a heat bolt system is used in which heat bolts are used and the temperature of these bolts is changed to thermally expand and contract the bolts to adjust the lip gap of the base 1.

シートを連続的に延伸機4に通過させ、延伸機4通過後のシート厚みを厚み測定器5にてシートの幅方向の分布として測定し、口金のリップにシート幅方向に多数配設された厚み調整手段2に対応する測定位置での厚み測定値に基づいて該厚み調整手段2を制御するようにしたシートの製造方法は各種知られている。   The sheet was continuously passed through the stretching machine 4, and the sheet thickness after passing through the stretching machine 4 was measured as a distribution in the width direction of the sheet with the thickness measuring device 5. Various sheet manufacturing methods are known in which the thickness adjusting means 2 is controlled based on the thickness measurement value at the measurement position corresponding to the thickness adjusting means 2.

この際には、各厚み調整手段とシート厚みの測定位置との対応関係が精度良く決定されていることが重要である。精度良く決定されていない場合には、本来調整すべき位置とは異なった位置のシート厚みを調整することになり、シート厚みを精度良く制御することができず、シートの品質が低下する。シートの幅方向の各所で、シート幅方向に均一に延伸するものであれば、キャスト位置でのシート幅と測定位置でのシート幅の相似的な関係から各厚み調整手段に対応する測定位置を決定することが出来るが、実際にはネックイン現象、シート幅方向で場所によって延伸状態が異なることや、幅方向で延伸状態が異なることで発生する厚み斑を収束させるために、制御によって口金のリップ間隙が幅方向に均一にできないなどの影響によって、上記のように単純に相似関係を利用して対応関係を決定することはできず、各厚み調整手段に対応する測定位置を実測する必要がある。   At this time, it is important that the correspondence between each thickness adjusting unit and the measurement position of the sheet thickness is determined with high accuracy. If it is not determined with high accuracy, the sheet thickness at a position different from the position that should be adjusted is adjusted, and the sheet thickness cannot be controlled with high accuracy, resulting in a reduction in sheet quality. As long as it extends uniformly in the sheet width direction at various points in the sheet width direction, the measurement position corresponding to each thickness adjusting means is determined from the similar relationship between the sheet width at the casting position and the sheet width at the measurement position. Although it can be determined, the necking-in phenomenon, in order to converge the thickness unevenness that occurs due to the stretching state varies depending on the location in the sheet width direction and the stretching state varies in the width direction, the control of the base Due to the effect that the lip gap cannot be made uniform in the width direction, it is not possible to determine the corresponding relationship simply by using the similarity as described above, and it is necessary to actually measure the measurement position corresponding to each thickness adjusting means. is there.

厚み調整手段と測定位置の対応関係を決定する方法として、例えば特許文献1には、厚み調整手段を所定量操作して、厚み調整手段を操作したことによって起こるシートの厚み変動が定常状態になったところで、前記シート厚み変動のピーク位置を検出し、ピーク位置に最も近い測定位置を前記厚み調整手段対応位置とすることが開示されている。
制御手段としては、制御開始前に厚み調整手段を所定量操作し、厚み調整手段を操作したことにより起こるシートの厚み変動が定常状態になったところで、シート厚み変動ピークを検出しピーク位置で最も測定位置を厚み調整手段の対応位置とする手法(以下調整手段対応)によって各厚み調整手段とシート厚みの測定位置を決定し、周知の比例(P)、比例積分(PI)あるいは比例積分微分(PID)の演算を施して得られる制御出力を操作量として厚み調整手段に出力するPID制御方式の厚み制御手段が、構成の簡単な割には安定した効果が得られる点、チューニングが容易である点等の理由で広く利用されている。
しかしながら、PID制御の場合、定常運転状態では実用上、シートの幅方向の厚み分布制御をほぼ問題なく行うことができるが、立ち上げ時、大きな条件変更時等には目的とする品質となる厚み斑に収束させるにはむだ時間が多く膨大な時間がかかっている問題があった。
As a method for determining the correspondence between the thickness adjusting means and the measurement position, for example, in Patent Document 1, the sheet thickness fluctuation caused by operating the thickness adjusting means by operating the thickness adjusting means by a predetermined amount is in a steady state. By the way, it is disclosed that the peak position of the sheet thickness variation is detected and the measurement position closest to the peak position is set as the position corresponding to the thickness adjusting means.
As the control means, the thickness adjusting means is operated by a predetermined amount before the start of control, and when the sheet thickness fluctuation caused by operating the thickness adjusting means becomes a steady state, the sheet thickness fluctuation peak is detected and the peak position is the highest. The measurement position of each thickness adjusting means and the sheet thickness is determined by a method of setting the measurement position as the corresponding position of the thickness adjusting means (hereinafter referred to as adjusting means), and the known proportional (P), proportional integral (PI) or proportional integral derivative ( PID control type thickness control means that outputs the control output obtained by calculating (PID) as the operation amount to the thickness adjustment means can provide a stable effect for simple construction, and is easy to tune. Widely used for reasons.
However, in the case of PID control, the thickness distribution control in the width direction of the sheet can be practically performed without any problem in a steady operation state. There was a problem that it took a lot of time to make the spots converge.

そこで、近年コンピュータ利用による制御システムが発達し、特許文献2,3に記載の厚み調整手段に加える操作量とシート厚みの数式関係を表すプロセスモデルを用いて厚み調整手段へ加える操作量を決定する方法により、厚みの収束性の改善がなされている。プロセスモデルを用いた制御の場合、PID制御に比べ、立ち上げ時、大きな条件変更時の厚み斑収束速度が速く、かつ最終的な収束厚み斑も小さくなり、より厚み斑の小さいシートを製造できる。   Therefore, in recent years, a computer-based control system has been developed, and an operation amount to be added to the thickness adjustment means is determined using a process model representing a mathematical relationship between the operation amount to be applied to the thickness adjustment means and the sheet thickness described in Patent Documents 2 and 3. By the method, the convergence of the thickness is improved. In the case of control using a process model, compared to PID control, the thickness unevenness convergence speed at the time of start-up and a large change in conditions is high, and the final convergence thickness unevenness is also small, and a sheet with smaller thickness unevenness can be manufactured. .

