JP2007114220A - X-ray diffraction measurement method and x-ray diffraction device - Google Patents

X-ray diffraction measurement method and x-ray diffraction device Download PDF

Info

Publication number
JP2007114220A
JP2007114220A JP2007027527A JP2007027527A JP2007114220A JP 2007114220 A JP2007114220 A JP 2007114220A JP 2007027527 A JP2007027527 A JP 2007027527A JP 2007027527 A JP2007027527 A JP 2007027527A JP 2007114220 A JP2007114220 A JP 2007114220A
Authority
JP
Japan
Prior art keywords
sample
light
ray diffraction
ray
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007027527A
Other languages
Japanese (ja)
Inventor
Naoto Kijima
直人 木島
Takatoshi Seto
孝俊 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007027527A priority Critical patent/JP2007114220A/en
Publication of JP2007114220A publication Critical patent/JP2007114220A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that X-ray diffraction patterns of respective samples can not be separately and precisely obtained when X-ray diffraction is measured with respect to a plurality of samples. <P>SOLUTION: This X-ray diffraction device includes an X-ray irradiation part for irradiating the sample with an X-ray, a diffracted X-ray detection part for detecting a diffracted X-ray, and a sample holding part for holding the sample, and consists of a position adjustment mechanism including a light application part for applying light to a predetermined position of the sample holding part, a light receiving part for receiving reflected light obtained by applying the light generated from the light application part to the sample, a position control part for measuring a light receiving angle and light receiving position of the reflected light and determining a moving distance in a thickness direction of the sample of the sample holding part in response to them, and a moving part for moving the sample holding part in the thickness direction of the sample in response to the determined moving distance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、X線回折測定方法及び装置に関する。詳しくは、複数の試料のX線回折を連続的に測定するのに適したX線回折測定方法及び装置に関する。   The present invention relates to an X-ray diffraction measurement method and apparatus. Specifically, the present invention relates to an X-ray diffraction measurement method and apparatus suitable for continuously measuring X-ray diffraction of a plurality of samples.

近年、ファインセラミックス技術の進歩により、無機化合物の結晶構造、組成、結晶粒の大きさをミクロン〜ナノスケールで制御できるようになっている。このため、無機化合物の電子材料への応用展開の途が急激に拡大している。
中でも、無機酸化物は、誘電特性や磁気特性、電気導電性等において、幅広い物性を有する。無機化合物の機能の多様性は、無機化合物として制御すべきパラメーターがその不定比性、結晶構造の異方性等も含めて極めて多様であることを意味している。
In recent years, advances in fine ceramic technology have made it possible to control the crystal structure, composition, and crystal grain size of inorganic compounds on the micron to nanoscale. For this reason, the development of application of inorganic compounds to electronic materials is rapidly expanding.
Among these, inorganic oxides have a wide range of physical properties such as dielectric properties, magnetic properties, and electrical conductivity. The diversity of functions of inorganic compounds means that the parameters to be controlled as inorganic compounds are extremely diverse, including their non-stoichiometry and crystal structure anisotropy.

その結果、従来のように物質を一つ一つ作成し、その性質を調べる方法では、目的の物質材料に到達するまでに膨大な時間がかかるばかりでなく、勘と経験の及ばない偶然な発見につながる可能性はきわめて低いということがある。新規無機化合物の探索には、より多種の原料の多様な組み合わせを如何に系統的に制御しつつ生成しうるかが、キーポイントとなる。   As a result, the conventional method of creating substances one by one and examining their properties not only takes an enormous amount of time to reach the target substance, but also accidental discoveries that are beyond the intuition and experience. It is very unlikely to lead to The key point in searching for new inorganic compounds is how to systematically control various combinations of various raw materials.

そこで提案されたのが、可能性の高い領域を組織的にスクリーニングするコンビナトリアルケミストリーといわれるもので、物質の合成効率を飛躍的に高める方法である。例えば、無機化合物の合成の場合、構成元素を有する原料を含む溶液又はスラリーを基板上の所定位置に滴下し、これを焼成する手法を用いて、原料の種類や量を適宜変更することによって、多数の無機化合物を1つの基板上に合成することが可能となる。   Therefore, what has been proposed is combinatorial chemistry that systematically screens highly probable areas, and is a method for dramatically increasing the synthesis efficiency of substances. For example, in the case of synthesis of an inorganic compound, a solution or slurry containing a raw material having a constituent element is dropped onto a predetermined position on a substrate, and a method of firing this is used to appropriately change the type and amount of the raw material, A large number of inorganic compounds can be synthesized on one substrate.

一方で、このような高速での合成が可能となった結果、合成された試料の物質同定作業を従来より高速で行うとの要請も生じることとなった。その結果、複数の試料をX線照射位置に並べ、試料を並べた面を水平にずらしながらX線を照射するX線回折装置や、最初の試料の厚み方向の距離だけは発光ダイオードで粗く測定し、調整しておいてから面上に並ぶ複数の試料を水平にずらしながらX線回折の測定をするX線回折装置も提案されている。   On the other hand, as a result of such high-speed synthesis being possible, there has also been a demand for performing material identification work on synthesized samples at a higher speed than before. As a result, multiple samples are arranged at the X-ray irradiation position, and the X-ray diffractometer that irradiates X-rays while shifting the surface on which the samples are arranged horizontally, or only the distance in the thickness direction of the first sample is roughly measured with a light-emitting diode. An X-ray diffractometer that measures X-ray diffraction while horizontally shifting a plurality of samples arranged on the surface after adjustment is also proposed.

