JP2007113921A - Conversion arithmetic device - Google Patents

Conversion arithmetic device Download PDF

Info

Publication number
JP2007113921A
JP2007113921A JP2005302513A JP2005302513A JP2007113921A JP 2007113921 A JP2007113921 A JP 2007113921A JP 2005302513 A JP2005302513 A JP 2005302513A JP 2005302513 A JP2005302513 A JP 2005302513A JP 2007113921 A JP2007113921 A JP 2007113921A
Authority
JP
Japan
Prior art keywords
coefficient
temperature
conversion
thermistor
order polynomial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005302513A
Other languages
Japanese (ja)
Inventor
Mitsuaki Fujimori
光章 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2005302513A priority Critical patent/JP2007113921A/en
Publication of JP2007113921A publication Critical patent/JP2007113921A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conversion arithmetic device allowing accurate and high-speed conversion processing without requiring a memory resource for storing a conversion table online. <P>SOLUTION: The conversion arithmetic device for converting the resistance of a thermistor for measuring temperature into temperature comprises a coefficient keeping means for keeping the coefficient of each term of a high-order polynomial approximating the theoretical expression showing the relation between the resistance and temperature of the thermistor, and a temperature arithmetic means for reading the coefficient of each term from the coefficient keeping means, setting it in the high-order polynomial, substituting the resistance input from the thermistor into the high-order polynomial having the set coefficient, and calculating the temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、温度を計測するサーミスタの抵抗値を温度に変換する変換演算装置に関するものである。   The present invention relates to a conversion operation device that converts a resistance value of a thermistor that measures temperature into temperature.

計測・制御対象として温度を計測する電子機器の他、電子機器の動作を温度により補償する等、間接的な目的のために温度を知る必要がある電子機器は多い。それらの温度計測の際、センサとしてサーミスタを使用する例は少なくない。   In addition to electronic devices that measure temperature as a measurement / control target, there are many electronic devices that need to know the temperature for indirect purposes, such as compensating the operation of the electronic device by temperature. There are many examples in which a thermistor is used as a sensor when measuring these temperatures.

図2は、従来の変換演算装置の構成例を示す機能ブロック図である。この構成例の変換演算手法は、サーミスタ毎に定義されている抵抗値と温度の対応を表す換算表から、測定により得られた抵抗値Rを挟む2点の抵抗値を探索し、この2点の抵抗値に対応する2点の温度の値を数学的に内分(直線近似)して温度Tを推定演算するものである。   FIG. 2 is a functional block diagram showing a configuration example of a conventional conversion arithmetic device. The conversion calculation method of this configuration example searches for two resistance values sandwiching the resistance value R obtained by measurement from a conversion table representing the correspondence between the resistance value and temperature defined for each thermistor. The temperature T is estimated and calculated by mathematically dividing (linear approximation) the temperature values at two points corresponding to the resistance values.

1は温度を計測するサーミスタであり、定電流を流したときの電圧降下Eにより抵抗値
を計測する。2はAD変換手段であり、この電圧Eを入力してAD変換した抵抗値Rをデジタル出力する。3は探索手段であり、抵抗値Rを入力し、適当なメモリ手段に保持されているサーミスタ1の換算表4にアクセスし、抵抗値Rを挟む2点の抵抗値R1,R2を探索し、換算表4に定義されたR1,R2に対応する温度T1,T2を取得する。
Reference numeral 1 denotes a thermistor that measures temperature, and measures a resistance value by a voltage drop E when a constant current is passed. Reference numeral 2 denotes AD conversion means, which inputs the voltage E and digitally outputs a resistance value R obtained by AD conversion. 3 is a search means, which inputs a resistance value R, accesses a conversion table 4 of the thermistor 1 held in an appropriate memory means, searches for two resistance values R1 and R2 sandwiching the resistance value R, The temperatures T1 and T2 corresponding to R1 and R2 defined in the conversion table 4 are acquired.