しかしながら、プロセスモデルを用いた厚み制御を行って熱可塑性樹脂シートを製造していくと厚み調整手段への操作量が隣接する厚み調整手段の操作量との差が過度に大きくなる状況が発生することがあった。隣接位置での操作量の差が過度に大きくなった場合には、隣接する厚み調整手段の差をより大きくしても、操作量は近接する厚み調整手段まで影響し、間隙の形状がこの操作量差に追従できなくなり、間隙の調整能力が低下し、シートの厚み制御精度を低下させ、最終的に操作量を発散させてしまい、制御不能な状態まで陥ることがあった。   However, when a thermoplastic resin sheet is manufactured by performing thickness control using a process model, a situation occurs in which the difference between the operation amount of the thickness adjustment unit and the operation amount of the adjacent thickness adjustment unit becomes excessively large. There was a thing. When the difference in the operation amount at the adjacent position becomes excessively large, even if the difference between adjacent thickness adjustment means is made larger, the operation amount will affect the adjacent thickness adjustment means, and the shape of the gap It becomes impossible to follow the amount difference, the gap adjustment ability is lowered, the sheet thickness control accuracy is lowered, and the operation amount is eventually diverged, resulting in an uncontrollable state.

これは、厚み斑を収束させるために、厚み調整手段へ操作量を随時変化して、操作量変化に伴う口金リップ形状変化によって、溶融熱可塑性樹脂の流路が変更される。そのため、厚み調整前の調整手段対応に微小なズレが生じる。この微少なズレはPID制御の場合、特に大きな問題とならなかったが、大きな操作量変化や、微小厚み斑まで改善させることが可能なプロセスモデルを用いた制御の場合、長時間使用によって操作量を発散させる傾向を顕在化させる。   In order to converge the thickness unevenness, the operation amount is changed to the thickness adjusting means at any time, and the flow path of the molten thermoplastic resin is changed by the change in the shape of the base lip accompanying the change in the operation amount. For this reason, a slight deviation occurs in correspondence to the adjusting means before the thickness adjustment. This slight misalignment was not a major problem in the case of PID control, but in the case of control using a process model capable of improving even a large change in operation amount or even minute thickness unevenness, the operation amount is increased by using for a long time. The tendency to diverge is revealed.

また、口金リップ間隙形状変化によってプロセスモデルに関わる重要な特性であるプロセスゲインや干渉率が微小ながら変化を引き起こし、実際のプロセス特性がプロセスモデルと必ずしも一致しないことが現れて、かつ口金に設置している厚み調整手段の機差もあるためプロセスモデルを実際のプロセスと完全に一致させることは困難である。このプロセスモデル誤差によって、制御安定性が低下することがあり、制御安定性が低下すると、立ち上げ時、大きな条件変更時等の短時間では問題なく制御できた場合にも、定常運転状態で長時間に使用していくにつれて、最終的な厚み収束が悪くなり、操作量が発散していき制御不能に陥ることがあった。
特開2002−301752号公報 特開2000−094497号公報 特開2002−096371号公報
In addition, the process gain and interference rate, which are important characteristics related to the process model, change due to the change in the shape of the gap between the base lips, causing a slight change, and it appears that the actual process characteristics do not necessarily match the process model. It is difficult to perfectly match the process model with the actual process because there are differences in the thickness adjusting means. Due to this process model error, the control stability may decrease.If the control stability decreases, even if the system can be controlled without any problems in a short time, such as when starting up or when a large condition is changed, it will be long in the steady operation state. As it was used over time, the final thickness convergence worsened, and the amount of operation diverged, leading to a loss of control.
JP 2002-301752 A JP 2000-094497 A JP 2002-096371 A

本発明の目的は、上記問題点を解決し、操作量が発散することを防止し安定して厚み斑の小さなシートの製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems, to provide a method for producing a sheet having a small thickness unevenness while preventing the manipulated variable from diverging.

上記目的を達成するために本発明によれば、以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

すなわち、複数個の厚み調整手段を備えた口金を用いて原料を押し出し、成形してシートとなすとともに、前記シートの幅方向における厚み分布を測定し、この測定値に基づき、制御系の挙動を記述したプロセスモデルを用いて前記厚み調整手段に加える操作量を求め、前記操作量を前記各厚み調整手段に出力して前記シートの前記幅方向の厚み分布が所望の厚み分布となるように制御するシートの製造方法であって、前記複数個の厚み調整手段と前記幅方向における厚み分布の測定に際する位置との対応関係の調整を、1本以上の製品シートのロールを製造後、次の式(1)が成立する条件にて実施し、前記調整の結果に基づいて前記厚み調整手段に加える操作量を求めることを特徴とする熱可塑性樹脂シートの製造方法が提供される。   That is, the raw material is extruded using a die provided with a plurality of thickness adjusting means, molded into a sheet, the thickness distribution in the width direction of the sheet is measured, and the behavior of the control system is determined based on the measured value. Using the described process model, an operation amount to be applied to the thickness adjusting unit is obtained, and the operation amount is output to each thickness adjusting unit so that the thickness distribution in the width direction of the sheet becomes a desired thickness distribution. A method of manufacturing a sheet, wherein the adjustment of the correspondence between the plurality of thickness adjusting means and the position in measuring the thickness distribution in the width direction is performed after manufacturing a roll of one or more product sheets. There is provided a method for producing a thermoplastic resin sheet, which is carried out under the condition that the formula (1) is established, and an operation amount to be applied to the thickness adjusting means is obtained based on the adjustment result.