しかしながら、上記に示した従来のX線回折測定装置による方法では、X線回折の検出量が極端に小さいパターンや目的試料とは異なる試料からのX線回折パターンが混じっているパターンがみられる等の問題が生じることが判明した。即ち、従来の連続X線回折装置では、それぞれの試料のX線回折パターンが独立に正確に得られにくいという問題点があった。   However, in the method using the conventional X-ray diffraction measurement apparatus described above, a pattern in which the detected amount of X-ray diffraction is extremely small or an X-ray diffraction pattern from a sample different from the target sample is seen, etc. It has been found that this problem occurs. That is, the conventional continuous X-ray diffractometer has a problem that it is difficult to accurately obtain X-ray diffraction patterns of the respective samples independently.

本発明者らは、上記問題点を解決するべく鋭意検討した結果、その主原因はX線がそれぞれの目的試料に正確に命中していないことにあることを知得した。入射X線又は回折X線と試料中の結晶格子面との角度をθとして2θが5度ないし30度の時には、X線が試料面に対して平行に近い角度で入射するため、通常存在する各粉末試料面の微妙な高さの違いによって、入射X線が特に目的試料に命中しにくい状況となる。各試料表面の微妙な高さの違いは、粉末試料では避けられないことであり、さらに、試料を載せる基板の不十分な平坦性によっても生じる。   As a result of intensive studies to solve the above problems, the present inventors have found that the main cause is that X-rays do not hit each target sample accurately. When the angle between incident X-rays or diffracted X-rays and the crystal lattice plane in the sample is θ, and 2θ is 5 to 30 degrees, X-rays are incident at an angle close to parallel to the sample surface, and therefore usually exist. Due to the subtle differences in the height of each powder sample surface, the incident X-rays are particularly difficult to hit the target sample. A subtle difference in the height of each sample surface is unavoidable in powder samples, and is also caused by insufficient flatness of the substrate on which the sample is placed.

本発明者らは、上記主原因の解析を踏まえ、複数個の試料面の厚み方向の距離を1個1個測定・制御して、X線回折測定を連続的に繰り返すという方法によって上記問題点が解決できること、及び、かかる距離の測定は、試料面の方を向いている位置から光を測定すべき試料に向けて発射しその反射光の受光角度または受光位置から容易且つ正確に求められることを見出し、本発明を完成した。   Based on the analysis of the above main causes, the present inventors measure and control the distances in the thickness direction of a plurality of sample surfaces one by one, and repeat the X-ray diffraction measurement continuously. And the distance can be measured easily and accurately from the angle or position of the reflected light emitted from the position facing the sample surface toward the sample to be measured. The present invention has been completed.

即ち、本発明の要旨は、下記(1)〜(9)に存する。
(1)複数の固体試料のX線回折像を連続的に測定するX線回折測定方法であって、各試料のX線回折像の測定開始前に、予め測定した試料の厚さ方向の位置に基づいて試料の厚さ方向の位置調整を行うことを特徴とする方法。
(2)試料の厚さ方向の位置の測定を、電磁波を試料に照射し、その反射光の受光角度又は受光位置を検出することによって行う上記(1)に記載の方法。
That is, the gist of the present invention resides in the following (1) to (9).
(1) An X-ray diffraction measurement method for continuously measuring X-ray diffraction images of a plurality of solid samples, wherein the position in the thickness direction of the sample measured in advance before starting measurement of the X-ray diffraction images of each sample And adjusting the position in the thickness direction of the sample based on the above.
(2) The method according to (1), wherein the measurement of the position in the thickness direction of the sample is performed by irradiating the sample with electromagnetic waves and detecting the light receiving angle or light receiving position of the reflected light.

(3)電磁波がレーザー光であることを特徴とする 上記(2)に記載の方法。
(4)反射光をCCD素子によって受光する上記(2)又は(3)に記載の方法。
(5)固体試料が無機化合物である上記(1)〜(4)のいずれか1つに記載の方法。
(6)X線を試料に向けて照射するためのX線照射部と回折X線を検出するための回折X線検出部と試料を保持するための試料保持部とを有するX線回折装置において、
試料保持部の所定位置に光を照射する光照射部と、光照射部から発生した光を試料に照射して得た反射光を受光する受光部と、反射光の受光角度又は受光位置を測定し、それに応じて試料保持部の試料の厚さ方向の移動距離を決定する位置制御部と、決定された移動距離に応じて試料保持部を試料の厚さ方向に移動させる移動部とを有する位置調整機構を有する、ことを特徴とするX線回折装置。
(3) The method according to (2) above, wherein the electromagnetic wave is laser light.
(4) The method according to (2) or (3) above, wherein the reflected light is received by the CCD element.
(5) The method according to any one of (1) to (4) above, wherein the solid sample is an inorganic compound.
(6) In an X-ray diffraction apparatus having an X-ray irradiation unit for irradiating a sample with X-rays, a diffraction X-ray detection unit for detecting diffraction X-rays, and a sample holding unit for holding a sample ,
Measures the light irradiating unit that irradiates light at a predetermined position of the sample holding unit, the light receiving unit that receives the reflected light obtained by irradiating the sample with light generated from the light irradiating unit, and the light receiving angle or position of the reflected light And a position control unit that determines a moving distance of the sample holding unit in the thickness direction of the sample according to the movement, and a moving unit that moves the sample holding unit in the thickness direction of the sample according to the determined moving distance. An X-ray diffractometer having a position adjusting mechanism.

(7)移動部が、試料保持部を3次元方向に移動させる機能を有する上記(6)に記載のX線回折装置。
(8)光照射部がレーザーダイオードを有する上記(6)又は(7)に記載のX線回折装置。
(9)受光部がCCD素子を有する上記(6)〜(8)のいずれか1つに記載のX線回折装置。
(7) The X-ray diffraction apparatus according to (6), wherein the moving unit has a function of moving the sample holding unit in a three-dimensional direction.
(8) The X-ray diffraction apparatus according to (6) or (7), wherein the light irradiation unit includes a laser diode.
(9) The X-ray diffractometer according to any one of (6) to (8), wherein the light receiving unit includes a CCD element.

本発明のX線回折測定方法によれば、複数の試料のX線回折測定を連続的に行うに当たり、各試料の測定前に厚さ方向の位置を測定し、それに基づいて位置調整を行うので、多数の試料であっても容易且つ正確にX線回折測定を行うことができる。
また、試料が無機化合物である場合は、X線回折測定の必要が特に高く、上記の方法を採用するメリットが特に大きい。
According to the X-ray diffraction measurement method of the present invention, when performing X-ray diffraction measurement of a plurality of samples continuously, the position in the thickness direction is measured before the measurement of each sample, and the position adjustment is performed based thereon. Even with a large number of samples, X-ray diffraction measurement can be performed easily and accurately.
In addition, when the sample is an inorganic compound, the necessity for X-ray diffraction measurement is particularly high, and the merit of employing the above method is particularly great.

さらにまた、試料に照射した光の反射光の受光角度又は受光位置の変化によって、試料の厚さ方向の位置測定を行えば、位置測定が簡便且つ正確に行うことができる。
この場合、照射光としてレーザー光を用いれば狭い領域での光照射が可能となり、また、反射光をCCD素子によって受光すれば、反射光の検出が、光量の重心値としてではなく、光量のピーク値として行えるので、さらに正確に位置測定が可能となる。
Furthermore, if the position measurement in the thickness direction of the sample is performed by changing the light receiving angle or the light receiving position of the reflected light of the light irradiated on the sample, the position measurement can be performed easily and accurately.
In this case, if laser light is used as irradiation light, light irradiation in a narrow area becomes possible, and if the reflected light is received by the CCD element, the detection of the reflected light is not performed as the center of gravity value of the light quantity, but the peak of the light quantity. Since it can be performed as a value, the position can be measured more accurately.

また、本発明の装置によれば、試料保持部の所定位置に光を照射する光照射部と、反射光を受光する受光部と、それらから決定される反射光の受光角度又は位置から試料高さを決定し、それに応じて試料保持部の試料の厚さ方向の移動距離を決定する位置制御部と、決定された移動距離に応じて試料保持部を試料の厚さ方向に移動させる移動部とを有するので、複数の試料を連続的に測定することが可能となり、また、測定も簡便且つ正確とな
る。
Further, according to the apparatus of the present invention, the sample height is determined from the light irradiation unit that irradiates a predetermined position of the sample holding unit, the light receiving unit that receives the reflected light, and the light receiving angle or position of the reflected light determined from them. A position control unit for determining the distance of movement of the sample holder in the thickness direction of the sample, and a moving unit for moving the sample holder in the thickness direction of the sample according to the determined movement distance Therefore, it is possible to continuously measure a plurality of samples, and the measurement is simple and accurate.

また、試料保持部を3次元方向に移動させる機能を付与すれば、より容易に複数の試料の連続測定が可能となる。
さらにまた、光照射部としてレーザーダイオードを用いれば、容易に収束性の良好な光を得ることができるので、狭い試料領域への光の照射が容易である。
さらにまた、受光部としてCCD素子を用いれば、反射光の検出が、光量の重心値としてではなく、光量のピーク値として行えるので、さらに正確に位置測定が可能となる。
Further, if a function for moving the sample holder in the three-dimensional direction is added, continuous measurement of a plurality of samples can be performed more easily.
Furthermore, if a laser diode is used as the light irradiating part, light with good convergence can be easily obtained, so that light irradiation to a narrow sample region is easy.
Furthermore, if a CCD element is used as the light receiving portion, the reflected light can be detected not as the center of gravity value of the light amount but as the peak value of the light amount, so that the position can be measured more accurately.

以下、本発明の実施の形態を詳細に説明する。
図1は、試料測定の様子を模式的に示す側面図であり、図2は、測定試料の概要を示す斜視図であり、図3はX線回折装置の概要を示す側面図であり、図4は試料の厚さ方向の位置を測定する原理を模式的に示す側面図である。なお、図中、x軸、y軸及びz軸は同一の方向を示すものとし、同一の符号で表したものは同一のものを表すものとする。
Hereinafter, embodiments of the present invention will be described in detail.
1 is a side view schematically showing the state of sample measurement, FIG. 2 is a perspective view showing an outline of a measurement sample, and FIG. 3 is a side view showing an outline of an X-ray diffractometer. 4 is a side view schematically showing the principle of measuring the position in the thickness direction of the sample. In the drawings, the x-axis, y-axis, and z-axis indicate the same direction, and the same reference numerals indicate the same.

図2のように、測定対象となる試料10は、無機酸化物であり、組成の異なる複数のものからなる。無機酸化物は、構成元素を含む原料を含む溶液を基板上に滴下しこれを焼成することによって作製され、原料の種類や量比を変化させることによって複数のものを得ている。試料は、xy平面に拡がる白金基板やアルミナ基板等の基板101上に多数個(図1においては6×6=36個)設けられる。試料は概ね同一のxy平面上に設けられるが、試料10の厚さが少しずつ異なっていることや基板の反りが生じている等のため、X線を照射すべき試料の厚さ方向(z方向)の位置が試料毎に少しずつ異なっている。   As shown in FIG. 2, the sample 10 to be measured is an inorganic oxide, and consists of a plurality of materials having different compositions. Inorganic oxides are produced by dropping a solution containing a raw material containing a constituent element onto a substrate and firing it, and a plurality of inorganic oxides are obtained by changing the type and quantity ratio of the raw materials. A large number of samples (6 × 6 = 36 in FIG. 1) are provided on a substrate 101 such as a platinum substrate or an alumina substrate extending in the xy plane. Although the samples are provided on substantially the same xy plane, the thickness direction of the sample to be irradiated with X-rays (z) is different because the thickness of the sample 10 is slightly different or the substrate is warped. The direction is slightly different for each sample.

図3のように、X線回折装置20は、X線を試料に向けて照射するためのX線照射部21と、回折X線を検出するための回折X線検出部22と、試料を保持するためのサンプルホルダー(試料保持部)23と、試料の位置調整機構24とを有する。また、X線照射部21と回折X線検出部22とは、ブラッグ式を満足させるように、回転中心を中心に同期して対象に回転運動するゴニオメータの構造となっている。   As shown in FIG. 3, the X-ray diffractometer 20 holds an X-ray irradiator 21 for irradiating X-rays toward a sample, a diffracted X-ray detector 22 for detecting diffracted X-rays, and a sample. A sample holder (sample holder) 23 and a sample position adjusting mechanism 24 are provided. The X-ray irradiator 21 and the diffracted X-ray detector 22 have a goniometer structure that rotates relative to the object around the center of rotation so as to satisfy the Bragg equation.

X線照射部21は、X線を発生するX線管球211と、発生したX線を単色化するための単結晶モノクロメーター212と、入射X線をコリメートするコリメーター213とを有する。
回折X線検出部22は、回折X線を検出する計数管221と検出結果に基づいてX線回折スペクトルを出力する出力制御部222とを有する。
The X-ray irradiation unit 21 includes an X-ray tube 211 that generates X-rays, a single crystal monochromator 212 for monochromaticizing the generated X-rays, and a collimator 213 that collimates incident X-rays.
The diffracted X-ray detector 22 includes a counter tube 221 that detects diffracted X-rays and an output controller 222 that outputs an X-ray diffraction spectrum based on the detection result.

位置調整機構24は、試料保持部23の所定位置に光を照射するレーザーダイオード(光照射部)241と、レーザーダイオード241から発生した光を試料に照射して得た反射光を通すスリット245と、スリット245を通ってきた反射光を受光するCCD素子(受光部)242と、反射光の受光角度を測定し、それに応じて試料保持部の試料の厚さ方向(z軸)の移動距離を決定する位置制御部243と、決定された移動距離に応じてサンプルホルダー23をz軸方向に移動可能とすると共に、xy方向にも移動可能としたxyzステージ(移動部)244からなる。   The position adjusting mechanism 24 includes a laser diode (light irradiation unit) 241 that irradiates light to a predetermined position of the sample holding unit 23, and a slit 245 that transmits reflected light obtained by irradiating the sample with light generated from the laser diode 241. The CCD element (light receiving unit) 242 that receives the reflected light that has passed through the slit 245 and the light receiving angle of the reflected light are measured, and the movement distance in the sample thickness direction (z axis) of the sample holding unit is accordingly measured. A position control unit 243 to be determined and an xyz stage (moving unit) 244 that enables the sample holder 23 to move in the z-axis direction and also to move in the xy direction according to the determined moving distance.

試料のX線回折測定は、出力制御部222及び位置制御部243によって自動的・連続的に行われるが、その具体的な操作は以下のようである。
まず、測定開始と共に位置制御部243の指示に基づきX線回折装置20のxyzステージ244によって、xyzステージ244に連結されたサンプルホルダー23上の第1の試料10を、ゴニオメータの回転中心として予め定められたxy座標位置となるようにxy方向に移動させる。続いて、位置調整機構24のレーザーダイオード241から波長690nmのレーザー光30を第1の試料10に照射し、その拡散反射光の一部をスリット245が受け、スリット245を通過した反射光31をCCD素子242で受光する。
The X-ray diffraction measurement of the sample is automatically and continuously performed by the output control unit 222 and the position control unit 243, and the specific operation is as follows.
First, the first sample 10 on the sample holder 23 connected to the xyz stage 244 is determined in advance as the rotation center of the goniometer by the xyz stage 244 of the X-ray diffraction apparatus 20 based on an instruction from the position control unit 243 at the start of measurement. It is moved in the xy direction so that the obtained xy coordinate position is obtained. Subsequently, the first sample 10 is irradiated with laser light 30 having a wavelength of 690 nm from the laser diode 241 of the position adjusting mechanism 24, and a part of the diffusely reflected light is received by the slit 245, and the reflected light 31 that has passed through the slit 245 is reflected. Light is received by the CCD element 242.

光発信源であるレーザーダイオード241、スリット245、およびCCD素子242は全て固定されている。光発信源を原点、試料10上の光の照射位置をB点、CCD素子242上の受光位置をA点、スリット位置をC点とする(図4)。レーザー光30は、試料の厚み方向zと平行に試料に照射される。試料の高さが異なり、B点が変化すると、拡
散反射光のうちスリット245を通り抜けることができる反射光31と試料厚み方向との角度αが変化するが、受光位置A点も変化するので、A点の検出により角度αが求められる。光発信源の原点とスリットC点の試料面方向の距離Lと試料厚み方向の距離Dは固定
されているため既知である。従って、求めたい原点からの試料表面の試料厚み方向の距離Hは、既知の値L及びDと測定値αとを用いて次式(1)の如く表される。
The laser diode 241, the slit 245, and the CCD element 242 that are light transmission sources are all fixed. The light source is the origin, the light irradiation position on the sample 10 is point B, the light receiving position on the CCD element 242 is point A, and the slit position is point C (FIG. 4). The laser beam 30 is applied to the sample in parallel with the thickness direction z of the sample. When the height of the sample is different and the point B changes, the angle α between the reflected light 31 that can pass through the slit 245 of the diffuse reflected light and the sample thickness direction changes, but the light receiving position A also changes. The angle α is obtained by detecting the point A. The distance L in the sample surface direction and the distance D in the sample thickness direction between the origin of the light source and the slit C point are known because they are fixed. Therefore, the distance H in the sample thickness direction of the sample surface from the origin to be obtained is expressed as the following equation (1) using the known values L and D and the measured value α.

[数1]
H=(L+Dtanα)/tanα (1)
このようにして、試料表面の厚み方向の距離のずれを正確に決定することができる。そこで、位置制御部243は、受光位置(A点)の位置から上記(1)式に基づいて、求めたい原点からの試料表面の試料厚み方向の距離Hを演算して求める。位置制御部243は、さらに、現在のZ方向の位置の指標となる上記距離Hとゴニオメータの回転中心として予め定められたz方向の位置とからサンプルホルダー23のz方向の移動距離を演算し、xyzステージによってz方向に移動させる。
[Equation 1]
H = (L + Dtanα) / tanα (1)
In this way, the deviation of the distance in the thickness direction of the sample surface can be accurately determined. Therefore, the position control unit 243 calculates and calculates the distance H in the sample thickness direction of the sample surface from the desired origin based on the above equation (1) from the position of the light receiving position (point A). The position control unit 243 further calculates the movement distance in the z direction of the sample holder 23 from the distance H, which is an index of the current position in the Z direction, and the position in the z direction that is predetermined as the rotation center of the goniometer, It is moved in the z direction by the xyz stage.

以上の操作によって、第1の試料10の位置が正確に設定された後、通常の方法によってX線回折測定が行われる。即ち、X線をX線管球211で発生させ、その後単結晶モノクロメータ212で単色化した後コリメータ213又はスリット等で平行光とし、第1の試料10に照射する。試料からの回折X線は、計数管221にて計数される。X線の照射と回折X線の計数は、出力制御部222での制御の下、ゴニオメータによって回折角を変化させながら順次行われ、その結果、回折角2θに応じたX線回折強度がX線回折スペクトルとして得られる。   After the position of the first sample 10 is accurately set by the above operation, X-ray diffraction measurement is performed by a normal method. That is, X-rays are generated by the X-ray tube 211, and then monochromatic by the single crystal monochromator 212, and then collimated by a collimator 213 or a slit, and irradiated to the first sample 10. Diffracted X-rays from the sample are counted by the counter tube 221. X-ray irradiation and diffracted X-ray counting are sequentially performed while changing the diffraction angle with a goniometer under the control of the output control unit 222. As a result, the X-ray diffraction intensity corresponding to the diffraction angle 2θ is X-ray. Obtained as a diffraction spectrum.

続いて、同様の操作を第1の試料に隣接する第2の試料10について行う。即ち、まず予め定められたxy方向の移動の後、z軸方向の位置測定と位置調整が行われ、次いで通常のX線回折測定が行われる。
以上の操作を、さらに第3の試料以降の試料についても行い、全ての試料についてX線回折測定が行われる。各試料のX線回折測定に先立ち予め試料の厚さ方向の位置調整が行われているので、入射X線は確実に試料に命中し、その結果各試料毎に正確なX線回折スペクトルを得ることができる。
Subsequently, the same operation is performed on the second sample 10 adjacent to the first sample. That is, first, after a predetermined movement in the xy direction, position measurement and position adjustment in the z-axis direction are performed, and then normal X-ray diffraction measurement is performed.
The above operation is further performed on the third and subsequent samples, and X-ray diffraction measurement is performed on all the samples. Prior to the X-ray diffraction measurement of each sample, the position adjustment in the thickness direction of the sample is performed in advance, so that the incident X-ray hits the sample reliably, and as a result, an accurate X-ray diffraction spectrum is obtained for each sample. be able to.

なお、以上の説明は、単なる例示であり、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
例えば、スリット245とCCD素子242との間に光学レンズを介在させることによって、反射光31の断面のビーム強度分布を揃えたり、ビーム経を小さくすることができ、さらに正確なz方向の試料位置測定を行うことが可能となる。
The above description is merely an example, and various modifications can be made without departing from the gist of the present invention.
For example, by interposing an optical lens between the slit 245 and the CCD element 242, the beam intensity distribution in the cross section of the reflected light 31 can be made uniform, the beam diameter can be reduced, and a more accurate sample position in the z direction can be obtained. Measurement can be performed.

また、上記の例においては、X線源としてX線管球を用いたが、回転対陰極型のX線発生装置やシンクロトロン放射光を用いることもできる。また、上記の例においては、X線の単色化には単結晶モノクロメータが用いられているが、これを波高分析器やβ−フィルター、バランスドフィルター等を用いることもできる。単色化と平行化を兼ねたミラーを用いてもよい。また、上記の例は、入射X線を平行化する例であり、かかる方法は試料の凹凸がX線回折角度に影響を与えにくいので好ましいが、入射X線を平行化せず、集中光学系X線を試料に照射する方法も可能である。   In the above example, an X-ray tube is used as the X-ray source, but a rotating counter-cathode X-ray generator or synchrotron radiation can also be used. In the above example, a single crystal monochromator is used for monochromatic X-rays, but a wave height analyzer, a β-filter, a balanced filter, or the like can also be used. You may use the mirror which served as monochromatic and parallelization. In addition, the above example is an example in which incident X-rays are collimated, and this method is preferable because the unevenness of the sample hardly affects the X-ray diffraction angle. A method of irradiating the sample with X-rays is also possible.

さらに、X線検出器として、上記の例で上げた計数管の外、X線フィルムや2次元検出器、イメージングプレートを用いることも可能である。さらにまた、X線回折装置として、縦型、横型いずれも用いることができるが、測定試料の落下防止の観点から試料面が水平に保持される縦型が好ましい。また反射型以外にも透過型のものを用いることもできる。   Further, as the X-ray detector, an X-ray film, a two-dimensional detector, and an imaging plate can be used in addition to the counter tube raised in the above example. Furthermore, as the X-ray diffraction apparatus, either a vertical type or a horizontal type can be used, but a vertical type in which the sample surface is held horizontally is preferable from the viewpoint of preventing the measurement sample from falling. In addition to the reflective type, a transmissive type can also be used.

また、上記の例のゴニオメーターは、X線検出器を試料面に対して様々な角度に駆動させるタイプであるが、測定角度領域に円周型に張り巡らされたX線同時検出型の検出器と
することにより、2θ-X線回折強度の測定をしてもよい。
さらにまた、位置測定のための光照射部からの光として、上記の例においては、波長690nmの光を用いており、一般には例えば波長150〜3000nm程度の紫外から赤外に亘る各種の波長を用いることができるが、その波長は特に制限されず、各種の電磁波を使用することができる。
In addition, the goniometer in the above example is a type that drives the X-ray detector at various angles with respect to the sample surface, but the X-ray simultaneous detection type detection that is circumferentially arranged in the measurement angle region. The 2θ-X-ray diffraction intensity may be measured by using an instrument.
Furthermore, in the above example, light having a wavelength of 690 nm is used as the light from the light irradiation unit for position measurement. Generally, for example, various wavelengths ranging from ultraviolet to infrared having a wavelength of about 150 to 3000 nm are used. Although it can be used, its wavelength is not particularly limited, and various electromagnetic waves can be used.

さらにまた、反射光の受光による試料高さの決定法は上記式(1)による方法には限定されない。例えば、試料表面の水平性が比較的高い場合、反射光は概ね揃ってくるので、スリット245を設けず、CCDパネルで受光位置の測定により、直接試料高さを求めることができる。
さらにまた、上記の例においては、CCD素子によって試料からの反射光の受光位置を検出することによって、試料の厚さ方向の位置を求めていたが、反射光の受光角度によって行うことも可能である。例えば、試料からの反射光の行き先に角度可変のミラーを設置して、当該ミラーの角度をスキャンして、試料からの反射光をさらにミラーにて反射した光がCCD素子や光検出器等の固定点に当たったときのミラー角度を求めることによって、ミラーに当たる前の試料からの反射光がどの角度から飛んできたかを正確に求めることができる。ただし、この方法においては、角度可変のミラー等の可動部分が多く、操作により多くの時間を要するだけでなく、メンテナンスの手間も余分にかかるので、試料からの反射光の受光位置を検出する方法が好ましい。
Furthermore, the method for determining the sample height by receiving the reflected light is not limited to the method according to the above formula (1). For example, when the level of the sample surface is relatively high, the reflected light is generally uniform, so that the sample height can be obtained directly by measuring the light receiving position on the CCD panel without providing the slit 245.
Furthermore, in the above example, the position in the thickness direction of the sample is obtained by detecting the light receiving position of the reflected light from the sample by the CCD element. However, the position can also be determined by the light receiving angle of the reflected light. is there. For example, a mirror with variable angle is installed at the destination of the reflected light from the sample, the angle of the mirror is scanned, and the light reflected from the sample is further reflected by the CCD element or photodetector. By determining the mirror angle when it hits the fixed point, it is possible to accurately determine from which angle the reflected light from the sample before hitting the mirror flew. However, in this method, there are many movable parts such as variable angle mirrors, which not only requires more time for operation, but also requires extra maintenance, so a method for detecting the light receiving position of the reflected light from the sample Is preferred.

さらにまた、上記の例においては、複数の試料のX線回折測定を行うに当たり、(1)第1の試料の位置制御、(2)第1の試料のX線回折測定、(3)第2の試料の位置制御、(4)第2の試料のX線回折測定…と、位置制御とX線測定とを交互に繰り返す方法を挙げたが、例えば、全ての試料についてまず、厚さ方向の位置測定を行って、位置又は移動距離を記憶装置に記憶させた後、個々の試料のX線測定前に、上記記憶させたデータを呼び出して位置の移動のみを行うこともできる。   Furthermore, in the above example, in performing X-ray diffraction measurement of a plurality of samples, (1) position control of the first sample, (2) X-ray diffraction measurement of the first sample, (3) second (4) X-ray diffraction measurement of the second sample, and a method of alternately repeating position control and X-ray measurement. For example, for all samples, first, in the thickness direction After the position measurement is performed and the position or the movement distance is stored in the storage device, the stored data can be called to perform only the position movement before the X-ray measurement of each sample.

さらにまた、上記の例においては、X線測定そのものを制御する出力制御部と位置制御を行う位置制御部とを別個に設けた例を示したが、これらの機能を併せ持つ1つの制御部で制御することは可能であり、むしろ好ましい。
さらにまた、測定に供する試料は、特にX線回折測定の必要性・重要性の点から無機化合物が好ましいが、これに限定されるものではなく、各種の有機化合物、高分子等様々なものを例示することができる。
Furthermore, in the above example, an example is shown in which an output control unit that controls the X-ray measurement itself and a position control unit that performs position control are separately provided, but control is performed by a single control unit that has these functions. It is possible and rather preferable.
Furthermore, the sample used for the measurement is preferably an inorganic compound from the viewpoint of the necessity / importance of X-ray diffraction measurement, but is not limited to this, and various kinds of organic compounds, polymers, and the like can be used. It can be illustrated.

測定試料の様子を模式的に示す斜視図Perspective view schematically showing the state of the measurement sample X線回折測定の概要を示す側面図Side view showing the outline of X-ray diffraction measurement X線回折装置の概要を示す説明図Explanatory drawing showing the outline of the X-ray diffraction apparatus X線回折の測定方法を示すブロック図である。It is a block diagram which shows the measuring method of X-ray diffraction.

符号の説明Explanation of symbols

10 試料
20 X線回折装置
21 X線照射部
22 回折X線検出部
23 サンプルホルダー
24 位置調整機構
211 X線管球
212 単結晶モノクロメーター
213 コリメーター
221 計数管
222 出力制御部
241 レーザーダイオード
242 CCD素子
243 位置制御部
244 xyzステージ
245 スリット
DESCRIPTION OF SYMBOLS 10 Sample 20 X-ray diffractometer 21 X-ray irradiation part 22 Diffraction X-ray detection part 23 Sample holder 24 Position adjustment mechanism 211 X-ray tube 212 Single crystal monochromator 213 Collimator 221 Counter tube 222 Output control part 241 Laser diode 242 CCD Element 243 Position control unit 244 xyz stage 245 Slit

Claims (9)

複数の固体試料のX線回折像を連続的に測定するX線回折測定方法であって、各試料のX線回折像の測定開始前に、予め測定した試料の厚さ方向の位置に基づいて試料の厚さ方向の位置調整を行うことを特徴とする方法。   An X-ray diffraction measurement method for continuously measuring X-ray diffraction images of a plurality of solid samples, based on a pre-measured position in the thickness direction of the sample before starting measurement of the X-ray diffraction images of each sample. A method comprising adjusting a position in a thickness direction of a sample. 試料の厚さ方向の位置の測定を、電磁波を試料に照射し、その反射光の受光角度又は受光位置を検出することによって行う請求項1に記載の方法。   The method according to claim 1, wherein the measurement of the position in the thickness direction of the sample is performed by irradiating the sample with electromagnetic waves and detecting a light receiving angle or a light receiving position of the reflected light. 電磁波がレーザー光であることを特徴とする請求項2に記載の方法。   The method according to claim 2, wherein the electromagnetic wave is a laser beam. 反射光をCCD素子によって受光する請求項2又は3に記載の方法。   The method according to claim 2 or 3, wherein the reflected light is received by a CCD element. 固体試料が無機化合物である請求項1乃至4のいずれか1つに記載の方法。   The method according to any one of claims 1 to 4, wherein the solid sample is an inorganic compound. X線を試料に向けて照射するためのX線照射部と回折X線を検出するための回折X線検出部と試料を保持するための試料保持部とを有するX線回折装置において、
試料保持部の所定位置に光を照射する光照射部と、光照射部から発生した光を試料に照射して得た反射光を受光する受光部と、反射光の受光角度又は受光位置を測定し、それに応じて試料保持部の試料の厚さ方向の移動距離を決定する位置制御部と、決定された移動距離に応じて試料保持部を試料の厚さ方向に移動させる移動部とを有する位置調整機構を有する、ことを特徴とするX線回折装置。
In an X-ray diffraction apparatus having an X-ray irradiation unit for irradiating a sample with X-rays, a diffraction X-ray detection unit for detecting diffraction X-rays, and a sample holding unit for holding a sample,
Measures the light irradiating unit that irradiates light at a predetermined position of the sample holding unit, the light receiving unit that receives the reflected light obtained by irradiating the sample with light generated from the light irradiating unit, and the light receiving angle or position of the reflected light And a position control unit that determines a moving distance of the sample holding unit in the thickness direction of the sample according to the movement, and a moving unit that moves the sample holding unit in the thickness direction of the sample according to the determined moving distance. An X-ray diffractometer having a position adjusting mechanism.
移動部が、試料保持部を3次元方向に移動させる機能を有する請求項6に記載のX線回折装置。   The X-ray diffraction apparatus according to claim 6, wherein the moving unit has a function of moving the sample holding unit in a three-dimensional direction. 光照射部がレーザーダイオードを有する請求項6又は7に記載のX線回折装置。   The X-ray diffraction apparatus according to claim 6, wherein the light irradiation unit includes a laser diode. 受光部がCCD素子を有する請求項6乃至8のいずれか1つに記載のX線回折装置。   The X-ray diffraction apparatus according to claim 6, wherein the light receiving unit includes a CCD element.
JP2007027527A 2007-02-07 2007-02-07 X-ray diffraction measurement method and x-ray diffraction device Pending JP2007114220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027527A JP2007114220A (en) 2007-02-07 2007-02-07 X-ray diffraction measurement method and x-ray diffraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027527A JP2007114220A (en) 2007-02-07 2007-02-07 X-ray diffraction measurement method and x-ray diffraction device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002012849A Division JP3956707B2 (en) 2002-01-22 2002-01-22 X-ray diffraction measurement method and X-ray diffraction apparatus

Publications (1)

Publication Number Publication Date
JP2007114220A true JP2007114220A (en) 2007-05-10

Family

ID=38096520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027527A Pending JP2007114220A (en) 2007-02-07 2007-02-07 X-ray diffraction measurement method and x-ray diffraction device

Country Status (1)

Country Link
JP (1) JP2007114220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153075A (en) * 2016-03-03 2017-09-12 核工业北京地质研究院 A kind of X-ray powder diffraction method for microcell Discriminating materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153075A (en) * 2016-03-03 2017-09-12 核工业北京地质研究院 A kind of X-ray powder diffraction method for microcell Discriminating materials
CN107153075B (en) * 2016-03-03 2019-12-20 核工业北京地质研究院 X-ray powder crystal diffraction method for phase identification of micro-areas

Similar Documents

Publication Publication Date Title
TWI354340B (en) Measurement of critical dimensions using x-ray dif
JP5009563B2 (en) Sample inspection method and apparatus
TWI254794B (en) X-ray diffraction apparatus
JP3883060B2 (en) Crystal evaluation equipment
TWI414752B (en) Method for analysis of a sample
CN110398505A (en) Wafer aligned for small angle X ray scattering measurement
Spesivtsev et al. Development of methods and instruments for optical ellipsometry at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences
JP2008046132A (en) Spectroscopy system
JP6942357B2 (en) Combined inspection system
JP2017223539A (en) X-ray diffraction device
KR20180035710A (en) Closed­loop control of x­ray knife edge
RU137951U1 (en) DEVICE FOR X-RAY MICROANALYSIS
WO2013108876A1 (en) X-ray diffractometer
JP3956707B2 (en) X-ray diffraction measurement method and X-ray diffraction apparatus
JP3109789B2 (en) X-ray reflectance measurement method
WO2005010512A1 (en) Method and system for x-ray diffraction measurements using an aligned source and detector rotating around a sample surface
JP2007114220A (en) X-ray diffraction measurement method and x-ray diffraction device
JPH05322804A (en) Method and device for measuring reflected profile of x ray
JP4581126B2 (en) X-ray diffraction analysis method and X-ray diffraction analysis apparatus
JPH06258259A (en) In-plane distribution measuring method and device
JP2001153822A (en) Method and device for structure inspection on long- period regular structure and long-period regular structural body
JP2012108126A (en) Diffractometer
RU2419088C1 (en) X-ray spectrometer
JP2007258359A (en) Process for manufacturing semiconductor device and deposition device of semiconductor device
JP3903184B2 (en) X-ray reflectivity measuring apparatus and X-ray reflectivity measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110