JP2007114400A - Stroke-order/handwriting recorder, and stereo glasses - Google Patents

Stroke-order/handwriting recorder, and stereo glasses Download PDF

Info

Publication number
JP2007114400A
JP2007114400A JP2005304653A JP2005304653A JP2007114400A JP 2007114400 A JP2007114400 A JP 2007114400A JP 2005304653 A JP2005304653 A JP 2005304653A JP 2005304653 A JP2005304653 A JP 2005304653A JP 2007114400 A JP2007114400 A JP 2007114400A
Authority
JP
Japan
Prior art keywords
stroke
paper
writing
recording paper
handwriting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005304653A
Other languages
Japanese (ja)
Other versions
JP4241713B2 (en
Inventor
Kazusawa Osawa
一爽 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sailor Pen Co Ltd
Original Assignee
Sailor Pen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sailor Pen Co Ltd filed Critical Sailor Pen Co Ltd
Priority to JP2005304653A priority Critical patent/JP4241713B2/en
Publication of JP2007114400A publication Critical patent/JP2007114400A/en
Application granted granted Critical
Publication of JP4241713B2 publication Critical patent/JP4241713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Character Discrimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stroke-order/handwriting recorder capable of recording stroke order and handwriting. <P>SOLUTION: The stroke-order/handwriting recorder comprises: recording paper 16 which is removably attached to a micromanipulator 14L assembled to a base 12 and which moves, along with the movement of the micromanipulator in a prescribed direction, on the base in the prescribed direction; writing paper 20 which is arranged on the recording paper and removably attached to the base so as not to move independently of the movement of the recording paper; and carbon paper 18 for copying a character written on the writing paper on the recording paper. When a character is written on the writing paper, by moving the micromanipulator by a prescribed distance each time one stroke of the character is written, the recording paper is made to move by the prescribed distance. Thus, the writing paper whereon the character is written, and the recording paper whereon a stroke waveform curve of the character written on the writing paper is recorded are obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、手書き文字の筆順・筆跡を記録するための筆順・筆跡記録計、及び、手書き文字の筆順・筆跡の判別に利用されるステレオメガネに関する。   The present invention relates to a stroke order / handwriting recorder for recording the stroke order / handwriting of handwritten characters, and stereo glasses used for discrimination of the stroke order / handwriting of handwritten characters.

従来より、手書き文字を認識するための手法が各種提案されている。例えば、非特許文献1には、文字の確定を待つことなく、次文字を重ねて書くことが可能な文字認識の手法が提案されている。   Conventionally, various methods for recognizing handwritten characters have been proposed. For example, Non-Patent Document 1 proposes a character recognition technique that allows the next character to be overwritten without waiting for the character to be confirmed.

上記非特許文献1に開示された文字認識の手法は、人が文字を書く際、文字を構成する字画の各線間の間継ぎに応じて、それまで書かれた線との組み合わせにより文字を確定していき、間継ぎ毎に順次確定した文字を修正しながら認識を行うというものである。
「高速・高精度を実現した重ね書き文字認識ソフトウエアIP」,2004.10,株式会社東芝,www.semicon.toshiba.co.jp/prd/pdf_presen/soft_ip.pdf
The method of character recognition disclosed in Non-Patent Document 1 described above, when a person writes a character, the character is determined by a combination with the lines written so far, according to the inter-line between strokes constituting the character. Then, the recognition is performed while correcting the characters that are sequentially determined for each connection.
"Overwrite character recognition software IP realizing high speed and high accuracy", 2004.10, Toshiba Corporation, www. semicon. toshiba. co. jp / prd / pdf_presen / soft_ip. pdf

従来、上記非特許文献1に開示されているように、書かれた文字を認識しようとする試みは各種なされている。   Conventionally, as disclosed in Non-Patent Document 1, various attempts have been made to recognize written characters.

しかしながら、書かれた文字の筆順を判別しようとする試みはなされていない。   However, no attempt has been made to determine the stroke order of written characters.

また、筆跡鑑定の正確且つ簡易な手法も提供されていない。   In addition, an accurate and simple method for handwriting evaluation is not provided.

本発明は、筆順・筆跡を記録することの可能な筆順・筆跡記録計、及び、手書き文字の筆順・筆跡を安価且つ容易に判別できるステレオメガネを提供することを目的とする。   An object of the present invention is to provide a stroke order / handwriting recorder capable of recording a stroke order / handwriting, and stereo glasses that can easily and inexpensively determine the stroke order / handwriting of handwritten characters.

本発明の筆順・筆跡記録計の一態様は、
台座と、
上記台座に組み付けられたマイクロマニピュレータと、
上記マイクロマニピュレータに取り外し可能に取り付けられ、上記マイクロマニピュレータの所定の方向移動に伴って上記台座上を上記所定方向に移動する記録紙と、
上記記録紙上に配され、上記記録紙の移動にかかわらず移動すること無いように上記台紙に取り外し可能に取り付けられた筆記紙と、
上記筆記紙に書字された文字を上記記録紙に複写するカーボン紙と、
を具備し、
上記筆記紙へ文字を書字する際、その文字の一画の書字毎に上記マイクロマニピュレータを所定距離移動させることで上記記録紙を上記所定距離移動させ、
上記文字を書字した筆記紙と、上記筆記紙に書字した文字の字画波形曲線を記録した記録紙とを得ることを特徴とする。
One aspect of the stroke order and handwriting recorder of the present invention,
A pedestal,
A micromanipulator assembled to the pedestal;
A recording paper that is detachably attached to the micromanipulator and moves in the predetermined direction on the pedestal as the micromanipulator moves in a predetermined direction;
Written on the recording paper and removably attached to the mount so as not to move regardless of the movement of the recording paper;
Carbon paper for copying characters written on the writing paper to the recording paper;
Comprising
When writing a character on the writing paper, the recording paper is moved the predetermined distance by moving the micromanipulator a predetermined distance for each stroke of the character,
A writing paper on which the character is written and a recording paper on which a stroke waveform curve of the character written on the writing paper is recorded are obtained.

また、本発明のステレオメガネの一態様は、
一つまたは二つのレンズと、
左右のレンズ面が水平軸から所定角度以上の角度をつけて内向きに向かい合わせるように、上記レンズを保持する枠組みと、
上記枠組みの、顔面中央の鼻に位置する側面にのみ取り付けられた、両目への光子の入力情報を断ち切るための隔壁と、
を具備し、
文字を書字した筆記紙と、上記筆記紙に書字した文字の字画波形曲線を記録した記録紙とを並べ、該ステレオメガネでそれらを3次元奥行き立体視することを特徴とする。
One aspect of the stereo glasses of the present invention is:
One or two lenses,
A framework for holding the lens so that the left and right lens surfaces face each other inward with an angle of a predetermined angle or more from the horizontal axis;
A partition wall for cutting off the input information of photons to both eyes, which is attached only to the side surface of the above-mentioned framework, which is located at the nose at the center of the face,
Comprising
The writing paper on which the character is written and the recording paper on which the stroke waveform curve of the character written on the writing paper is arranged, and they are stereoscopically viewed with the stereo glasses.

本発明によれば、筆順・筆跡を記録することの可能な筆順・筆跡記録計、及び、手書き文字の筆順・筆跡を安価且つ容易に判別できるステレオメガネを提供することができる。   According to the present invention, it is possible to provide a stroke order / handwriting recorder capable of recording a stroke order / handwriting, and stereo glasses that can easily and inexpensively determine the stroke order / handwriting of handwritten characters.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[第1実施形態]
図1(A)乃至(C)は、本発明の第1実施形態に係る筆順・筆跡記録計10の構成を示す図である。
[First Embodiment]
FIGS. 1A to 1C are diagrams showing a configuration of a stroke order / handwriting recorder 10 according to the first embodiment of the present invention.

これらの図に示すように、本実施形態に係る筆順・筆跡記録計10は、台座12に組み付けられた左右のマイクロマニピュレータ14L,14Rにそれぞれ記録紙16が取り付けられ、その上にカーボン紙18(図1(C)ではハッチングを付して示す)、筆記紙20、及び筆記ガイド板22が積層配置される構成となっている。ここで、記録紙16は、上記マイクロマニピュレータ14L,14Rのノブの操作に応じて上記台座12上を可動するように、上記マイクロマニピュレータ14L,14Rに取り付けられる。この場合、後で上記マイクロマニピュレータ14L,14Rから取り外しが可能であれば、記録紙16の取り付けの手法は特に限定しない。また、カーボン紙18と筆記紙20とは、上記マイクロマニピュレータ14L,14Rの操作にかかわらず不動となるように、例えば2枚全体の両端を両面接着テープで接着すると共に、台座12に固定する。   As shown in these drawings, in the stroke order / handwriting recorder 10 according to the present embodiment, the recording paper 16 is attached to the left and right micromanipulators 14L and 14R assembled to the pedestal 12, and the carbon paper 18 ( In FIG. 1C, hatching is shown), the writing paper 20 and the writing guide plate 22 are stacked. Here, the recording paper 16 is attached to the micromanipulators 14L and 14R so as to move on the pedestal 12 in accordance with the operation of the knobs of the micromanipulators 14L and 14R. In this case, the method for attaching the recording paper 16 is not particularly limited as long as it can be removed from the micromanipulators 14L and 14R later. For example, the carbon paper 18 and the writing paper 20 are fixed to the pedestal 12 while both ends of the two sheets are bonded with a double-sided adhesive tape, for example, so that they do not move regardless of the operation of the micromanipulators 14L and 14R.