Figure 2007118478
F:品種替えもしくは口金交換または前回調整手段対応を実施してからの経過時間[時間]
d:熱可塑性樹脂シートの基準厚み[μm]
N:品種替えもしくは口金交換から調整手段対応を実施した回数(N=0,1,2,3,・・・)
また、本発明の好ましい形態によれば、前記各厚み調整手段と幅方向における厚み分布の測定に際する位置との対応関係の調整は、互いに離間した前記複数個の厚み調整手段について同時期に実施し、前記対応関係を調整した前記各厚み調整手段ごとに、プロセスゲインおよび/または隣接する厚み調整手段との干渉率を求め、求めた前記プロセスゲインおよび/または前記干渉率に基づいてプロセスモデルを再構成することを特徴とする請求項1に記載の熱可塑性樹脂シートの製造方法が提供される。
Figure 2007118478
F: Elapsed time [hours] since the product change or base change or the last adjustment procedure
d: Reference thickness [μm] of thermoplastic resin sheet
N: Number of times adjustment means support was implemented from product change or base change (N = 0, 1, 2, 3,...)
Further, according to a preferred embodiment of the present invention, the adjustment of the correspondence relationship between the thickness adjusting means and the position for measuring the thickness distribution in the width direction is performed at the same time for the plurality of thickness adjusting means spaced from each other. The process gain and / or the interference rate with the adjacent thickness adjustment unit is obtained for each of the thickness adjustment units that have been implemented and the correspondence relationship has been adjusted, and a process model is obtained based on the obtained process gain and / or the interference rate The method for producing a thermoplastic resin sheet according to claim 1 is provided.

本発明において、プロセスモデルとは、操作量を出力してからの厚み調整手段の動作の時間遅れ、シートが口金を出てから厚み測定装置の位置まで搬送される時間と厚み測定装置で幅方向の厚みデータを測定するのに要する時間からなるむだ時間および一つの厚み調整手段を操作した場合に隣接する厚み調整手段に対応する位置のシート厚みが変化する干渉などを考慮して、制御系の挙動を数式化したものである。しかし、各厚み調整手段に対して個々にモデル化するのでは多大な時間と労力を要するだけでなく、時系列導出式が頻雑になりすぎる。そこで、プロセスモデルを、厚み調整手段の操作量と対応する位置のシート厚みの関係を表す伝達関数と個々の厚み調整手段間の干渉を表す。少なくとも対角成分がゼロでない定数行列との積を用いて表現することが好ましい。これにより、厚み調整手段の操作量時系列演算の際の演算が簡略化される。   In the present invention, the process model is the time delay of the operation of the thickness adjusting means after outputting the operation amount, the time when the sheet is conveyed from the die to the position of the thickness measuring device, and the width direction in the thickness measuring device. In consideration of the dead time consisting of the time required to measure the thickness data and the interference of the change in the sheet thickness at the position corresponding to the adjacent thickness adjusting means when one thickness adjusting means is operated, the control system This is a mathematical expression of behavior. However, modeling each thickness adjusting unit individually not only requires a great amount of time and labor, but also the time series derivation formula becomes too complicated. Therefore, the process model represents the interference between the transfer function representing the relationship between the operation amount of the thickness adjusting means and the sheet thickness at the corresponding position and the individual thickness adjusting means. It is preferable to express using at least a product with a constant matrix whose diagonal component is not zero. Thereby, the calculation at the time of operation amount time series calculation of the thickness adjusting means is simplified.

本発明において、熱可塑性樹脂とは、加熱すると塑性を示す樹脂であり、代表的な樹脂(ポリマー)としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンα、β−ジカルボキシレート、P−ヘキサヒドロ・キシリレンテレフタレートからのポリマー、1,4シクロヘキサンジメタノールからのポリマー、ポリ−P−エチレンオキシベンゾエート、ポリアリレート、ポリカーボネートなど及びそれらの共重合体で代表されるように主鎖にエステル結合を有するポリエステル類、更にナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン11、などで代表されるように主鎖にアドミ結合を有するポリアミド類、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、ポリメチルペンテン、ポリブテン、ポリイソブチレン、ポリスチレンなどで代表されるように主としてハイドロカーボンのみからなるポリオレフィン類、ポリエーテルサルフォン(PES)、ポリフェニレンオキサイド(PPO)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリオキシメチレンなどで代表されるポリエーテル類、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレンなどで代表されるハロゲン化ポリマー類およびポリフェニレンスルフイド(PPS)、ポリスルフオンおよびそれらの共重合体や変性体などである。   In the present invention, the thermoplastic resin is a resin that exhibits plasticity when heated, and typical resins (polymers) include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene α, β-dicarboxylate, P -Polymers from hexahydro xylylene terephthalate, polymers from 1,4 cyclohexanedimethanol, poly-P-ethyleneoxybenzoate, polyarylate, polycarbonate etc. and their ester linkages to the main chain as represented by their copolymers Polyamides having amide bonds in the main chain as represented by nylon 6, nylon 66, nylon 610, nylon 12, nylon 11, etc., polyethylene, polypropylene, ethylene vinyl acetate copolymer, polymethyl Polyolefins mainly composed of hydrocarbons such as pentene, polybutene, polyisobutylene, polystyrene, etc., polyethersulfone (PES), polyphenylene oxide (PPO), polyetheretherketone (PEEK), polyethylene oxide, polypropylene Polyethers represented by oxides, polyoxymethylene, etc., halogenated polymers represented by polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polychlorotrifluoroethylene, and polyphenylene sulfide (PPS), polysulfone And their copolymers and modified products.

