JP2007114312A - Method for manufacturing liquid crystal display apparatus - Google Patents

Method for manufacturing liquid crystal display apparatus Download PDF

Info

Publication number
JP2007114312A
JP2007114312A JP2005303492A JP2005303492A JP2007114312A JP 2007114312 A JP2007114312 A JP 2007114312A JP 2005303492 A JP2005303492 A JP 2005303492A JP 2005303492 A JP2005303492 A JP 2005303492A JP 2007114312 A JP2007114312 A JP 2007114312A
Authority
JP
Japan
Prior art keywords
boiling point
solvent
liquid crystal
crystal display
spacer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005303492A
Other languages
Japanese (ja)
Other versions
JP4799993B2 (en
Inventor
Hiroto Uchida
寛人 内田
Koji Hane
功二 羽根
Hiroshi Koshina
浩史 越名
Takanori Tsuji
孝憲 辻
Masaaki Murata
真朗 村田
Yasuzo Tanaka
保三 田中
Mitsuru Yahagi
充 矢作
Junpei Yuyama
純平 湯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005303492A priority Critical patent/JP4799993B2/en
Publication of JP2007114312A publication Critical patent/JP2007114312A/en
Application granted granted Critical
Publication of JP4799993B2 publication Critical patent/JP4799993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a liquid crystal display apparatus having high reliability, without uneven gaps by disposing spacer particles to be placed within the same plane. <P>SOLUTION: When a spacer dispersion liquid applied on the surface of a substrate 15 is heated to a first heating temperature to remove a low boiling point solvent, a high boiling point solvent and spacer particles 33 remain on the surface of the substrate 15. The density of the spacer particles 33 increases, as much as the low boiling point solvent is removed, which induces aggregation of the particles 33; however, since the spacer particles 33 have high wetting property with the high boiling point solvent, surfaces of the spacer particles 33 are wet with the high boiling point solvent and the particles will not stack, but will aggregate within the same plane. By subsequently heating the liquid to a second heating temperature to remove the high boiling point solvent, the spacer particles 33 remain on the substrate 15 in an aggregated state within the same plane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は液晶表示装置の技術分野に関し、特にスペーサ粒子を基板上に配置する方法に関する。   The present invention relates to the technical field of liquid crystal display devices, and more particularly, to a method for disposing spacer particles on a substrate.

従来より、液晶表示装置には基板と基板の間の距離を一定に保つためにスペーサ粒子が用いられている。
スペーサ粒子の散布方法としては、スペーサ粒子が分散された分散液を、インクジェット印刷装置等を用いて基板表面の所定位置に塗布した後、分散液の溶媒を乾燥除去する方法が採用されている。
Conventionally, spacer particles have been used in liquid crystal display devices in order to keep the distance between the substrates constant.
As a method for dispersing the spacer particles, a method in which the dispersion liquid in which the spacer particles are dispersed is applied to a predetermined position on the surface of the substrate using an ink jet printing apparatus or the like, and then the solvent of the dispersion liquid is removed by drying.

しかし、分散液中のスペーサ粒子密度が高いと、図6に示したように、乾燥後にスペーサ粒子133が基板111表面で積み重なることがある。スペーサ粒子133が積み重なった部分は、積み重ならなかった部分に比べて基板111表面からの高さが高くなる。   However, when the spacer particle density in the dispersion is high, the spacer particles 133 may be stacked on the surface of the substrate 111 after drying, as shown in FIG. A portion where the spacer particles 133 are stacked is higher in height from the surface of the substrate 111 than a portion where the spacer particles 133 are not stacked.

従って、当該基板111と他の基板を貼り合わせた時に、スペーサ粒子133が積み重なった部分では、他の基板がスペーサ粒子133に当接されるが、スペーサ粒子133が積み重ならなかった部分では、他の基板がスペーサ粒子133に当接されないか、当接されたとしても、スペーサ粒子133が重なり合った部分に比べて基板間の距離が小さくなる。このように、スペーサ粒子133が積み重なると、基板が一部のスペーサ粒子だけでしか支持されなくなったり、基板間の距離が不均一になる(ギャップむら)。   Therefore, when the substrate 111 and another substrate are bonded together, in the portion where the spacer particles 133 are stacked, the other substrate comes into contact with the spacer particles 133, but in the portion where the spacer particles 133 are not stacked, Even if another substrate is not in contact with the spacer particles 133 or is in contact with the spacer particles 133, the distance between the substrates is smaller than the portion where the spacer particles 133 overlap. As described above, when the spacer particles 133 are stacked, the substrate is supported only by some spacer particles, or the distance between the substrates becomes uneven (gap unevenness).

分散液中のスペーサ粒子密度を低くし、1箇所に配置するスペーサ粒子の数を3個以下と少なくすれば、スペーサ粒子の積み重なりが防止される。
しかし、スペーサ粒子の数を少なくすると液晶表示装置の完成品の振動や熱等の衝撃に対する耐性が劣るという問題がある。これらの問題は、特に30インチ以上の大型液晶表示装置で顕著であった。
特開2004−109855号公報 特開2004−109856号公報
If the spacer particle density in the dispersion is lowered and the number of spacer particles arranged in one place is reduced to 3 or less, the stacking of the spacer particles is prevented.
However, if the number of spacer particles is reduced, there is a problem that the resistance of the finished product of the liquid crystal display device to vibrations and shocks such as heat is poor. These problems are particularly remarkable in a large-sized liquid crystal display device of 30 inches or more.
JP 2004-109855 A JP 2004-109856 A

本発明は上記課題を解決するために成されたものであり、その目的はスペーサ粒子を同じ平面内に位置するように配置し、ギャップむらの無い信頼性の高い液晶表示装置を製造することである。   The present invention has been made to solve the above-mentioned problems, and its object is to arrange spacer particles so as to be located in the same plane, and to produce a highly reliable liquid crystal display device having no gap unevenness. is there.