なお、図1(B)では、記録紙16、カーボン紙18、筆記紙20の間に空間が存在するかのように描かれているが、これは、その3層構造を分かり易く図示するためのものであって、実際には、それらの間に空間はなく、筆記紙20に手書きされた文字や図形がカーボン紙18によって記録紙16に複写されることは言うまでもない。また、上記筆記ガイド板22には、3.5cm幅のガイド孔24が設けられ、そのガイド孔24を介して露出した筆記紙20に手書きされるようになっている。ガイド孔24の幅を3.5cmとする理由については、後述する。   In FIG. 1B, the space is drawn as if there is a space between the recording paper 16, the carbon paper 18, and the writing paper 20. This is for easy understanding of the three-layer structure. Actually, there is no space between them, and it goes without saying that characters and figures handwritten on the writing paper 20 are copied onto the recording paper 16 by the carbon paper 18. Further, the writing guide plate 22 is provided with a guide hole 24 having a width of 3.5 cm, and the writing paper 20 exposed through the guide hole 24 is handwritten. The reason why the width of the guide hole 24 is set to 3.5 cm will be described later.

また、台座12の上記筆記ガイド板22が取り付けられていない部分の上面には、筆記を開始する際の位置の目安として、始筆点マーク26が記されている。更に、マイクロマニピュレータ14L,14Rの移動量を容易に確認できるように、移動量確認用マーク28も記されている。なお、これらのマーク26,28はそのような黒点や矢印に限定するものではなく、どのような形態であっても構わない。   In addition, on the upper surface of the portion of the pedestal 12 where the writing guide plate 22 is not attached, a first writing point mark 26 is written as a guide for the position when starting writing. Further, a movement amount confirmation mark 28 is also provided so that the movement amounts of the micromanipulators 14L and 14R can be easily confirmed. The marks 26 and 28 are not limited to such black dots and arrows, and may take any form.

また、左右のマニピュレータ14L,14Rを配置したのは、右手が利き手である人にも、左手が利き手である人にも、対応できるようにしたためである。即ち、右手が利き手である人は、左側のガイド孔24を介して筆記紙20に右手で筆記しつつ、左手でマイクロマニピュレータ14Lのノブを回動操作できる。逆に、左手が利き手である人は、右側のガイド孔24を介して筆記紙20に左手で筆記しつつ、右手でマイクロマニピュレータ14Rのノブを回動操作できる。   The reason why the left and right manipulators 14L and 14R are arranged is that they can cope with both the right handed person and the left handed person. That is, a person whose right hand is a dominant hand can turn the knob of the micromanipulator 14L with the left hand while writing on the writing paper 20 with the right hand through the left guide hole 24. Conversely, a person whose left hand is a dominant hand can turn the knob of the micromanipulator 14R with the right hand while writing on the writing paper 20 with the left hand through the right guide hole 24.

ここで、マイクロマニピュレータ14L,14Rは、ノブの回動により、他方のマイクロマニピュレータの方向に1μm単位で、少なくとも上記ガイド孔24の幅に対応する3.5cmまでの横軸移動を行うことができるものを使用する。本実施形態では、このようなマイクロマニピュレータ14L,14Rを用い、微細過ぎないように、1mm単位での横軸移動操作を行うものとするが、勿論、それに限定するものではない。マイクロマニピュレータ14L,14Rのノブの回動操作によって横軸長さを手動で動かすと、記録紙16は、そのマニピュレータ14L,14Rと連動して移動する。   Here, the micromanipulators 14L and 14R can move in the horizontal axis up to 3.5 cm corresponding to the width of the guide hole 24 in units of 1 μm in the direction of the other micromanipulator by rotating the knob. Use things. In the present embodiment, such micromanipulators 14L and 14R are used, and the horizontal axis movement operation is performed in units of 1 mm so as not to be too fine. However, the present invention is not limited to this. When the horizontal axis length is manually moved by turning the knobs of the micromanipulators 14L and 14R, the recording paper 16 moves in conjunction with the manipulators 14L and 14R.

このような構成の筆順・筆跡記録計10の動作を説明する前に、本発明の理解を助けるため、本発明者が為した実験及びそれによる発見について、簡単に説明する。   Before explaining the operation of the stroke order / handwriting recorder 10 having such a configuration, in order to help understanding of the present invention, the experiment and discovery made by the present inventor will be briefly described.

本発明者は、脳が書字行為にどんな情報を発しているかを調べるため、漢字や英字(アルファベット)の字画を手の5本指につけた圧力センサを用いて記録し、また、英字の書字については運筆速度を調べた。その結果、字画波形曲線が5本指の個人情報を持つことがわかった。脳は生きている限り、フラクタル性のある自己相似波形を振動し続けている。筆跡学の研究はこの自己相似波形である筆跡を目で見て同定できるか否かの真偽性の確認から発展したと考えられる。字は個性であるとの考えが定着しているので、本発明者は、字画の周波数分析を試みた。   In order to investigate what information the brain gives to the writing act, the inventor records kanji and English (alphabet) strokes using a pressure sensor attached to the five fingers of the hand, The stroke speed was investigated for the characters. As a result, it was found that the stroke waveform curve has personal information of five fingers. As long as the brain is alive, it continues to vibrate a fractal self-similar waveform. The study of handwriting is thought to have evolved from the confirmation of the authenticity of whether or not the handwriting, which is a self-similar waveform, can be identified visually. Since the idea that characters are individuality is well established, the present inventor has attempted frequency analysis of strokes.

図2(A)に示すような「a」の英字を、横軸を一定速度で移動させつつ書字すると、図2(B)に示すような字画波形曲線が描記される(同図において、横軸は時間を示し、縦軸は字画のペン把持力の強さを示す)。この場合、そのa字は約1Hz程度の低い周波数で書かれる。多数の被検体による測定の結果、a字は、一般に、このような3曲線の字画の軌道を生じることがわかった。3曲線のスペクトルピーク値は平均して、0.03Hzと、0.5Hzと、1.5Hzの周波数で記録された。図2(B)に示すように、字画の上がりと下りの3軌道曲線は、間継ぎの曲線によって連結されて、振動している。各字画に間を置く中断時間(successive time)は個人によって違うので、字画側から見れば、個人の真継ぎの中断時間は雑音に相当する。このように、字画波形曲線には雑音が混じっている。   When the letter “a” as shown in FIG. 2A is written while moving the horizontal axis at a constant speed, a stroke waveform curve as shown in FIG. 2B is drawn (in the same figure, The horizontal axis indicates time, and the vertical axis indicates the strength of the pen gripping force for strokes). In this case, the letter a is written at a frequency as low as about 1 Hz. As a result of measurement by a large number of subjects, it has been found that the letter “a” generally produces such a three-curve stroke trajectory. The spectral peak values of the three curves were recorded on average at frequencies of 0.03 Hz, 0.5 Hz, and 1.5 Hz. As shown in FIG. 2 (B), the rising and falling three orbital curves are connected by an interlaced curve and vibrate. Since the interruption time between each stroke is different depending on the individual, from the stroke side, the interruption time of the personal succession corresponds to noise. Thus, the stroke waveform curve is mixed with noise.

「a」字と同様にして他の英字も調べたところ、英字26文字の字画は、上がり曲線と下り曲線を1周期とすると、図3(A)乃至(E)に示すように、5種類の字画波形曲線に分類できることが判別した。これら5種類の字画波形曲線は何れも、目に見えない位相の波形曲線を共有している。   When other alphabets were also examined in the same manner as the letter “a”, there are five types of strokes of 26 alphabets as shown in FIGS. 3A to 3E, assuming that the up curve and the down curve are one cycle. It was determined that it can be classified into a stroke waveform curve. These five types of stroke waveform curves all share invisible phase waveform curves.