本発明の場合、熱可塑性樹脂としては、特に、ポリエステル類、ポリアミド類、ポリエーテル類、ポリフェニレンスルフイドなどが好ましく、更にポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類およびポリフェニレンスルイドは特に本発明の効果が顕著であり、一層好ましい。もちろん上記した樹脂に、必要に応じて適宜、添加剤、例えば安定剤、粘度調整剤、酸化防止剤、帯電防止剤、ブロッキング防止剤、紫外線吸収剤、赤外線吸収剤等を添加してもよい。   In the case of the present invention, as the thermoplastic resin, polyesters, polyamides, polyethers, polyphenylene sulfides and the like are particularly preferable. Polyesters such as polyethylene terephthalate and polyethylene naphthalate and polyphenylene sulfides are particularly preferable in the present invention. This effect is remarkable and is more preferable. Of course, additives such as stabilizers, viscosity modifiers, antioxidants, antistatic agents, antiblocking agents, ultraviolet absorbers, infrared absorbers and the like may be appropriately added to the above-described resins as necessary.

本発明において、熱可塑性樹脂シートの基準厚みとは、製造する品種によって一義的に決まる目標となる厚みのことである。   In the present invention, the reference thickness of the thermoplastic resin sheet is a target thickness that is uniquely determined by the type of product to be manufactured.

本発明において、プロセスゲインとは、操作量変化に対する制御量変化の感度を表す値である。すなわち、シートの厚み調整手段に入力する操作量を単位量変化させたときに、シートの厚みがどれだけ変化するかを表す値である。 本発明において、干渉率とは、ある厚み調整手段を操作したときに、その厚み調整手段に対応するシート厚み調整手段に対応するシート厚み測定位置のシート厚み変化に対して、隣接する厚み調整手段に対応する測定位置のシート厚みがどの程度変化するかを表す値である。すなわち厚み調整手段を操作したときに、口金の剛性や延伸工程での影響によって、シート厚みは操作位置だけでなく、周辺部もある広がりを持って変化する。このとき、前記操作した厚み調整手段に隣接する厚み調整手段に対応する測定位置でのシート厚み変化割合がどの程度であるか示したものである。   In the present invention, the process gain is a value representing the sensitivity of the control amount change with respect to the operation amount change. That is, the value represents how much the thickness of the sheet changes when the operation amount input to the sheet thickness adjusting means is changed by a unit amount. In the present invention, the interference rate is the thickness adjusting means adjacent to the sheet thickness change at the sheet thickness measuring position corresponding to the sheet thickness adjusting means corresponding to the thickness adjusting means when a certain thickness adjusting means is operated. Is a value representing how much the thickness of the sheet at the measurement position corresponding to. That is, when the thickness adjusting means is operated, the sheet thickness changes not only at the operation position but also at the peripheral portion due to the influence of the base rigidity and the stretching process. At this time, the sheet thickness change rate at the measurement position corresponding to the thickness adjusting means adjacent to the operated thickness adjusting means is shown.

本発明の熱可塑性樹脂シートの製造方法によれば、厚み調整手段への操作量が発散し、制御不能な状態を防止して、厚み斑の小さな熱可塑性樹脂シートを安定製造することができる。   According to the method for producing a thermoplastic resin sheet of the present invention, the amount of operation to the thickness adjusting means diverges, an uncontrollable state can be prevented, and a thermoplastic resin sheet having a small thickness variation can be stably produced.

以下、本発明の最良の実施形態の例を説明する。   Examples of the best embodiment of the present invention will be described below.

口金を交換してから、すなわち、フィルムの製造を休止した状態から、シートの厚みを制御開始する前に、複数の厚み調整手段のうち所定の間隔、好ましくは厚み調整手段の操作による厚み変動分布の干渉が無視できる間隔だけ離れた2点以上の数点の厚み調整手段に所定の操作量を加える。厚み調整手段を操作したことによって起こるシートの厚み変動が定常状態になったところで、厚み調整手段を変化する前の厚みとの偏差をとって幅方向の厚み偏差分布を取得する。この厚み分布のピーク位置を検出し、ピーク位置に最も近い測定位置を前記厚み調整手段の対応位置とする。また、ピーク位置の厚み調整手段の対応位置間を補間によって、全部の厚み調整位置と厚み測定位置の関係が算出され、調整手段の対応位置を取得する。   After changing the base, that is, from the state where production of the film is suspended, before starting to control the thickness of the sheet, a predetermined interval among the plurality of thickness adjusting means, preferably a thickness fluctuation distribution by operation of the thickness adjusting means A predetermined operation amount is added to two or more thickness adjusting means which are separated by an interval at which the interference can be ignored. When the thickness variation of the sheet caused by operating the thickness adjusting means reaches a steady state, the thickness deviation distribution in the width direction is obtained by taking the deviation from the thickness before changing the thickness adjusting means. The peak position of this thickness distribution is detected, and the measurement position closest to the peak position is set as the corresponding position of the thickness adjusting means. Further, by interpolating between corresponding positions of the peak position thickness adjusting means, the relationship between all thickness adjusting positions and thickness measuring positions is calculated, and the corresponding positions of the adjusting means are acquired.