上記課題を解決するために請求項1記載の発明は、基板表面にスペーサ粒子を含有する分散液を塗布した後、前記基板表面に塗布された前記分散液を加熱する液晶表示装置の製造方法であって、前記分散液に、前記スペーサ粒子と、低沸点溶媒と、前記低沸点溶媒よりも沸点が高い高沸点溶媒とを含有させ、前記分散液の加熱は、前記分散液を前記高沸点溶媒の沸点よりも低い第一の加熱温度に加熱する乾燥工程と、前記分散液を前記高沸点溶媒の沸点よりも高い第二の加熱温度に加熱する焼成工程とを有する液晶表示装置の製造方法である。
請求項2記載の発明は、請求項1記載の液晶表示装置の製造方法であって、前記分散液として、前記高沸点溶剤の含有量が、前記スペーサ粒子100重量部に対し10重量部以上100重量部以下のものを用いる液晶表示装置の製造方法である。
請求項3記載の発明は、請求項1又は請求項2のいずれか1項記載の液晶表示装置の製造方法であって、前記第二の加熱温度を、前記高沸点溶媒の沸点よりも高くする液晶表示装置の製造方法である。
請求項4記載の発明は、請求項1乃至請求項3のいずれか1項記載の液晶表示装置の製造方法であって、前記高沸点溶剤として、沸点が前記低沸点溶剤の沸点よりも90℃以上高いものを用いる液晶表示装置の製造方法である。
請求項5記載の発明は、請求項1乃至請求項4のいずれか1項記載の液晶表示装置であって、前記分散液を塗布する時の前記基板の温度を、前記低沸点溶媒の沸点よりも10℃以上60℃以下低くする液晶表示装置の製造方法である。
請求項6記載の発明は、請求項1乃至請求項5のいずれか1項記載の液晶表示装置の製造方法であって、前記高沸点溶剤として、エチレングリコールと、プロピレングリコールと、ジエチレングリコールと、ジプロピレングリコールと、ジエチレングリコールモノブチルエーテルとからなる群より選択されるいずれか1種類の溶剤を用いる液晶表示装置の製造方法である。
請求項7記載の発明は、請求項1乃至請求項6のいずれか1項記載の液晶表示装置の製造方法であって、前記低沸点溶剤として、イソプロピルアルコールと、n−ブタノールと、2−ブタノールと、イソブタノールと、イソアミノアルコールと、2−エチルブタノールと、水とからなる群より選択されるいずれか1種類の溶剤を用いる液晶表示装置の製造方法である。
請求項8記載の発明は、前記分散液を、前記基板表面の互いに離間した複数の設置場所に塗布する請求項1乃至請求項7のいずれか1項記載の液晶表示装置の製造方法であって、1つの前記設置場所に配置されるスペーサ粒子の数が3個を超え、かつ15個以下になるように前記分散液を塗布する液晶表示装置の製造方法である。
In order to solve the above-mentioned problem, the invention according to claim 1 is a method for manufacturing a liquid crystal display device, in which a dispersion containing spacer particles is applied to the substrate surface, and then the dispersion applied to the substrate surface is heated. The dispersion liquid contains the spacer particles, a low boiling point solvent, and a high boiling point solvent having a boiling point higher than that of the low boiling point solvent, and the heating of the dispersion liquid is performed using the dispersion liquid as the high boiling point solvent. In a method for producing a liquid crystal display device, the method includes a drying step of heating to a first heating temperature lower than the boiling point of and a baking step of heating the dispersion to a second heating temperature higher than the boiling point of the high-boiling solvent. is there.
The invention according to claim 2 is the method of manufacturing a liquid crystal display device according to claim 1, wherein the dispersion has a content of the high boiling point solvent of 10 parts by weight or more and 100 parts by weight with respect to 100 parts by weight of the spacer particles. It is a manufacturing method of the liquid crystal display device using the thing below a weight part.
Invention of Claim 3 is a manufacturing method of the liquid crystal display device of Claim 1 or Claim 2, Comprising: Said 2nd heating temperature is made higher than the boiling point of the said high boiling-point solvent. It is a manufacturing method of a liquid crystal display device.
Invention of Claim 4 is a manufacturing method of the liquid crystal display device of any one of Claim 1 thru | or 3, Comprising: As said high boiling point solvent, a boiling point is 90 degreeC rather than the boiling point of the said low boiling point solvent. This is a method for manufacturing a liquid crystal display device using a higher one.
The invention according to claim 5 is the liquid crystal display device according to any one of claims 1 to 4, wherein the temperature of the substrate when the dispersion is applied is set to be higher than the boiling point of the low boiling point solvent. Is a method of manufacturing a liquid crystal display device in which the temperature is lowered by 10 ° C. or more and 60 ° C. or less.
A sixth aspect of the present invention is the method of manufacturing a liquid crystal display device according to any one of the first to fifth aspects, wherein the high boiling point solvent is ethylene glycol, propylene glycol, diethylene glycol, di This is a method for producing a liquid crystal display device using any one solvent selected from the group consisting of propylene glycol and diethylene glycol monobutyl ether.
Invention of Claim 7 is a manufacturing method of the liquid crystal display device of any one of Claim 1 thru | or 6, Comprising: As said low boiling-point solvent, isopropyl alcohol, n-butanol, and 2-butanol. , Isobutanol, isoaminoalcohol, 2-ethylbutanol, and water, any one type of solvent selected from the group consisting of water.
The invention according to claim 8 is the method of manufacturing a liquid crystal display device according to any one of claims 1 to 7, wherein the dispersion liquid is applied to a plurality of installation locations spaced apart from each other on the surface of the substrate. This is a method for manufacturing a liquid crystal display device, in which the dispersion liquid is applied so that the number of spacer particles arranged in one installation place is more than 3 and 15 or less.

本発明は上記のように構成されており、基板表面に塗布された分散液を加熱して溶媒を除去すると、スペーサ粒子が基板表面に残る。表面にスペーサ粒子が残った基板に、他の基板を重ね合わせれば、2枚の基板でスペーサ粒子が重ね合わされた状態になり、2枚の基板の間隙に液晶材料を密閉すれば、液晶表示装置が得られる。   The present invention is configured as described above, and when the dispersion liquid applied to the substrate surface is heated to remove the solvent, the spacer particles remain on the substrate surface. If another substrate is overlaid on the substrate on which the spacer particles remain on the surface, the spacer particles are superimposed on the two substrates, and if the liquid crystal material is sealed in the gap between the two substrates, the liquid crystal display device Is obtained.

従来技術では、室温でスペーサ分散液を塗布した後、一度の加熱でスペーサ分散液から溶媒を乾燥除去していた。一度に全ての溶媒を除去すると、スペーサ粒子が急激に凝集し、その結果スペーサ粒子が積み重なりが生じた。   In the prior art, after applying the spacer dispersion at room temperature, the solvent is removed from the spacer dispersion by drying once. When all the solvent was removed at once, the spacer particles agglomerated rapidly, resulting in the spacer particles being stacked.

本願では、溶媒の除去を第一の加熱温度で乾燥させる乾燥工程と、第一の加熱温度よりも高い温度で焼成する焼成工程の2段階に分けることで、1つの設置場所に3個を越える数のスペーサ粒子が配置されるようにスペーサ分散液を塗布しても、スペーサ粒子が積み重ならない。   In the present application, the solvent removal is divided into two stages, that is, a drying process for drying at a first heating temperature and a baking process for baking at a temperature higher than the first heating temperature. Even if the spacer dispersion liquid is applied so that several spacer particles are arranged, the spacer particles are not stacked.

スペーサ分散液には高沸点溶媒の他に低沸点溶媒が含有されるため、溶媒として高沸点溶媒だけをスペーサ分散液に添加した時に比べて乾燥除去に要する時間が短くなるだけでなく、スペーサ分散液を塗布後に基板を移動させても、スペーサ粒子の位置ずれが起こり難い。   Since the spacer dispersion contains a low-boiling solvent in addition to the high-boiling solvent, the time required for drying and removal is shortened as compared with the case where only the high-boiling solvent is added to the spacer dispersion as a solvent. Even if the substrate is moved after applying the liquid, the spacer particles are unlikely to be displaced.

本発明によれば、スペーサ粒子が基板上で積み重ならないから、ギャップむらが起こり難い。また、1つの設置場所に3個を超える数のスペーサ粒子を積み重ならずに配置可能なので、熱や衝撃等の耐性が高く、信頼性の高い液晶表示装置が得られる。   According to the present invention, since the spacer particles are not stacked on the substrate, the gap unevenness hardly occurs. Further, since more than three spacer particles can be arranged in one installation place without being stacked, a highly reliable liquid crystal display device having high resistance to heat and impact can be obtained.

図1の符号10は本発明により製造される液晶表示装置の一例を示しており、この液晶表示装置10は、第一、第二の基板15、25を有している。第一、第二の基板15、25は板状の第一、第二の基板本体11、21と、第一、第二の基板本体11、21表面に配置された第一、第二の電極膜12、22と、第一、第二の電極膜12、22表面に配置された第一、第二の配向膜13、23とを有しており、第一、第二の基板15、25は第一、第二の配向膜13、23が形成された面が互いに対向した状態で、複数のスペーサ粒子33を挟み込み、スペーサ粒子33の粒径分だけ互いに離間している。   Reference numeral 10 in FIG. 1 shows an example of a liquid crystal display device manufactured according to the present invention. The liquid crystal display device 10 has first and second substrates 15 and 25. The first and second substrates 15 and 25 are plate-like first and second substrate bodies 11 and 21, and first and second electrodes disposed on the surfaces of the first and second substrate bodies 11 and 21. The first and second alignment films 13 and 23 are disposed on the surfaces of the first and second electrode films 12 and 22, and the first and second substrates 15 and 25 are provided. In the state where the surfaces on which the first and second alignment films 13 and 23 are formed face each other, a plurality of spacer particles 33 are sandwiched between them and separated from each other by the particle size of the spacer particles 33.

図2はスペーサ粒子33の位置を模式的に示す平面図である。ここでは、第一の電極膜12は複数が互いに離間した状態で行列状に配置されており、第一の電極膜12が配置されていない領域を非画素領域とすると、非画素領域は格子状であって、スペーサ粒子はその格子の交点が位置する設置場所38に複数個ずつ配置され、各設置場所38のスペーサ粒子33は非画素領域から第一の電極膜12上の領域にはみ出さないように凝集している。   FIG. 2 is a plan view schematically showing the positions of the spacer particles 33. Here, a plurality of first electrode films 12 are arranged in a matrix in a state of being separated from each other. If a region where the first electrode film 12 is not arranged is a non-pixel region, the non-pixel region is a lattice shape. In this case, a plurality of spacer particles are arranged at each installation location 38 where the intersection of the lattices is located, and the spacer particles 33 at each installation location 38 do not protrude from the non-pixel region to the region on the first electrode film 12. Is agglomerated.

従って、第一の電極膜12上の領域にはスペーサ粒子33は存在しておらず、第一、第二の基板15、25の間の第一の電極膜12上の位置には間隙が形成され、その間隙には液晶材料32が配置されている。   Accordingly, the spacer particles 33 do not exist in the region on the first electrode film 12, and a gap is formed at a position on the first electrode film 12 between the first and second substrates 15 and 25. The liquid crystal material 32 is disposed in the gap.

