JP2007115552A - Filament for x-ray tube and x-ray tube - Google Patents

Filament for x-ray tube and x-ray tube Download PDF

Info

Publication number
JP2007115552A
JP2007115552A JP2005306553A JP2005306553A JP2007115552A JP 2007115552 A JP2007115552 A JP 2007115552A JP 2005306553 A JP2005306553 A JP 2005306553A JP 2005306553 A JP2005306553 A JP 2005306553A JP 2007115552 A JP2007115552 A JP 2007115552A
Authority
JP
Japan
Prior art keywords
filament
pitch
turns
turn
winding pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005306553A
Other languages
Japanese (ja)
Other versions
JP4662355B2 (en
Inventor
Masaru Kuribayashi
勝 栗林
Masahiro Nonoguchi
雅弘 野々口
Naohisa Osaka
尚久 大坂
Hirotsugu Kobayashi
洋次 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2005306553A priority Critical patent/JP4662355B2/en
Priority to US11/583,448 priority patent/US7352846B2/en
Priority to EP06022085A priority patent/EP1777726B1/en
Publication of JP2007115552A publication Critical patent/JP2007115552A/en
Application granted granted Critical
Publication of JP4662355B2 publication Critical patent/JP4662355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To greatly improve uniformity of temperature distribution of a filament in a length direction by changing a winding pitch of a coil. <P>SOLUTION: A coil-like filament is structured of a center part having a plurality of turns with the same winding pitch and two end parts having a plurality of turns with a smaller winding pitch. A winding pitch of the plurality of turns of the end parts is decreased gradually by the same varying quantity from the turn nearest to the center part toward the outermost turn. If a winding pitch at the center part is expressed in p, a varying quantity of the winding pitch is expressed in Δp, the number of windings of the filament as a whole is expressed in n, and the total number of windings of the two end parts is expressed in k, Δp/p is to be within a range of 0.015 to 0.1, and k/n is to be within a range of 0.3 to 0.8. A value of the k/n is preferred to be within a range of the following formula: k/n=0.72-4.66(Δp/p)±0.12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、X線管用フィラメントに関し,特に,コイル状のフィラメントの長手方向の温度分布を均一にするための工夫に特徴のあるフィラメントに関する。また,本発明は,そのようなフィラメントを備えるX線管に関する。   The present invention relates to a filament for an X-ray tube, and more particularly to a filament characterized by a device for making the temperature distribution in the longitudinal direction of a coiled filament uniform. The present invention also relates to an X-ray tube comprising such a filament.

コイル状のX線管用フィラメントは,コイルの全長にわたって,温度分布をできるだけ均一にすることが望ましい。通常のX線管用フィラメントは,線径や巻きピッチが一様に作られているので,中央付近の温度が一番高くなり,両端付近の温度が低くなる。これに対して,フィラメントの温度分布を均一にすると,そのフィラメントから放出される電子ビームの強度分布が均一になり,その電子ビームがX線管のターゲット(対陰極)に照射されることで形成されるX線焦点の輝度分布も均一になる。また,コイルの温度分布が均一になると,温度分布が均一でないフィラメントと比較すると,コイルの線径の減少が一様になって,寿命が長くなる。さらには,コイルの温度分布が均一になると,温度分布が均一でないフィラメントと比較して,同じ管電流を得る場合でも,フィラメントの最高温度を下げることができて,やはり,フィラメントの寿命を長くできる。   It is desirable that the coiled filament for the X-ray tube has a temperature distribution as uniform as possible over the entire length of the coil. A normal filament for an X-ray tube has a uniform wire diameter and winding pitch, so the temperature near the center is highest and the temperature near both ends is low. On the other hand, when the temperature distribution of the filament is made uniform, the intensity distribution of the electron beam emitted from the filament becomes uniform, and the electron beam is formed by irradiating the target (anti-cathode) of the X-ray tube. The brightness distribution of the X-ray focal point is also uniform. In addition, when the coil temperature distribution is uniform, the coil wire diameter decreases uniformly and the life is prolonged as compared with a filament having a nonuniform temperature distribution. Furthermore, when the temperature distribution of the coil becomes uniform, the maximum temperature of the filament can be lowered even when the same tube current is obtained, as compared with a filament having a nonuniform temperature distribution, and the life of the filament can also be extended. .

本発明は,X線管用フィラメントのコイルの巻きピッチに変化を与えることに関係しているが,これに最も関連が深い技術として,次の特許文献1が知られている。なお,実用新案の文献であっても,広義の特許文献と称することにする。
実開平6−9047号公報
The present invention relates to changing the winding pitch of the coil of the filament for the X-ray tube, and the following patent document 1 is known as the technology most closely related to this. Note that even a utility model document will be referred to as a broad patent document.
Japanese Utility Model Publication No. 6-9047

この特許文献1は,X線管用フィラメントのコイルの巻きピッチについて,中央部を密に,両端を粗にすることで,コイルの中央付近の温度を高くして,電子密度分布をガウス分布にしている。したがって,温度分布を均一にするのではなく,むしろ,中央部の温度は,巻きピッチが均一な通常のコイルよりも高くなると考えられる。この特許文献1のコイルフィラメントは,例えば,中央部のピッチが80巻き/インチであり,両端部が50巻き/インチである。   In this patent document 1, the coil winding pitch of the X-ray tube filament is made dense at the center and roughened at both ends, so that the temperature near the center of the coil is raised and the electron density distribution is made Gaussian. Yes. Therefore, the temperature distribution is not made uniform, but rather the temperature at the center is considered to be higher than that of a normal coil having a uniform winding pitch. For example, the coil filament of Patent Document 1 has a pitch of 80 turns / inch at the center and 50 turns / inch at both ends.

一方,X線管以外の技術分野においては,コイル状のフィラメントの中央のピッチを粗に,両端部のピッチを密にして,コイルの長さ方向の温度分布を均一することが知られており,例えば,次の特許文献2及び特許文献3が存在する。
特開昭63−232264号公報 実願昭63−57323号(実開平1−161547号)のマイクロフィルム
On the other hand, in technical fields other than the X-ray tube, it is known that the coil has a uniform pitch distribution in the length direction of the coil by roughening the central pitch of the coiled filament and increasing the pitch at both ends. For example, there are the following Patent Document 2 and Patent Document 3.
Japanese Patent Laid-Open No. Sho 63-232264 Microfilm of Japanese Utility Model No. 63-57323 (Japanese Utility Model Application No. 1-161547)

特許文献2は,電子複写機用のハロゲン電球のコイルフィラメントに関するものであるが,端部のコイルピッチを中間部のそれよりも密にすることで,端部での温度低下を防いで,端部での照度を中央部と同じにしている。例えば,中間部のピッチは26.3ターン/cmであり,端部では33.8ターン/cmである。   Patent Document 2 relates to a coil filament of a halogen bulb for an electronic copying machine. By making the coil pitch of the end portion denser than that of the intermediate portion, temperature drop at the end portion is prevented, and The illuminance at the center is the same as at the center. For example, the pitch of the middle part is 26.3 turns / cm and the end part is 33.8 turns / cm.

特許文献3は,車両等に使用される電球のコイルフィラメントに関するものであるが,中央部の巻きピッチを両端部の巻きピッチよりも疎にすることで,フィラメントの長手方向の温度分布を均一にしている。さらに,この文献では,一番外側の巻きピッチを一番密にして,一番外側から中央部に向かって,巻きピッチを,順次,疎状態にすることについても開示している。   Patent Document 3 relates to a coil filament of a light bulb used in a vehicle or the like. By making the winding pitch of the central portion sparser than the winding pitch of both ends, the temperature distribution in the longitudinal direction of the filament is made uniform. ing. Further, this document also discloses that the outermost winding pitch is made the most dense, and the winding pitch is gradually made sparse from the outermost side toward the center.

上述の特許文献2及び特許文献3によれば,コイルフィラメントの両端付近の巻きピッチを中央部よりも密にすれば,フィラメントの長手方向の温度分布が均一になることが理解できる。そこで,本発明者らは,そのような理解のもとにX線管用のフィラメントを開発したところ,単にそのような工夫をしただけでは,温度分布の均一性が不十分であることが分かった。   According to the above-mentioned Patent Document 2 and Patent Document 3, it can be understood that the temperature distribution in the longitudinal direction of the filament becomes uniform if the winding pitch in the vicinity of both ends of the coil filament is made denser than the central portion. Therefore, the present inventors have developed a filament for an X-ray tube based on such an understanding, and it has been found that the uniformity of temperature distribution is insufficient only by such a device. .

X線管のフィラメントの温度分布は,フィラメントから発生する電子ビームの密度分布に影響を及ぼし,それがターゲット上のX線焦点の輝度分布に反映される。単にフィラメント寿命を延ばすだけであれば,上述の特許文献2及び特許文献3に開示の技術を用いれば済むが,X線焦点の輝度の均一性まで考慮すると,温度分布の均一性は,より厳密性が要求される。   The temperature distribution of the filament of the X-ray tube affects the density distribution of the electron beam generated from the filament, which is reflected in the luminance distribution of the X-ray focal point on the target. If the filament life is simply extended, the techniques disclosed in Patent Document 2 and Patent Document 3 described above may be used. However, considering the uniformity of the brightness of the X-ray focus, the uniformity of the temperature distribution is more strict. Sex is required.

そこで,本発明の目的は,フィラメントの長手方向の温度分布の均一性をきわめて良好にできるX線管用フィラメントを提供することにある。また,本発明の別の目的は,そのようなX線管用フィラメントを備えるX線管を提供することにある。   Accordingly, an object of the present invention is to provide a filament for an X-ray tube capable of extremely improving the uniformity of temperature distribution in the longitudinal direction of the filament. Another object of the present invention is to provide an X-ray tube having such an X-ray tube filament.

本発明のX線管用フィラメントは,コイル状のフィラメントであり,巻きピッチが同一の複数のターンを有する中央部と,前記中央部の両側にあって,前記中央部の巻きピッチよりも小さい巻きピッチの複数のターンを有する二つの端部とからなる。前記端部の複数のターンの巻きピッチは,前記中央部に近いターンから一番外側のターンに向かって,順次,同じ変化量だけ減少している。そして,前記中央部の巻きピッチをpで表し,前記変化量をΔpで表し,前記フィラメントの全体の巻数をnで表し,前記二つの端部の合計の巻数をkで表すと,Δp/pが0.015から0.1までの範囲内にあり,k/nが0.3から0.8までの範囲内にある。   The filament for X-ray tube of the present invention is a coiled filament, and has a central portion having a plurality of turns having the same winding pitch, and a winding pitch that is smaller than the winding pitch of the central portion on both sides of the central portion. And two ends having a plurality of turns. The winding pitch of the plurality of turns at the end portion is sequentially decreased by the same amount of change from the turn close to the central portion toward the outermost turn. When the winding pitch of the central portion is represented by p, the amount of change is represented by Δp, the total number of turns of the filament is represented by n, and the total number of turns of the two end portions is represented by k, Δp / p Is in the range from 0.015 to 0.1, and k / n is in the range from 0.3 to 0.8.

前記k/nの値は,次の数式の範囲内にあることが好ましい。k/n=0.72−4.66(Δp/p)±0.12。   The value of k / n is preferably within the range of the following mathematical formula. k / n = 0.72-4.66 (Δp / p) ± 0.12.

本発明のX線管は,上述のような特徴を有するX線管用フィラメントを備えるものである。   The X-ray tube of the present invention includes an X-ray tube filament having the above-described characteristics.

本発明によれば,上述のように巻きピッチを工夫したことにより,コイル状のフィラメントの長手方向の温度分布が均一になる。例えば,フィラメントを2500℃程度の温度に加熱した場合に,一番外側のそれぞれ2ターンを除けば,フィラメントの長手方向の温度分布は,50℃以内の範囲に収まる。   According to the present invention, by devising the winding pitch as described above, the temperature distribution in the longitudinal direction of the coiled filament becomes uniform. For example, when the filament is heated to a temperature of about 2500 ° C., the temperature distribution in the longitudinal direction of the filament falls within a range of 50 ° C. or less except for the outermost two turns.

以下,図面を参照して本発明の実施例を詳しく説明する。図1は本発明の一実施例のフィラメントの正面図である。このフィラメント10は線径dの線材12を,外径Dになるように,巻数n(すなわち,nターン)でコイル状に巻いたものである。両端にはリード線14が一体につながっている。この例は,巻数nが20である。図において,一番左側のターンを第1ターンと呼び,以下,第2ターン,第3ターンとなり,一番右側のターンが第20ターンである。第1ターンの巻きピッチはp1であり,第2ターンの巻きピッチはp2であり,以下,同様である。一番右側の第20ターンの巻きピッチはp20である。これを一般的に表すと,第iターンの巻きピッチはpiであり,i=1〜nである。以下,巻きピッチを単にピッチと略称する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front view of a filament according to an embodiment of the present invention. The filament 10 is obtained by winding a wire 12 having a wire diameter d in a coil shape with a winding number n (that is, n turns) so as to have an outer diameter D. Lead wires 14 are integrally connected to both ends. In this example, the number of turns n is 20. In the figure, the leftmost turn is referred to as the first turn. Hereinafter, the second turn and the third turn are designated, and the rightmost turn is the twentieth turn. Winding pitch of the first turn is p 1, the winding pitch of the second turn is p 2, the same applies hereinafter. The winding pitch of the most right-hand side of the 20-turn is a p 20. Generally expressing this, the winding pitch of the i-th turn is p i , i = 1 to n. Hereinafter, the winding pitch is simply abbreviated as pitch.