この対応位置にプロセスモデルを用いて制御を行っていく場合に長期で使用して行くにつれて、厚み均一性が悪化していく、この厚み均一性の悪化時間を図3に示す。厚み均一性の評価として、延伸機通過後のシートの幅方向の厚みを厚み測定器で20回測定したシートの幅方向の厚み分布を平均化した幅方向の厚み分布を算出し、この幅方向の厚み分布のR値(幅方向の厚み分布の最大値と最小値の差)が50%悪化するまでの時間とした。厚み均一性が悪化したときに調整手段対応を実施して、82カ所ある厚み調整手段のうち、13、27、41、55,69番目の厚み調整手段が、それぞれ、240カ所ある厚み測定位置のどの厚み測定位置に対応するのかを表1に記載した。なお、厚み均一性の評価は、シートの基準厚みがそれぞれ、30μm、50μm、100μm、250μm、500μmのものについて行った。   FIG. 3 shows the thickness uniformity deterioration time in which the thickness uniformity deteriorates as it is used for a long time when the process model is controlled at the corresponding position. As an evaluation of thickness uniformity, the thickness distribution in the width direction was calculated by averaging the thickness distribution in the width direction of the sheet measured 20 times with the thickness measuring instrument in the width direction of the sheet after passing through the stretching machine. The time until the R value of the thickness distribution (the difference between the maximum value and the minimum value of the thickness distribution in the width direction) deteriorated by 50% was used. When the thickness uniformity deteriorates, the adjustment means is dealt with, and among the 82 thickness adjustment means, the thirteenth, 27th, 41st, 55th, and 69th thickness adjustment means respectively have 240 thickness measurement positions. Table 1 shows which thickness measurement position corresponds to. The thickness uniformity was evaluated for sheets having a reference thickness of 30 μm, 50 μm, 100 μm, 250 μm, and 500 μm, respectively.

Figure 2007118478
口金を交換してからは、最初の調整手段対応以降では大きな厚み斑を修正するために、口金リップ形状変化が大きくなり、調整手段対応のズレが大きくかつ厚み均一性の悪化が早く現れる(図3において、60〜75時間程度までの間に厚み均一性が悪化している。)。2回目以降は厚み斑は小さい状態で制御を再開することができるために、調整手段対応のズレが発生するまでの時間が長くなり、厚み均一性の悪化までの時間が延長される(図3において、75〜120時間程度までの間に厚み均一性が悪化している。)。3回目以降においては、2回目の調整手段対応後に、まず調整手段対応にズレが生じた状態での厚み調整手段の操作量から、厚み均一性を確保するための操作量に戻すように操作量が変化し、口金のリップ形状変化が小さいながらも発生する(図3において、110〜140時間程度までの間に厚み均一性が悪化している。)。この形状変化は、回数ごとに小さくなるために、調整手段対応を実施するたびに減少していき、結果として調整手段対応実施までの時間を伸ばすことが可能になるが、最終的には、厚み均一性確保のための操作量変化があり、形状変化も少ないものの存在するので、調整手段対応のズレが無くなることはない。この厚み均一性悪化までの時間は式(1)で近似することができ、この近似式で演算された間隔以内で、再び調整手段対応を実施することによって、厚み均一性の悪化を防ぐことが出来る。
Figure 2007118478
After replacing the base, in order to correct large thickness spots after the first adjustment means, the change in the lip shape of the base becomes large, the deviation corresponding to the adjustment means is large, and the uniformity of thickness appears quickly (Fig. 3, the thickness uniformity has deteriorated for about 60 to 75 hours. Since the control can be resumed with the thickness unevenness being small after the second time, the time until the deviation corresponding to the adjusting means occurs is lengthened and the time until the thickness uniformity is deteriorated (FIG. 3). In this case, the thickness uniformity has deteriorated for about 75 to 120 hours). In the third and subsequent times, after the second adjustment means, the operation amount is returned from the operation amount of the thickness adjustment means in a state where the adjustment means is deviated to the operation amount for ensuring thickness uniformity. This occurs even though the lip shape change of the die is small (in FIG. 3, the thickness uniformity is deteriorated between about 110 to 140 hours). Since this shape change becomes smaller every time, it will decrease each time the adjustment means correspondence is implemented, and as a result, it will be possible to increase the time until the adjustment means correspondence implementation, but ultimately the thickness Since there is a change in the operation amount for ensuring uniformity and there is little change in shape, there is no loss of deviation corresponding to the adjusting means. The time until the thickness uniformity is deteriorated can be approximated by the equation (1). By implementing the adjustment means again within the interval calculated by this approximate equation, the deterioration of the thickness uniformity can be prevented. I can do it.

さらに、ピーク位置の偏差量と厚み調整手段に加えた一定の操作量の比率をプロセスゲインとして算出する。前記対応位置が算出されたことによって、厚み調整手段に一定の操作量を加えた位置の隣接する厚み調整手段位置も算出され、その位置の偏差量と偏差のピーク値の比率が干渉率として算出される。算出されたプロセスゲインと干渉率より、プロセスモデルを作成する。   Further, a ratio between the deviation amount of the peak position and a certain operation amount added to the thickness adjusting means is calculated as a process gain. When the corresponding position is calculated, the position of the thickness adjusting unit adjacent to the position where the certain amount of operation is added to the thickness adjusting unit is also calculated, and the ratio between the deviation amount of the position and the peak value of the deviation is calculated as the interference rate. Is done. A process model is created from the calculated process gain and interference rate.

新たに作成されたプロセスモデルを制御に適用することによって、口金リップ間隙形状変化によってプロセスモデルに関わるプロセスモデルの誤差も常に小さい状態で制御が出来るようになり結果として最終的な厚み収束性も良化する。   By applying the newly created process model to the control, it is possible to control the process model with a small error due to the change in the shape of the lip gap, and as a result, the final thickness convergence is good. Turn into.

図1に本発明の実施形態例におけるフローチャートを示す。   FIG. 1 shows a flowchart in the embodiment of the present invention.

プロセスモデルを用いて、厚み制御を実施してシートの製造を行う前に調整手段対応を実施し、対応位置を取得し、かつ調整手段対応で現れた厚み偏差によって、プロセスゲインと干渉率を算出し、プロセスモデルを作成し、制御に適用させる。プロセスモデルを使用して制御を実施していき、シートを製造する。長期で使用することによる調整手段対応にズレが生じて、操作量が発散傾向に動いて厚み斑が大きくならないように、式(1)の時間までに一度制御をやめて、調整手段対応を実施する。この調整時間対応によって得られる対応位置とプロセスモデルに置き換えて、再び制御を開始し、厚み均一性の良いシートを製造していく。   Using the process model, before the sheet is manufactured by controlling the thickness, the adjustment means is handled, the corresponding position is acquired, and the process gain and interference rate are calculated from the thickness deviation that appears in response to the adjustment means. Then, create a process model and apply it to the control. Control is performed using a process model to produce a sheet. Stop the control once by the time of the formula (1), and implement the adjustment means so that the adjustment means corresponding to the long-term use will be displaced and the manipulated variable tends to diverge and the thickness unevenness does not increase. . Substituting the corresponding position and process model obtained by this adjustment time correspondence, control is started again, and a sheet with good thickness uniformity is manufactured.