第一、第二の基板15、25の間には第一の電極膜12が配置された領域を取り囲むリング状の封止部材31が配置されており、第一の電極膜12上の間隙は第一、第二の基板15、25と封止部材31によって外部空間から密閉されている。従って、間隙に配置された液晶材料32は外部空間から密閉されている。   Between the first and second substrates 15 and 25, a ring-shaped sealing member 31 surrounding the region where the first electrode film 12 is disposed is disposed, and the gap on the first electrode film 12 is The first and second substrates 15 and 25 and the sealing member 31 are sealed from the external space. Therefore, the liquid crystal material 32 disposed in the gap is sealed from the external space.

各第一の電極膜12は液晶材料32と第一、第二の配向膜13、23を挟んで第二の電極膜22と対向している。第一の電極膜12には不図示のトランジスタがそれぞれ接続されており、トランジスタを選択し、所定の第一の電極膜12と第二の電極膜22の間に電圧を印加しすると、電圧が印加された第一、第二の電極膜12、22間に位置する液晶材料32に電流が流れ、その液晶分子の配向が変り、偏光性が変化する。例えば、液晶材料32がネマティック型液晶の場合は、電流が流れない状態では光が偏光されるが、電流が流れた状態では光が偏光されず直進する。   Each first electrode film 12 faces the second electrode film 22 with the liquid crystal material 32 and the first and second alignment films 13 and 23 interposed therebetween. Transistors (not shown) are connected to the first electrode film 12. When a transistor is selected and a voltage is applied between the predetermined first electrode film 12 and the second electrode film 22, the voltage is reduced. A current flows through the applied liquid crystal material 32 positioned between the first and second electrode films 12 and 22, the orientation of the liquid crystal molecules changes, and the polarization changes. For example, when the liquid crystal material 32 is a nematic liquid crystal, light is polarized in a state where no current flows, but light travels straight without being polarized in a state where current flows.

第一、第二の基板15、25の第一、第二の配向膜13、23と反対側の面には第一、第二の偏光板16、26が配置されており、第一の基板15の第一の偏光板16側にはバックライト39が配置され、バックライト39の光は第一の偏光板16に入射して偏光される。   First and second polarizing plates 16 and 26 are disposed on the surfaces of the first and second substrates 15 and 25 opposite to the first and second alignment films 13 and 23, respectively. A backlight 39 is arranged on the first polarizing plate 16 side of the light 15, and light from the backlight 39 enters the first polarizing plate 16 and is polarized.

第一、第二の基板本体11、21と第一、第二の電極膜12、22と第一、第二の配向膜13、23はそれぞれ透明であり、第一の偏光板16で偏光された光は、第一の電極膜12と第一の配向膜13を通って液晶材料32に入射する。   The first and second substrate bodies 11 and 21 and the first and second electrode films 12 and 22 and the first and second alignment films 13 and 23 are transparent and polarized by the first polarizing plate 16. The incident light enters the liquid crystal material 32 through the first electrode film 12 and the first alignment film 13.

ここでは、第一、第二の偏光板16、26が、その偏光方向が互いに直交するよう向けられており、光は液晶材料32で偏光されると、第二の配向膜23と第二の電極膜22と第二の基板本体21を透過した後、第二の偏光板26を通過するが、液晶材料32で偏光されると第二の偏光板26で吸収される。   Here, the first and second polarizing plates 16 and 26 are directed so that the polarization directions thereof are orthogonal to each other. When the light is polarized by the liquid crystal material 32, the second alignment film 23 and the second polarizing film 23 After passing through the electrode film 22 and the second substrate body 21, it passes through the second polarizing plate 26, but is absorbed by the second polarizing plate 26 when polarized by the liquid crystal material 32.

上述したように、第一、第二の電極膜12、22に電圧を印加するか否かで、液晶材料32の偏光性を変えられるので、第一の電極膜12を選択して電圧を印加することで所望の場所だけから光を放出させ、図形や文字等の画像情報を表示することがでできる。   As described above, since the polarization property of the liquid crystal material 32 can be changed depending on whether or not a voltage is applied to the first and second electrode films 12 and 22, the voltage is applied by selecting the first electrode film 12. By doing so, light can be emitted only from a desired location, and image information such as figures and characters can be displayed.

次に、上述した液晶表示装置10の製造に用いるスペーサ分散液を作成する工程について説明する。
先ず、低沸点溶媒と、低沸点溶媒よりも沸点の高い高沸点溶媒と、沸点が低沸点溶媒の沸点と高沸点溶媒の沸点の間にある中沸点溶媒とを混合して混合溶媒を作成し、その混合溶媒にスペーサ粒子を分散させてスペーサ分散液を作成する。
Next, a process of creating a spacer dispersion used for manufacturing the liquid crystal display device 10 described above will be described.
First, a mixed solvent is prepared by mixing a low boiling point solvent, a high boiling point solvent having a higher boiling point than the low boiling point solvent, and a medium boiling point solvent whose boiling point is between the boiling point of the low boiling point solvent and the boiling point of the high boiling point solvent. Then, spacer particles are dispersed in the mixed solvent to prepare a spacer dispersion.

次に、このスペーサ分散液を用いて液晶表示装置10を製造する工程について説明する。
図3の符号1は本発明に用いる印刷装置の一例を示しており、印刷装置1は台2と、台2上に配置された搬送トレイ9とを有している。図3は搬送トレイ9に上述した第一の基板15が載置された状態を示している。
Next, a process for manufacturing the liquid crystal display device 10 using this spacer dispersion liquid will be described.
Reference numeral 1 in FIG. 3 shows an example of a printing apparatus used in the present invention, and the printing apparatus 1 includes a table 2 and a transport tray 9 disposed on the table 2. FIG. 3 shows a state where the first substrate 15 described above is placed on the transport tray 9.

この印刷装置1は不図示の温度調整手段を有しており、その温度調整手段によって搬送トレイ9上の第一の基板15を冷却又は加熱し、第一の基板15の温度を、上述したスペーサ分散液の低沸点溶媒の沸点よりも10℃以上60℃以下低い所定の印刷温度にする。   The printing apparatus 1 has a temperature adjusting unit (not shown), and the temperature adjusting unit cools or heats the first substrate 15 on the transport tray 9 to change the temperature of the first substrate 15 to the above-described spacer. A predetermined printing temperature lower than the boiling point of the low boiling point solvent of the dispersion by 10 ° C. or more and 60 ° C. or less is set.

第一の基板15は第一の配向膜13を上側に向け、第一の配向膜13側の表面が略水平になるように搬送トレイ9に載置されている。
搬送トレイ9には不図示の移動手段が接続されており、移動手段によって搬送トレイ9を移動させると、第一の基板15が一緒に移動し、第一の配向膜13側の表面が水平面内で移動するように構成されている。
The first substrate 15 is placed on the transport tray 9 with the first alignment film 13 facing upward and the surface on the first alignment film 13 side being substantially horizontal.
A moving means (not shown) is connected to the transport tray 9, and when the transport tray 9 is moved by the moving means, the first substrate 15 moves together, and the surface on the first alignment film 13 side is in a horizontal plane. Configured to move with.

図3の符号3は搬送トレイ9の移動方向を示しており、台2上の移動方向3の下流側には印刷ヘッド8が配置されている。
印刷ヘッド8は搬送トレイ9に載置された第一の基板15の第一の配向膜13側の表面よりも高い位置に位置しており、移動手段によって搬送トレイ9を移動させると、第一の基板15が印刷ヘッド8に接触せずに、印刷ヘッド8の下方に移動する。
Reference numeral 3 in FIG. 3 indicates the moving direction of the transport tray 9, and the print head 8 is disposed on the downstream side of the moving direction 3 on the table 2.
The print head 8 is positioned higher than the surface of the first substrate 15 placed on the transport tray 9 on the first alignment film 13 side. When the transport tray 9 is moved by the moving means, the first The substrate 15 moves below the print head 8 without contacting the print head 8.