正字は字画と位相と雑音で波形を構成して、その字画波形曲線は乱雑性の一方通行を持っている。この字画波形曲線が脳内で座標変換されて正字となる。即ち、人は目で見るが、見たものは脳で認識する。ペン把持行動と脳の相関を調べると、曲線である字画書字の発生は、把持した筋肉に依存していた。目で見た外部情報を大脳皮質で認識する。筋肉を動かして書字行為の力学運動を行う神経情報は大脳皮質の前頭前野にあり、運動神経の情報は最初に前頭葉から発火する。運動野を経由して末梢神経・筋シナプスに伝播する時間は約0.2秒かかる。人の1千4百億個の大脳細胞は常に、4Hz乃至7.8Hzのシータ波を発信して、脳電位波の振動を惹起している。記憶を司る海馬の神経細胞はネットワークにその情報を伝播する。シータ波は神経と筋肉を活性化させる振動の源泉になっているとモデル化したのが生理学の現在の解釈である(Mehta MR,ら Nature,417,741−746,2002)。振動の一つは主に幼年期に発生する脳電位波のシータ波である。字画情報は目に見える波形曲線と目に見えない位相コード波形を共有していて、手書き文字は複数の字画を組み合わせて構成される。位相コード波形は脳の側頭葉にある海馬に記憶されている(Ferbinteanu J, Shapiro ML,Neuron,40(6),1227−1239,2003)。ここから、字画波形曲線は脳の振動波形の一部分である可能性が極めて高いと考えられる。そこで、以下の図4及び図5を参照して説明するように、字画に出現した目に見えない位相を持つ波形曲線に座標変換する実験をした結果、字画波形曲線から裸眼で認識できる正字が容易に復元した。このように、見えない位相コード波形を共有する字画から、実際に目に見えて読める正字が出現したので、字画の乱雑性が増大しても、字画には脳から発生した情報を失わずに保持していた証拠になった。   A normal character forms a waveform with strokes, phase and noise, and the stroke waveform curve has one-way of randomness. This stroke waveform curve undergoes coordinate transformation in the brain to become a normal character. That is, people see with their eyes, but they see what they see with their brains. When the correlation between the pen gripping behavior and the brain was examined, the generation of the stroke character, which was a curve, depended on the gripped muscle. Recognize external information seen by the eye in the cerebral cortex. Neural information that moves the muscles and performs the dynamic movement of the writing action is in the prefrontal cortex of the cerebral cortex, and the information on the motor nerves first ignites from the frontal lobe. It takes about 0.2 seconds to propagate to the peripheral nerve / muscle synapse via the motor cortex. A human 140 billion cerebral cells always emit a theta wave of 4 Hz to 7.8 Hz, causing a vibration of a brain potential wave. The hippocampal neurons that manage memory propagate the information to the network. The current interpretation of physiology has modeled that theta waves are the source of vibrations that activate nerves and muscles (Mehta MR, et al., Nature, 417, 741-746, 2002). One of the oscillations is a theta wave of a brain potential wave that occurs mainly in childhood. The stroke information shares an invisible waveform curve and an invisible phase code waveform, and handwritten characters are configured by combining a plurality of strokes. The phase code waveform is stored in the hippocampus in the temporal lobe of the brain (Ferbinteanu J, Shapiro ML, Neuron, 40 (6), 1227-1239, 2003). From this, it is considered that the stroke waveform curve is very likely to be a part of the vibration waveform of the brain. Therefore, as described with reference to FIG. 4 and FIG. 5 below, as a result of an experiment of coordinate conversion to a waveform curve having an invisible phase that appears in a stroke, a correct character that can be recognized by the naked eye from the stroke waveform curve is obtained. Easily restored. In this way, since characters that share an invisible phase code waveform have appeared, the characters that can be visibly read have appeared, so even if the strokes become more cluttered, the strokes do not lose information generated from the brain. It became proof that I kept it.

運筆行動の字画曲線は、人によって異なる。ゲノムプログラムを持った細胞の布置構造は各人で違うのと同様に、約1Hz近辺の自己相似波形を示す字画間の間継ぎ認識は、短時間の人もいれば、長時間の人もいる。従って、字画の情報の中にある間継ぎの波形曲線は雑音だらけである。振動情報の記録から、周波数のスペクトル分析により雑音取りをするのも一方法であるが、英字の場合は字画と雑音の連続した境界線から雑音を消去した場合、曲線の方向性を失うので、座標軸は消えて無意味な曲線に変わる。そこで、本発明者は、本来の座標軸方向を生かす雑音取りの手法を考案した。ここで、「光現象で分別できる2円偏光は適応できないので、字画の位相は任意の円軌道と任意の楕円の複合曲線である」という仮説のものと、位相と雑音消しの相反事象を表現する。   The stroke curve of stroke behavior varies from person to person. Just as the structure of cells with a genome program differs from person to person, the recognition of joints between strokes showing self-similar waveforms around 1 Hz is short-time and some are long-time. . Therefore, the interlaced waveform curve in the stroke information is full of noise. From recording vibration information, it is also one method to remove noise by frequency spectrum analysis, but in the case of English letters, if the noise is eliminated from the continuous boundary between strokes and noise, the directionality of the curve will be lost. The coordinate axis disappears and turns into a meaningless curve. Therefore, the present inventor has devised a noise removal technique that makes use of the original coordinate axis direction. Here, it expresses the reciprocal phenomenon of the hypothesis that “the phase of the stroke is a compound curve of an arbitrary circular orbit and an arbitrary ellipse because the two-circularly polarized light that can be distinguished by the light phenomenon cannot be applied” and the phase and noise elimination To do.

即ち、図4(A)に示すように、a字の字画を描記した字画波形曲線が記された紙30の上記字画波形曲線上に、ピン32を立てる。そして、字画の進行方向を定めて、それぞれの字画毎に座標変換する。即ち、図4(B)に示すように、紙30を斜めから見ることで、字画からa正字が復元する。このような座標変換を行うことで、字画に含まれる無数の見えない位相の奥行き立体視が可能になる結果、「a」正字を認識するものである。故に、脳で発火した字画の情報源は、終末の神経・筋シナプスに伝達した結果、情報は筋から字画へ力学的にトポロジーの相転移がなされた。相転移時はエントロピーの増大があっても(ミシンスキーMとババートS,中野と坂口訳、パーセプトロン、パーソナルメディア)、脳由来の字の振動情報は消去されずに字画曲線上に残ったので、筆順・筆跡を認識することができる。   That is, as shown in FIG. 4A, the pin 32 is set on the stroke waveform curve of the paper 30 on which the stroke waveform curve depicting the a-shaped stroke is drawn. Then, the direction of stroke is determined, and coordinate conversion is performed for each stroke. That is, as shown in FIG. 4B, by viewing the paper 30 from an oblique direction, the “a” normal character is restored from the stroke. By performing such coordinate conversion, the depth stereoscopic view of innumerable invisible phases included in the stroke becomes possible. As a result, the “a” orthographic character is recognized. Therefore, the information source of strokes ignited in the brain was transmitted to the nerve and muscle synapses at the end, and as a result, the phase transition of the topology was dynamically performed from muscle to stroke. Even if there is an increase in entropy at the time of phase transition (Missinski M and Babert S, Nakano and Sakaguchi translation, Perceptron, personal media), the vibration information of the characters derived from the brain remains on the stroke curve without being erased. Can recognize stroke order and handwriting.

また、図5(A)に示すように、透明紙34に記された字画波形曲線に、曲線の方向性である座標軸を定めて間継ぎと考えられる任意の波形部分を定める。そして、そこに折り込み線36−1〜36−3を設定し、字画毎に折り紙の様に折り込むと、図5(B)に示すように、透明紙の座標軸変換により、字画から読めるa正字の筆順・筆跡になって復元する。図3に示した英字全26文字の字画波形曲線は、図4及び図5のa正字と同様に、各文字特有の位相を含んでいる。逆説的に、字画は位相を含んでいるので、字画波形曲線の座標軸変換により正字は復元する。   Further, as shown in FIG. 5A, an arbitrary waveform portion that is considered to be a relay is determined by defining a coordinate axis that is the direction of the curve on the stroke waveform curve written on the transparent paper 34. Then, fold lines 36-1 to 36-3 are set there, and when folded like a origami for each stroke, as shown in FIG. Restores stroke order and handwriting. The stroke waveform curve of all 26 alphabetic characters shown in FIG. 3 includes a phase unique to each character as in the case of the a letter in FIGS. 4 and 5. Paradoxically, since the stroke includes the phase, the normal character is restored by the coordinate axis conversion of the stroke waveform curve.

上記2方法は、人為的な作為が入ったが、次の筆記方法は自然の筆跡状態である。平面に重畳記録した正字と字画波形曲線を同一時の筆記によって書字し、それらを図6(A)に示すように横に並べて3次元奥行き立体視を行うと、筆順を判別できる融合像が脳内に発生する。平面の正字と字画波形曲線の2枚書面から、位相を持った波形曲線が脳で再認識され、筆順・筆跡の立体視像に融合する。即ち、図6(A)の左側は正字であり、これを片目をつぶって確認する。次に、図6(A)の右側に示す字画波形曲線を他方の片目で確認する。そして、両目を開いて、脳内の統合野でゆっくりと両目の実像を寄り目の水平軸に輻輳する。こうして2つの実像を融合させると、右目と左目の中心の鼻付近に第3の中央虚像を見ることができる。右脳と左脳の中央に位置する脳梁を介して統合したので、脳内の中央融合像は虚像であり、静止画のようには固定できない。このような脳内でゆっくりと動く意思を持った動画もどきの融合虚像を脳内で細部にわたり観察すると、字画が、段違い平行棒の上がり下がりの段差線のように、各字画毎に順次に浮き出したり、沈み込む、浮き彫りの曲線で交差する。字画方向の変化が浮沈凸凹線で識別できる。即ち、平面紙に書字した字画の曲線は脳内で段違いの段差を示す浮沈曲線の奥行き視像になる。上段の曲線から下段の曲線方向へ階段を下がるように辿ると筆順になる。脳内の融合像(Nevatia R,南監訳、画像認識と画像理解、啓学出版)による文字の字画の浮沈段差像は、脳で再認識された記憶の筆順統合像と一致する。本第1実施形態に係る筆順・筆跡記録計10は、図6(A)に示すような正字と字画波形曲線の同一時筆記を可能とするものである。   The above two methods involve artificial artifacts, but the next writing method is a natural handwriting state. When a normal character and a stroke waveform curve superimposed on a plane are written by writing at the same time and arranged side by side as shown in FIG. 6 (A), a three-dimensional depth stereoscopic view is obtained. It develops in the brain. From the two writings of the normal letter and the stroke waveform curve, the waveform curve with the phase is re-recognized by the brain and fused to the stereoscopic image of the stroke order and handwriting. That is, the left side of FIG. 6A is a normal character, and this is confirmed by closing one eye. Next, the stroke waveform curve shown on the right side of FIG. 6A is confirmed with the other eye. Then, open both eyes and slowly converge the real image of both eyes on the horizontal axis of the crossing eye in the integrated field in the brain. When the two real images are fused in this way, the third central virtual image can be seen near the nose at the center of the right eye and the left eye. Since they are integrated via the corpus callosum located in the middle of the right and left brain, the central fusion image in the brain is a virtual image and cannot be fixed like a still image. When observing the details of the fusion virtual image in the brain that has the intention to move slowly in the brain, the strokes emerge in sequence for each stroke, like the step lines of the rising and falling of the uneven bars. Cross, with the curves of relief, sinking, relief. The change in stroke direction can be identified by the ups and downs. That is, the stroke curve written on the flat paper becomes a depth visual image of the ups and downs curve showing a step difference in the brain. Tracing down the stairs in the direction of the lower curve from the upper curve results in a stroke order. The ups and downs in the strokes of the character strokes by the fusion image in the brain (Nevatia R, translated by Nan Minami, image recognition and image understanding, Keigaku Publishing) is consistent with the stroke order integrated image of the memory re-recognized in the brain. The stroke order / handwriting recorder 10 according to the first embodiment enables writing at the same time of a normal character and a stroke waveform curve as shown in FIG.

以下、本第1実施形態に係る筆順・筆跡記録計10の動作を説明する。   Hereinafter, the operation of the stroke order / handwriting recorder 10 according to the first embodiment will be described.

本実施形態においては、上述したように記録紙16、カーボン紙18、筆記紙20の3層構造となっており、マイクロマニピュレータ14L,14Rのノブの操作に伴って対応する記録紙16のみが横軸方向に移動する。このマイクロマニピュレータ14L,14Rのノブの操作を1字画毎に行う。即ち、書き手は、筆記ガイド板22のガイド孔24を介して露出している筆記紙20に普段の通り、右手で書字行為をして、1字画毎に左手でマイクロマニピュレータ14Lのノブを回して、記録紙16を1mm、他方のマイクロマニピュレータ14Rの方向に移動させ、次の字画の書字に移る。例えば、右手で「右」を書く場合には、まず1字目の字画として「ノ」を書字して記録紙16を移動させ、次に2字目の字画として「一」を書字して記録紙16を移動させ、次に3字目の字画として「口」の左側の「|」を書字して記録紙16を移動させ、…というようにしていく。こうすることにより、筆記紙20に書字された正字の字画曲線情報を正確に記録紙16に字画波形曲線として描記することができる。   In the present embodiment, as described above, the recording paper 16, the carbon paper 18, and the writing paper 20 have a three-layer structure, and only the corresponding recording paper 16 is horizontally placed in accordance with the operation of the knobs of the micromanipulators 14L and 14R. Move in the axial direction. The knobs of the micromanipulators 14L and 14R are operated for each stroke. That is, the writer writes the writing paper 20 exposed through the guide hole 24 of the writing guide plate 22 with the right hand as usual and turns the knob of the micromanipulator 14L with the left hand for each stroke. Then, the recording paper 16 is moved 1 mm in the direction of the other micromanipulator 14R to move to the next stroke writing. For example, when writing “right” with the right hand, first write “no” as the first character stroke, move the recording paper 16, and then write “one” as the second character stroke. Then, the recording paper 16 is moved, and then the character “|” on the left side of the “mouth” is written as the third character stroke, the recording paper 16 is moved, and so on. By doing so, it is possible to accurately draw the normal stroke curve information written on the writing paper 20 as the stroke waveform curve on the recording paper 16.

なお、ペン把持行為の圧力を筆記紙20にスムーズに伝達できるように、上記ガイド孔24により筆記紙20の書字範囲の幅を3.5cmに限定している。このように、書字範囲を限定することにより、字画曲線以外の雑音混入が軽減される。また、筆記紙20の書字範囲の幅を3.5cmに限定しているので、上述したように、記録紙16の横軸移動距離は、マイクロマニピュレータ14L,14Rにより1μm単位で、3.5cmまでの移動を行うことができる。   The width of the writing range of the writing paper 20 is limited to 3.5 cm by the guide hole 24 so that the pressure of the pen gripping action can be smoothly transmitted to the writing paper 20. In this way, by limiting the writing range, mixing of noise other than the stroke curve is reduced. Further, since the width of the writing range of the writing paper 20 is limited to 3.5 cm, as described above, the horizontal axis moving distance of the recording paper 16 is 3.5 cm in units of 1 μm by the micromanipulators 14L and 14R. Can be moved up to.

このようにして、本第1実施形態に係る筆順・筆跡記録計10によって「あいうえお」の平仮名を書字した結果を図6(A)に、また「カキクケコ」の片仮名を書字した結果を図6(B)に示す。   In this manner, the result of writing the hiragana of “Aiueo” by the stroke order / handwriting recorder 10 according to the first embodiment is shown in FIG. 6A, and the result of writing the katakana of “Kakikukeko” is shown in FIG. 6 (B).

図6(A)及び(B)は一見したところ、裸眼のままでは区別ができない程、似通っている筆跡である。図6(A)及び(B)の左側に配置した字画は筆記紙20に書字した正字であり、右側に配置した字画は記録紙16に1mmの横軸移動をした字画曲線の集合体(字画波形曲線)である。このような筆記紙20と記録紙16とを同図のように並べて、それら2枚を両目で3次元奥行き立体視すると、文字の筆順が眉間のあたりに中心融合像の虚像になって出現する。即ち、字画が段違い平行棒のように、字画の直線が沈んだり、浮かんだりして、脳内で奥行き視(3次元奥行き立体視)できる。本実施形態では、書字の始筆を筆記紙20に記録したので、沈み込む終点が終筆になるように筆記紙20と記録紙16との全2枚を配置している。始筆から終筆を脳内で識別すれば、筆順は脳内で認識できる。筆記紙20と記録紙16の2枚の並びの左右を入れ替えれば、浮沈像は逆転する。図6(B)の片仮名は、字画が直線近似であるので、字画間の間継ぎが段差直線になり、段差線が明確な階段状を呈して挿入されるため、筆順を丁寧に追跡できる。   At first glance, FIGS. 6A and 6B show similar handwriting that cannot be distinguished with the naked eye. The strokes arranged on the left side of FIGS. 6A and 6B are normal characters written on the writing paper 20, and the strokes arranged on the right side are aggregates of stroke curves obtained by moving the recording paper 16 by 1 mm on the horizontal axis ( Stroke waveform curve). When the writing paper 20 and the recording paper 16 are arranged as shown in the figure and the two sheets are viewed in a three-dimensional depth stereoscopic view with both eyes, the writing order of the characters appears as a virtual image of the central fusion image around the eyebrows. . That is, strokes can be viewed in depth (three-dimensional depth stereoscopic view) in the brain, as strokes are sinked or floated like parallel bars. In the present embodiment, since the first writing of the letter is recorded on the writing paper 20, the two writing papers 20 and the recording paper 16 are arranged so that the end point of the sinking is the final writing. If the first to last strokes are identified in the brain, the stroke order can be recognized in the brain. If the left and right sides of the two lines of the writing paper 20 and the recording paper 16 are exchanged, the floating image is reversed. In the katakana of FIG. 6B, since the strokes are linear approximations, the interlaces between strokes become stepped straight lines, and the stepped lines are inserted in a clear step shape, so that the stroke order can be traced carefully.

即ち、漢字は主に直線波形の字画で構成され、英字の字画は曲線波形である。字画間の間継ぎ曲線は次の直線を書く状況を考えている脳波の休憩時間であるが、字画にとっては雑音である。本実施形態に係る筆順・筆跡記録計10により、横軸の時間に一定の隙間を加えることで時空系が変換されて、図6(A)及び(B)に示すように時間と空間が同一視できる波形を得る。両目での3次元立体の段違い奥行き視を可能とする水平輻輳の距離、即ち、水平を感知する横軸の2点間の距離は、1μmから約3.5cmの大きな幅である。斜線の1μmであれ、2点間の3.5cmであれ、脳は字画間距離が同一であるように段違いの奥行き立体視を行うことができる。従って、横軸距離が1μmであっても1cmであっても、3次元奥行き立体視の脳の奥行き感はほぼ同一距離の脳の認識過程であるので、本実施形態では、マイクロマニピュレータ14L,14R即ち記録紙16の横軸移動は、上述したように、微細過ぎないように、1mm単位としている。片目の最大の輻輳距離は3.5cmの限界値である。視線の水平距離が小さくても大きくても、奥行き立体視覚がほぼ似通った感知しかできない。   That is, kanji is mainly composed of strokes of straight waveform, and strokes of alphabet are curved waveform. The inter-stroke curve between strokes is a brain wave break time considering the situation of writing the next straight line, but it is noise for strokes. The stroke order / handwriting recorder 10 according to the present embodiment converts the space-time system by adding a certain gap to the time on the horizontal axis, and the time and space are the same as shown in FIGS. 6 (A) and 6 (B). Get a visible waveform. The distance of horizontal convergence that enables the three-dimensional solids to be viewed in different depths with both eyes, that is, the distance between two points on the horizontal axis that senses the horizontal is a large width from 1 μm to about 3.5 cm. Whether it is 1 μm in diagonal lines or 3.5 cm between two points, the brain can perform uneven depth stereoscopic vision so that the distance between strokes is the same. Therefore, regardless of whether the horizontal axis distance is 1 μm or 1 cm, the depth perception of the three-dimensional depth stereoscopic brain is a recognition process of the brain at substantially the same distance. Therefore, in this embodiment, the micromanipulators 14L and 14R are used. That is, as described above, the horizontal movement of the recording paper 16 is set to 1 mm so as not to be too fine. The maximum convergence distance of one eye is a limit value of 3.5 cm. Whether the horizontal distance of the line of sight is small or large, the depth stereoscopic vision can only be sensed almost similar.