この場合、製品シートを製造しているときに制御を一旦停止し、調整手段対応を実施することは、製品シートに厚み斑を設けることになり、その時製造中のロールは製品にならないので、ワインダで製品ロールを切り替えのタイミングで、調整手段対応実施からの経過時間を比較して、調整手段対応を実施した場合、製品ロールのロスがなくなり、好ましく使用される。   In this case, when the product sheet is being manufactured, the control is temporarily stopped and the adjustment means is supported. As a result, a thickness unevenness is provided on the product sheet, and the roll being manufactured at that time does not become a product. When the product roll is switched and the elapsed time from the adjustment means correspondence is compared and the adjustment means correspondence is implemented, the loss of the product roll is eliminated and it is preferably used.

なお、式(1)において、等号が成り立つ場合には最も調整手段の対応時間を延ばすことができ、歩留まりが良くなることは言うまでもない。また、等号が成立する5割以上8割以下程度で調整手段の対応を取ることも好ましい。   In the equation (1), when the equal sign holds, it is needless to say that the response time of the adjusting means can be extended most and the yield is improved. Moreover, it is also preferable to take a measure of the adjusting means at about 50% to 80% where the equal sign is established.

以上の熱可塑性樹脂シートの製造方法を用いて、熱可塑性樹脂シート(二軸延伸ポリエステルフィルム)を製造し、各評価を行なった。   Using the above method for producing a thermoplastic resin sheet, a thermoplastic resin sheet (biaxially stretched polyester film) was produced, and each evaluation was performed.

押出機でポリエステルを溶融し、290℃の温度で口金より押出し、静電印加キャスト法を用いて表面温度30℃のキャスティング・ドラム上に急冷固化せしめて、未延伸シートを作った。また、押出機の吐出量を調節し、延伸終了後の最終ポリエステルフィルムの厚みが50μmになるように調整した。上記の未延伸フィルムは、112℃で3.5倍長手方向に延伸後、幅方向に110℃で4.8倍延伸した後、246℃で熱処理を施し、ワインダで50m/minの速度で、シートロール一本につき8500m巻取り(巻き取り時間は170分)、厚み50μmの熱可塑性樹脂シート(二軸延伸ポリエステルフィルム)を得た。このフィルムの幅方向の厚み分布の均一性を確認するため、シート厚みの幅方向のR(フィルム厚みの幅方向での最大値と最小値の差)を測定した。
さらに、厚み均一性が悪化しないことを320時間にわたって監視し、厚みに悪化していく傾向がないかを確認し、定常的に厚みの崩れが見られる場合はNGとした。
この案件において、回数N=0のときの式(1)のFは、68以下となる。また、N=1のときの式(1)のFは、109以下となる。
[実施例1]
シートを製造する際、等速度で横行するβ線厚さ計を用いて、延伸機通過後のシートの幅方向の厚み分布をシートの幅方向に等間隔に240カ所で測定した。厚さ計で測定されたシートの幅方向の厚みデータはコンピュータからなるコントローラに入力し、ヒートボルトからなる厚み調整手段を口金に等間隔で82カ所配置して、厚み調整手段対応を5カ所(13、27、41、55,69番目)において実施し、厚み調整手段に対する出力が演算され、各操作量を厚み調整手段に出力することによって幅方向の厚み分布が均一になるように制御を実施し、調整手段対応を実施してからの間隔が式(1)に到達する前、すなわち、ここでは70時間、180時間、320時間の段階で調整手段対応を実施し、さらに調整手段対応厚み偏差によって、得られたプロセスゲインと干渉率によって作成されたプロセスモデルを次の制御から使用するようにした。
The polyester was melted by an extruder, extruded from a die at a temperature of 290 ° C., and rapidly cooled and solidified on a casting drum having a surface temperature of 30 ° C. by using an electrostatic application casting method to produce an unstretched sheet. Moreover, the discharge amount of the extruder was adjusted, and it adjusted so that the thickness of the last polyester film after completion | finish of extending | stretching might be set to 50 micrometers. The unstretched film is stretched 3.5 times in the longitudinal direction at 112 ° C., stretched 4.8 times in the width direction at 110 ° C., and then heat treated at 246 ° C., and at a speed of 50 m / min with a winder. Each sheet roll was wound up by 8500 m (winding time was 170 minutes), and a thermoplastic resin sheet (biaxially stretched polyester film) having a thickness of 50 μm was obtained. In order to confirm the uniformity of the thickness distribution in the width direction of the film, R in the width direction of the sheet thickness (difference between the maximum value and the minimum value in the width direction of the film thickness) was measured.
Furthermore, it was monitored over 320 hours that the thickness uniformity did not deteriorate, it was confirmed whether there was a tendency for the thickness to deteriorate, and it was determined as NG when the thickness collapse was observed on a regular basis.
In this case, F in Expression (1) when the number of times N = 0 is 68 or less. Further, F in Expression (1) when N = 1 is 109 or less.
[Example 1]
When manufacturing the sheet, the thickness distribution in the width direction of the sheet after passing through the stretching machine was measured at 240 locations at equal intervals in the width direction of the sheet using a β-ray thickness meter that traverses at a constant speed. Thickness data in the width direction of the sheet measured by the thickness meter is input to a controller composed of a computer. Thickness adjusting means consisting of heat bolts are arranged at 82 positions on the base at equal intervals, and five thickness adjusting means support ( 13th, 27th, 41st, 55th, 69th), the output to the thickness adjusting means is calculated, and control is performed so that the thickness distribution in the width direction becomes uniform by outputting each operation amount to the thickness adjusting means. Then, before the interval after the adjustment means correspondence is reached, the adjustment means correspondence is executed at the stage of 70 hours, 180 hours, and 320 hours, and further the thickness deviation corresponding to the adjustment means is reached. Therefore, the process model created by the obtained process gain and interference rate is used from the next control.