図示のフィラメントは,第6ターンから第15ターンまでのピッチが同一の値になっている。ピッチが同一の複数のターンからなる部分を中央部と呼び,そのピッチをpで表す。すなわち,p6=p7=…=p15=pである。第1ターンから第5ターンまでは,そのピッチが中央部のピッチよりも小さくなっている。すなわち,ピッチが中央部よりも密になっている。第16ターンから第20ターンまでも同様である。このように,中央部よりもピッチが小さくなっている部分を端部と呼ぶ。第5ターンのピッチp5は,中央部のピッチpよりも,Δpだけ小さくなっている。さらに,第4ターンのピッチp4は,ピッチp5よりもΔpだけ小さくなっている。以下,同様に,第1ターンまで,ピッチが順に減少していく。すなわち,図示の左側の端部において,第5ターン(中央部に近いターン)から第1ターン(一番外側のターン)に向かって,順次,Δpだけ,ピッチが減少していく。これを数式で表すと,p−p5=p5−p4=p4−p3=p3−p2=p2−p1=Δpである。図示の右側の端部でも同様であり,p−p16=p16−p17=p17−p18=p18−p19=p19−p20=Δpである。 In the illustrated filament, the pitch from turn 6 to turn 15 has the same value. A portion composed of a plurality of turns having the same pitch is called a central portion, and the pitch is represented by p. That is, p 6 = p 7 =... = P 15 = p. From the first turn to the fifth turn, the pitch is smaller than the central pitch. That is, the pitch is denser than the central portion. The same applies from the 16th turn to the 20th turn. Thus, the part where the pitch is smaller than the center part is called an end part. The pitch p 5 of the fifth turn is smaller by Δp than the pitch p at the center. Further, the pitch p 4 of the fourth turn is smaller by Δp than the pitch p 5 . Similarly, the pitch decreases in order until the first turn. That is, at the left end of the figure, the pitch decreases sequentially by Δp from the fifth turn (turn near the center) to the first turn (outermost turn). When this is expressed by a mathematical formula, p−p 5 = p 5 −p 4 = p 4 −p 3 = p 3 −p 2 = p 2 −p 1 = Δp. The same applies to the right end portion shown, a p-p 16 = p 16 -p 17 = p 17 -p 18 = p 18 -p 19 = p 19 -p 20 = Δp.

図2は,図1のフィラメントにおけるピッチの変化を示したグラフである。横軸はターン番号であり,縦軸は各ターンのピッチである。この例では,第6ターンから第15ターンまでの中央部では,ピッチpは0.65mm(650μm)で一定である。第5ターンのピッチp5は,中央部のピッチpよりも,Δp=30μmだけ小さくなっている,したがって,p5=0.62mmである。以下,同様に,同じ変化量Δpだけ減少していく。すなわち,p4=0.59mm,p3=0.56mm,p2=0.53mm,p1=0.50mmとなる。図示の右側の端部でも,同様に,p16=0.62mm,p17=0.59mm,p18=0.56mm,p19=0.53mm,p20=0.50mmとなる。 FIG. 2 is a graph showing a change in pitch in the filament of FIG. The horizontal axis is the turn number, and the vertical axis is the pitch of each turn. In this example, in the central portion from the sixth turn to the fifteenth turn, the pitch p is constant at 0.65 mm (650 μm). The pitch p 5 of the fifth turn is smaller than the central portion pitch p by Δp = 30 μm, and therefore, p 5 = 0.62 mm. Hereinafter, similarly, the same change amount Δp is decreased. That is, p 4 = 0.59 mm, p 3 = 0.56 mm, p 2 = 0.53 mm, and p 1 = 0.50 mm. Similarly, at the right end of the figure, p 16 = 0.62 mm, p 17 = 0.59 mm, p 18 = 0.56 mm, p 19 = 0.53 mm, and p 20 = 0.50 mm.

左側の端部では,中央部と比較してピッチが変化している巻数iは5個である。右側の端部でも,中央部と比較してピッチが変化している巻数jは5個である。それらの合計kは10個になる。したがって,このフィラメントの例では,中央部に含まれる巻数は10個であり,二つの端部に含まれる巻数(ピッチが変化する巻数)の合計kは10個である。   At the left end, the number of turns i in which the pitch is changed as compared with the central portion is five. Even at the right end, the number of turns j in which the pitch is changed as compared with the central portion is five. Their total k is 10. Therefore, in the example of this filament, the number of turns included in the center portion is 10, and the total number k of turns (number of turns whose pitch changes) included in the two end portions is 10.

図3は,図1とは別のフィラメントの温度分布のグラフである。このフィラメントは,巻数nが22であり,d=0.4mm,D=3mm,p=0.65mm,Δp=0.03mm,i=5,j=5(すなわち,k=10)である。このフィラメントについて,電流を流して2500℃付近まで加熱したときの,フィラメントの長手方向の温度分布を実測したものである。横軸はターン番号,縦軸は温度である。各ターンでの温度は,図1に示すように各ターンの頂点16のところで,光学式パイロメータで測定した。このフィラメントは,端部においてピッチが密になっているために,中央部の温度が両端に比べて高くなるようなことがない。むしろ,この例では,中央部の温度が若干低くなっている。そして,第3ターンから第20ターンまでの範囲では,温度分布は50℃の範囲内に収まっている。第1ターン,第2ターン,第21ターン,及び,第22ターンだけが,50℃の範囲内から外れている。   FIG. 3 is a graph of the temperature distribution of the filament different from FIG. This filament has 22 turns, d = 0.4 mm, D = 3 mm, p = 0.65 mm, Δp = 0.03 mm, i = 5, j = 5 (ie, k = 10). This filament was obtained by actually measuring the temperature distribution in the longitudinal direction of the filament when it was heated to around 2500 ° C. by passing an electric current. The horizontal axis is the turn number, and the vertical axis is the temperature. The temperature at each turn was measured with an optical pyrometer at the apex 16 of each turn as shown in FIG. Since this filament has a dense pitch at the end, the temperature at the center does not become higher than at both ends. Rather, in this example, the temperature at the center is slightly lower. And in the range from the 3rd turn to the 20th turn, the temperature distribution is within the range of 50 ° C. Only the first turn, the second turn, the 21st turn and the 22nd turn are out of the range of 50 ° C.

このような温度分布については,図3に示す実測値のほかに,理論計算によっても算出した。理論計算では,有限要素法を使って,電流と熱輻射を変数にして,温度分布を算出し,その温度分布ができるだけ均一になるように,Δpとk(=i+j)の値を定めた。そのときの計算上の温度分布は,図3に示す実測の温度分布とほぼ同じ傾向を示した。したがって,以下の検討では,温度分布ができるだけ均一になるように,理論計算によってΔpとkの値を求めている。   Such temperature distribution was calculated by theoretical calculation in addition to the actual measurement values shown in FIG. In the theoretical calculation, the temperature distribution is calculated using the finite element method with the current and thermal radiation as variables, and the values of Δp and k (= i + j) are determined so that the temperature distribution is as uniform as possible. The calculated temperature distribution at that time showed almost the same tendency as the actually measured temperature distribution shown in FIG. Therefore, in the following examination, the values of Δp and k are obtained by theoretical calculation so that the temperature distribution is as uniform as possible.

図4は解析結果の一覧表である。この一覧表では,さまざまなコイル仕様のフィラメントについて,ピッチ変化量Δpをパラメータとして,2500℃付近の温度において,フィラメントの長手方向の温度分布が50℃の温度範囲に収まるように(ただし,両端のそれぞれ二つのターンの温度だけは除く),最適なkの値を求めた。コイル仕様としては,線径d,コイル外径D,巻数n,中央部のピッチpがある。解析結果は,ピッチ変化量Δpをパラメータとして,そのΔpのときに,kの値をどの程度にしたら,上述のような良好な温度分布になるかを求めたものである。   FIG. 4 is a list of analysis results. In this list, for filaments with various coil specifications, the pitch variation Δp is used as a parameter so that the temperature distribution in the longitudinal direction of the filament falls within the temperature range of 50 ° C (however, at both ends) (Except for the temperature of each two turns), the optimum value of k was obtained. As coil specifications, there are a wire diameter d, a coil outer diameter D, the number of turns n, and a pitch p at the center. The analysis results are obtained by using the pitch change amount Δp as a parameter and determining how much the value of k is to achieve a good temperature distribution as described above when Δp.

例えば,d=0.2mm,D=1.13mm,n=20,p=0.65mmのコイル仕様のフィラメントについては,Δp=20μmの条件でフィラメントの端部のピッチを変化させると,i+j=k=8〜10にしたときに,温度分布が50℃の範囲内になる,というものである。図4におけるkの欄の右隣の「平均」は,kの最適範囲(例えば,8〜10)についての平均値である。最適なkの値が8〜10である場合には,両側の4ターンまたは5ターンについて,中央部に近い方から,順次,ピッチを減らしていくことになる。   For example, for a filament with a coil specification of d = 0.2 mm, D = 1.13 mm, n = 20, and p = 0.65 mm, when the pitch of the end of the filament is changed under the condition of Δp = 20 μm, i + j = When k = 8-10, the temperature distribution is within the range of 50 ° C. “Average” on the right side of the column k in FIG. 4 is an average value for the optimum range (for example, 8 to 10) of k. When the optimum value of k is 8 to 10, the pitch is sequentially reduced from the side closer to the center for 4 turns or 5 turns on both sides.

図5は,図4に示す解析結果をグラフに示したものである。横軸はピッチ変化量Δpであり,縦軸はピッチが変化する巻数kの値である。すべてのコイル仕様についてのデータを,同一のグラフの中で示している。このグラフは,コイル仕様にかかわらず,Δpとkの関係が同じ傾向になることを示している。ピッチ変化量Δpを大きくすると,それに最適なkの値は小さくなる傾向にある。各データの分布の中心を通る直線20,厳密に言えば最小二乗法で得られた直線20は,「k=13.7−0.136Δp」という数式になる。この直線20を用いると,例えば,Δp=25μmを選択したときは,温度分布が最も均一になる最適なkは10〜11であることが分かる。   FIG. 5 is a graph showing the analysis results shown in FIG. The horizontal axis is the pitch change amount Δp, and the vertical axis is the value of the number k of turns at which the pitch changes. Data for all coil specifications are shown in the same graph. This graph shows that the relationship between Δp and k tends to be the same regardless of the coil specifications. When the pitch change amount Δp is increased, the optimum value of k tends to decrease. A straight line 20 passing through the center of the distribution of each data, more specifically, a straight line 20 obtained by the least square method is expressed by the equation “k = 13.7−0.136Δp”. Using this straight line 20, for example, when [Delta] p = 25 [mu] m is selected, it can be seen that the optimum k at which the temperature distribution is most uniform is 10-11.

直線20のkの値に2をプラスしたものと,2をマイナスしたものが,直線22と24である。各データは,直線22と24の範囲内にほぼ収まっている。したがって,「k=13.7−0.136Δp±2」という数式を満足するように,Δpとkを選択すれば,温度分布が均一なフィラメントが得られることになる。   Lines 22 and 24 are obtained by adding 2 to the k value of the straight line 20 and subtracting 2 from it. Each data is almost within the range of the straight lines 22 and 24. Therefore, if Δp and k are selected so as to satisfy the equation “k = 13.7−0.136Δp ± 2”, a filament having a uniform temperature distribution can be obtained.

図6は,Δpとkを,pとnで規格化してから示したグラフである。横軸は,ピッチ変化量Δpを中央部のピッチpで除したものであり,縦軸は,ピッチが変化する巻数kを全部の巻数nで除したものである。このように規格化することで,巻数n及びピッチpに依存しない関係,すなわち,より一般的な関係になる。各データは,Δp/pが0.015から0.1の範囲内にあり,k/nが0.3から0.8までの範囲内にある。この範囲内のデータについて,2500℃付近での温度分布が50℃以内になるようなフィラメントが得られたので,Δp/pとk/nは,まずは,このような範囲内にするのが好ましい。   FIG. 6 is a graph showing Δp and k normalized after p and n. The horizontal axis is obtained by dividing the pitch change Δp by the central pitch p, and the vertical axis is obtained by dividing the number k of turns in which the pitch changes by the total number n. By normalizing in this way, a relationship independent of the number of turns n and the pitch p, that is, a more general relationship is obtained. Each data has Δp / p in the range of 0.015 to 0.1 and k / n in the range of 0.3 to 0.8. For data within this range, a filament was obtained that had a temperature distribution around 2500 ° C. within 50 ° C. Therefore, it is preferable that Δp / p and k / n be within this range first. .

そして,各データの分布の中心を通る直線26を求めると,この直線26は,「(k/n)=0.72−4.66(Δp/p)」という数式になる。そして,この直線26の上下にプラス0.12及びマイナス0.12の直線28,30を引くと,各データはこの直線28,30の範囲内にほぼ収まる。この範囲内は「(k/n)=0.72−4.66(Δp/p)±0.12」という数式になる。この数式を満足するように,Δp/pとk/nを選択すれば,温度分布が均一なフィラメントが得られることになる。   Then, when a straight line 26 passing through the center of the distribution of each data is obtained, the straight line 26 becomes a mathematical expression “(k / n) = 0.72−4.66 (Δp / p)”. When the straight lines 28 and 30 of plus 0.12 and minus 0.12 are drawn above and below the straight line 26, each data is almost within the range of the straight lines 28 and 30. Within this range, the equation is “(k / n) = 0.72−4.66 (Δp / p) ± 0.12”. If Δp / p and k / n are selected so as to satisfy this mathematical expression, a filament having a uniform temperature distribution can be obtained.

図7は,上述のような工夫を施したフィラメントを備えたX線管の要部の斜視図である。フィラメント10に電流を流し,フィラメント10と回転対陰極32の間に高電圧を印加すると,フィラメント10から電子ビーム34が発生する。この電子ビーム34が回転対陰極32の外周面に照射されて,そこからX線ビームが発生する。そして,例えば,ポイントフォーカスのX線ビーム36や,ラインフォーカスのX線ビーム38を取り出すことができる。   FIG. 7 is a perspective view of an essential part of an X-ray tube including a filament that has been devised as described above. When a current is passed through the filament 10 and a high voltage is applied between the filament 10 and the rotating cathode 32, an electron beam 34 is generated from the filament 10. The electron beam 34 is applied to the outer peripheral surface of the rotating counter cathode 32, and an X-ray beam is generated therefrom. For example, the point focus X-ray beam 36 or the line focus X-ray beam 38 can be extracted.

本発明のフィラメントは,上述の回転対陰極のX線管に限らずに,固定ターゲット(静止するターゲット)のX線管にも適用できる。   The filament of the present invention can be applied not only to the above-described rotating cathode X-ray tube but also to a fixed target (stationary target) X-ray tube.

本発明の一実施例のフィラメントの正面図である。It is a front view of the filament of one Example of this invention. 図1のフィラメントにおけるピッチの変化を図示したグラフである。It is the graph which illustrated the change of the pitch in the filament of FIG. フィラメントの長手方向の温度分布のグラフである。It is a graph of the temperature distribution of the longitudinal direction of a filament. 解析結果の一覧表である。It is a list of analysis results. 解析結果のグラフである。It is a graph of an analysis result. 解析結果の別のグラフである。It is another graph of an analysis result. 本発明のフィラメントを備えたX線管の要部の斜視図である。It is a perspective view of the principal part of the X-ray tube provided with the filament of this invention.

符号の説明Explanation of symbols

10 フィラメント
12 線材
14 リード線
16 頂点
32 回転対陰極
34 電子ビーム
36,38 X線ビーム
10 Filament 12 Wire 14 Lead wire 16 Vertex 32 Rotating anti-cathode 34 Electron beam 36, 38 X-ray beam

Claims (3)

コイル状のX線管用フィラメントにおいて,
巻きピッチが同一の複数のターンを有する中央部と,前記中央部の両側にあって,前記中央部の巻きピッチよりも小さい巻きピッチの複数のターンを有する二つの端部とからなり,
前記端部の複数のターンの巻きピッチは,前記中央部に近いターンから一番外側のターンに向かって,順次,同じ変化量だけ減少していき,
前記中央部の巻きピッチをpで表し,前記変化量をΔpで表し,前記フィラメントの全体の巻数をnで表し,前記二つの端部の合計の巻数をkで表すと,Δp/pが0.015から0.1までの範囲内にあり,k/nが0.3から0.8までの範囲内にあることを特徴とするX線管用フィラメント。
In coiled filament for X-ray tube,
A central portion having a plurality of turns with the same winding pitch, and two ends on both sides of the central portion and having a plurality of turns with a winding pitch smaller than the winding pitch of the central portion;
The winding pitch of the plurality of turns at the end portion decreases sequentially by the same change amount from the turn near the center to the outermost turn,
When the winding pitch of the central part is represented by p, the amount of change is represented by Δp, the total number of turns of the filament is represented by n, and the total number of turns of the two end parts is represented by k, Δp / p is 0. A filament for an X-ray tube, characterized in that it is in the range of .015 to 0.1 and k / n is in the range of 0.3 to 0.8.
請求項1に記載のX線管用フィラメントにおいて,前記k/nの値が次の数式の範囲内にあることを特徴とするX線管用フィラメント。
k/n=0.72−4.66(Δp/p)±0.12
The filament for X-ray tubes according to claim 1, wherein the value of k / n is within the range of the following formula.
k / n = 0.72-4.66 (Δp / p) ± 0.12
請求項1または2に記載のX線管用フィラメントを備えるX線管。   An X-ray tube comprising the filament for an X-ray tube according to claim 1 or 2.
JP2005306553A 2005-10-21 2005-10-21 X-ray tube filament and X-ray tube Active JP4662355B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005306553A JP4662355B2 (en) 2005-10-21 2005-10-21 X-ray tube filament and X-ray tube
US11/583,448 US7352846B2 (en) 2005-10-21 2006-10-19 Filament for X-ray tube and X-ray tube having the same
EP06022085A EP1777726B1 (en) 2005-10-21 2006-10-20 Filament for X-ray tube and X-ray tube having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306553A JP4662355B2 (en) 2005-10-21 2005-10-21 X-ray tube filament and X-ray tube

Publications (2)

Publication Number Publication Date
JP2007115552A true JP2007115552A (en) 2007-05-10
JP4662355B2 JP4662355B2 (en) 2011-03-30

Family

ID=38097547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306553A Active JP4662355B2 (en) 2005-10-21 2005-10-21 X-ray tube filament and X-ray tube

Country Status (1)

Country Link
JP (1) JP4662355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061296A (en) * 2018-10-11 2020-04-16 ウシオ電機株式会社 Heat lamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232264A (en) * 1987-03-20 1988-09-28 東芝ライテック株式会社 Tubular light bulb
JPH01161547U (en) * 1988-04-30 1989-11-09
JPH069047U (en) * 1992-07-03 1994-02-04 株式会社日立メディコ X-ray tube
JPH0917394A (en) * 1995-06-30 1997-01-17 Toshiba Lighting & Technol Corp Electric lamp and electric lamp having reflecting mirror and lighting system
JPH10172482A (en) * 1996-12-13 1998-06-26 Hitachi Medical Corp Whole circumference irradiation type x-ray tube
JP2001068045A (en) * 1999-08-31 2001-03-16 Toshiba Corp X-ray tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232264A (en) * 1987-03-20 1988-09-28 東芝ライテック株式会社 Tubular light bulb
JPH01161547U (en) * 1988-04-30 1989-11-09
JPH069047U (en) * 1992-07-03 1994-02-04 株式会社日立メディコ X-ray tube
JPH0917394A (en) * 1995-06-30 1997-01-17 Toshiba Lighting & Technol Corp Electric lamp and electric lamp having reflecting mirror and lighting system
JPH10172482A (en) * 1996-12-13 1998-06-26 Hitachi Medical Corp Whole circumference irradiation type x-ray tube
JP2001068045A (en) * 1999-08-31 2001-03-16 Toshiba Corp X-ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061296A (en) * 2018-10-11 2020-04-16 ウシオ電機株式会社 Heat lamp

Also Published As

Publication number Publication date
JP4662355B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US7352846B2 (en) Filament for X-ray tube and X-ray tube having the same
US2306925A (en) Electrode and its fabrication
JP3863554B2 (en) Incandescent bulb and filament for incandescent bulb
JP4629552B2 (en) X-ray tube filament and X-ray tube
JP4669428B2 (en) X-ray tube
JP4628241B2 (en) X-ray tube
JP2008091136A (en) Nbti based superconductive wire
JP4662355B2 (en) X-ray tube filament and X-ray tube
EP2784801A1 (en) Heater lamp and heating module
JP7232415B2 (en) heating filament lamp
JPH0259583B2 (en)
JP5633433B2 (en) Halogen bulb
JP2016119159A (en) Bulb filament
US1560265A (en) Incandescent electric lamp for projection purposes
JP2998866B2 (en) Fluorescent lamp
JP2016134270A (en) Coil filament and incandescent lamp
JP2016009628A (en) Heater
CN107430980B (en) High intensity discharge lamp
JP5261000B2 (en) Discharge lamp lighting device and lighting fixture
JP2012119081A (en) Filament for electric bulb
JPS5826144B2 (en) Tube and its manufacturing method
JP5254245B2 (en) Welding aid for coil filament
JP5243931B2 (en) Low pressure mercury vapor discharge single-neck fluorescent lamp
JP5258473B2 (en) Short arc type discharge lamp
JP2013097916A (en) Filament for electric bulb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

R150 Certificate of patent or registration of utility model

Ref document number: 4662355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350