同一のコピー紙は横軸に並列に配置しても、並列配置だけでは中心融合像が平坦像のままであり、段違いの立体像は得られない。2枚の重畳紙の一枚は普通の正字で、他方の一枚は水平方向にだけ一定時間がズレる距離で書字した字画のみが、立体の中心融合像の奥行き視を生じる。   Even if the same copy paper is arranged in parallel on the horizontal axis, the center fusion image remains a flat image only by the parallel arrangement, and a three-dimensional image with different levels cannot be obtained. Only a stroke in which one of the two superimposed papers is written with a normal positive character and the other one is written with a distance shifted by a certain amount of time only in the horizontal direction causes a depth view of the three-dimensional center fusion image.

可視光線の波長の下で約0.4μmより大きな対象物ならば裸眼は見ることができる。物と衝突する光の波長は空間分解能を決める因子になる。字画の水平横軸移動が1μmの長さを奥行き視で判別できた。しかしながら、人の両目は3次元用に機能を完成させていない(Rogers BJ, Nature,349,365−366,1991)。両目は、寄り目の水平輻輳と水平開散と縦軸方向の上目使いの上転と下転の4方向を確認できる。この視線と視角の動きを総称してvergence angleと呼ぶ。垂直・縦軸の動きだけで奥行き視の距離割り出しに有効に作用している結果を得た文献は報告されていない。人の両目は約6cmから7cmの水平分離で布置されていて、両目の機能は典型的に、科学的同一ではない。よって、片目だけでの奥行き視は不可能である。相応して、両目の位置の横軸の違いや水平軸の違いのズレは3次元空間で、奥行き視の目標情報に影響を与えている。本実施形態では、字画の横軸だけを移動した波形曲線で、段違い字画の3次元奥行き立体視を可能にしている。字画の3次元奥行き立体視を裸眼で行う時は、横軸に片目分の3.5cmの2倍の7cm以内に、筆記紙20と記録紙16とを並置する。縦軸は、図6(A)及び(B)のように縦長の書字の距離でも影響を受けない。コンピュータの3次元作成ソフトウエアは、水平、垂直、奥行き距離に等分割の数理を配意している(Cumming BG,ら Nature 349,411−413,1991)。しかしながら、上述したように、脳は、水平・横軸の1μm以上のズレだけで3次元奥行き立体視を行うことができる。字画と位相の3次元奥行き立体視は大脳で水平・横軸対垂直・縦軸の僅かな比較値を奥行き視の距離感覚としてキャッチする。これは、脳機能はパーセプトロンで理解されるとした数理論と相反する結果である。   The naked eye can be seen with objects larger than about 0.4 μm under the wavelength of visible light. The wavelength of light that collides with an object is a factor that determines spatial resolution. The length of 1 μm of the horizontal and horizontal axis movement of the stroke could be discriminated in depth. However, human eyes have not completed the function for 3D (Rogers BJ, Nature, 349, 365-366, 1991). Both eyes can confirm the four directions of horizontal convergence and horizontal spread of the crossing eye, and upward and downward rotation of the upper eye using the vertical axis. The movements of the line of sight and the viewing angle are collectively referred to as a verging angle. No literature has been reported that has obtained results that are effective in determining the distance of depth vision only by vertical and vertical movements. Human eyes are laid out with a horizontal separation of about 6 cm to 7 cm, and the function of both eyes is typically not scientifically identical. Therefore, it is impossible to see the depth with only one eye. Correspondingly, the difference in the horizontal axis between the positions of both eyes and the difference in the horizontal axis affect the target information for depth vision in a three-dimensional space. In the present embodiment, a three-dimensional depth stereoscopic view of a staggered stroke is made possible by a waveform curve that moves only the horizontal axis of the stroke. When three-dimensional depth stereoscopic viewing of a stroke is performed with the naked eye, the writing paper 20 and the recording paper 16 are juxtaposed within 7 cm, which is twice as large as 3.5 cm for one eye, on the horizontal axis. The vertical axis is not affected by the distance of vertically long letters as shown in FIGS. The computer's 3D creation software gives equal division of mathematics to horizontal, vertical and depth distances (Cumming BG, et al. Nature 349, 411-413, 1991). However, as described above, the brain can perform three-dimensional depth stereoscopic viewing only with a shift of 1 μm or more on the horizontal and horizontal axes. Stroke and phase three-dimensional depth stereoscopic view catches a slight comparison value of horizontal, horizontal versus vertical, and vertical axes as a sense of distance in depth vision. This is a result contrary to the number theory that brain function is understood by perceptron.

図7は、本発明のステレオメガネの第1実施形態としてのハンディステレオメガネ38の構成を示す斜視図である。裸眼で3次元奥行き立体視ができない人も存在し、このハンディステレオメガネ38は、そのような人でも3次元奥行き立体視を可能にするものである。   FIG. 7 is a perspective view showing the configuration of the handy stereo glasses 38 as the first embodiment of the stereo glasses of the present invention. There are people who cannot perform 3D depth stereoscopic viewing with the naked eye, and the handy stereo glasses 38 enable such people to perform 3D depth stereoscopic viewing.

欧米では18世紀の後半頃から3次元奥行き立体視像の流行があり、ステレオメガネが作られて、茶の間の小道具の1つに愛用されたので、定型が多く市販されている。然し、本発明の筆順・筆跡記録の微妙な水平・横軸移動を3次元奥行き立体視するには個人の視力の僅少な差を考慮する必要があり、簡便迅速を配慮して、本実施形態のようなハンディステレオメガネ38を使用するのが好ましい。   In Europe and the United States, 3D depth stereoscopic vision has been popular since the second half of the 18th century, and stereo glasses have been made and used regularly as one of the props for tea. However, it is necessary to consider a slight difference in individual visual acuity for three-dimensional depth stereoscopic viewing of the subtle horizontal / horizontal movement of the stroke order / handwriting recording of the present invention. Such handy stereo glasses 38 are preferably used.

即ち、このハンディステレオメガネ38は、左右のレンズ枠40にそれぞれレンズ42を装着し、それらレンズ42のレンズ面が水平軸から6度以上の角度をつけて内向きに向かい合わせるように、細い棒枠44で枠組みを構成している。なお、晴眼者及びメガネ着用者は、片方のレンズ42を老眼用凸レンズとし、他方のレンズ42は素通し又は無しとしても良い。こうすることで、視力非対称のアンバランス状態が脳後頭葉の視覚野を刺激して脳梁に中心融合像を誘導し易い。また、枠組みを細い棒枠44で形成しているので、光量を十分に取り込み、細かい点列を識別することができる。   In other words, the handy stereo glasses 38 are equipped with a lens 42 on each of the left and right lens frames 40, and the lens surfaces of the lenses 42 face each other inward at an angle of 6 degrees or more from the horizontal axis. A frame 44 constitutes the frame. The sighted person and the spectacle wearer may use one lens 42 as a presbyopic convex lens, and the other lens 42 may be transparent or absent. In this way, the unbalanced state of vision asymmetry can easily stimulate the visual cortex of the occipital lobe and induce a central fusion image in the corpus callosum. Further, since the frame is formed by the thin bar frame 44, a sufficient amount of light can be taken in and a fine dot sequence can be identified.

また、ハンディステレオメガネ38は、同図に斜線のハッチングで示すように、両目の視線を隔離するための隔壁46を、顔面中央の鼻に位置する側面のみに設けている。即ち、目に入力される2枚の紙面の左像と右像を完全に2分するために、両目への光子の入力情報を断ち切る隔壁46を設けている。   Further, the handy stereo glasses 38 are provided with a partition wall 46 for isolating the eyes of both eyes only on the side surface located at the nose at the center of the face, as indicated by hatching in the drawing. That is, in order to completely divide the left image and the right image of the two sheets of paper that are input to the eyes into two, a partition wall 46 that cuts off photon input information to both eyes is provided.

この隔壁46の色としては、記録紙16及び筆記紙20の紙の色に合わせても良いが、白であることが好ましい。即ち、目は、視覚入力の光波長を網膜で結像すると、白と黒の波長しか識別できない。網膜には、桿状体神経細胞と錐状体神経細胞の2種類しか存在せず、白波長と黒波長の光エネルギーを電気エネルギーの活動電位(Action Potential)振動波形に変換して、脳の後頭葉にある第1次視覚野の統合野へ送る。この網膜での情報変換時間は、5兆分の1秒というレチナの分子構造変換スピードである。色の波長は網膜へ直接入力されると、光子のマッハ帯の部分で色波長が選別され、そのスペクトルが活動電位になって脳統合野へ送られる。マッハ帯は、対数グラフで表され、対数腺は0から1に近づくと線が混んで来て、1の終点では黒色線の集合体になる。即ち、色波長はマッハ帯で識別できる。全ての工学機械はマッハ帯を利用・応用している。脳の第4次以降の高次野で色波長は白と黒の活動電位情報を色認識へ情報変換する。この原理から重症色盲を考えると、色盲は白と黒しか認識できない。また、白は、光子を反射するので、左右両目の分割情報を確実に脳梁へ伝播する役目を持つ。従って、隔壁46を白色とすることが望ましい。   The color of the partition wall 46 may match the paper color of the recording paper 16 and the writing paper 20, but is preferably white. That is, the eye can distinguish only the white and black wavelengths when the optical wavelength of the visual input is imaged on the retina. There are only two types of rod neurons and cone neurons in the retina, and the light energy of white wavelength and black wavelength is converted into action potential vibration waveform of electrical energy, and the back of the brain Send to the primary visual cortex in the leaves. The information conversion time in the retina is the retina molecular structure conversion speed of 1/5 trillion seconds. When the color wavelength is directly input to the retina, the color wavelength is selected in the Mach band portion of the photon, and its spectrum becomes an action potential and is sent to the brain integration area. The Mach band is represented by a logarithmic graph. When the logarithmic gland approaches 0 to 1, the line becomes crowded, and at the end point of 1, the black line becomes an aggregate. That is, the color wavelength can be identified by the Mach band. All engineering machines use and apply the Mach band. In the 4th and subsequent higher order fields of the brain, the color wavelength is converted from white and black action potential information to color recognition. Considering severe color blindness from this principle, color blindness can recognize only white and black. In addition, white reflects photons, so that the division information of the left and right eyes is reliably transmitted to the corpus callosum. Therefore, it is desirable that the partition wall 46 be white.

このようなハンディステレオメガネ38を利用することで、誰でも容易に3次元奥行き立体視できるようになる。   By using such handy stereo glasses 38, anyone can easily perform a three-dimensional depth stereoscopic view.

以上のような筆順・筆跡記録計10(及び場合によりハンディステレオメガネ38)を使用して、図8(A)及び(B)に示すように異なる筆順で書かれた文字を、3次元奥行き立体視することによって、その筆順が明確に判別できる。   Using the stroke order / handwriting recorder 10 (and possibly handy stereo glasses 38) as described above, characters written in different stroke orders as shown in FIGS. By viewing, the stroke order can be clearly determined.

このように、図6(A)及び(B)、図8(A)及び(B)から、脳で認知する水平軸移動による奥行き視距離の僅少差が実感できる。正字と字画数の水平・横軸移動距離の比率が大小の自由度には無関係に奥行き視の感じ方はほぼ定まって認識できる。脳の3次元奥行き立体視は図6(A)及び(B)、図8(A)及び(B)の程度の距離限界で識別しているのだと云う事実を確認できる。奥行き視は、水平・横軸や垂直・縦軸のように無限情報に有るのではなくて、有限範囲に限定されて情報を感じられる。従って、平面の紙面に書字する文字と字画情報の結果は水平の横軸点と垂直の縦軸点の僅少差が脳内奥行き視の距離感を表現している。   Thus, from FIGS. 6A and 6B and FIGS. 8A and 8B, a slight difference in depth viewing distance due to horizontal axis movement recognized by the brain can be realized. Regardless of the degree of freedom in which the ratio of the distance between the horizontal and horizontal axes of the normal character and the number of strokes is large and small, how to perceive depth can be determined and recognized. It can be confirmed that the three-dimensional depth stereoscopic vision of the brain is identified by the distance limit of the extent of FIGS. 6 (A) and 6 (B) and FIGS. 8 (A) and 8 (B). The depth vision is not limited to infinite information like the horizontal / horizontal axis and the vertical / vertical axis, but can be felt by being limited to a finite range. Accordingly, in the result of characters and stroke information written on a flat sheet of paper, a slight difference between the horizontal abscissa point and the vertical ordinate point expresses the sense of distance in the depth of the brain.

本発明を間接的に支持する事象は、ハイビジョンデジタルTVの奥行き視が容易になった現象からも肯ける。HD対応のx軸は1920画素数、y軸は1080画素数、z軸は赤、青、緑の光対応の3原色の3画素数だけである。人の両目は縦軸のほぼ2倍程度の横軸距離でTV画面の臨場感を出せるように工学設計されて、我々は奥行き視を楽しんでいる。人の視覚感覚と工学の画素数とは何の相関もないが、両目で見る奥行き視の感覚は同じである。これを数理で表現すると2点間の距離の曲線は1次元であるが、平面は2次元である。2次元から1次元、1次元から0次元の点の間隙にはフラクタル次元が無数に存在する。人の脳の進化は3次元の奥行き視の認識に、「ある定まった感覚」の「奥行き視」の識別を挿入させたので、両目は奥行き視にシェープアップされていない。本発明から導出したこの仮説を採ると、後述するように筆跡をも分類できる。   The phenomenon that indirectly supports the present invention can be confirmed from the phenomenon that the depth vision of the high-definition digital TV becomes easy. The HD-compatible x-axis is the number of 1920 pixels, the y-axis is the number of 1080 pixels, and the z-axis is the number of three pixels of the three primary colors corresponding to red, blue, and green light. Both eyes of the human being are engineered to give the TV screen a sense of realism with a horizontal axis distance of about twice the vertical axis, and we enjoy the depth view. There is no correlation between the human visual sense and the number of pixels of engineering, but the sense of depth vision seen by both eyes is the same. Expressing this mathematically, the curve of the distance between two points is one-dimensional, but the plane is two-dimensional. There are an infinite number of fractal dimensions in the gaps between the two-dimensional to one-dimensional and the one-dimensional to zero-dimensional points. The evolution of the human brain has introduced the identification of “depth vision” of “certain sense” into the recognition of three-dimensional depth vision, so both eyes are not shaped up to depth vision. If this hypothesis derived from the present invention is taken, handwriting can be classified as described later.

[第2実施形態]
次に、本発明の第2実施形態を説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.

上記第1実施形態に係る筆順・筆跡記録計10は、一方通行の手動マニピュレータをセットしたので、デジタル系であると言える。   The stroke order / handwriting recorder 10 according to the first embodiment is a digital system because a one-way manual manipulator is set.

これに対して、本実施形態は、アナログ系の筆順・筆跡記録計である。   In contrast, the present embodiment is an analog stroke order / handwriting recorder.

このアナログ系筆順・筆跡記録計は、上記デジタル系筆順・筆跡記録計10と原理は同一であるが、マニピュレータによる手動移動の代わりに電動記録計を用いる。そのような電動記録計としては、1分間に0.5μmの微動移動をする連続性から、毎秒1cmの記録紙を移動させるスピードを持つ高速性まで種類は多い。本実施形態では、1mmの紙面幅を3秒から10秒で移動する電動記録計を用いる。図1(B)における筆記紙20とカーボン紙18に相当する不動部分は、電動記録計の外側に固定する。このアナログ系筆順・筆跡記録計を用いることで、記録紙16には、不可逆性の字画が一方通行の水平・横軸移動により描記される。このアナログ系筆順・筆跡記録計は、上述した英字のアルファベットのように5字画以内に収まる字画波形曲線の分析には有効な記録計である。   This analog stroke order / handwriting recorder has the same principle as the digital stroke order / handwriting recorder 10, but uses an electric recorder instead of manual movement by a manipulator. There are many types of such electric recorders, from the continuity of fine movement of 0.5 μm per minute to the high speed with the speed of moving recording paper of 1 cm per second. In the present embodiment, an electric recorder that moves on a sheet width of 1 mm in 3 to 10 seconds is used. The immovable portions corresponding to the writing paper 20 and the carbon paper 18 in FIG. 1B are fixed to the outside of the electric recorder. By using this analog stroke order / handwriting recorder, irreversible strokes are drawn on the recording paper 16 by one-way horizontal and horizontal axis movements. This analog stroke order / handwriting recorder is an effective recorder for analyzing a stroke waveform curve that fits within 5 strokes, such as the above-mentioned alphabetical alphabet.

英字「ABCDE」を、このアナログ系筆順・筆跡記録計を用いて書字した例を、図6(C)に示す。この場合、全ての字画は波形曲線であるが、1字画毎の波形曲線と字画と次の字画の真継ぎ時間の雑音にも、人脳からの書字情報は含まれている。さらに、波形曲線の書字情報は位相を含んでいる。同図において、左側は筆記紙20に記録した正字であり、右側は記録紙16に記録した英字の個人の字画曲線情報である。裸眼で、もしくは上述のハンディステレオメガネ38を用いて、これら2枚を、3次元奥行き立体視にして脳内に中心融合虚像を出すと、波形曲線はヘアピン・カーブを折り曲げた様な浮沈像になる。   FIG. 6C shows an example in which the English character “ABCDE” is written using this analog stroke order / handwriting recorder. In this case, all strokes are waveform curves, but the waveform information for each stroke and the noise of the splicing time of the stroke and the next stroke include the written information from the human brain. Furthermore, the writing information of the waveform curve includes the phase. In the figure, the left side is a normal character recorded on the writing paper 20, and the right side is an individual character curve curve information recorded on the recording paper 16. Using the above-mentioned handy stereo glasses 38 with the naked eye or making these two images in a three-dimensional depth stereoscopic view and producing a center fusion virtual image in the brain, the waveform curve becomes a floating image that looks like a bent hairpin curve. Become.

即ち、記録紙16に記録されたアナログ系記録曲線は位相曲線と雑音が混じり、3次元奥行き立体視はヘアピンのような複雑曲線になる。3次元奥行き立体視の波形曲線を脳内で凝視すると、始筆と終筆の書字による始点と終点の筆順を明確に識別できる。僅かな水平・横軸移動は筆順の字画に往きている。   That is, the analog recording curve recorded on the recording paper 16 is a mixture of a phase curve and noise, and the three-dimensional depth stereoscopic view becomes a complex curve like a hairpin. By staring at the waveform curve of the three-dimensional depth stereoscopic vision in the brain, the stroke order of the start point and the end point according to the first and last strokes can be clearly identified. Slight horizontal and horizontal movements are stroked in stroke order.

[第3実施形態]
上記第1及び第2実施形態では、筆順認識のための3次元奥行き立体視を説明したが、その3次元奥行き立体視により、筆順だけでなく、同一人の書字であるかどうか、即ち、筆跡も鑑定可能である。
[Third Embodiment]
In the first and second embodiments described above, 3D depth stereoscopic vision for stroke order recognition has been described. However, whether or not the 3D depth stereoscopic vision is not only the stroke order but the same person's writing, that is, Handwriting can also be judged.