結果、図4に示すように、監視した320時間すべてにわたってフィルムの厚み均一性を悪化させることなく、平均厚み約1.2μm(300時間の平均)の厚み斑の小さいシートを安定して製造することができた。
[実施例2]
調整時間対応実施の間隔時間が、式(1)に到達する前、すなわち、ここでも実施例1と同様に70時間、180時間、320時間の段階で調整手段対応を実施するが、過去5回に亘って測定したプロセスゲインと干渉率の平均から作成したプロセスモデルを使用し続けて厚み調整手段の出力を演算する以外は、実施例1と同様にシートを製造した。
As a result, as shown in FIG. 4, a sheet with a small thickness variation having an average thickness of about 1.2 μm (average of 300 hours) is stably produced without deteriorating the film thickness uniformity over the entire 320 hours monitored. I was able to.
[Example 2]
The adjustment means correspondence is implemented at the stage of 70 hours, 180 hours, and 320 hours before reaching the formula (1), that is, again in the same manner as in the first embodiment. A sheet was manufactured in the same manner as in Example 1 except that the process model created from the average of the process gain and the interference rate measured over the time was continuously used to calculate the output of the thickness adjusting means.

結果、図5に示すように、プロセスモデルの誤差によって、実施例1に比べて最終の厚み斑は小さくならないが、監視した320時間すべてにわたってフィルムの厚み均一性を悪化させることなく、約1.5μm(300時間の平均)の厚み斑の小さいシートを安定して製造することができた。
[比較例1]
式(1)の時間を経過しても調整手段対応を実施せずに、製造を継続した以外は実施例1と同様にシートを製造した。
As a result, as shown in FIG. 5, the final thickness variation does not become smaller compared to Example 1 due to process model errors, but it does not degrade the film thickness uniformity over the entire 320 hours monitored. A sheet having a small thickness variation of 5 μm (average of 300 hours) could be stably produced.
[Comparative Example 1]
A sheet was produced in the same manner as in Example 1 except that the production of the adjusting means was not performed even after the time of the formula (1) had elapsed, and the production was continued.

結果、図6に示すように、厚み斑が一旦は小さくなるものの、約100時間程度で調整手段対応のズレによって、操作量の発散が起こり、その後厚み斑も発散してしまった。
[比較例2]
比較例2として、式(1)の時間を経過して、調整手段対応を1回のみ行なって、2回目以降実施せずに、製造を継続した以外は実施例1と同様にシートを製造した。
As a result, as shown in FIG. 6, although the thickness unevenness was once reduced, the manipulated variable diverged in about 100 hours due to the deviation corresponding to the adjusting means, and the thickness unevenness also diverged thereafter.
[Comparative Example 2]
As Comparative Example 2, a sheet was produced in the same manner as in Example 1 except that the time of the formula (1) was passed, the adjustment means was handled only once, and the production was continued without carrying out the second and subsequent times. .

結果、図7に示すように、最初の調整手段対応によってプロセスモデルの算出まで実施することで、約160時間程度までの最初の厚み収束性はよいが、最初の大きな厚み斑修正後の調整手段対応ズレについて修正しているため、制御を実施してシートを製造することによる調整手段対応ズレが再度発生し、徐々にシート厚み崩れが発生していき、安定製膜できなくなった。   As a result, as shown in FIG. 7, by performing the process up to the calculation of the process model by dealing with the first adjustment means, the initial thickness convergence up to about 160 hours is good, but the adjustment means after the first large thickness spot correction Since the correspondence deviation was corrected, the adjustment means correspondence deviation due to the production of the sheet by executing the control again occurred, the sheet thickness gradually collapsed, and stable film formation could not be performed.

以上の結果を表2にまとめて示す。   The above results are summarized in Table 2.

Figure 2007118478
Figure 2007118478

本発明は、熱可塑性樹脂シートの製造方法に限らず、他の材質のシートなどにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to a method for producing a thermoplastic resin sheet but also to sheets of other materials, but the application range is not limited thereto.

本実施形態の熱可塑性樹脂シートの製造方法におけるシート厚み調整方法のフローチャートである。It is a flowchart of the sheet thickness adjustment method in the manufacturing method of the thermoplastic resin sheet of this embodiment. シートの製造設備の全体概略構成を示す斜視図である。It is a perspective view which shows the whole schematic structure of the manufacturing apparatus of a sheet | seat. プロセスモデルを使用した厚み制御での厚み悪化時間を表した図である。It is a figure showing the thickness deterioration time in the thickness control using a process model. 実施例1で製造したシート厚みのRを時系列で表した図である。FIG. 3 is a diagram showing R of sheet thickness produced in Example 1 in time series. 実施例1で製造したシート厚みのRを時系列で表した図である。FIG. 3 is a diagram showing R of sheet thickness produced in Example 1 in time series. 比較例1で製造したシート厚みのRを時系列で表した図である。It is the figure which represented R of the sheet thickness manufactured by the comparative example 1 in time series. 比較例2で製造したシート厚みのRを時系列で表した図である。It is the figure which represented R of the sheet thickness manufactured by the comparative example 2 in time series.