図3は、メーカより提供される換算表の一例を示すテーブルである。図3において、計測された抵抗値Rが4.5kΩであった場合、これを挟む抵抗値R1,R2は4.16kΩ及び4.911kΩであり、これら抵抗値に対応する温度T1,T2は、50℃及び45℃である。   FIG. 3 is a table showing an example of a conversion table provided by the manufacturer. In FIG. 3, when the measured resistance value R is 4.5 kΩ, the resistance values R1 and R2 sandwiching the resistance value are 4.16 kΩ and 4.911 kΩ, and the temperatures T1 and T2 corresponding to these resistance values are 50 ° C and 45 ° C.

5は内分演算手段であり、探索手段から渡される温度T1,T2、抵抗値R、R1,R2を入力し、それらの値を数学的に内分(直線近似)して温度Tを推定演算する。図4は、内分演算を説明する模式図である。Rを挟むR1とR2の温度T1とT2を直線で近似し、Rとこの近似直線から温度Tを推定演算する。演算の精度を上げるため、抵抗値Rを挟む2点に加えて、その両端の既知の4点を曲線近似する場合もある。   5 is an internal division calculation means for inputting temperatures T1 and T2 and resistance values R, R1 and R2 passed from the search means, and calculating the temperature T by mathematically dividing these values internally (linear approximation). To do. FIG. 4 is a schematic diagram for explaining the internal division calculation. The temperatures T1 and T2 of R1 and R2 across R are approximated by a straight line, and the temperature T is estimated and calculated from R and the approximate straight line. In order to increase the accuracy of the calculation, in addition to the two points sandwiching the resistance value R, there are cases where the four known points at both ends are approximated by a curve.

サーミスタは抵抗の温度係数が負である半導体の抵抗素子である。抵抗値と絶対温度の間には、2温度T1,T2における抵抗値をR1,R2とし、この範囲でのサーミスタ定数をB12とすると、一般的に以下の関係が成り立つ。
B12=(logR1−logR2)/(1/T2−1/T1) (1)
ここで、T1≦T≦T2(R2≦T≦R1)の条件下におけるTとRは、T1,T2間におけるサーミスタ定数B12を用いて、次式で関係付けられる。
R=R1・expB12(1/T−1/T1 ) (2)
The thermistor is a semiconductor resistance element having a negative temperature coefficient of resistance. When the resistance values at the two temperatures T1 and T2 are R1 and R2 and the thermistor constant in this range is B12, the following relationship is generally established between the resistance value and the absolute temperature.
B12 = (logR1-logR2) / (1 / T2-1 / T1) (1)
Here, T and R under the condition of T1 ≦ T ≦ T2 (R2 ≦ T ≦ R1) are related by the following equation using the thermistor constant B12 between T1 and T2.
R = R1 · expB12 (1 / T-1 / T1) (2)

このことから、測定により得られた任意の抵抗値Rから温度Tを求めるためには、測定したい温度近辺における既知の温度と抵抗値を探索し、それらの値を元にこの範囲でのサーミスタ定数B12を求め、またそれら既知の抵抗値からの差分に応じた抵抗値を加算して算出することができる。   From this, in order to obtain the temperature T from an arbitrary resistance value R obtained by measurement, a known temperature and resistance value in the vicinity of the temperature to be measured are searched, and the thermistor constant in this range based on those values. B12 can be obtained and calculated by adding a resistance value corresponding to a difference from the known resistance value.

図5は、この手法を用いた従来の変換演算装置の他の構成例を示す機能ブロック図である。図2の構成との差を説明する。6はサーミスタ定数演算手段であり、探索手段3から、R1,R2及びT1,T2を取得し、(1)式を演算してこの範囲でのサーミスタ定数B12を出力する。   FIG. 5 is a functional block diagram showing another configuration example of a conventional conversion arithmetic device using this technique. Differences from the configuration of FIG. 2 will be described. Reference numeral 6 denotes a thermistor constant calculation means which obtains R1, R2 and T1, T2 from the search means 3, calculates the equation (1), and outputs the thermistor constant B12 in this range.

7は内分演算手段であり、サーミスタ定数演算手段6よりサーミスタ定数B12を、探索手段3よりR,R1及びT1を取得し、(2)式を演算して温度Tを出力する。図6は、内分演算を説明する模式図である。logR1と1/T1の交点より負の勾配B12で与えられる直線をlogR、logR1及び1/T1により、内分演算で1/Tを推定演算し、逆数演算した温度Tを出力する。   Reference numeral 7 denotes an internal division calculation means which obtains the thermistor constant B12 from the thermistor constant calculation means 6 and R, R1 and T1 from the search means 3, calculates the equation (2), and outputs the temperature T. FIG. 6 is a schematic diagram for explaining the internal division calculation. A straight line given by a negative gradient B12 from the intersection of logR1 and 1 / T1 is estimated by calculating internal division using logR, logR1 and 1 / T1, and a temperature T obtained by reciprocal calculation is output.

図3に例示した換算表の定義内容は、サーミスタ毎に異なる。従って、図2、図5の変換演算装置では、使用可能性のあるサーミスタ1の種類に対応して複数の換算表4を予め保持し、使用するサーミスタに対応して探索手段3が換算表4を切り換えて参照する。   The definition content of the conversion table illustrated in FIG. 3 is different for each thermistor. Therefore, in the conversion arithmetic devices of FIGS. 2 and 5, a plurality of conversion tables 4 are held in advance corresponding to the types of thermistors 1 that can be used, and the search means 3 corresponds to the thermistors to be used. Refer to by switching.

特許文献1には、感温素子としてサーミスタを用い、補正演算を行って温度を算出する電子温度計が記載されている。   Patent Document 1 describes an electronic thermometer that uses a thermistor as a temperature sensing element and calculates a temperature by performing a correction operation.

特許第2504753号公報Japanese Patent No. 2504753

図2、図5に示した従来装置では、次のような問題点がある。
(1)換算表をオンラインで保持し、変換演算の都度、既知の抵抗値と温度の換算表にアクセスする必要がある。
The conventional apparatus shown in FIGS. 2 and 5 has the following problems.
(1) It is necessary to keep a conversion table online and to access a conversion table of known resistance value and temperature for each conversion operation.

(2)探索手段を設けて、計測された抵抗値の近傍の既知の値を変換演算の度に探索するアルゴリズムが必要となる。 (2) An algorithm for providing a search unit and searching for a known value in the vicinity of the measured resistance value every time conversion processing is required.

(3)探索結果を基に、変換演算の度に近似のためのパラメータを算出して演算処理する必要がある。 (3) Based on the search result, it is necessary to calculate a parameter for approximation every time a conversion calculation is performed.

その結果、
(1)換算表を保持するためのメモリ資源が必要となり、広範囲の温度を計測する場合や精度の高い換算を必要とする際にはより大きなメモリ資源を必要とする。
as a result,
(1) A memory resource for holding the conversion table is required, and a larger memory resource is required when measuring a wide range of temperatures or when a highly accurate conversion is required.

(2)演算時間が長くなり、かつ換算する抵抗値(温度)により時間むらが発生する。更に、広範囲の温度を計測する場合や精度の高い換算を必要とする際には換算表の増大に伴って探索に要する時間も増加する。 (2) The calculation time becomes longer, and time unevenness occurs depending on the converted resistance value (temperature). Furthermore, when measuring a wide range of temperatures or when high-accuracy conversion is required, the time required for the search increases as the conversion table increases.

(3)演算処理のために大きなメモリ容量を必要とし、処理時間が長くなる。 (3) A large memory capacity is required for the arithmetic processing, and the processing time becomes long.

本発明は上述した問題点を解決するためになされたものであり、換算表をオンラインで保持するためのメモリ資源を必要とせず、高精度かつ高速な変換処理を可能とする変換演算装置を実現することを目的としている。   The present invention has been made to solve the above-described problems, and does not require a memory resource for holding a conversion table online, and realizes a conversion operation device that enables high-precision and high-speed conversion processing. The purpose is to do.

このような課題を達成するために、本発明は次の通りの構成になっている。
(1)温度を計測するサーミスタの抵抗値を温度に変換する変換演算装置において、
サーミスタの抵抗値と温度との関係を表す理論式を近似した高次多項式の各項の係数を保持する係数保持手段と、
この係数保持手段から前記各項の係数を読み出して前記高次多項式に設定し、係数を設定した高次多項式に前記サーミスタから入力した抵抗値を代入し、温度を算出する温度演算手段と、
を備えることを特徴とする変換演算装置。
In order to achieve such a subject, the present invention has the following configuration.
(1) In a conversion operation device that converts the resistance value of a thermistor that measures temperature into temperature,
Coefficient holding means for holding the coefficient of each term of a high-order polynomial approximating a theoretical expression representing the relationship between the resistance value of the thermistor and temperature;
Read the coefficient of each term from this coefficient holding means and set it to the high-order polynomial, substitute the resistance value input from the thermistor to the high-order polynomial set coefficient, temperature calculation means to calculate the temperature,
A conversion operation device comprising:

(2)サーミスタ毎に定義されている換算表を基に前記高次多項式の各項の係数を計算する係数計算手段と、
計算された係数を前記係数保持手段に設定する係数設定手段と、
よりなる係数生成手段を備えることを特徴とする(1)に記載の変換演算装置。
(2) Coefficient calculation means for calculating the coefficient of each term of the high-order polynomial based on a conversion table defined for each thermistor;
Coefficient setting means for setting the calculated coefficient in the coefficient holding means;
The conversion operation device according to (1), further comprising: a coefficient generation unit.

(3)前記係数生成手段は、使用されるサーミスタ毎に予めオフラインで係数を生成することを特徴とする(2)に記載の変換演算装置。 (3) The conversion calculation apparatus according to (2), wherein the coefficient generation unit generates a coefficient offline in advance for each thermistor used.

(4)前記係数計算手段は、前記換算表を基に最小二乗法により前記係数を同定することを特徴とする(2)又は至(3)に記載の変換演算装置。 (4) The conversion arithmetic apparatus according to (2) or (3), wherein the coefficient calculation means identifies the coefficient by a least square method based on the conversion table.

(5)前記温度演算手段は、前記抵抗値Rの対数(logR)を変数として、与えられる係数a0,a1,a2,a3,…anに基づき、
T=a0+a1(logR)+a2(logR)+a3(logR)
…an(logR)
の高次多項式を演算して温度Tを算出することを特徴とする(1)乃至(4)のいずれかに記載の変換演算装置。
(5) The temperature calculation means uses the logarithm (log R) of the resistance value R as a variable, and based on given coefficients a0, a1, a2, a3,.
T = a0 + a1 (logR) + a2 (logR) 2 + a3 (logR) 3 +
... an (logR) n
The conversion operation device according to any one of (1) to (4), wherein the temperature T is calculated by calculating a higher-order polynomial.

(6)前記温度演算手段は、前記高次多項式をホーナー法により計算することを特徴とする(1)乃至(5)のいずれかに記載の変換演算装置。 (6) The conversion calculation device according to any one of (1) to (5), wherein the temperature calculation means calculates the high-order polynomial by a Horner method.

以上説明したことから明らかなように、本発明によれば次のような効果がある。
(1)換算表に基づいて予めオフラインで算出された(次数+1)個の多項式の係数値のみを保持するだけでよく、換算表全部をオンラインで保持するのに比べ大幅なメモリ資源の縮小が図れる。とりわけ広い温度範囲を計測するような場合には一層有効である。
As is apparent from the above description, the present invention has the following effects.
(1) It is only necessary to store the coefficient values of (degree + 1) number of polynomials that are previously calculated off-line based on the conversion table, and the memory resource can be greatly reduced as compared to the case where the entire conversion table is stored online. I can plan. This is particularly effective when measuring a wide temperature range.

(2)単純な対数計算および多項式演算のみで変換演算できるため、探索,近似定数算出,近似計算を行うより演算に要する時間の短縮及び均一化を実現できる。又、演算に要するメモリ資源も格段に少なくて済み、手順の作成・検証も容易となる。 (2) Since a conversion operation can be performed only with a simple logarithmic calculation and a polynomial operation, the time required for the operation can be shortened and equalized compared with the search, approximate constant calculation, and approximate calculation. In addition, the memory resources required for the operation are remarkably small, and the procedure can be easily created and verified.

(3)換算精度の向上のため近似多項式の次数をより高次にする際、その変更に伴うメモリ資源は、追加次数分の係数が増えるだけであり、演算時間もホーナー法を使用することにより加算と乗算が追加次数分だけ夫々増えるだけで済み、メモリ資源の増加は発生せず、探索時間の増大も発生しない。 (3) When the order of the approximate polynomial is made higher to improve the conversion accuracy, the memory resource associated with the change is only an increase of the coefficient for the additional order, and the computation time is also increased by using the Horner method. The addition and multiplication need only be increased by the additional order, and the memory resource does not increase and the search time does not increase.

以下、本発明を図面により詳細に説明する。図1は本発明を適用した変換演算装置の一実施形態を示す機能ブロック図である。図2、図5で説明した従来装置と同一要素には同一符号を付して説明を省略する。以下、本発明の特徴部につき説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing an embodiment of a conversion arithmetic device to which the present invention is applied. The same elements as those of the conventional apparatus described with reference to FIGS. Hereinafter, the characteristic part of the present invention will be described.

図1において、100は温度演算手段であり、計測された抵抗値Rを入力してこれを演算処理して温度Tを出力する。演算手法は、サーミスタの抵抗値と温度との関係を表す理論式を近似した高次多項式を用いる。   In FIG. 1, reference numeral 100 denotes a temperature calculation means, which inputs a measured resistance value R, calculates this, and outputs a temperature T. As a calculation method, a high-order polynomial approximating a theoretical expression representing the relationship between the resistance value of the thermistor and the temperature is used.

200は、係数保持手段であり、温度演算手段100で演算される高次多項式の各項の係数を係数テーブル201に保持している。使用するサーミスタ1の種類が複数の場合にはサーミスタ毎に異なる複数の係数テーブルを備える。温度演算手段100は、この係数テーブルのデータを参照した係数を代入して高次多項式を演算処理する。   Reference numeral 200 denotes coefficient holding means, which holds the coefficient of each term of the high-order polynomial calculated by the temperature calculation means 100 in the coefficient table 201. When there are a plurality of types of thermistors 1 to be used, a plurality of coefficient tables different for each thermistor are provided. The temperature calculation means 100 calculates a high-order polynomial by substituting a coefficient referring to the data of this coefficient table.

抵抗値Rと温度Tの関係は、C1,C2を定数として、次のような理論式で表される。
R=C1・exp(C2/T)(C2/T) (3)
抵抗値Rを変数とする高次多項式で広範囲の温度Tを1つの式でそのまま近似するには、必要精度を確保するために次数を多く取る必要があり、実用上問題がある。
The relationship between the resistance value R and the temperature T is expressed by the following theoretical formula with C1 and C2 as constants.
R = C1 · exp (C2 / T) (C2 / T) (3)
In order to approximate a wide range of temperatures T as a single expression using a high-order polynomial with the resistance value R as a variable, it is necessary to take a large number of orders in order to ensure the required accuracy, which is problematic in practice.

そこで、Rの対数(log R)を変数とし、係数保持手段200から与えられる係数a0,a1,a2,a3,…anに基づき、
T=a0+a1(logR)+a2(logR)+a3(logR)
…an(logR) (4)
で与えられる高次多項式で近似する。
Therefore, using the logarithm of R (log R) as a variable, based on the coefficients a0, a1, a2, a3,.
T = a0 + a1 (logR) + a2 (logR) 2 + a3 (logR) 3 +
... an (logR) n (4)
It is approximated by a high-order polynomial given by.

300は、係数生成手段である。301は係数計算手段であり、サーミスタ毎に定義されている換算表302を基に、高次多項式の各項の係数a0,a1,a2,a3,…anを計算する。303は係数設定手段であり、計算された係数を係数保持手段200に設定する。   Reference numeral 300 denotes coefficient generation means. Reference numeral 301 denotes coefficient calculation means, which calculates the coefficients a0, a1, a2, a3,... An of each term of the high-order polynomial based on the conversion table 302 defined for each thermistor. Reference numeral 303 denotes a coefficient setting unit that sets the calculated coefficient in the coefficient holding unit 200.

本発明では、係数生成手段300は、使用されるサーミスタ毎に、換算表に基づいて予めオフラインのエンジニアリングで係数を生成することを特徴としており、従来手法のようにオンラインで換算表を保持する必要がない。   In the present invention, the coefficient generation means 300 is characterized in that the coefficient is generated in advance by off-line engineering based on the conversion table for each thermistor used, and it is necessary to hold the conversion table online as in the conventional method. There is no.

係数計算手段301による、換算表302に基づく係数計算は、周知の最小二乗法により各係数を同定する手法を採用することで精度の高い係数の同定が可能である。多項式の次数は必要な換算精度に応じて決定すればよいが、換算精度は、元となる換算表自体の有効桁数等により自ずから限界があるため、それに応じて実用的に決定すればよい。   The coefficient calculation based on the conversion table 302 by the coefficient calculation means 301 can identify a coefficient with high accuracy by adopting a method for identifying each coefficient by a known least square method. The degree of the polynomial may be determined according to the required conversion accuracy, but the conversion accuracy is naturally limited by the number of significant digits of the original conversion table itself, and may be determined practically accordingly.

出願人の検証によれば、図3に示した換算表に基づく係数同定により、(4)式を用いて4次までの多項式の演算で必要な変換精度を確保できることを確認できた。以下、具体的な計算例を示す。   According to the verification by the applicant, it has been confirmed that the necessary conversion accuracy can be ensured by the calculation of the polynomial up to the fourth order using the equation (4) by the coefficient identification based on the conversion table shown in FIG. A specific calculation example is shown below.

図3の換算表から最小二乗法により係数a0,a1,a2,a3,a4を計算すると、
a0=98.9524230619253
a1=-38.7221049572286
a2=3.431439511687622
a3=-0.272348491790581
a4=0.0117614997709552
が得られる。
When the coefficients a0, a1, a2, a3, a4 are calculated by the least square method from the conversion table of FIG.
a0 = 98.9524230619253
a1 = -38.7221049572286
a2 = 3.431439511687622
a3 = -0.272348491790581
a4 = 0.0117614997709552
Is obtained.

今仮にサーミスタ1の温度計測により、抵抗値R=4.500kΩが得られたとした場合、変数logRは、logR=log4.5=1.504077である。この値と前記係数a0乃至a4の値を(4)式に代入すれば、T=47.60765(℃)≒47.608(℃)が得られる。   If the resistance value R = 4.500 kΩ is obtained by measuring the temperature of the thermistor 1, the variable logR is logR = log4.5 = 1.504077. If this value and the values of the coefficients a0 to a4 are substituted into the equation (4), T = 47.60765 (° C.) ≈47.608 (° C.) is obtained.

抵抗値R=4.500kΩを用いて、図5の従来装置で求めた温度Tは、T=47.6014(℃)であり、その誤差は約0.01%である。よって、本発明による変換演算の値は、妥当かつ十分な精度の換算演算が実行されていることがわかる。   Using the resistance value R = 4,500 kΩ, the temperature T obtained by the conventional apparatus of FIG. 5 is T = 47.6014 (° C.), and the error is about 0.01%. Therefore, it can be understood that the conversion calculation value according to the present invention is converted with a reasonable and sufficient accuracy.

近似多項式の次数は、実用的には前記のように4次で十分であるが、演算精度の向上のため近似多項式の次数をより高次にする際、その変更に伴うメモリ資源は係数保持手段200の追加次数分の係数が増えるだけでありメモリ資源増加は極めて小さい。更に、高次計算に周知のホーナー法を使用することにより、演算時間も、加算と乗算が追加次数分だけそれぞれ増えるだけで済むので、次数増加に伴なう処理時間の増加は小さい。   As described above, the order of the approximate polynomial is practically 4th as described above. However, when the order of the approximate polynomial is made higher in order to improve the calculation accuracy, the memory resource associated with the change is the coefficient holding means. The increase in the memory resource is extremely small as the coefficient for the additional order of 200 only increases. Further, by using the well-known Horner method for the higher-order calculation, the calculation time can be increased by the additional order, and the increase in processing time accompanying the increase in order is small.

本発明を適用した変換演算装置の一実施形態を示す機能ブロック図である。It is a functional block diagram which shows one Embodiment of the conversion calculating device to which this invention is applied. 従来の変換演算装置の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the conventional conversion calculating apparatus. 換算表の一例を示すテーブルである。It is a table which shows an example of a conversion table. 図2の内分演算を説明する模式図である。It is a schematic diagram explaining the internal division calculation of FIG. 従来の変換演算装置の他の構成例を示す機能ブロック図である。It is a functional block diagram which shows the other structural example of the conventional conversion calculating apparatus. 図5の内分演算を説明する模式図である。It is a schematic diagram explaining the internal division calculation of FIG.

符号の説明Explanation of symbols

1 サーミスタ
2 AD変換手段
100 温度演算手段
200 係数保持手段
201 係数テーブル
300 係数生成手段
301 係数計算手段
302 換算表
303 係数設定手段
DESCRIPTION OF SYMBOLS 1 Thermistor 2 AD conversion means 100 Temperature calculation means 200 Coefficient holding means 201 Coefficient table 300 Coefficient generation means 301 Coefficient calculation means 302 Conversion table 303 Coefficient setting means

Claims (6)

温度を計測するサーミスタの抵抗値を温度に変換する変換演算装置において、
サーミスタの抵抗値と温度との関係を表す理論式を近似した高次多項式の各項の係数を保持する係数保持手段と、
この係数保持手段から前記各項の係数を読み出して前記高次多項式に設定し、係数を設定した高次多項式に前記サーミスタから入力した抵抗値を代入し、温度を算出する温度演算手段と、
を備えることを特徴とする変換演算装置。
In a conversion operation device that converts the resistance value of a thermistor that measures temperature into temperature,
Coefficient holding means for holding the coefficient of each term of a high-order polynomial approximating a theoretical expression representing the relationship between the resistance value of the thermistor and temperature;
Read the coefficient of each term from this coefficient holding means and set it to the high-order polynomial, substitute the resistance value input from the thermistor to the high-order polynomial set coefficient, temperature calculation means to calculate the temperature,
A conversion operation device comprising:
サーミスタ毎に定義されている換算表を基に前記高次多項式の各項の係数を計算する係数計算手段と、
計算された係数を前記係数保持手段に設定する係数設定手段と、
よりなる係数生成手段を備えることを特徴とする請求項1に記載の変換演算装置。
Coefficient calculation means for calculating the coefficient of each term of the high-order polynomial based on a conversion table defined for each thermistor;
Coefficient setting means for setting the calculated coefficient in the coefficient holding means;
The conversion operation apparatus according to claim 1, further comprising: a coefficient generation unit comprising:
前記係数生成手段は、使用されるサーミスタ毎に予めオフラインで係数を生成することを特徴とする請求項2に記載の変換演算装置。   The conversion arithmetic apparatus according to claim 2, wherein the coefficient generation unit generates a coefficient offline in advance for each thermistor used. 前記係数計算手段は、前記換算表を基に最小二乗法により前記係数を同定することを特徴とする請求項2又は至3に記載の変換演算装置。   The conversion arithmetic device according to claim 2 or 3, wherein the coefficient calculation means identifies the coefficient by a least square method based on the conversion table. 前記温度演算手段は、前記抵抗値Rの対数(logR)を変数として、与えられる係数
a0,a1,a2,a3,…anに基づき、
T=a0+a1(logR)+a2(logR)+a3(logR)
…an(logR)
の高次多項式を演算して温度Tを算出することを特徴とする請求項1乃至4のいずれかに記載の変換演算装置。
The temperature calculation means uses the logarithm (logR) of the resistance value R as a variable, and based on given coefficients a0, a1, a2, a3,.
T = a0 + a1 (logR) + a2 (logR) 2 + a3 (logR) 3 +
... an (logR) n
5. The conversion calculation device according to claim 1, wherein the temperature T is calculated by calculating a high-order polynomial of
前記温度演算手段は、前記高次多項式をホーナー法により計算することを特徴とする請求項1乃至5のいずれかに記載の変換演算装置。
6. The conversion calculation device according to claim 1, wherein the temperature calculation unit calculates the high-order polynomial by a Horner method.
JP2005302513A 2005-10-18 2005-10-18 Conversion arithmetic device Pending JP2007113921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302513A JP2007113921A (en) 2005-10-18 2005-10-18 Conversion arithmetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302513A JP2007113921A (en) 2005-10-18 2005-10-18 Conversion arithmetic device

Publications (1)

Publication Number Publication Date
JP2007113921A true JP2007113921A (en) 2007-05-10

Family

ID=38096263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302513A Pending JP2007113921A (en) 2005-10-18 2005-10-18 Conversion arithmetic device

Country Status (1)

Country Link
JP (1) JP2007113921A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088248A (en) * 2008-10-01 2010-04-15 Sony Corp Battery control device, battery control method, and battery
JP2012073134A (en) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp Temperature measurement device and air conditioner using the same
WO2012080223A1 (en) 2010-12-15 2012-06-21 Sigea S.R.L. Use of glycosaminoglycan lipoate esters in the trichology field
JP2015200633A (en) * 2014-04-04 2015-11-12 株式会社デンソー Device for correcting temperature characteristic of thermistor and method for correcting temperature characteristic of thermistor
CN112924054A (en) * 2021-04-01 2021-06-08 浙江大学 Method for correcting nonlinear error of digital temperature sensor system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088248A (en) * 2008-10-01 2010-04-15 Sony Corp Battery control device, battery control method, and battery
JP2012073134A (en) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp Temperature measurement device and air conditioner using the same
WO2012080223A1 (en) 2010-12-15 2012-06-21 Sigea S.R.L. Use of glycosaminoglycan lipoate esters in the trichology field
JP2015200633A (en) * 2014-04-04 2015-11-12 株式会社デンソー Device for correcting temperature characteristic of thermistor and method for correcting temperature characteristic of thermistor
CN112924054A (en) * 2021-04-01 2021-06-08 浙江大学 Method for correcting nonlinear error of digital temperature sensor system
CN112924054B (en) * 2021-04-01 2022-05-03 浙江大学 Method for correcting nonlinear error of digital temperature sensor system

Similar Documents

Publication Publication Date Title
US6889152B2 (en) Method and apparatus for economical drift compensation in high resolution measurements
US6651020B2 (en) Method and apparatus for economical drift compensation in high resolution measurements
US6334093B1 (en) Method and apparatus for economical drift compensation in high resolution difference measurements and exemplary low cost, high resolution differential digital thermometer
CN107449521B (en) Temperature compensation method, terminal device and computer readable storage medium
WO2013100156A1 (en) Method for correcting output value of physical quantity sensor apparatus, method for correcting output value of physical quantity sensor, physical quantity sensor apparatus, and apparatus for correcting output value of physical quantity sensor
CN105784149A (en) Device For Measuring The Temperature Of A Medium Through A Wall
JP6433074B2 (en) Thermal flow meter, temperature measurement device, and program for thermal flow meter
JP2007113921A (en) Conversion arithmetic device
CN108593203A (en) Based on 8051 pressure sensor calibration algorithm
JP6286983B2 (en) Temperature correction method and temperature correction apparatus for received signal strength indicator
US10879920B2 (en) Device and method for absolute voltage measurement
US10761041B2 (en) Multi-parallel sensor array system
CN117110362A (en) Pipeline heat loss monitoring method, device, equipment and medium based on Internet of things
Mohebbi et al. A fourth-order compact difference scheme for the parabolic inverse problem with an overspecification at a point
KR100909660B1 (en) Error compensator of sensor measurement circuit and its method
Rusby et al. Considerations relating to type 1 and type 3 non-uniqueness in SPRT interpolations of the ITS-90
CN116183032A (en) Radiation temperature error correction method of high-temperature blackbody radiation source
Rabinovich Accuracy of single measurements
JP6418028B2 (en) Optical fiber temperature distribution measuring device
Yang et al. Modelling the calibration of the industrial platinum-resistance thermometers according to GUM
EP3309525B1 (en) Analog circuit for wide range sensor linearization optimal in uniform norm
JP2019168426A (en) Measurement object temperature calculation method
Danilov et al. Calibration of the measurement channels of measurement systems following graduation of the channels
RU2249798C2 (en) Method of measuring temperature by means of semiconductor temperature-sensitive resistor
Andrunyk et al. Continuous and smooth minimax spline-approximation of sensor temperature characteristic and its sensitivity