例えば、同一人からの日付けの違った手紙や葉書などの宛名書きの2枚を、一方を正字として他方を字画として本発明の3次元奥行き立体視にて筆跡鑑定すると、以下のタイプ1からタイプ4が一部分でも奥行き視像に出現すれば同一人の書いたものであると認定できる。他人の筆跡であるならば、字画の位相が異なるので脳内融合像は一致しないため、字画の揺らぎから虚像は揺れ動き固定像ができにくい。脳内融合像は不安定になる。   For example, when handwriting judgment is performed in the three-dimensional depth stereoscopic view of the present invention using two of address letters such as letters and postcards from the same person, one of which is a regular letter and the other is a stroke, the following type 1 is obtained. If even part of Type 4 appears in the depth view, it can be recognized that it was written by the same person. If it is the handwriting of another person, the strokes of the strokes are different and the fusion images in the brain do not match. The fusion image in the brain becomes unstable.

また、押印、捺印された印刷字のような書字に対しても、3次元奥行き立体視は有効に働くので、同一であるかどうかの識別ができる。   In addition, since the three-dimensional depth stereoscopic view works effectively for a letter such as a stamped or stamped printed letter, it is possible to identify whether or not they are the same.

従って、従来のOCR識別とは違った判定方法を提供することができる。   Therefore, a determination method different from the conventional OCR identification can be provided.

ここで、筆跡の3次元奥行き立体視にみられる字画のタイプは、以下のようである。   Here, the types of strokes seen in the three-dimensional depth stereoscopic view of the handwriting are as follows.

タイプ1:全ての字画に筆順が出現するタイプ。即ち、以下のタイプ2〜4の全てを含む事象である。   Type 1: A type in which the stroke order appears in all strokes. That is, the event includes all of the following types 2 to 4.

タイプ2:例えば、図9(A)及び(B)に示すように、同じコピータイプで、3次元奥行き立体視は平坦像のままである。   Type 2: For example, as shown in FIGS. 9A and 9B, the three-dimensional depth stereoscopic view remains a flat image with the same copy type.

タイプ3:例えば、図9(C)に示すように波形曲線が浮かび上がるタイプ、又は、図9(D)に示すように波形曲線が沈み込むタイプ。   Type 3: For example, a type in which a waveform curve emerges as shown in FIG. 9C, or a type in which a waveform curve sinks as shown in FIG. 9D.

タイプ4:例えば図9(E)に示すように、波形曲線の半分(例えば上半分)がコピータイプで、後の半分(例えば下半分)が混合するタイプ。   Type 4: For example, as shown in FIG. 9E, half of the waveform curve (for example, the upper half) is a copy type and the latter half (for example, the lower half) is mixed.

なお、図9(A)乃至(E)では螺旋図で示したが、線は2次元であるので、文字図であろうが、図形であろうが認識・識別は脳でしているので数理的には同義である。   In FIGS. 9A to 9E, spiral lines are shown. However, since the lines are two-dimensional, they are mathematical, since they are recognized and identified by the brain, whether they are character diagrams or figures. Is synonymous.

従来、筆順と筆跡は別のものとして定義されてきた。しかしながら、3次元奥行き立体視によって、手書き文字の筆跡で筆順を読み取ることができる。即ち、「筆順=正字+誤字+個性特性」の図式で筆跡は表現できる。ここで、個性特性とは、いわゆる癖のことである。図9(A)乃至(E)は、上記式を全て表現している。   Traditionally, stroke order and handwriting have been defined as different things. However, the stroke order can be read by handwriting of handwritten characters by three-dimensional depth stereoscopic vision. That is, the handwriting can be expressed by a diagram of “stroke order = correct letter + erroneous letter + individual characteristics”. Here, the individuality characteristic is a so-called wrinkle. 9A to 9E express all the above expressions.

生態行動学は「時間=空間」と定義している。即ち、時間が決まれば空間は自ずと決まり、またその逆も然りである。ここから、人の行動の「アリバイ」が成立する。従って、人の瞬間移動は不可能である。   Ecological behavior is defined as “time = space”. In other words, if time is decided, the space is decided naturally, and vice versa. From here, the “alibi” of human behavior is established. Therefore, it is impossible for a person to move instantaneously.

本発明者は、多数の被検体による実験により、26年前の顔写真と現在の顔写真とから3次元奥行き立体視ができることも確認した。また、数十年前の過去の手紙の宛名書きとその同一人の現在の手書き文字でも、「2枚の手書き文字を3次元奥行き立体視する」ことができることを確認した。   The present inventor has also confirmed that a three-dimensional depth stereoscopic view can be performed from a face photograph 26 years ago and a current face photograph by experiments with a large number of subjects. In addition, it was confirmed that “two handwritten characters can be stereoscopically viewed in three dimensions” with the address of a past letter several decades ago and the current handwritten character of the same person.

これに対して、ある筆跡の文字とそれを他人が真似た文字とからは、上記タイプ1からタイプ4の何れでもない3次元奥行き立体視像となることが確認された。また、囲碁の詰め問題と回答囲碁用紙を各1枚、新聞雑誌から切り取り、それら切り取った2枚を横並びにして3次元奥行き立体視すると、2〜3手、後から加えた碁石が「ちらちら」と脳内で浮沈現象を惹起して、光って不安定像になることも確認された。明らかに、上記タイプ1〜4には有り得ない融合像が脳内に出現する。   On the other hand, it was confirmed that a character of a certain handwriting and a character imitated by another person become a three-dimensional depth stereoscopic image that is not any of the above type 1 to type 4. In addition, the Go filling problem and the answer Go paper are each cut out from newspaper magazines, and the two cut out are placed side by side in a three-dimensional depth view. It was also confirmed that the phenomenon of light and instability was caused by causing a phenomenon of ups and downs in the brain. Obviously, a fusion image that cannot be found in the above types 1 to 4 appears in the brain.

このように、時間≠空間をも筆順は見抜く。これは、字画に刻まれた位相に時間と空間が融合された結果である。   In this way, the stroke order can be seen even when time ≠ space. This is the result of the fusion of time and space with the phase inscribed in the stroke.

筆順はまた、もう一つ大事な情報を提供する。上記第1及び第2実施形態で説明した筆順・筆跡記録計は、水平・横軸にのみ数ミリm移動しただけの時間及び空間移動である。現在、非常に多数の郵便局員、銀行員、裁判官らは、毎日、筆跡や判子の真偽性を求めて鑑定を行っているが、その鑑定方法は、2枚を水平・横軸に置き、2枚の1点1点を丁寧に見比べて、脳内に記憶させて判定を出している。決して2枚を垂直・縦軸に置くことはない。即ち、両目は横軸のvergence angleで機能している。1μmの点を識別できるのは3.5cmの動きができる輻輳にセットアップされた脳内の認識回路である。これらを瞬時に識別するのが、ハンディステレオメガネ38である。時間と空間を越えたホログラムもどきの作用が脳内にあると考えられる。故に、上記タイプ1〜4は、脳機能の識別機構を表象している脳内モデルと言うことができる。   Stroke order also provides another important piece of information. The stroke order and handwriting recorders described in the first and second embodiments are time and space movements that move only several millimeters along the horizontal and horizontal axes. At present, a large number of post office staff, bankers, and judges are conducting daily appraisals in search of authenticity of handwriting and stamps. The appraisal method is based on two horizontal and horizontal axes. Each of the two pieces is carefully compared and stored in the brain for determination. Never put two on the vertical / vertical axis. That is, both eyes are functioning with a vergence angle on the horizontal axis. A 1 μm point can be identified by a recognition circuit in the brain that is set up for convergence with 3.5 cm movement. Handy stereo glasses 38 identify these instantaneously. It is thought that the hologram-like action that transcends time and space is in the brain. Therefore, it can be said that the above types 1 to 4 are intracerebral models that represent a brain function identification mechanism.

以上説明したように、筆順・筆跡記録を水平・横軸移動だけで視ることができるようになった。   As explained above, the stroke order and handwriting records can be viewed only by moving the horizontal and horizontal axes.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, a various deformation | transformation and application are possible within the range of the summary of this invention.

図1(A)乃至(C)は、本発明の第1実施形態に係る筆順・筆跡記録計の構成を示す斜視図、断面図、及び一部を切り欠いて示す平面図である。FIGS. 1A to 1C are a perspective view, a cross-sectional view, and a plan view showing part of the stroke order / handwriting recorder according to the first embodiment of the present invention. 図2(A)は手書きによる「a」の英字を示す図であり、図2(B)はその字画波形曲線を示す図である。FIG. 2A is a diagram showing a letter “a” handwritten, and FIG. 2B is a diagram showing its stroke waveform curve. 図3(A)乃至(E)はそれぞれ英字の字画波形曲線を示す図である。FIGS. 3A to 3E are diagrams showing the stroke waveform curves of English letters. 図4(A)は字画波形曲線上にピンを立てた状態を示す図であり、図4(B)は字画から正字を復元する座標変換を説明するための図である。FIG. 4A is a diagram showing a state where a pin is set on the stroke waveform curve, and FIG. 4B is a diagram for explaining coordinate conversion for restoring a normal character from the stroke. 図5(A)は透明紙に記された字画波形曲線を示す図であり、図5(B)は透明紙の座標軸変換を説明するための図である。FIG. 5A is a diagram showing a stroke waveform curve written on transparent paper, and FIG. 5B is a diagram for explaining coordinate axis conversion of transparent paper. 図6(A)は第1実施形態に係る筆順・筆跡記録計によって「あいうえお」の平仮名を書字した結果を示す図、図6(B)は同じく「カキクケコ」の片仮名を書字した結果を示す図であり、図6(C)は本発明の第2実施形態に係る筆順・筆跡記録計によって「ABCDE」の英字を書字した結果を示す図である。FIG. 6A is a diagram showing the result of writing the hiragana of “Aiueo” by the stroke order / handwriting recorder according to the first embodiment, and FIG. 6B is the result of writing the katakana of “Kakikukeko”. FIG. 6C is a diagram showing a result of writing the alphabet “ABCDE” by the stroke order / handwriting recorder according to the second embodiment of the present invention. 図7は本発明のステレオメガネの第1実施形態としてのハンディステレオメガネの構成を示す斜視図である。FIG. 7 is a perspective view showing the configuration of handy stereo glasses as a first embodiment of stereo glasses of the present invention. 図8(A)は第1実施形態に係る筆順・筆跡記録計によって「右必飛」の漢字を書字した結果を示す図であり、図8(B)は同様に「右必飛」の漢字を別の筆順で書字した結果を示す図である。FIG. 8A is a diagram showing a result of writing the “right must-fly” kanji by the stroke order / handwriting recorder according to the first embodiment, and FIG. It is a figure which shows the result of having written the kanji in another stroke order. 図9(A)及び(B)はそれぞれ字画のタイプ2が現れる螺旋を示す図、図9(C)及び(D)はそれぞれ字画のタイプ3が現れる螺旋を示す図であり、図9(E)は字画のタイプ4が現れる螺旋を示す図である。9A and 9B are diagrams showing a spiral in which a stroke type 2 appears, and FIGS. 9C and 9D are diagrams showing a spiral in which a stroke type 3 appears, respectively. ) Is a diagram showing a spiral in which stroke type 4 appears.

符号の説明Explanation of symbols

10…筆順・筆跡記録計、 12…台座、 14L,14R…マイクロマニピュレータ、 16…記録紙、 18…カーボン紙、 20…筆記紙、 22…筆記ガイド板、 24…ガイド孔、 26…始筆点マーク、 28…移動量確認用マーク、 30…紙、 32…ピン、 34…透明紙、 36−1〜36−3…折り込み線、 38…ハンディステレオメガネ、 40…レンズ枠、 42…レンズ、 44…棒枠、 46…隔壁。     DESCRIPTION OF SYMBOLS 10 ... Writing order and handwriting recorder, 12 ... Base, 14L, 14R ... Micromanipulator, 16 ... Recording paper, 18 ... Carbon paper, 20 ... Writing paper, 22 ... Writing guide board, 24 ... Guide hole, 26 ... First writing point mark 28 ... Movement amount confirmation mark, 30 ... Paper, 32 ... Pin, 34 ... Transparent paper, 36-1 to 36-3 ... Folding line, 38 ... Handy stereo glasses, 40 ... Lens frame, 42 ... Lens, 44 ... Bar frame, 46 ... partition wall.

Claims (4)

台座と、
上記台座に組み付けられたマイクロマニピュレータと、
上記マイクロマニピュレータに取り外し可能に取り付けられ、上記マイクロマニピュレータの所定の方向移動に伴って上記台座上を上記所定方向に移動する記録紙と、
上記記録紙上に配され、上記記録紙の移動にかかわらず移動すること無いように上記台紙に取り外し可能に取り付けられた筆記紙と、
上記筆記紙に書字された文字を上記記録紙に複写するカーボン紙と、
を具備し、
上記筆記紙へ文字を書字する際、その文字の一画の書字毎に上記マイクロマニピュレータを所定距離移動させることで上記記録紙を上記所定距離移動させ、
上記文字を書字した筆記紙と、上記筆記紙に書字した文字の字画波形曲線を記録した記録紙とを得ることを特徴とする筆順・筆跡記録計。
A pedestal,
A micromanipulator assembled to the pedestal;
A recording paper that is detachably attached to the micromanipulator and moves in the predetermined direction on the pedestal as the micromanipulator moves in a predetermined direction;
Written on the recording paper and removably attached to the mount so as not to move regardless of the movement of the recording paper;
Carbon paper for copying characters written on the writing paper to the recording paper;
Comprising
When writing a character on the writing paper, the recording paper is moved the predetermined distance by moving the micromanipulator a predetermined distance for each stroke of the character,
A stroke order / handwriting recorder comprising: a writing paper on which the characters are written; and a recording paper on which a stroke waveform curve of the characters written on the writing paper is recorded.
上記記録紙上に配され、上記筆記紙への文字の書字範囲を規定するための筆記ガイド板を更に具備することを特徴とする請求項1に記載の筆順・筆跡記録計。   The stroke order / handwriting recorder according to claim 1, further comprising a writing guide plate arranged on the recording paper for defining a writing range of characters on the writing paper. 一つまたは二つのレンズと、
左右のレンズ面が水平軸から所定角度以上の角度をつけて内向きに向かい合わせるように、上記レンズを保持する枠組みと、
上記枠組みの、顔面中央の鼻に位置する側面にのみ取り付けられた、両目への光子の入力情報を断ち切るための隔壁と、
を具備し、
文字を書字した筆記紙と、上記筆記紙に書字した文字の字画波形曲線を記録した記録紙とを並べ、該ステレオメガネでそれらを3次元奥行き立体視することを特徴とするステレオメガネ。
One or two lenses,
A framework for holding the lens so that the left and right lens surfaces face each other inward with an angle of a predetermined angle or more from the horizontal axis;
A partition wall for cutting off the input information of photons to both eyes, which is attached only to the side surface of the above-mentioned framework, which is located at the nose at the center of the face,
Comprising
Stereo glasses characterized by arranging a writing paper on which characters are written and a recording paper on which a stroke waveform curve of the characters written on the writing paper is arranged, and stereoscopically viewing them with the stereo glasses.
上記隔壁の色は白であることを特徴とする請求項3に記載のステレオメガネ。   The stereo glasses according to claim 3, wherein a color of the partition wall is white.
JP2005304653A 2005-10-19 2005-10-19 Stroke order and handwriting recorder Expired - Fee Related JP4241713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304653A JP4241713B2 (en) 2005-10-19 2005-10-19 Stroke order and handwriting recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304653A JP4241713B2 (en) 2005-10-19 2005-10-19 Stroke order and handwriting recorder

Publications (2)

Publication Number Publication Date
JP2007114400A true JP2007114400A (en) 2007-05-10
JP4241713B2 JP4241713B2 (en) 2009-03-18

Family

ID=38096670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304653A Expired - Fee Related JP4241713B2 (en) 2005-10-19 2005-10-19 Stroke order and handwriting recorder

Country Status (1)

Country Link
JP (1) JP4241713B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199181U (en) * 1984-12-01 1986-06-25
JPH06273697A (en) * 1993-03-17 1994-09-30 Bandai Co Ltd Booklet for three-dimensional vision
JP2000341718A (en) * 1999-03-19 2000-12-08 Matsushita Electric Ind Co Ltd Video scope and its display device
JP2001051204A (en) * 1999-05-31 2001-02-23 Asahi Optical Co Ltd Microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199181U (en) * 1984-12-01 1986-06-25
JPH06273697A (en) * 1993-03-17 1994-09-30 Bandai Co Ltd Booklet for three-dimensional vision
JP2000341718A (en) * 1999-03-19 2000-12-08 Matsushita Electric Ind Co Ltd Video scope and its display device
JP2001051204A (en) * 1999-05-31 2001-02-23 Asahi Optical Co Ltd Microscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大澤一爽: "3次元奥行き立体視による手書き文字の筆順と筆跡字典", 電子情報通信学会技術研究報告. HIP, ヒューマン情報処理, vol. 第105巻,第358号, JPN6008062552, 13 October 2005 (2005-10-13), JP, pages 27 - 32, ISSN: 0001200351 *

Also Published As

Publication number Publication date
JP4241713B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
Overmann et al. Materiality and human cognition
Way et al. Automatic visual to tactile translation. i. human factors, access methods and image manipulation
Pritchard Stabilized images on the retina
Hochberg The representation of things and people
US6159013A (en) Portable reading device for the blind
CN108399821A (en) A kind of electronic intelligence auxiliary writing training and analysis and evaluation system
CN107847226A (en) The early detection prophylactic procedures and system of mild dementia
CN108804989A (en) Painting and calligraphy device, painting and calligraphy equipment and painting and calligraphy householder method
CN102509484A (en) Learning system based on augmented reality technology and learning method thereof
Cho et al. Tactile colour pictogram to improve artwork appreciation of people with visual impairments
CN202331859U (en) Learning system based on augment reality technology
Edkins Dismantling the face: landscape for another politics?
Green The puzzle of cross‐modal shape experience
JP4241713B2 (en) Stroke order and handwriting recorder
CN105549208A (en) Digitalization business card with 360-degree naked eye 3D effect and manufacture method thereof
Krufka et al. Automatic production of tactile graphics from scalable vector graphics
RU2436139C2 (en) Method of picking up flat images
JPH06511570A (en) Imaginograph
Irvin Forgery and the corruption of aesthetic understanding
Wade Eye contricks
JP3190683B2 (en) A template for creating a diagram that provides a virtual depth and a method of using the template
Martillano The perceived aesthetic experience in the context of tactile art among visually impaired individuals in the Philippines
Nayak et al. Optimal halftoning for tactile imaging
Tian et al. Graphic design for learning Chinese characters: Opinions about effectiveness and aesthetics from audience with and without Chinese culture backgrounds
Waterson Ways of Seeing (and Not Seeing) Safety

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees