JP2007114085A - Piezoelectric shock sensor - Google Patents

Piezoelectric shock sensor Download PDF

Info

Publication number
JP2007114085A
JP2007114085A JP2005306740A JP2005306740A JP2007114085A JP 2007114085 A JP2007114085 A JP 2007114085A JP 2005306740 A JP2005306740 A JP 2005306740A JP 2005306740 A JP2005306740 A JP 2005306740A JP 2007114085 A JP2007114085 A JP 2007114085A
Authority
JP
Japan
Prior art keywords
shock sensor
signal detection
piezoelectric
cylindrical body
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306740A
Other languages
Japanese (ja)
Inventor
Kenshin Mori
建新 盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2005306740A priority Critical patent/JP2007114085A/en
Publication of JP2007114085A publication Critical patent/JP2007114085A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock sensor capable of detecting shocks in any directions, while having monolithic in structure. <P>SOLUTION: In the piezoelectric shock sensor that uses a ring-shaped piezoelectric ceramic trunk body with outer and inner shapes of square cross section: the sensor is equipped with independent signal detecting electrodes on each of four external surfaces of the trunk body and is also equipped with a common electrode on an internal surface of the trunk body; the piezoelectric ceramic trunk is polarized in the thickness direction; two sets of signal detecting circuit are composed from two facing signal detecting electrodes pair; and then displacement in the two directions generated by shock is detected from the two sets of signal detection circuit. Moreover, similar constitution is also possible, even when use of cylindrical ring-shaped piezoelectric ceramic trunk is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は衝撃検知などとして使用される小型ショックセンサに関わり、特に、3軸方向の衝撃を検知できる筒状圧電素子の構造に関するものである。   The present invention relates to a small-sized shock sensor used for impact detection or the like, and more particularly to a structure of a cylindrical piezoelectric element capable of detecting an impact in three axial directions.

ショックセンサ(加速度センサ)はHDDやDVDなど書き込みディスク装置での外来衝撃感知、振動対策、ピックアップ制御および一般的な加速度検知などに幅広く使われる。特にHDDはDVDレコーダや携帯電話まで浸透しており、小型ショックセンサの需要増が予想される。ショックセンサの検出方法には圧電型、ピエゾ抵抗型、MEMS静電容量型、磁気型などの手法がある。圧電型は低コスト化や小型化に優れているので多く採用されている。従来、圧電セラミックを利用したショックセンサとして、圧縮モードや、せん断モード、ベンディングモードなど種々のものが提案されているが、感度の良いベンディング型検出素子を備えたものが一般的である。   Shock sensors (acceleration sensors) are widely used for external impact detection, vibration countermeasures, pickup control, general acceleration detection, and the like in writing disk devices such as HDDs and DVDs. In particular, HDDs have penetrated DVD recorders and mobile phones, and demand for small shock sensors is expected to increase. As a detection method of the shock sensor, there are methods such as a piezoelectric type, a piezoresistive type, a MEMS capacitance type, and a magnetic type. Piezoelectric types are widely used because they are excellent in cost reduction and miniaturization. Conventionally, various types of shock sensors using a piezoelectric ceramic, such as a compression mode, a shear mode, and a bending mode, have been proposed, but those equipped with a sensitive bending type detection element are generally used.

図6は低コストと高検出感度を両立できる単一層のセラミックスで構成された小型ショックセンサを示す。長方形板状圧電セラミックス1の表裏面にそれぞれのギャップ6により2分割した2対の電極2a、2bと3a、3bが形成され、電極の分割ギャップ6を境とする2部分の圧電セラミックスは各々の板厚方向に他方側とは逆となる向きに沿って分極される。電極の分割ギャップと直交する片端固定の場合、検出素子1が加速度Gの印加時の慣性力作用によって変形し、かつ、検出素子1の変形に伴って厚み方向で対向する表裏電極に同符号の電荷が発生し、同一表面にある二つの分割電極に逆符号の電荷が発生する。つまり、電極2aと2bに負の電荷が発生する場合、電極3aと3bに正の電荷が発生する。従って、電極2aと2bとを接続し、電極3aと3bとを接続し、それぞれ信号取出電極2と3とすれば、信号取出電極2と3から、加速度Gの印加状態が検出されることができる。
特開2000−121661 特開2000−162233
FIG. 6 shows a small-sized shock sensor composed of a single layer ceramic that can achieve both low cost and high detection sensitivity. Two pairs of electrodes 2a, 2b and 3a, 3b divided by two gaps 6 are formed on the front and back surfaces of the rectangular plate-shaped piezoelectric ceramic 1, and the two portions of the piezoelectric ceramics with the electrode dividing gap 6 as a boundary are each It is polarized along the direction opposite to the other side in the thickness direction. In the case of fixing at one end perpendicular to the electrode split gap, the detection element 1 is deformed by the action of inertial force when the acceleration G is applied, and the front and back electrodes opposed in the thickness direction are deformed as the detection element 1 is deformed. Electric charges are generated, and electric charges with opposite signs are generated on two divided electrodes on the same surface. That is, when negative charges are generated on the electrodes 2a and 2b, positive charges are generated on the electrodes 3a and 3b. Therefore, if the electrodes 2a and 2b are connected, the electrodes 3a and 3b are connected, and the signal extraction electrodes 2 and 3 are respectively connected, the application state of the acceleration G can be detected from the signal extraction electrodes 2 and 3. it can.
JP 2000-121661 A JP 2000-162233 A

だが、板状ベンディング型ショックセンサは単方向での衝撃を検出するもので、多方向で検出するためには、検出素子を基板平面と傾斜して配置するか、数個のセンサを使う必要とされ、いずれか工数やコストがかかる。本発明は、単体構造でありながら、あらゆる方向での衝撃を検知できるショックセンサを提供するものである。   However, a plate bending shock sensor detects shocks in one direction, and in order to detect in multiple directions, it is necessary to place the detection element at an angle with the substrate plane or to use several sensors. It takes either man-hours and costs. The present invention provides a shock sensor that can detect an impact in any direction while having a single structure.

本発明は、筒形の圧電セラミックを用いることによって、上記の課題を解決するものである。すなわち、断面の外形と内形が正方形であるリング状の圧電セラミック筒形体を用いた圧電ショックセンサにおいて、筒形体の4つの外面のそれぞれに独立した信号検出電極を具えるとともに、筒形体の内面に共通電極を具え、圧電セラミック筒形体はその厚み方向に分極され、対向する2つの信号検出電極同士によって2組の信号検出回路が構成され、衝撃によって生じる2方向の変位を2組の信号検出回路によって検出することに特徴を有するものである。   The present invention solves the above problems by using a cylindrical piezoelectric ceramic. That is, in a piezoelectric shock sensor using a ring-shaped piezoelectric ceramic cylindrical body having a square outer shape and inner shape, each of the four outer surfaces of the cylindrical body has independent signal detection electrodes, and the inner surface of the cylindrical body. The piezoelectric ceramic cylindrical body is polarized in the thickness direction, and two sets of signal detection circuits are constituted by two opposing signal detection electrodes, and two sets of signal detection are made for displacement in two directions caused by an impact. It is characterized by detection by a circuit.

また、円筒リング状の圧電セラミック筒形体を用いた圧電ショックセンサにおいて、筒形体の外面に4分割して独立して形成された信号検出電極を具えるとともに、筒形体の内面に共通電極を具え、圧電セラミック筒形体はその厚み方向に分極され、対向する2つの信号検出電極同士によって2組の信号検出回路が構成され、衝撃によって生じる2方向の変位を2組の信号検出回路によって検出することに特徴を有するものである。   In addition, the piezoelectric shock sensor using the cylindrical ring-shaped piezoelectric ceramic cylindrical body includes a signal detection electrode that is independently formed by being divided into four on the outer surface of the cylindrical body, and a common electrode on the inner surface of the cylindrical body. The piezoelectric ceramic cylindrical body is polarized in the thickness direction, and two sets of signal detection circuits are formed by two opposing signal detection electrodes, and two-direction displacement caused by impact is detected by the two sets of signal detection circuits. It has the characteristics.

本発明によれば、筒状構造圧電体を採用することにより、単体構造でありながら、あらゆる方向での衝撃を検知できる、小型、低コストの多方向ショックセンサを実現できる。   According to the present invention, by adopting a cylindrical structure piezoelectric body, it is possible to realize a small and low-cost multi-directional shock sensor that can detect an impact in any direction while having a single structure.

以下、図面を参照して、本発明の実施例について説明する。図1(a)は本発明による筒状圧電ショックセンサの構造を示す。図2はその側面図である。正方形リング状断面を有する筒状圧電体5において、四つの主表面にそれぞれの信号検知電極1、2、31と32を具え、筒体の内壁に電極4を具え、圧電体が筒体の厚み方向に分極され、対向する第1対の外部電極1と31と、第2の対の外部電極2と32からそれぞれのチャンネルとして衝撃を検知する圧電ショックセンサの例を示すものである。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A shows the structure of a cylindrical piezoelectric shock sensor according to the present invention. FIG. 2 is a side view thereof. In the cylindrical piezoelectric body 5 having a square ring-shaped cross section, the signal detection electrodes 1, 2, 31 and 32 are provided on the four main surfaces, the electrode 4 is provided on the inner wall of the cylindrical body, and the piezoelectric body is the thickness of the cylindrical body. An example of a piezoelectric shock sensor that detects an impact as a channel from each of a first pair of external electrodes 1 and 31 and a second pair of external electrodes 2 and 32 that are polarized in the direction is shown.

筒状圧電素子は立体的なバイモルフとみてもよい。検出素子5が加速度Gの印加時の慣性力作用によってZ方向に曲がる場合、上下面に逆符号の電荷が発生するので、電極1と電極31の間に生じた電位差により、加速度を検知することができる。この場合、横の電極2と23の電位が等しいので、信号が発生しない。同様に、Y方向に曲がる場合、横の電極2と23に逆符号の電荷が発生するので、電極2と電極32の間に生じた電位差により、加速度を検知することができる。この場合、上下面の電極1と13の電位が等しいので、信号が発生しない。図1(b)は圧電体の片端がコ字状のセラミック支持体6により基板に固定される場合の構造を示す。ここでは、信号処理上の便宜のため、電極31と32をショートし、CH1とCH2の共通電極3とする。信号検知電極1、2と3はセラミック支持体6に形成されたそれぞれの引出し電極と接続される(図面では省略されている)。   The cylindrical piezoelectric element may be regarded as a three-dimensional bimorph. When the detecting element 5 bends in the Z direction due to the inertial force action when the acceleration G is applied, charges with opposite signs are generated on the upper and lower surfaces, so that the acceleration is detected by the potential difference generated between the electrode 1 and the electrode 31. Can do. In this case, since the potentials of the horizontal electrodes 2 and 23 are equal, no signal is generated. Similarly, when bending in the Y direction, charges having opposite signs are generated in the horizontal electrodes 2 and 23, so that the acceleration can be detected by the potential difference generated between the electrodes 2 and 32. In this case, no signal is generated because the potentials of the upper and lower electrodes 1 and 13 are equal. FIG. 1B shows a structure in which one end of the piezoelectric body is fixed to the substrate by a U-shaped ceramic support 6. Here, for the convenience of signal processing, the electrodes 31 and 32 are short-circuited to be the common electrode 3 of CH1 and CH2. The signal detection electrodes 1, 2 and 3 are connected to the respective extraction electrodes formed on the ceramic support 6 (omitted in the drawing).

Figure 2007114085
Figure 2007114085

表1は各方向において衝撃を受けた時のCH1とCH2の電圧感度の解析結果を示す。ここで、素子の長さを6mm、断面の内外辺長はそれぞれ1.2と0.8mm、肉厚を0.2mm、支持体6の長さを1.5mmとして。この場合、電極31と32が強制的に等電位になるため、Z方向のみに湾曲しても、電極2と3の間に電位差が生じるため、横方向のCH2にも信号が出る。一方、Y方向(横方向)に衝撃を受ける場合は、素子の上下面に対しての支持部6の拘束力が非対称のため、単純な横方向での撓み振動ではないので、CH1、CH2とも出力が大きい。従来の板状ベンディング型ショックセンサはX方向(長さ方向)の衝撃を検知し難いが、片端固定の筒状素子の場合、素子重心の基板支持部に対する力のモーメントが存在するので、X方向(長さ方向)の衝撃を受けると、Z方向の撓み振動が発生する。   Table 1 shows the analysis results of the voltage sensitivity of CH1 and CH2 when receiving an impact in each direction. Here, the length of the element is 6 mm, the inner and outer side lengths of the cross section are 1.2 and 0.8 mm, the thickness is 0.2 mm, and the length of the support 6 is 1.5 mm. In this case, since the electrodes 31 and 32 are forced to be equipotential, even if they are bent only in the Z direction, a potential difference is generated between the electrodes 2 and 3, so that a signal is also output to the horizontal CH2. On the other hand, when receiving an impact in the Y direction (lateral direction), since the restraining force of the support portion 6 with respect to the upper and lower surfaces of the element is asymmetric, it is not a simple flexural vibration in the horizontal direction. The output is large. Conventional plate bending shock sensors are difficult to detect shocks in the X direction (length direction), but in the case of a cylindrical element fixed at one end, there is a moment of force with respect to the substrate support at the center of gravity of the element. When an impact in the (length direction) is received, flexural vibration in the Z direction is generated.

CH1とCH2の出力信号を回路処理によって、CH1とCH2の中での最大値を電圧感度として出力する。表1の結果より、各方向での電圧感度には格段の差はない。従って、本発明による圧電ショックセンサは単体構造でありながら、あらゆる方向での衝撃を検知できる。ただし、筒状圧電素子は従来の板状ショックセンサと比較して曲がりにくいので、感度は板状の従来型に比較して約1/2〜1/3と低い。   The output signals of CH1 and CH2 are output as voltage sensitivity by the circuit processing and the maximum value of CH1 and CH2 is output. From the results in Table 1, there is no significant difference in voltage sensitivity in each direction. Therefore, the piezoelectric shock sensor according to the present invention is capable of detecting impacts in all directions while having a single structure. However, since the cylindrical piezoelectric element is less likely to bend than the conventional plate-like shock sensor, the sensitivity is as low as about 1/2 to 1/3 as compared with the plate-like conventional type.

ここで、Qm約2000、誘電率約1600のPZT圧電材を用い、押出し成型方法により筒状圧電ショックセンサを試作した。ショックセンサは片端で基板に固定される。図3と図4はそれぞれZ方向とY方向において基板に衝撃を与えた時の応答例を示す。Z方向衝撃の場合はCH1の方の感度が大きいが、Y方向衝撃の場合はCH2の方が大きい。それは表1に示すシミュレーションの結果とほぼ一致する。   Here, a PZT piezoelectric material having a Qm of about 2000 and a dielectric constant of about 1600 was used, and a cylindrical piezoelectric shock sensor was prototyped by an extrusion molding method. The shock sensor is fixed to the substrate at one end. 3 and 4 show examples of responses when an impact is applied to the substrate in the Z and Y directions, respectively. In the case of impact in the Z direction, the sensitivity of CH1 is greater, but in the case of impact in the Y direction, CH2 is greater. It almost agrees with the simulation result shown in Table 1.

前述の圧電ショックセンサは断面が正方形リング状だが、圧電体が円筒状にしても良い。図5はその構造の断面図を示す。円筒状圧電体5の表面において、外周方向に4等分する信号検知電極1、2、31と32を、筒体の内壁に分極用共通電極4を具え、筒体が厚み方向に分極され、対向する第1対の外部電極1と31と、第2対の外部電極2と32からなら2チャンネルで衝撃を検知することを特徴とする圧電ショックセンサ。ここで、電極31と32をショートし、CH1とCH2の共通電極にしてもよい。   The piezoelectric shock sensor described above has a square ring cross section, but the piezoelectric body may be cylindrical. FIG. 5 shows a cross-sectional view of the structure. On the surface of the cylindrical piezoelectric body 5, the signal detection electrodes 1, 2, 31 and 32 that are equally divided into the outer circumferential direction are provided, the polarization common electrode 4 is provided on the inner wall of the cylindrical body, and the cylindrical body is polarized in the thickness direction, A piezoelectric shock sensor characterized in that an impact is detected by two channels if the first pair of external electrodes 1 and 31 and the second pair of external electrodes 2 and 32 are opposed to each other. Here, the electrodes 31 and 32 may be short-circuited to form a common electrode for CH1 and CH2.

本発明は、はHDDやDVDなど書き込みディスク装置での外来衝撃感知、振動対策、ピックアップ制御および一般的な加速度検知などのためのショックセンサ(加速度センサ)として幅広く使うことができる。   The present invention can be widely used as a shock sensor (acceleration sensor) for external impact detection, vibration countermeasures, pickup control, general acceleration detection, and the like in writing disk devices such as HDDs and DVDs.

本発明の実施例を示す斜視図The perspective view which shows the Example of this invention その側面断面図Side sectional view その応答特性の説明図Illustration of response characteristics その応答特性の説明図Illustration of response characteristics 本発明の実施例を示す斜視図The perspective view which shows the Example of this invention 従来の圧電ショックセンサを示す斜視図A perspective view showing a conventional piezoelectric shock sensor

符号の説明Explanation of symbols

1、2、31、32:検出電極
4:電極
CH1,CH2:検出回路(チャンネル)
1, 2, 31, 32: Detection electrode 4: Electrode CH1, CH2: Detection circuit (channel)

Claims (3)

断面の外形と内形が正方形であるリング状の圧電セラミック筒形体を用いた圧電ショックセンサにおいて、
筒形体の4つの外面のそれぞれに独立した信号検出電極を具えるとともに、筒形体の内面に共通電極を具え、
圧電セラミック筒形体はその厚み方向に分極され、
対向する2つの信号検出電極同士によって2組の信号検出回路が構成され、
衝撃によって生じる2方向の変位を2組の信号検出回路によって検出することを特徴とする圧電ショックセンサ。
In the piezoelectric shock sensor using the ring-shaped piezoelectric ceramic cylindrical body whose outer shape and inner shape of the cross section are square,
In addition to providing an independent signal detection electrode on each of the four outer surfaces of the cylindrical body, including a common electrode on the inner surface of the cylindrical body,
Piezoelectric ceramic cylinder is polarized in its thickness direction,
Two signal detection circuits are composed of two signal detection electrodes facing each other,
A piezoelectric shock sensor, wherein two sets of signal detection circuits detect displacement in two directions caused by an impact.
円筒リング状の圧電セラミック筒形体を用いた圧電ショックセンサにおいて、
筒形体の外面に4分割して独立して形成された信号検出電極を具えるとともに、筒形体の内面に共通電極を具え、
圧電セラミック筒形体はその厚み方向に分極され、
対向する2つの信号検出電極同士によって2組の信号検出回路が構成され、
衝撃によって生じる2方向の変位を2組の信号検出回路によって検出することを特徴とする圧電ショックセンサ。
In the piezoelectric shock sensor using the cylindrical ring-shaped piezoelectric ceramic cylindrical body,
A signal detection electrode formed independently on the outer surface of the cylindrical body and divided into four; and a common electrode on the inner surface of the cylindrical body;
Piezoelectric ceramic cylinder is polarized in its thickness direction,
Two signal detection circuits are composed of two signal detection electrodes facing each other,
A piezoelectric shock sensor, wherein two sets of signal detection circuits detect displacement in two directions caused by an impact.
筒形体の長さ方向の一端が固定された請求項1または請求項2記載の圧電ショックセンサ。   The piezoelectric shock sensor according to claim 1 or 2, wherein one end of the cylindrical body in the length direction is fixed.
JP2005306740A 2005-10-21 2005-10-21 Piezoelectric shock sensor Pending JP2007114085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306740A JP2007114085A (en) 2005-10-21 2005-10-21 Piezoelectric shock sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306740A JP2007114085A (en) 2005-10-21 2005-10-21 Piezoelectric shock sensor

Publications (1)

Publication Number Publication Date
JP2007114085A true JP2007114085A (en) 2007-05-10

Family

ID=38096407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306740A Pending JP2007114085A (en) 2005-10-21 2005-10-21 Piezoelectric shock sensor

Country Status (1)

Country Link
JP (1) JP2007114085A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295865A (en) * 2008-06-06 2009-12-17 Ngk Insulators Ltd Honeycomb type piezoelectric/electrostrictive element and piezoelectric/electrostrictive speaker using the same
JP2010527828A (en) * 2007-05-22 2010-08-19 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Error monitoring device for bogie components of rail vehicles
WO2013039125A1 (en) * 2011-09-12 2013-03-21 日本電気株式会社 Piezoelectric vibration sensor
WO2013088866A1 (en) * 2011-12-13 2013-06-20 株式会社村田製作所 Stacked actuator
CN107167277A (en) * 2017-07-26 2017-09-15 中国工程物理研究院总体工程研究所 The universal triggering impact fuze sensing device of single piezoelectric patches piezoelectric energy-conversion
JP2018077614A (en) * 2016-11-08 2018-05-17 公益財団法人鉄道総合技術研究所 Impact detection device, disaster monitoring system, and moving body detection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527828A (en) * 2007-05-22 2010-08-19 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Error monitoring device for bogie components of rail vehicles
JP2009295865A (en) * 2008-06-06 2009-12-17 Ngk Insulators Ltd Honeycomb type piezoelectric/electrostrictive element and piezoelectric/electrostrictive speaker using the same
WO2013039125A1 (en) * 2011-09-12 2013-03-21 日本電気株式会社 Piezoelectric vibration sensor
WO2013088866A1 (en) * 2011-12-13 2013-06-20 株式会社村田製作所 Stacked actuator
JP5618013B2 (en) * 2011-12-13 2014-11-05 株式会社村田製作所 Multilayer actuator
JPWO2013088866A1 (en) * 2011-12-13 2015-04-27 株式会社村田製作所 Multilayer actuator
US9390876B2 (en) 2011-12-13 2016-07-12 Murata Manufacturing Co., Ltd. Laminate-type actuator
JP2018077614A (en) * 2016-11-08 2018-05-17 公益財団法人鉄道総合技術研究所 Impact detection device, disaster monitoring system, and moving body detection system
CN107167277A (en) * 2017-07-26 2017-09-15 中国工程物理研究院总体工程研究所 The universal triggering impact fuze sensing device of single piezoelectric patches piezoelectric energy-conversion

Similar Documents

Publication Publication Date Title
US8333113B2 (en) Triaxial acceleration sensor
US8863575B2 (en) Microelectromechanical three-axis capacitive accelerometer
US7538477B2 (en) Multi-layer transducers with annular contacts
US7757555B2 (en) Tri-axis accelerometer having a single proof mass and fully differential output signals
US7243545B2 (en) Physical quantity sensor having spring
JP2007114085A (en) Piezoelectric shock sensor
CN110169085B (en) System of non-acoustic sensors combined with MEMS microphones
US9693150B2 (en) Microphone sensor
CN108020686B (en) MEMS triaxial accelerometer with improved configuration
KR20150101741A (en) Micro Electro Mechanical Systems Sensor
JP2006349613A (en) Capacitive detection type acceleration sensor
KR100793226B1 (en) Capacity detection type sensor element
EP4105616A1 (en) Mictroelectromechanical system (mems) vibration sensor having a segmented backplate
JP4303706B2 (en) Piezoelectric acceleration sensor
KR20050029686A (en) Vibration sensor
US9080871B2 (en) Microelectromechanical sensor with non-conductive sensing mass, and method of sensing through a microelectromechanical sensor
JP2010032367A (en) Capacitance-type acceleration sensor and capacitance-type accelerometer
JP2005098891A (en) Electrostatic capacity type sensor
CN115334428B (en) Microphone assembly and electronic equipment
CN219536306U (en) Receiving and transmitting integrated MEMS chip device
JP4303702B2 (en) Piezoelectric acceleration sensor
TWI444620B (en) Accelerator
JP5035184B2 (en) Uniaxial semiconductor acceleration sensor
JP2004061193A (en) Semiconductor acceleration sensor
JP3017442U (en) Piezoelectric acceleration sensor