符号の説明Explanation of symbols

1 口金
2 厚み調整手段
3 冷却ロール
4 延伸機
5 厚み測定器
6 ワインダ
DESCRIPTION OF SYMBOLS 1 Base 2 Thickness adjustment means 3 Cooling roll 4 Stretching machine 5 Thickness measuring device 6 Winder

Claims (2)

複数個の厚み調整手段を備えた口金を用いて原料を押し出し、成形してシートとなすとともに、前記シートの幅方向における厚み分布を測定し、この測定値に基づき、制御系の挙動を記述したプロセスモデルを用いて前記厚み調整手段に加える操作量を求め、前記操作量を前記各厚み調整手段に出力して前記シートの前記幅方向の厚み分布が所望の厚み分布となるように制御するシートの製造方法であって、前記複数個の厚み調整手段と前記幅方向における厚み分布の測定に際する位置との対応関係の調整を、1本以上の製品シートのロールを製造後、次の式(1)が成立する条件にて実施し、前記調整の結果に基づいて前記厚み調整手段に加える操作量を求めることを特徴とする熱可塑性樹脂シートの製造方法。
Figure 2007118478
F:品種替えもしくは口金交換または前回調整手段対応を実施してからの経過時間[時間]
d:熱可塑性樹脂シートの基準厚み[μm]
N:品種替えもしくは口金交換から調整手段対応を実施した回数(N=0,1,2,3,・・・)
The raw material was extruded using a die equipped with a plurality of thickness adjusting means, molded into a sheet, the thickness distribution in the width direction of the sheet was measured, and the behavior of the control system was described based on this measured value. A sheet for obtaining an operation amount to be applied to the thickness adjusting unit using a process model, outputting the operation amount to the thickness adjusting unit, and controlling the thickness distribution in the width direction of the sheet to be a desired thickness distribution. And adjusting the correspondence between the plurality of thickness adjusting means and the position for measuring the thickness distribution in the width direction, after manufacturing one or more rolls of product sheets, A method for producing a thermoplastic resin sheet, which is performed under a condition that (1) is satisfied, and an operation amount to be applied to the thickness adjusting means is obtained based on the result of the adjustment.
Figure 2007118478
F: Elapsed time [hours] since the product change or base change or the last adjustment procedure
d: Reference thickness [μm] of thermoplastic resin sheet
N: Number of times adjustment means support was implemented from product change or base change (N = 0, 1, 2, 3,...)
前記各厚み調整手段と幅方向における厚み分布の測定に際する位置との対応関係の調整は、互いに離間した複数個の前記厚み調整手段について同時期に実施し、前記対応関係を調整した前記各厚み調整手段ごとに、プロセスゲインおよび/または隣接する厚み調整手段との干渉率を求め、求めた前記プロセスゲインおよび/または前記干渉率に基づいてプロセスモデルを再構成することを特徴とする請求項1に記載の熱可塑性樹脂シートの製造方法。 The adjustment of the correspondence relationship between the thickness adjusting means and the position when measuring the thickness distribution in the width direction is performed at the same time for the plurality of thickness adjusting means spaced from each other, and the correspondence relationship is adjusted. The process gain and / or the interference rate with the adjacent thickness adjustment unit is obtained for each thickness adjustment unit, and a process model is reconfigured based on the obtained process gain and / or the interference rate. 2. A method for producing a thermoplastic resin sheet according to 1.
JP2005315922A 2005-10-31 2005-10-31 Method of manufacturing thermoplastic resin sheet Pending JP2007118478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315922A JP2007118478A (en) 2005-10-31 2005-10-31 Method of manufacturing thermoplastic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315922A JP2007118478A (en) 2005-10-31 2005-10-31 Method of manufacturing thermoplastic resin sheet

Publications (1)

Publication Number Publication Date
JP2007118478A true JP2007118478A (en) 2007-05-17

Family

ID=38142840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315922A Pending JP2007118478A (en) 2005-10-31 2005-10-31 Method of manufacturing thermoplastic resin sheet

Country Status (1)

Country Link
JP (1) JP2007118478A (en)

Similar Documents

Publication Publication Date Title
KR101983397B1 (en) Method for producing film roll
US20090045536A1 (en) Sheet manufacturing method and sheet manufacturing device
US20220339838A1 (en) Resin film manufacturing device and resin film manufacturing method
JP2011218428A (en) Apparatus for controlling finishing continuous rolling mill, method of controlling the mill, and method of creating control pattern of the mill
KR0170434B1 (en) Process for producing flat and annular-cross-section extrudates and device for implementing the process
CN109605719B (en) Rotary traction film blowing production process
JP7431570B2 (en) Resin film manufacturing equipment and resin film manufacturing method
JP2007118478A (en) Method of manufacturing thermoplastic resin sheet
JP3631636B2 (en) Film winding method
US20220072756A1 (en) Resin-film manufacturing apparatus and its control method
JP2001004535A (en) Method for measuring retardation and system therefor
JP3924229B2 (en) Thickness profile control method in plastic molding apparatus
JP2002187196A (en) Method for controlling film thickness
JP2002028972A (en) Method for producing film roll
JP2002096371A (en) Method for manufacturing sheet and apparatus for controlling thickness of sheet
JP6350117B2 (en) Sheet forming die
JP3370415B2 (en) Method and apparatus for controlling shape of extruded rubber member
JP2017209963A (en) Film production device and method for producing film
JP2002086539A (en) Sheet manufacturing method
JP2014061615A (en) Extrusion t die apparatus
JPH05124101A (en) Method for producing plastic film from thermoplastic plastic
JP2586114B2 (en) Method and apparatus for controlling thickness of sheet, method for monitoring correspondence between thickness distribution and thickness adjusting means, and method for manufacturing sheet
KR20180073024A (en) Apparatus and method for endless hot rolling
JP2003340910A (en) Control device and profile control method for thickness of film
JPS5933092B2 (en) Film thickness adjustment method