印刷ヘッド8には不図示の供給系が接続されており、該供給系には上記工程で作成されたスペーサ分散液が配置され、該スペーサ分散液は印刷ヘッド8に供給される。
印刷ヘッド8の台2に向けられた面には不図示のノズルが複数設けられている。ここでは、ノズルは移動方向3と直交する方向に所定間隔を空けて列設され、ノズルとノズルの間隔は、上記設置場所38の移動方向3と直交する方向の間隔と同じにされている。
A supply system (not shown) is connected to the print head 8, and the spacer dispersion liquid prepared in the above process is disposed in the supply system, and the spacer dispersion liquid is supplied to the print head 8.
A plurality of nozzles (not shown) are provided on the surface of the print head 8 facing the base 2. Here, the nozzles are arranged in the direction orthogonal to the moving direction 3 with a predetermined interval, and the interval between the nozzle and the nozzle is the same as the interval in the direction orthogonal to the moving direction 3 of the installation place 38.

各ノズルの真下に設置場所38がそれぞれ位置するように第一の基板15を移動させ、ノズルからスペーサ分散液を吐出すると、第一の配向膜13表面のノズル真下の設置場所38にスペーサ分散液が着弾する。   When the first substrate 15 is moved so that the installation location 38 is located directly under each nozzle and the spacer dispersion liquid is discharged from the nozzle, the spacer dispersion liquid is applied to the installation location 38 directly below the nozzle on the surface of the first alignment film 13. Will land.

図4(a)はスペーサ分散液35が着弾した直後の状態を示しており、第一の配向膜13表面は略水平にされているから、設置場所38に着弾したスペーサ分散液は他の場所に移動しない。従って、スペーサ分散液35は設置場所38に塗布される。   FIG. 4A shows a state immediately after the spacer dispersion liquid 35 has landed, and since the surface of the first alignment film 13 is substantially horizontal, the spacer dispersion liquid that has landed on the installation place 38 is in another place. Do not move to. Accordingly, the spacer dispersion liquid 35 is applied to the installation place 38.

上述した温度調整手段は、第一の基板15が印刷ヘッド8下方に移動するときも、第一の基板15を上述した印刷温度に維持可能に構成されており、スペーサ分散液が塗布される時には第一の基板15は印刷温度に維持されている。   The temperature adjusting means described above is configured so that the first substrate 15 can be maintained at the above-described printing temperature even when the first substrate 15 moves below the print head 8, and when the spacer dispersion liquid is applied. The first substrate 15 is maintained at the printing temperature.

印刷温度は低沸点溶媒の沸点よりも10℃以上60℃以下低いので、第一の基板15に塗布されたスペーサ分散液35からは高沸点溶媒は殆ど蒸発せず、低沸点溶媒は蒸発するが、その蒸発速度は遅い。   Since the printing temperature is 10 ° C. or more and 60 ° C. or less lower than the boiling point of the low boiling point solvent, the high boiling point solvent hardly evaporates from the spacer dispersion 35 applied to the first substrate 15, but the low boiling point solvent evaporates. The evaporation rate is slow.

スペーサ粒子33の比重は混合溶媒34の比重よりも重く、着弾したスペーサ分散液35の内部ではスペーサ粒子33が沈降する。
スペーサ粒子33が沈降するときに混合溶媒34が急激に蒸発し、スペーサ粒子33密度が急に高くなると、沈降するスペーサ粒子33が鉛直方向に積み重なってしまうが、上述したように高沸点溶媒は殆ど蒸発せず、低沸点溶媒の蒸発速度も遅いので、沈降したスペーサ粒子は積み重ならず、図4(b)に示したように第一の配向膜13表面に配置された状態になる。
The specific gravity of the spacer particles 33 is heavier than the specific gravity of the mixed solvent 34, and the spacer particles 33 settle in the landed spacer dispersion 35.
If the mixed solvent 34 is rapidly evaporated when the spacer particles 33 are settled and the density of the spacer particles 33 is suddenly increased, the spacer particles 33 that are sedimented are stacked in the vertical direction. Since it does not evaporate and the evaporation rate of the low boiling point solvent is slow, the settled spacer particles are not stacked, but are arranged on the surface of the first alignment film 13 as shown in FIG.

従って、沈降したスペーサ粒子33は同じ平面内に位置しており、また、低沸点溶媒が蒸発してスペーサ粒子33密度が高くなった分だけ、同じ設置場所38にあるスペーサ粒子33は互いに凝集した状態になっている。   Accordingly, the settled spacer particles 33 are located in the same plane, and the spacer particles 33 at the same installation location 38 are aggregated together by the amount of the low boiling point solvent evaporating to increase the spacer particle 33 density. It is in a state.

次に、第一の基板15を印刷温度に維持したまま搬送トレイ9を移動方向3下流側に移動させ、新たな設置場所38をノズルの真下へ配置すると共に、スペーサ分散液が着弾済みの設置場所38を、ノズルよりも移動方向3下流へ移動させる。   Next, while the first substrate 15 is maintained at the printing temperature, the transport tray 9 is moved to the downstream side in the moving direction 3 to place a new installation place 38 directly below the nozzle, and the spacer dispersion liquid has landed. The place 38 is moved downstream in the movement direction 3 from the nozzle.

設置場所38のスペーサ粒子33は凝集しているため、分散していた時に比べて移動度が低くなっており、第一の基板15が移動しても、スペーサ粒子33が設置場所38からずれず、第一の電極膜12上の領域にはみ出さない。   Since the spacer particles 33 at the installation location 38 are agglomerated, the mobility is lower than when dispersed, and the spacer particles 33 do not deviate from the installation location 38 even when the first substrate 15 moves. , It does not protrude into the region on the first electrode film 12.

新たな設置場所38にスペーサ分散液を吐出後、第一の基板15を印刷温度に維持したまま、搬送トレイ9の移動と、スペーサ分散液の吐出を繰り返し、第一の基板15上の各設置場所38にスペーサ分散液35を塗布する。   After discharging the spacer dispersion liquid to the new installation place 38, while the first substrate 15 is maintained at the printing temperature, the movement of the transport tray 9 and the discharge of the spacer dispersion liquid are repeated, and each installation on the first substrate 15 is performed. The spacer dispersion 35 is applied to the place 38.

台2上の印刷ヘッド8よりも移動方向3下流側には第一、第二の加熱装置5、6は記載した順番に設置されており、各設置場所38にスペーサ分散液35が塗布された状態の第一の基板15を、印刷ヘッド8下方位置から第一の加熱装置5内部に移動させ、中沸点溶媒の沸点よりも高い温度であって、高沸点溶媒の沸点よりも低い第一の加熱温度に第一の基板15を加熱し、低沸点溶媒と中沸点溶媒を蒸発させる。このとき、高沸点溶媒も一部が蒸発するが、第一の加熱温度は高沸点溶媒の沸点より低いから、高沸点溶媒の多くが除去されずに残る。従って、設置場所38にはスペーサ粒子33と、高濃度の高沸点溶媒を含む混合溶媒34とが残る。   The first and second heating devices 5 and 6 are installed in the described order on the downstream side in the moving direction 3 from the print head 8 on the table 2, and the spacer dispersion liquid 35 is applied to each installation location 38. The first substrate 15 in a state is moved from the position below the print head 8 into the first heating device 5, and the first substrate 15 has a temperature higher than the boiling point of the medium boiling solvent and lower than the boiling point of the high boiling solvent. The first substrate 15 is heated to the heating temperature to evaporate the low boiling point solvent and the medium boiling point solvent. At this time, a part of the high boiling point solvent also evaporates, but since the first heating temperature is lower than the boiling point of the high boiling point solvent, most of the high boiling point solvent remains without being removed. Accordingly, the spacer particles 33 and the mixed solvent 34 containing a high-concentration high-boiling solvent remain at the installation location 38.

低沸点溶媒と中沸点溶媒が除去され、混合溶媒34の量が減少すると、スペーサ粒子33の密度が高くなり、スペーサ粒子33が更に凝集する。スペーサ粒子は、例えば樹脂粒子で構成されており、樹脂粒子は高沸点溶媒に対して濡れ性が高いので、各スペーサ粒子33は表面が高沸点溶媒で覆われた状態になる。   When the low-boiling point solvent and the medium-boiling point solvent are removed and the amount of the mixed solvent 34 decreases, the density of the spacer particles 33 increases and the spacer particles 33 further aggregate. The spacer particles are made of, for example, resin particles. Since the resin particles have high wettability with respect to the high boiling point solvent, the surface of each spacer particle 33 is covered with the high boiling point solvent.

各スペーサ粒子33が同一平面内に位置する状態から、高沸点溶媒で覆われたまま凝集すると、スペーサ粒子33同士は積み重ならず、同一平面内で凝集する。
図4(d)は第一の基板15を第一の加熱温度で所定時間加熱した乾燥工程後の状態を示しており、設置場所38には同一平面内で凝集したスペーサ粒子33と、高沸点溶媒を高濃度に含む混合溶媒34とが残っている。
When the spacer particles 33 are aggregated while being covered with the high boiling point solvent from the state where the spacer particles 33 are located in the same plane, the spacer particles 33 are aggregated in the same plane without being stacked.
FIG. 4D shows a state after the drying process in which the first substrate 15 is heated for a predetermined time at the first heating temperature. The installation place 38 has spacer particles 33 aggregated in the same plane and a high boiling point. A mixed solvent 34 containing a solvent at a high concentration remains.

乾燥工程後の混合溶媒は高沸点溶媒以外の溶媒を殆ど含まず 低沸点溶媒や中沸点溶媒が除去された分だけ、混合溶媒34の量は減少しているので、凝集したスペーサ粒子33の混合溶媒34中の移動度が、乾燥工程前よりも大幅に減少する。   The mixed solvent after the drying step contains almost no solvent other than the high-boiling solvent, and the amount of the mixed solvent 34 is reduced by the amount of removal of the low-boiling solvent and the medium-boiling solvent. The mobility in the solvent 34 is greatly reduced than before the drying step.

特にノズルから吐出する時の高沸点溶媒の含有量が、スペーサ粒子100重量部に対して10重量部以上100重量部以下、より好ましくは60重量部以下であれば、乾燥工程後の混合溶媒34の量はスペーサ粒子33と同じかそれよりも少なくなるので、混合溶媒34は凝集したスペーサ粒子33の周囲に付着した状態で残るだけであり、スペーサ粒子33の混合溶媒34中での移動が起こらない。   In particular, when the content of the high boiling point solvent when discharged from the nozzle is 10 to 100 parts by weight, more preferably 60 parts by weight or less with respect to 100 parts by weight of the spacer particles, the mixed solvent 34 after the drying step is used. Therefore, the mixed solvent 34 only remains attached around the aggregated spacer particles 33, and the movement of the spacer particles 33 in the mixed solvent 34 occurs. Absent.

次いで、搬送トレイ9を第一の加熱装置5よりも移動方向3下流側に移動させ、第一の基板15を第二の加熱装置6内へ搬送し、高沸点溶媒の沸点よりも高い第二の加熱温度に加熱すると残留する混合溶媒34が乾燥除去される。   Next, the transport tray 9 is moved downstream in the moving direction 3 from the first heating device 5, the first substrate 15 is transported into the second heating device 6, and the second higher than the boiling point of the high boiling point solvent. The remaining mixed solvent 34 is dried and removed when heated to the above heating temperature.

上述したように、スペーサ粒子33は混合溶媒34中でこれ以上移動しないので、混合溶媒34が除去されるときに、スペーサ粒子33の凝集がこれ以上起こらず、スペーサ粒子33が同一平面内で凝集した状態で残る(焼成工程)。   As described above, since the spacer particles 33 do not move any more in the mixed solvent 34, when the mixed solvent 34 is removed, the spacer particles 33 do not further aggregate and the spacer particles 33 aggregate in the same plane. It remains in the state (baking process).

図4(e)は焼成工程後の第一の基板15を示している。スペーサ粒子33は積み重ならずに同一平面内で凝集しているので、各設置場所38で第一の基板15表面からスペーサ粒子33上端までの高さは等しくなっている。   FIG. 4E shows the first substrate 15 after the firing step. Since the spacer particles 33 are aggregated in the same plane without being stacked, the height from the surface of the first substrate 15 to the upper end of the spacer particles 33 is equal at each installation location 38.

また、設置場所38に着弾した直後のスペーサ分散液35が第一の電極膜12上にはみ出していても、塗布後の低沸点溶媒の蒸発と、乾燥工程でスペーサ粒子33が設置場所38に集められ、焼成工程後はスペーサ粒子33が第一の電極膜12上にはみ出さないようになっている。   Even if the spacer dispersion liquid 35 immediately after landing on the installation place 38 protrudes on the first electrode film 12, the spacer particles 33 are collected at the installation place 38 by evaporation of the low boiling point solvent after the application and the drying process. In addition, the spacer particles 33 do not protrude on the first electrode film 12 after the firing step.

次に、第二の基板25を配向膜23側の面を上に向けて水平に配置し、図5に示したように、第二の基板25の配向膜23側の面に、その縁部分に沿ってリング状の封止材料27を配置する。   Next, the second substrate 25 is horizontally disposed with the surface on the alignment film 23 side facing up, and the edge portion of the second substrate 25 is formed on the surface on the alignment film 23 side of the second substrate 25 as shown in FIG. A ring-shaped sealing material 27 is disposed along the line.

配向膜23表面の封止材料27のリングの内側に所定量の液晶材料32を滴下した後、図4(e)に示した状態の第一の基板15を、スペーサ粒子33が配置された第一の配向膜13側の面を下側に向けた状態で第二の基板25上に配置し、位置合わせ後、第一、第二の基板15、25で液晶材料32及び封止材料27を挟み込むと、第一の基板15の第一の配向膜13側の表面と、第二の基板25の第二の配向膜23側の面とが液晶材料32を挟んだ状態で封止材料27と密着する。   After a predetermined amount of the liquid crystal material 32 is dropped inside the ring of the sealing material 27 on the surface of the alignment film 23, the first substrate 15 in the state shown in FIG. The liquid crystal material 32 and the sealing material 27 are placed on the first and second substrates 15 and 25 after being positioned on the second substrate 25 with the one alignment film 13 side facing downward. When sandwiched, the sealing material 27 and the surface of the first substrate 15 on the first alignment film 13 side and the surface of the second substrate 25 on the second alignment film 23 side sandwich the liquid crystal material 32. In close contact.

封止材料27の膜厚はスペーサ粒子33の粒径よりも厚いが、第一、第二の基板15、25で封止材料27を挟み込むと、封止材料27が第一、第二の基板15、25に密着したまま変形し、第二の基板25が第一の基板15に押し付けられる。   Although the film thickness of the sealing material 27 is larger than the particle diameter of the spacer particles 33, when the sealing material 27 is sandwiched between the first and second substrates 15 and 25, the sealing material 27 becomes the first and second substrates. The second substrate 25 is pressed against the first substrate 15 while being in close contact with the first and second substrates 25 and 25.

上述したように、各設置場所38でスペーサ粒子33の高さが等しくなっているので、第一の基板15に押し付けられた第二の基板25はその表面が各設置場所38のスペーサ粒子33に当接される。   As described above, since the height of the spacer particles 33 is equal at each installation location 38, the surface of the second substrate 25 pressed against the first substrate 15 faces the spacer particles 33 at each installation location 38. Abutted.

封止材料27は、例えば紫外線硬化型の接着剤で構成されており、紫外線を照射すると封止材料27が第一、第二の基板15、25の表面に密着したまま硬化して上記封止部材31が形成される。   The sealing material 27 is composed of, for example, an ultraviolet curable adhesive. When the sealing material 27 is irradiated with ultraviolet rays, the sealing material 27 is cured while being in close contact with the surfaces of the first and second substrates 15 and 25, and the sealing material 27 is sealed. A member 31 is formed.

次いで、第一、第二の基板15、25の第一、第二の配向膜13、23とは反対側の面に、第一、第二の偏光板16、26を貼付し、更にバックライト39を配置すれば、上述した液晶表示装置10が得られる。   Next, first and second polarizing plates 16 and 26 are attached to the surfaces of the first and second substrates 15 and 25 opposite to the first and second alignment films 13 and 23, respectively, and the backlight If 39 is arrange | positioned, the liquid crystal display device 10 mentioned above will be obtained.

この液晶表示装置10では、上述したように第二の基板25はその表面が各設置場所38のスペーサ粒子33に当接されているので、第一、第二の基板15、25の間の間隔が均一になっている。しかも、第二の基板25は各設置場所38で3個以上のスペーサ粒子33に支持されるので、物理的衝撃に強く、液晶表示装置10の信頼性は高い。   In the liquid crystal display device 10, as described above, the surface of the second substrate 25 is in contact with the spacer particles 33 at the respective installation locations 38, so that the distance between the first and second substrates 15, 25. Is uniform. Moreover, since the second substrate 25 is supported by three or more spacer particles 33 at each installation location 38, it is resistant to physical impact and the reliability of the liquid crystal display device 10 is high.

高沸点溶媒であるDEG(ジエチレングリコール、沸点244.3℃)と、低沸点溶媒であるIPA(イソプロピルアルコール、沸点82.3℃)と、中沸点溶媒である水(沸点100℃)と、スペーサ粒子であるポリスチレン樹脂粒子(比重約1.0)とからなるスペーサ分散液を12種類作成した。各スペーサ分散液中のスペーサ粒子と、高沸点溶媒と、低沸点溶媒の含有量(重量%)をそれぞれ下記表1に示す。   DEG (diethylene glycol, boiling point: 244.3 ° C) as a high boiling point solvent, IPA (isopropyl alcohol, boiling point: 82.3 ° C) as a low boiling point solvent, water (boiling point: 100 ° C) as a middle boiling point solvent, spacer particles Twelve types of spacer dispersion liquids consisting of polystyrene resin particles (specific gravity of about 1.0) were prepared. The spacer particles, the high boiling point solvent, and the content (% by weight) of the low boiling point solvent in each spacer dispersion are shown in Table 1 below.

Figure 2007114312
Figure 2007114312

また、DEGに変え、高沸点溶媒としてDPG(ジプロピレングリコール)を用いて、12種類のスペーサ分散液をそれぞれ作成した。各スペーサ分散液中のスペーサ粒子と、高沸点溶媒と、低沸点溶媒の含有量(重量%)をそれぞれ下記表2に示す。   Also, instead of DEG, 12 kinds of spacer dispersions were prepared using DPG (dipropylene glycol) as a high boiling point solvent. The spacer particles, the high boiling point solvent, and the content (% by weight) of the low boiling point solvent in each spacer dispersion are shown in Table 2 below.

Figure 2007114312
Figure 2007114312

基板15として、板状のガラスかなる基板本体の表面上にポリイミド膜からなる配向膜13が形成されたものを用い、上記24種類のスペーサ分散液をインクジェットプリンタのノズルから基板15の配向膜13表面に塗布した。スペーサ分散液を塗布する時の基板15温度は30℃に維持した。   As the substrate 15, a substrate in which an alignment film 13 made of a polyimide film is formed on the surface of a substrate body made of plate-like glass, and the 24 kinds of spacer dispersion liquids are transferred from the nozzles of the inkjet printer to the alignment film 13 of the substrate 15. Applied to the surface. The substrate 15 temperature at the time of applying the spacer dispersion liquid was maintained at 30 ° C.

ノズルから吐出される時の液滴の大きさを上記表1、2の「液滴」に示し、1つの設置場所38に配置するスペーサ粒子33の平均個数を上記表1、2の「平均個数」の欄に記載した。   The size of droplets when ejected from the nozzle is shown in “Droplets” in Tables 1 and 2 above, and the average number of spacer particles 33 arranged in one installation place 38 is shown in “Average Number” in Tables 1 and 2 above. "In the column.

次いで、第一の加熱温度(200℃)でスペーサ分散液を乾燥し、更に第二の加熱温度(240℃)で焼成した後に、基板15表面に残ったスペーサ粒子が、積み重なっているかどうかを観察した。その結果を上記表1、2の「重なり」の欄に示す。   Next, after drying the spacer dispersion liquid at the first heating temperature (200 ° C.) and further firing at the second heating temperature (240 ° C.), it is observed whether the spacer particles remaining on the surface of the substrate 15 are stacked. did. The results are shown in the “overlap” column in Tables 1 and 2 above.

比較例1〜4と、比較例5〜8はスペーサ粒子100重量部に対する高沸点溶媒の含有量がそれぞれ10重量部未満であり、「重なり」試験ではスペーサ粒子が積み重なっていた。   In Comparative Examples 1 to 4 and Comparative Examples 5 to 8, the content of the high boiling point solvent relative to 100 parts by weight of the spacer particles was less than 10 parts by weight, and the spacer particles were stacked in the “overlap” test.

これに対し、実施例1〜16はスペーサ粒子100重量部に対する高沸点溶媒の含有量が10重量部以上60重量部以下であり、「重なり」試験ではスペーサ粒子の重なりが見られず、スペーサ粒子は同じ平面内で凝集していた。   On the other hand, in Examples 1 to 16, the content of the high boiling point solvent with respect to 100 parts by weight of the spacer particles is 10 parts by weight or more and 60 parts by weight or less. Were agglomerated in the same plane.

実施例7、8や、実施例15、16のように、一箇所にスペーサ粒子を10個以上配置しても、スペーサ粒子の重なりが見られなかったことから、本発明はスペーサ粒子の重なりを効果的に防止可能なことがわかる。   As in Examples 7 and 8 and Examples 15 and 16, even when 10 or more spacer particles were arranged in one place, no overlapping of the spacer particles was observed. It can be seen that it can be effectively prevented.

以上は、スペーサ粒子としてポリスチレン樹脂粒子を用いる場合について説明したが、本発明はこれに限定されず、ポリスチレン樹脂粒子以外にも、シリコン変性ポリマー粒子等種々のものを用いることができる。   Although the case where the polystyrene resin particles are used as the spacer particles has been described above, the present invention is not limited to this, and various types such as silicon-modified polymer particles can be used in addition to the polystyrene resin particles.

また、スペーサ粒子33は樹脂粒子に限定されず、例えば表面がシランカップリング剤でコーティングされたシリカ粒子や、無機粒子の表面が樹脂層で覆われた樹脂被膜粒子等も高沸点溶媒に対する濡れ性が高いので本願発明に適している。スペーサ分散液に含有させるスペーサ粒子の量は特に限定されないが、一例を述べると1重量%以上6重量%以下である。   The spacer particles 33 are not limited to resin particles. For example, silica particles whose surfaces are coated with a silane coupling agent, resin coating particles whose inorganic particles are covered with a resin layer, and the like are also wettable with respect to a high boiling point solvent. Is suitable for the present invention. The amount of the spacer particles to be contained in the spacer dispersion liquid is not particularly limited, but an example is 1 wt% or more and 6 wt% or less.

スペーサ分散液の塗布方法も特に限定されないが、各設置場所38に配置されるスペーサ粒子33の数が3個を超え、かつ15以下となり、スペーサ粒子33の配置密度が80個/mm2以上250個/mm2以下になり、スペーサ粒子33の専有面積が13μm2以上180μm2以下になるように塗布することが望ましい。 The method of applying the spacer dispersion liquid is not particularly limited, but the number of spacer particles 33 disposed in each installation place 38 is more than 3 and 15 or less, and the arrangement density of the spacer particles 33 is 80 / mm 2 or more and 250. pieces / mm 2 becomes less, it is desirable that the area occupied spacer particles 33 is applied so that the 13 .mu.m 2 or 180 [mu] m 2 or less.

尚、スペーサ粒子33の配置密度とは、液晶材料32が封止される全表示領域(封止部材31内側の領域)におけるスペーサ粒子33の数であり、スペーサ粒子33の専有面積とは一各吐出箇所(設置場所38)に配置されたスペーサ粒子33の設置面積である。   The arrangement density of the spacer particles 33 is the number of the spacer particles 33 in the entire display region (the region inside the sealing member 31) in which the liquid crystal material 32 is sealed. This is the installation area of the spacer particles 33 arranged at the discharge location (installation location 38).

上述したように、スペーサ分散液をインクジェットプリンタのノズルから吐出させる場合には、1回の吐出で設置場所38にスペーサ分散液を塗布してもよいし、2回以上同じ設置場所38にスペーサ分散液を吐出してもよい。   As described above, when the spacer dispersion liquid is ejected from the nozzles of the ink jet printer, the spacer dispersion liquid may be applied to the installation place 38 by one ejection, or the spacer dispersion liquid may be applied to the same installation place 38 two or more times. The liquid may be discharged.

スペーサ粒子33の設置場所38も特に限定されず、スペーサ粒子33としては有色のものでも無色のものでも使用可能であるが、設置場所38は上述した非画素領域内とすることが望ましい。その場合、設置場所38は非画素領域の格子の交点に限定されず、格子を構成する縦列と横列のうち、縦列と横列の交点以外の場所、例えば縦列の隣接する第一の電極膜12で挟まれた部分、横列の隣接する第一の電極膜12で挟まれた部分を設置場所38としてもよい。   The installation location 38 of the spacer particles 33 is not particularly limited, and the spacer particles 33 may be either colored or colorless, but the installation location 38 is preferably in the non-pixel region described above. In that case, the installation location 38 is not limited to the intersection of the grids in the non-pixel region, and is a location other than the intersection of the columns and rows, for example, the first electrode films 12 adjacent to each other in the columns. The portion sandwiched between the adjacent first electrode films 12 in the row may be set as the installation place 38.

本発明に使用可能な高沸点溶媒の例を下記表3に示し、本発明に使用可能な低沸点溶媒の例を下記表4に記載するが、本発明はこれに限定されるものではない。   Examples of high boiling point solvents that can be used in the present invention are shown in Table 3 below, and examples of low boiling point solvents that can be used in the present invention are described in Table 4 below, but the present invention is not limited thereto.

Figure 2007114312
Figure 2007114312

Figure 2007114312
Figure 2007114312

低沸点溶媒の沸点と高沸点溶媒の沸点の温度差が小さいと、乾燥工程で低沸点溶媒と一緒に高沸点溶媒も多量に除去される恐れがあるので、低沸点溶媒の沸点と高沸点溶媒の沸点との差は90℃以上であることが好ましい。
下記表5に低沸点溶媒と高沸点溶媒の組み合わせの例と、各組み合わせにおける沸点の差と、その組み合わせに適した印刷温度を示す。
If the temperature difference between the boiling point of the low-boiling solvent and the boiling point of the high-boiling solvent is small, a large amount of the high-boiling solvent may be removed together with the low-boiling solvent in the drying process. The difference from the boiling point of is preferably 90 ° C. or more.
Table 5 below shows examples of combinations of low-boiling solvents and high-boiling solvents, differences in boiling points between the combinations, and printing temperatures suitable for the combinations.

Figure 2007114312
Figure 2007114312

本発明で低沸点溶媒とはスペーサ分散液に含有させる溶媒のうち沸点が最も低いものであり、高沸点溶媒とはスペーサ分散液に含有させる溶媒のうち沸点が最も高いものであり、スペーサ分散液に含有される溶媒のうち、沸点が低沸点溶媒よりも高く、高沸点溶媒よりも低いものが中沸点溶媒となる。   In the present invention, the low boiling point solvent is the one having the lowest boiling point among the solvents to be contained in the spacer dispersion liquid, and the high boiling point solvent is the one having the highest boiling point among the solvents to be contained in the spacer dispersion liquid. Among these solvents, those having a boiling point higher than that of the low boiling point solvent and lower than that of the high boiling point solvent are medium boiling point solvents.

例えば、水は上記表4の低沸点溶媒として記載されているが、IPAのように、水よりも沸点が低い溶媒を同じスペーサ分散液に含有させる場合は、水が中沸点溶媒となる。逆に、水よりも沸点が低い溶媒がスペーサ分散液に含有されない場合は、水が低沸点溶媒となる。   For example, although water is described as the low boiling point solvent in Table 4 above, when the same spacer dispersion liquid contains a solvent having a lower boiling point than water, such as IPA, water becomes the medium boiling point solvent. Conversely, when a solvent having a boiling point lower than that of water is not contained in the spacer dispersion liquid, water becomes a low boiling point solvent.

中沸点溶媒として沸点が第一の加熱温度よりも高いものを用いると、乾燥工程の後に高沸点溶媒だけでなく中沸点溶媒も多量に残ってしまうので、中沸点溶媒として沸点が第一の加熱温度よりも低いものを用いるか、沸点が第一の加熱温度よりも高いものを用いる場合には、中沸点溶媒と高沸点溶媒の含有量の合計がスペーサ粒子33の含有量100重量部に対し、10重量部以上100重量部以下、より好ましくは60重量部以下のスペーサ分散液を用いることが好ましい。   If a medium boiling point solvent having a boiling point higher than the first heating temperature is used, not only a high boiling point solvent but also a medium boiling point solvent remains after the drying step. When using a material having a lower boiling point or a boiling point higher than the first heating temperature, the total content of the medium boiling point solvent and the high boiling point solvent is 100 parts by weight of the spacer particle 33 content. It is preferable to use a spacer dispersion of 10 parts by weight or more and 100 parts by weight or less, more preferably 60 parts by weight or less.

中沸点溶媒は1種類だけをスペーサ分散液に含有させもよいし、2種類以上を同じスペーサ分散液に含有させてもよい。また、中沸点溶媒を用いずに、高沸点溶媒と低沸点溶媒だけで混合溶媒34を構成してもよい。
スペーサ分散液にはスペーサ粒子と混合溶媒の他に、固着剤、界面活性剤、配向処理剤、酸化防止剤、着色剤等を添加することもできる。
Only one type of medium-boiling point solvent may be contained in the spacer dispersion liquid, or two or more kinds may be contained in the same spacer dispersion liquid. Further, the mixed solvent 34 may be composed of only the high boiling point solvent and the low boiling point solvent without using the medium boiling point solvent.
In addition to the spacer particles and the mixed solvent, a fixing agent, a surfactant, an alignment treatment agent, an antioxidant, a colorant, and the like can be added to the spacer dispersion.

本発明に用いる第一、第二の基板15、25は、例えばTFTアレイ基板、カラーフィルター基板等、その材質、構造は特に限定されるものでない。第一、第二の基板15、25に用いる基板本体11、21の種類も特に限定されず、透光性が高いものであれば、例えばガラス基板、プラスチック基板等を用いることができる。   The first and second substrates 15 and 25 used in the present invention are not particularly limited in material and structure, such as a TFT array substrate and a color filter substrate. The types of substrate bodies 11 and 21 used for the first and second substrates 15 and 25 are not particularly limited, and a glass substrate, a plastic substrate, or the like can be used as long as it has high translucency.

配向膜13、23の種類も特に限定されず、上述したポリイミド膜のような樹脂膜の他にも、配向性を持たせたカーボン膜や、二酸化ケイ素のような無機膜を用いることもできる。   The types of the alignment films 13 and 23 are not particularly limited, and in addition to the resin film such as the polyimide film described above, an oriented carbon film or an inorganic film such as silicon dioxide can be used.

第一、第二の電極膜も透明なものが好ましく、具体的にはITO(インジウム錫酸化物)薄膜、SnO2薄膜、ZnOx薄膜、IZO薄膜等の種々の透明導電材料の薄膜を用いることができる。また、液晶材料の種類も特に限定されず、上記ネマティック型液晶の他にも、スメクティック型液晶、コレステリック型液晶等種々の物を用いることができる。 The first and second electrode films are preferably transparent, and specifically, thin films made of various transparent conductive materials such as ITO (indium tin oxide) thin film, SnO 2 thin film, ZnO x thin film, and IZO thin film are used. Can do. The kind of the liquid crystal material is not particularly limited, and various materials such as a smectic liquid crystal and a cholesteric liquid crystal can be used in addition to the nematic liquid crystal.

液晶表示装置の一例を説明する断面図Sectional drawing explaining an example of a liquid crystal display device スペーサ粒子の配置を模式的に示す平面図Plan view schematically showing the arrangement of spacer particles 本発明に用いる印刷装置の一例を説明する図The figure explaining an example of the printing apparatus used for this invention (a)〜(e):第一の基板にスペーサ粒子を配置する工程を説明する断面図(A)-(e): Sectional drawing explaining the process of arrange | positioning spacer particle | grains to a 1st board | substrate. 第二の基板の断面図Sectional view of the second substrate 従来技術の液晶表示装置の製造方法を説明するための断面図Sectional drawing for demonstrating the manufacturing method of the liquid crystal display device of a prior art

符号の説明Explanation of symbols

10……液晶表示装置 11、21……基板 33……スペーサ粒子 35……スペーサ分散液 38……設置場所   10 …… Liquid crystal display device 11, 21 …… Substrate 33 …… Spacer particles 35 …… Space dispersion liquid 38 …… Installation place

Claims (8)

基板表面にスペーサ粒子を含有する分散液を塗布した後、前記基板表面に塗布された前記分散液を加熱する液晶表示装置の製造方法であって、
前記分散液に、前記スペーサ粒子と、低沸点溶媒と、前記低沸点溶媒よりも沸点が高い高沸点溶媒とを含有させ、
前記分散液の加熱は、前記分散液を前記高沸点溶媒の沸点よりも低い第一の加熱温度に加熱する乾燥工程と、前記分散液を前記高沸点溶媒の沸点よりも高い第二の加熱温度に加熱する焼成工程とを有する液晶表示装置の製造方法。
A method of manufacturing a liquid crystal display device, in which a dispersion containing spacer particles is applied to a substrate surface, and then the dispersion applied to the substrate surface is heated.
The dispersion contains the spacer particles, a low boiling point solvent, and a high boiling point solvent having a higher boiling point than the low boiling point solvent,
The dispersion is heated by a drying step in which the dispersion is heated to a first heating temperature lower than the boiling point of the high boiling solvent, and a second heating temperature in which the dispersion is higher than the boiling point of the high boiling solvent. The manufacturing method of the liquid crystal display device which has a baking process heated to.
前記分散液として、前記高沸点溶剤の含有量が、前記スペーサ粒子100重量部に対し10重量部以上100重量部以下のものを用いる請求項1記載の液晶表示装置の製造方法。   The method for manufacturing a liquid crystal display device according to claim 1, wherein a content of the high boiling point solvent is 10 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the spacer particles. 前記第二の加熱温度を、前記高沸点溶媒の沸点よりも高くする請求項1又は請求項2のいずれか1項記載の液晶表示装置の製造方法。   The method for manufacturing a liquid crystal display device according to claim 1, wherein the second heating temperature is set higher than the boiling point of the high boiling point solvent. 前記高沸点溶剤として、沸点が前記低沸点溶剤の沸点よりも90℃以上高いものを用いる請求項1乃至請求項3のいずれか1項記載の液晶表示装置の製造方法。   4. The method for manufacturing a liquid crystal display device according to claim 1, wherein the high-boiling point solvent has a boiling point that is 90 ° C. or more higher than the boiling point of the low-boiling point solvent. 前記分散液を塗布する時の前記基板の温度を、前記低沸点溶媒の沸点よりも10℃以上60℃以下低くする請求項1乃至請求項4のいずれか1項記載の液晶表示装置の製造方法。   5. The method for manufacturing a liquid crystal display device according to claim 1, wherein the temperature of the substrate when the dispersion is applied is lower by 10 ° C. or more and 60 ° C. or less than the boiling point of the low boiling point solvent. . 前記高沸点溶剤として、エチレングリコールと、プロピレングリコールと、ジエチレングリコールと、ジプロピレングリコールと、ジエチレングリコールモノブチルエーテルとからなる群より選択されるいずれか1種類の溶剤を用いる請求項1乃至請求項5のいずれか1項記載の液晶表示装置の製造方法。   The solvent according to any one of claims 1 to 5, wherein any one solvent selected from the group consisting of ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and diethylene glycol monobutyl ether is used as the high boiling point solvent. A method for manufacturing a liquid crystal display device according to claim 1. 前記低沸点溶剤として、イソプロピルアルコールと、n−ブタノールと、2−ブタノールと、イソブタノールと、イソアミノアルコールと、2−エチルブタノールと、水とからなる群より選択されるいずれか1種類の溶剤を用いる請求項1乃至請求項6のいずれか1項記載の液晶表示装置の製造方法。   As the low boiling point solvent, any one solvent selected from the group consisting of isopropyl alcohol, n-butanol, 2-butanol, isobutanol, isoamino alcohol, 2-ethylbutanol, and water. The method for manufacturing a liquid crystal display device according to claim 1, wherein: 前記分散液を、前記基板表面の互いに離間した複数の設置場所に塗布する請求項1乃至請求項7のいずれか1項記載の液晶表示装置の製造方法であって、
1つの前記設置場所に配置されるスペーサ粒子の数が3個を超え、かつ15個以下になるように前記分散液を塗布する液晶表示装置の製造方法。
The method for manufacturing a liquid crystal display device according to any one of claims 1 to 7, wherein the dispersion liquid is applied to a plurality of installation locations spaced apart from each other on the surface of the substrate.
The manufacturing method of the liquid crystal display device which apply | coats the said dispersion liquid so that the number of the spacer particle | grains arrange | positioned at one said installation place may exceed 3 pieces and is 15 pieces or less.
JP2005303492A 2005-10-18 2005-10-18 Manufacturing method of liquid crystal display device Expired - Fee Related JP4799993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303492A JP4799993B2 (en) 2005-10-18 2005-10-18 Manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303492A JP4799993B2 (en) 2005-10-18 2005-10-18 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2007114312A true JP2007114312A (en) 2007-05-10
JP4799993B2 JP4799993B2 (en) 2011-10-26

Family

ID=38096594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303492A Expired - Fee Related JP4799993B2 (en) 2005-10-18 2005-10-18 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4799993B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015346A (en) * 2006-07-07 2008-01-24 Sekisui Chem Co Ltd Spacer particle dispersion liquid, method for manufacturing liquid crystal display device, and liquid crystal display device
CN102193252A (en) * 2010-03-19 2011-09-21 株式会社东芝 Display device provided with spacer particles and method of manufacturing the same
CN107479221A (en) * 2017-08-15 2017-12-15 四川乐仕达电子科技有限公司 It is a kind of by PI liquid and the LCD display manufacture craft of middle powder mixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249448A (en) * 1992-03-03 1993-09-28 Nippon Zeon Co Ltd Liquid crystal sealing body and liquid crystal display formed by using the body
JP2005004094A (en) * 2003-06-13 2005-01-06 Sekisui Chem Co Ltd Manufacturing method of liquid crystal display
JP2005010412A (en) * 2003-06-18 2005-01-13 Sekisui Chem Co Ltd Method for manufacturing liquid crystal display
JP2005321743A (en) * 2004-04-09 2005-11-17 Sekisui Chem Co Ltd Method for manufacturing liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249448A (en) * 1992-03-03 1993-09-28 Nippon Zeon Co Ltd Liquid crystal sealing body and liquid crystal display formed by using the body
JP2005004094A (en) * 2003-06-13 2005-01-06 Sekisui Chem Co Ltd Manufacturing method of liquid crystal display
JP2005010412A (en) * 2003-06-18 2005-01-13 Sekisui Chem Co Ltd Method for manufacturing liquid crystal display
JP2005321743A (en) * 2004-04-09 2005-11-17 Sekisui Chem Co Ltd Method for manufacturing liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015346A (en) * 2006-07-07 2008-01-24 Sekisui Chem Co Ltd Spacer particle dispersion liquid, method for manufacturing liquid crystal display device, and liquid crystal display device
CN102193252A (en) * 2010-03-19 2011-09-21 株式会社东芝 Display device provided with spacer particles and method of manufacturing the same
JP2011197481A (en) * 2010-03-19 2011-10-06 Toshiba Corp Display device and method of manufacturing the same
CN107479221A (en) * 2017-08-15 2017-12-15 四川乐仕达电子科技有限公司 It is a kind of by PI liquid and the LCD display manufacture craft of middle powder mixture

Also Published As

Publication number Publication date
JP4799993B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
KR100881691B1 (en) Methods and apparatus for inkjetting spacers in a flat panel display
JP4799993B2 (en) Manufacturing method of liquid crystal display device
CN104834118B (en) Method and apparatus for manufacturing liquid crystal display device
TW200419192A (en) Optical device and method of manufacture of the same, display device, electronic device, and detection device
JP2006015271A (en) Thin film formation method
JP2008058952A (en) Method for forming functional film and method for manufacturing liquid crystal display device
JP4111195B2 (en) Device, manufacturing method thereof, electro-optical device, manufacturing method thereof, and electronic apparatus
US20110141428A1 (en) Process for producing spacer for liquid crystal display apparatus, ink for spacer formation, liquid crystal display appartus and process for manufacturing the same
KR100560893B1 (en) Method of disposing spacer and method of manufacturing electro-optic device
JP2007178532A (en) Method for manufacturing color filter substrate and method for manufacturing liquid crystal display device
JP2008225082A (en) Substrate for color filter, and manufacturing method thereof
JP2008112138A (en) Method for forming spacer for liquid crystal display device, ink for forming spacer, liquid crystal display device, and its manufacturing method
JP2004223354A (en) Method for applying liquid composition, method for producing el element, method for producing color filter, electro-optical device, and electronic device
TWI564637B (en) Liquid crystal display panel and method of fabricating the same
JP2007139939A (en) Method for manufacturing color filter
JP2007065582A (en) Color filter and its manufacturing method
JP5011414B2 (en) Display device and manufacturing method thereof
JP2005144260A (en) Thin film forming method, manufacturing method of device, manufacturing method of electro-optical device and electronic device
JP2011170163A (en) Ink for forming spacer for liquid crystal display device, method for forming the spacer for liquid crystal display device, liquid crystal display device, and manufacturing method of the same
JP5167890B2 (en) Manufacturing method of color filter substrate with spacer
JP2009258625A (en) Method of forming spacer for liquid crystal display device, ink for spacer formation, liquid crystal display device, and manufacturing method thereof
JP2013029741A (en) Liquid crystal display device and manufacturing method thereof
JP2008076835A (en) Spacer forming method, spacer arranging device, and manufacturing method of display panel
JP2011145581A (en) Method of manufacturing liquid crystal device
JP2012220877A (en) Method for manufacturing flexible liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees