JP2007113850A - Object provided with surface having possibility of adherence of nonaqueous matter, treatment method for object surface, and treatment system for object - Google Patents

Object provided with surface having possibility of adherence of nonaqueous matter, treatment method for object surface, and treatment system for object Download PDF

Info

Publication number
JP2007113850A
JP2007113850A JP2005306151A JP2005306151A JP2007113850A JP 2007113850 A JP2007113850 A JP 2007113850A JP 2005306151 A JP2005306151 A JP 2005306151A JP 2005306151 A JP2005306151 A JP 2005306151A JP 2007113850 A JP2007113850 A JP 2007113850A
Authority
JP
Japan
Prior art keywords
substance
aqueous
clathrate hydrate
clathrate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306151A
Other languages
Japanese (ja)
Inventor
Shunji Ueda
俊司 植田
Kazuo Koda
和郎 幸田
Hiroyuki Ida
博之 井田
Naoyuki Furumoto
直行 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005306151A priority Critical patent/JP2007113850A/en
Publication of JP2007113850A publication Critical patent/JP2007113850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a nonaqueous matter from adhering on an object surface and to increase its sliding characteristic, and at the same time, to provide a rigid object with durability, more suited to an actual operating environment. <P>SOLUTION: A surface treatment film having affinity with a matter different from the nonaqueous matter is formed on a surface of the object having the possibility of adherence of the nonaqueous matter produced by heat exchange with a heat source of zero degrees or more, and placed in an environment having the matter different from the nonaqueous matter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、物体の表面に親水性表面処理を施しておくことにより、その表面への非水系物質の付着を困難にし、表面に付着した非水系物質を滑脱し易くする技術に関する。非水系物質の具体例は包接水和物やその他の包接化合物であるが、熱交換により生成するものに限られる。親水性表面処理の具体例は無機系親水性塗装膜の形成であり、無機系親水性塗装膜としてはガラス構造を備える無機系親水性塗装膜が好適である。   The present invention relates to a technique that makes it difficult to attach a non-aqueous substance to a surface of the object by applying a hydrophilic surface treatment to the surface of the object, thereby facilitating slipping of the non-aqueous substance attached to the surface. Specific examples of non-aqueous substances are clathrate hydrates and other clathrate compounds, but are limited to those produced by heat exchange. A specific example of the hydrophilic surface treatment is formation of an inorganic hydrophilic coating film, and an inorganic hydrophilic coating film having a glass structure is suitable as the inorganic hydrophilic coating film.

ここで、本発明との関連において又はその説明の文脈上、次に掲げる(鍵括弧内の)各用語の定義は以下に定める通りとする。
(1)「物体」とは、非水系物質の付着の防止又は包接化合物の滑脱性の増加が必要なすべての有形物をいい、具体的には、包接化合物の生成、搬送、収容その他の取扱いや作業の際にその包接化合物と接触し得る部分を備える一切のものがこれに該当し、より詳しくは、包接化合物を蓄熱媒体(熱搬送を目的として流動又は通流する蓄熱媒体を含む)として使用する熱エネルギー貯蔵システムや空調システムにおける配管、バルブ弁体、熱交換器、貯蔵槽、蓄熱容器、測定機器のセンサ収容部などがこれに該当し含まれる。
(2)「被膜」とは、物体の外面上に配置し、その外面を覆い包む膜をいう。
(3)「物体の表面」、「物体表面」又は物体の「表面」とは、物体の外面をいい、その外面に被膜が形成されている場合は、別段の説明がある場合を除き、その被膜の外面をいう。
(4)「塗料」とは、物体表面に塗布後、溶媒の溶媒の蒸発、化学反応などで表面上に薄い被膜をつくる液状物質をいう(岩波理化学辞典第4版)。
(5)「無機系塗料」とは、主原料を無機物とする塗料をいい、溶媒が水であるが非水であるかは問わないが、有機物系塗料、即ち有機物を主原料とする塗料とは区別される。
(6)「塗装膜」とは、塗装、即ち塗料の塗布と乾燥・硬化又は焼付けにより形成された被膜をいう。
(7)「無機系親水性塗装」とは、無機物系塗料を使用して物体表面に親水性の機能を与えるための塗装をいう。
(8)「無機系親水性塗装膜」とは、無機系親水性塗装により物体表面に形成された親水性を有する塗装膜をいう。
(9)「親水性表面処理」とは、物体表面に親水性の機能を与えるための処理をいい、無機系親水性塗装はこれに含まれる。
(10)「親水性表面処理膜」とは、親水性表面処理により物体表面に形成された親水性の機能を有する被膜をいい、無機系親水性塗装膜はこれに含まれる。
(11)「表面処理」とは、物体表面に何らかの機能を与えるための処理をいい、親水性表面処理はこれに含まれる。
(12)「表面処理膜」とは、表面処理により物体表面に形成された何らかの機能を有する被膜をいい、親水性表面処理膜はこれに含まれる。
(13)「包接化合物」とは、ホストまたはホスト物質と呼ばれる分子または化合物が構成するトンネル形、層状、網状、籠状などの構造(包接格子)内に、ゲスト物質と呼ばれる他の分子または物質が入り込む又は取り込まれることで形成され、生成する物質をいう。ホスト物質の例としては水やシクロデキストリン、特許文献7に開示された物質などの非水があり、特にホスト物質が水の包接化合物は「包接水和物」と呼ばれる。ゲスト物質の例としてはアルキルアンモニウム塩、アルキルホスホニウム塩、アルキルスルホニウム塩またはこれらの2種以上の混合物などがある。
Here, in the context of the present invention or in the context of the description thereof, the definitions of the following terms (in brackets) are as set forth below.
(1) “Object” refers to all tangible materials that require prevention of adhesion of non-aqueous substances or increase in slipping properties of clathrate compounds. Specifically, clathrate compounds are produced, transported, contained, etc. This includes any thing that has a part that can come into contact with the clathrate compound during handling or work, and more specifically, the clathrate compound is a heat storage medium (a heat storage medium that flows or flows for the purpose of heat transfer). This includes and includes pipes, valve valves, heat exchangers, storage tanks, heat storage containers, sensor housings of measuring instruments, etc. in thermal energy storage systems and air conditioning systems used as
(2) “Coating” refers to a film disposed on the outer surface of an object and covering the outer surface.
(3) “Object surface”, “Object surface” or “Surface” of an object refers to the outer surface of the object, and when a coating is formed on the outer surface, unless otherwise specified. The outer surface of the coating.
(4) “Paint” refers to a liquid substance that forms a thin film on the surface of the object after application to the surface of the object by evaporation of the solvent or chemical reaction (Iwanami Rikagaku Dictionary 4th Edition).
(5) “Inorganic paint” refers to a paint whose main raw material is inorganic, regardless of whether the solvent is water or non-water, but an organic paint, that is, a paint mainly containing an organic substance Are distinguished.
(6) “Coating film” refers to a film formed by painting, that is, coating and drying / curing or baking.
(7) “Inorganic hydrophilic coating” refers to coating for imparting a hydrophilic function to the surface of an object using an inorganic coating.
(8) “Inorganic hydrophilic coating film” means a hydrophilic coating film formed on the surface of an object by inorganic hydrophilic coating.
(9) “Hydrophilic surface treatment” refers to a treatment for imparting a hydrophilic function to an object surface, and includes inorganic hydrophilic coating.
(10) “Hydrophilic surface treatment film” refers to a film having a hydrophilic function formed on the surface of an object by hydrophilic surface treatment, and includes an inorganic hydrophilic coating film.
(11) “Surface treatment” refers to treatment for imparting some function to the surface of an object, and includes hydrophilic surface treatment.
(12) “Surface treatment film” refers to a film having some function formed on the surface of an object by surface treatment, and includes a hydrophilic surface treatment film.
(13) The “clathrate compound” is a molecule called a host or a host substance or other molecule called a guest substance in a tunnel-like, layer-like, network-like or cage-like structure (inclusion lattice) formed by the compound. Alternatively, it refers to a substance that is formed when a substance enters or is taken in. Examples of the host substance include water, cyclodextrin, and non-water such as the substance disclosed in Patent Document 7. In particular, a clathrate compound in which the host substance is water is called “clathrate hydrate”. Examples of guest materials include alkyl ammonium salts, alkyl phosphonium salts, alkyl sulfonium salts, or a mixture of two or more thereof.

アルキルアンモニウム塩、アルキルホスホニウム塩、アルキルスルホニウム塩の例としてはそれぞれ一般構造式(a)、(b)、(c)で表されるものがある。

Figure 2007113850
Figure 2007113850
Figure 2007113850
Examples of alkylammonium salts, alkylphosphonium salts, and alkylsulfonium salts include those represented by the general structural formulas (a), (b), and (c), respectively.
Figure 2007113850
Figure 2007113850
Figure 2007113850

上記一般構造式(a)、(b)、(c)において、R、R、R、Rは炭素数1〜5のアルキル基または水素を示し、その少なくとも一つはメチル基、エチル基、プロピル基、ブチル基、アミル基等のアルキル基である。また、Xは陰イオンを示し、例えば、フッ素イオン、塩素イオン、臭素イオン等のハロゲンイオンや、硝酸イオン、ヒドロキシルイオン等である。 In the general structural formulas (a), (b), and (c), R 1 , R 2 , R 3 , and R 4 represent an alkyl group having 1 to 5 carbon atoms or hydrogen, at least one of which is a methyl group, An alkyl group such as an ethyl group, a propyl group, a butyl group, or an amyl group. Further, X - represents an anion, for example, fluorine ions, chlorine ions, and halogen ions such as bromide ion, nitrate ion, a hydroxyl ion or the like.

メタンや二酸化炭素をゲスト物質として水分子の籠状構造の中に取り込んだガスハイドレートも包接化合物(特に包接水和物)である。   A gas hydrate in which methane or carbon dioxide is incorporated as a guest substance into a cage structure of water molecules is also an inclusion compound (especially an inclusion hydrate).

(14)「非水系物質」とは、水及び氷以外の物質をいい、水分子の関わり合いに着目すると、(ア)水分子を必須の構成成分とするものの水分子以外の成分も必須の構成成分とする物質(例えば包接水和物)と、(イ)包接水和物以外の包接化合物のような(ア)以外の物質に分類でき、熱交換による非水系物質の生成温度に着目すると、非水系物質は(ウ)水の凝固温度又は摂氏ゼロ度より高い温度の冷媒又は冷熱源との熱交換により生成する物質と、(エ)(ウ)以外の物質に分類できる。
(15)「非水系物質生成溶液」とは、熱交換により非水系物質を生成する物質を適当な溶媒に溶解した溶液をいう。この場合、非水系物質が包接化合物であるものを「包接化合物生成溶液」といい、非水系物質が包接水和物であるものを「包接水和物生成溶液」という。なお、非水系物質を生成する物質を溶解させる溶媒物質とその非水系物質とは異なる。より詳しくは、非水系物質生成溶液の溶媒物質は、非水系物質の構成分子である場合もあるが、非水系物質そのものではなく、包接化合物生成溶液の溶媒物質は包接化合物のホスト物質である場合もあるが、包接化合物そのものではない。「包接化合物生成溶液」及び「包接水和物生成溶液」の各用語は、各溶液の溶媒物質とホスト物質との異同を問わず定義される。
(16)非水系物質生成溶液における「過冷却」とは、非水系物質生成溶液中で非水系物質が生成する温度(以下「非水系物質生成温度」という。なお、非水系物質が包接化合物である場合には「包接化合物生成温度」といい、非水系物質が包接水和物である場合には「包接水和物生成温度」という)以下に冷却しても、非水系物質生成溶液中に非水系物質が直ちに生成しない現象又はその現象が起こっている非水系物質生成溶液の状態をいい、「過冷却度」とはその程度をいう。
(14) “Non-aqueous substances” refer to substances other than water and ice. Focusing on the relationship between water molecules, (a) water molecules are essential components but components other than water molecules are also essential. It can be divided into substances other than (a) such as inclusion substances (eg clathrate hydrates) and (a) clathrate compounds other than clathrate hydrates, and the production temperature of non-aqueous substances due to heat exchange In particular, non-aqueous substances can be classified into (c) a substance generated by heat exchange with a refrigerant or a cold heat source having a temperature higher than the solidification temperature of water or zero degrees Celsius, and a substance other than (d) (c).
(15) The “non-aqueous substance generation solution” refers to a solution in which a substance that generates a non-aqueous substance by heat exchange is dissolved in an appropriate solvent. In this case, a non-aqueous substance that is an clathrate compound is referred to as an “clathrate compound generation solution”, and a non-aqueous substance that is an clathrate hydrate is referred to as an “clathrate hydrate generation solution”. A solvent substance that dissolves a substance that generates a non-aqueous substance is different from the non-aqueous substance. More specifically, the solvent substance of the non-aqueous substance generation solution may be a constituent molecule of the non-aqueous substance, but not the non-aqueous substance itself, the solvent substance of the inclusion compound generation solution is the host substance of the inclusion compound. In some cases, it is not the inclusion compound itself. The terms “clathrate compound forming solution” and “clathrate hydrate forming solution” are defined regardless of the difference between the solvent substance and the host substance in each solution.
(16) “Supercooling” in the non-aqueous substance generating solution is a temperature at which the non-aqueous substance is generated in the non-aqueous substance generating solution (hereinafter referred to as “non-aqueous substance generating temperature”. Is called the “clathrate compound formation temperature”, and when the non-aqueous substance is clathrate hydrate, it is called “clathrate hydrate formation temperature”). A phenomenon in which a non-aqueous substance is not immediately generated in a product solution or a state of a non-aqueous substance production solution in which the phenomenon occurs, and “degree of supercooling” means the degree.

例えばホスト物質が水、ゲスト物質がアルキルアンモニウム塩の一種である臭化テトラn−ブチルアンモニウム((CNBr)(以下「TBAB」という)である包接化合物(包接水和物)は、水溶液中のTBABの質量濃度が6%のときは約4度、10%のときは約6.7度、20%のときは約9度(いずれも摂氏)が包接水和物生成温度であるが、各包接水和物生成温度以下に冷却しても、ある程度時間が経過しないとTBABの包接水和物が水溶液中に生成しないことがある。このような現象又はその現象が起こっている状態が、その水溶液における過冷却である。 For example, an inclusion compound (inclusion hydration) in which the host material is water and the guest material is tetra-n-butylammonium bromide ((C 4 H 9 ) 4 NBr) (hereinafter referred to as “TBAB”), which is a kind of alkylammonium salt Is about 4 degrees when the mass concentration of TBAB in the aqueous solution is 6%, about 6.7 degrees when the mass concentration is 10%, and about 9 degrees when the mass concentration is 20% (both in Celsius). Although it is a product formation temperature, even if it cools below each clathrate hydrate production temperature, if some time does not pass, the clathrate hydrate of TBAB may not be produced | generated in aqueous solution. Such a phenomenon or a state where the phenomenon occurs is supercooling in the aqueous solution.

(17)物質の「付着」とは、物質が物体表面に付いて離れないことをいう。例えば、包接化合物生成温度以下の物体表面と包接化合物生成溶液とが接触し、熱交換を行った結果生成した包接化合物が当該物体表面に付いたまま離れない状況が、これに該当する。
(18)物質の「付着性」とは、包接化合物その他の非水系物質が物体表面に付いて離れない性質若しくは付いたまま離れ難い性質、又は物体表面に非水系物質が付着する場合における、その付着の起こり易さ又はその起こり易さの程度をいう。非水系物質が物体表面から離脱後再付着する場合における、その再付着の起こり易さ又はその起こり易さの程度もこれに含まれる。非水系物質の付着性は物体表面における非水系物質の核生成の起こり易さ又はその起こり易さの程度とは無関係に定義される。
(19)物質の「付着の防止」又は「付着防止」とは、物体表面への物質の付着を抑制、回避又は防止することをいう。
(20)物質の「滑脱」とは、物体の表面に付着した物質が当該表面から滑り落ちる、剥げ落ちる、取り除かれるその他付着の状態から開放されることをいい、物質の「滑脱性」とは、物体の表面に付着した物質が当該表面から滑脱する性質若しくは付滑脱し易い性質、又は物体の表面に付着した物質が当該表面から滑脱する場合における、その滑脱の起こり易さ又はその起こり易さの程度をいう。包接化合物その他の非水系物質を滑脱し易くするとその非水系物質の付着量が減少する又は減少し易くなる、また非水系物質を滑脱し難くするとその非水系物質の付着量が増加する又は減少し易くなる、という定性的傾向がある。
(21)「強制力」、特に物体の表面に付着した物体の滑脱を促進する「強制力」とは、物体表面に付着した包接化合物の滑脱が起こり易くなるように作用する力をいう。強制力は(A)物質の滑脱を目的として人為的に作り出された力と、(B)(A)には該当しない力であって、直接的にではなく間接的に又は結果的に包接化合物の滑脱の効果を奏するものに分類できる。後者(B)については、(B−1)人為的に作り出された力に該当するものと(B−2)人為的に作り出された力には該当しないものに分けられる。たとえば、物体表面とそこに付着している非水系物質との間の滑脱を問題にしている場合、その非水系物質に働く重力は人為的に作り出された力ではないので(A)及び(B−1)には該当せず、しかも直接的に非水系物質の滑脱の効果を奏する力に相当するので(B−2)にも該当せず、よって強制力には当たらない。しかし、その非水系物質が自然の力により滑脱した後、物体表面の別の場所に付着していた別の非水系物質に衝突し、その際の衝撃により当該別の非水系物質が滑脱した場合は、その衝撃の力は(A)には該当しないが(B−2)に該当し、よって強制力に該当する。また、容器壁面を熱交換面として容器内の非水系物質生成溶液と容器外の冷媒との熱交換を行い、容器内で非水系物質を生成させる場合、容器内の容器壁面を掻き取ることで非水系物質を滑脱させるときの掻き取りの力(せん断力)や容器壁面を振動させて非水系物質の滑脱を促すときの振動の力は(A)に該当し、容器内で回転又は移動する非水系物質生成溶液(滑脱した非水系物質の粒子又はその粒子が非水系物質生成溶液に分散してスラリー化しているときはそのスラリーを含む)の粘性、容器壁面近傍で生じる乱流(容器壁面近傍で起こる乱流や表面の異形部分の下流で生じる乱流、液体の一時的な増量や減量により生じる乱流を含む)、滑脱後の非水系物質との衝突などにより容器壁面に付着又は生成若しくは成長した非水系物質の滑脱が起こるときの当該非水系物質に作用する力は(B−1)に該当する。
(22)「親水性」とは、「ある物質に関し、水との相互作用が大きく、親和性が大きい性質」(岩波理化学辞典第5版)をいう。被膜のぬれ性の程度(特に接触角)に従って又は光触媒効果などの特殊な性質を併せ持つことを理由にして「超親水性」という用語が定義される場合があるが、それも親水性に含まれる。
(23)「親水化」とは、親水性の機能を与える又は有するに至ることをいう。
(24)「熱源」とは、物質の生成に必要な熱エネルギーの供給源をいい、冷媒や冷熱源との熱交換により非水系物質や包接化合物が生成する場合、当該冷媒や冷熱源が、熱源に該当し含まれる。
(17) “Adhesion” of a substance means that the substance does not adhere to the object surface. For example, this is the case where an object surface at a temperature below the clathrate compound formation temperature is in contact with the clathrate compound formation solution and the clathrate compound produced as a result of heat exchange remains attached to the object surface. .
(18) “Adhesiveness” of a substance refers to a property in which an inclusion compound or other non-aqueous substance does not adhere to the surface of the object, or is difficult to leave, or a non-aqueous substance adheres to the object surface. It refers to the likelihood of the adhesion or the degree of the likelihood of the adhesion. In the case where the non-aqueous substance is reattached after being detached from the surface of the object, the ease of the reattachment or the degree of the ease of the reattachment is included. The adhesion of the non-aqueous material is defined regardless of the likelihood of the nucleation of the non-aqueous material on the surface of the object or the degree of the probability of the nucleation.
(19) “Preventing adhesion” or “preventing adhesion” of a substance refers to suppressing, avoiding or preventing the adhesion of the substance to the surface of an object.
(20) “Sliding” of a substance means that the substance attached to the surface of the object is released from the state of slipping, peeling off, or being removed from the surface, and “sliding” of the substance is The property that the substance attached to the surface of the object slips off from the surface, or the property that the substance attached to the surface of the object slips easily. Say degree. Inclusion compounds and other non-aqueous substances can be easily slipped off, and the amount of non-aqueous substances can be reduced or easily reduced. Also, non-aqueous substances can hardly be slipped off and the amount of non-aqueous substances can be increased or decreased. There is a qualitative tendency to make it easier.
(21) “Forced force”, particularly “forced force” that promotes slipping of an object attached to the surface of an object refers to a force acting so that the inclusion compound attached to the object surface is likely to slip. The forcing force is (A) a force created artificially for the purpose of slipping off the substance and (B) a force that does not fall under (A). It can be categorized as one that exhibits the effect of slipping off the compound. The latter (B) can be divided into (B-1) that corresponds to artificially generated force and (B-2) that does not correspond to artificially generated force. For example, when slipping between the surface of an object and a non-aqueous material attached thereto is a problem, since gravity acting on the non-aqueous material is not an artificially generated force (A) and (B It does not fall under -1) and directly corresponds to the force that exerts the effect of slipping off non-aqueous substances, so it does not fall under (B-2), and therefore does not fall under forcing. However, after the non-aqueous material slips off due to natural force, it collides with another non-aqueous material adhering to another place on the surface of the object, and the other non-aqueous material slips off due to the impact at that time Although the impact force does not correspond to (A), it corresponds to (B-2), and thus corresponds to the forcing force. In addition, when the non-aqueous material is generated in the container by exchanging heat between the non-aqueous material generating solution in the container and the refrigerant outside the container using the container wall as the heat exchange surface, the container wall in the container is scraped off. The scraping force (shearing force) when sliding off non-aqueous substances and the vibration force when urging the container wall surface to urge sliding off non-aqueous substances fall under (A) and rotate or move within the container. Viscosity of non-aqueous substance generation solution (including slipped non-aqueous substance particles or the slurry when the particles are dispersed and slurried in non-aqueous substance generation solution), turbulent flow generated near the container wall (container wall Adhered to or generated on the wall of the container due to collisions with non-aqueous substances after sliding, including turbulent flow that occurs in the vicinity, turbulent flow that occurs downstream of deformed parts of the surface, and turbulent flow that occurs due to temporary increase or decrease of liquid Or grown non-aqueous substances Force acting on the non-aqueous material when slipping occurs corresponds to (B-1).
(22) “Hydrophilic” refers to “a property of a substance having a large interaction with water and a high affinity” (Iwanami Dictionary of Physical and Chemical Dictionary, 5th edition). The term “superhydrophilic” may be defined according to the degree of wettability of the coating (especially the contact angle) or because it also has special properties such as a photocatalytic effect, which are also included in hydrophilicity. .
(23) “Hydrophilization” means giving or having a hydrophilic function.
(24) “Heat source” means a supply source of heat energy necessary for generating a substance. When a non-aqueous substance or an inclusion compound is generated by heat exchange with a refrigerant or a cold heat source, the refrigerant or the cold heat source is Included in the heat source.

物体表面における物質の付着防止を目的として、物体の表面に予め表面処理を施すことは常套手段の一つである。例えば、当該物質が氷の場合、物体表面に撥水性塗装膜を形成することで雪氷の付着を防止し(特許文献1)、物体表面に撥水性領域と親水性領域を形成することでファンデルワールス力の差を作り上げ、これにより表面の氷の滑脱を促進させている(特許文献2)。また、物体表面との熱交換により氷を製造する場合、熱交換面を撥水性の塗料で被膜し、熱交換面からの氷の滑脱を促進させている(特許文献3)。更に、熱交換器のフィンや伝熱管に親水化処理を施すことによりフィンや伝熱管の表面に付着する水滴の発生を防止している(特許文献4、特許文献8)。   For the purpose of preventing adhesion of substances on the surface of an object, it is one of the conventional means to perform surface treatment on the surface of the object in advance. For example, when the substance is ice, snow and ice are prevented from adhering by forming a water-repellent coating film on the object surface (Patent Document 1), and by forming a water-repellent region and a hydrophilic region on the object surface, van der The difference of the Waals force is made up, thereby promoting the slipping of the ice on the surface (Patent Document 2). Further, when ice is produced by heat exchange with the object surface, the heat exchange surface is coated with a water-repellent paint to promote slipping of ice from the heat exchange surface (Patent Document 3). Furthermore, the generation | occurrence | production of the water droplet adhering to the surface of a fin and a heat exchanger tube is prevented by performing the hydrophilic treatment to the fin and heat exchanger tube of a heat exchanger (patent document 4, patent document 8).

しかし、これらの従来技術は、いずれも、包接化合物その他の非水系物質の付着防止を目的として物体表面に表面処理を施すものではなく、摂氏零度以上の熱源との熱交換により生成する非水系物質の付着防止を目的として物体表面に表面処理を施すものではない。また、これらの従来技術はいずれも摂氏零度以上の熱源との熱交換により生成する非水系物質の付着防止を目的として物体表面に表面処理を施すものではく、かかる非水系物質の付着防止のために親水性被膜を物体表面、特に熱交換面に形成するものでもない。   However, none of these conventional techniques is used to treat the surface of an object for the purpose of preventing adhesion of inclusion compounds and other non-aqueous substances, but non-aqueous systems that are generated by heat exchange with a heat source of zero degrees Celsius or higher. The surface of the object is not subjected to surface treatment for the purpose of preventing adhesion of substances. In addition, none of these conventional techniques are used for surface treatment of the object surface for the purpose of preventing adhesion of non-aqueous substances generated by heat exchange with a heat source of zero degrees Celsius or higher. In addition, a hydrophilic film is not formed on the object surface, particularly on the heat exchange surface.

熱交換器を用いて包接化合物を製造し、これを蓄熱媒体として使用する場合、熱交換器の熱交換面、配管や蓄熱容器の内壁面、バルブ弁体表面や測定機器のセンサ収容部に包接化合物が付着し、閉塞の原因となり、時として熱抵抗となり、製造量の経時的変動を招来し、また安定的な製造の妨げの原因となる。このような包接化合物の付着に起因する問題は、包接化合物を蓄熱媒体として使用する場合に限らず、使用目的を問わず、包接化合物を製造する装置やシステムの運転、性能、稼動状況等の安定性や健全性を追求する現実的場面、例えば、包接化合物の特性を利用して混合ガスの濃縮分離を行う場合(特許文献5、特許文献6参照)のみならず、包接化合物の特性を利用する技術を実用化する場合、技術的障害として顕在化してくる。しかし、包接化合物の特性を利用する技術の実用化が余り進んでいないこともあってか、物体表面への包接化合物の付着を防止する技術については、従来、殆ど注目されおらず、研究も進んでいなかった。   When a clathrate compound is produced using a heat exchanger and used as a heat storage medium, the heat exchange surface of the heat exchanger, the inner wall surface of the piping or heat storage container, the valve valve body surface, or the sensor housing of the measuring device The clathrate compound adheres, causing clogging, sometimes resulting in thermal resistance, causing fluctuations in production over time, and hindering stable production. Problems caused by the inclusion of such clathrate compounds are not limited to the case where clathrate compounds are used as a heat storage medium, regardless of the purpose of use, and the operation, performance, and operating status of the devices and systems that produce clathrate compounds. For example, when a gas mixture is concentrated and separated by utilizing the characteristics of the clathrate compound (see Patent Literature 5 and Patent Literature 6), the clathrate compound When a technology that utilizes the characteristics of the above is put into practical use, it becomes manifest as a technical obstacle. However, the technology that prevents the inclusion of the clathrate compound on the surface of the object has not received much attention in the past because of the fact that the technology that utilizes the characteristics of the clathrate compound has not been put into practical use. Was not progressing.

物体表面に包接化合物その他の非水系物質が付着し、これが何らかの技術的障害となる場合、非水系物質を除去する必要に迫られる。そしてその非水系物質を除去する際には、それが付着している物体表面に強制力を働かせる場合がある。例えば、物体表面に付着した非水系物質をハケやブラシで掻き取る、ハンマーで打撃して機械的衝撃を与える、超音波振動子を作動させて機械的振動を与えるといった場合がこれに該当する。しかし、付着物の除去を目的として強制力を意図的に働かせるまでもなく、物体が現実に使用される環境の下では、その物体には何らかの強制力が働く場合が多い。それ故、物体表面に表面処理を施すことで被膜を形成し、これにより非水系物質の付着を防止しようとする場合には、その被膜は強制力に抗するだけの強度や耐久性が必要になる。強度や耐久性が十分でない被膜を表面に形成した場合、その物体の用途は自ずと狭くなる。   When an inclusion compound or other non-aqueous substance adheres to the surface of the object and this becomes a technical obstacle, it is necessary to remove the non-aqueous substance. When removing the non-aqueous material, a forcing force may be applied to the surface of the object to which it is attached. For example, this applies to a case where non-aqueous substances attached to the surface of an object are scraped with a brush or brush, a mechanical impact is applied by hitting with a hammer, or a mechanical vibration is applied by operating an ultrasonic vibrator. However, it is not necessary to intentionally apply a forcing force for the purpose of removing deposits, and there are many cases where a certain forcing force acts on the object in an environment where the object is actually used. Therefore, when a coating is formed by applying a surface treatment to the surface of an object, thereby preventing the adhesion of non-aqueous substances, the coating must be strong and durable enough to resist forcing. Become. When a film with insufficient strength and durability is formed on the surface, the application of the object is naturally narrow.

本発明は、以上の点に鑑みてなされたものであり、水分子が存在する環境に置かれ、摂氏零度以上の熱源との熱交換により生成する非水系物質や熱源との熱交換により生成する包接化合物が付着する可能性がある物体表面を親水化することにより、これらの物質の当該物体表面への付着防止を実現する技術及びその効果を長期間にわたり維持したまま当該物体を広い用途で使用することを可能にする技術を提供することを目的とする。   The present invention has been made in view of the above points, and is generated by heat exchange with a non-aqueous substance or heat source that is placed in an environment where water molecules exist and is generated by heat exchange with a heat source of zero degrees Celsius or higher. By making the surface of the object on which the inclusion compound may adhere hydrophilic, it is possible to prevent the adhesion of these substances to the surface of the object, and to maintain the effect over a long period of time, and use the object for a wide range of purposes. It aims at providing the technology which enables it to be used.

特に、本発明は、包接化合物の特性を利用する技術分野、例えば空調分野や蓄熱分野において、熱交換により包接化合物を製造する装置及びシステムを構成する熱交換器の熱交換面、配管や蓄熱容器の内壁面、バルブ弁体表面や測定機器のセンサ収容部など、包接化合物が付着し得る物体表面への当該包接化合物の付着を防止し、当該装置及びシステムの運転、性能、稼動状況等の安定性や健全性を向上させることができ、また維持できる技術を提供することを目的とする。   In particular, the present invention relates to a heat exchange surface, a pipe, and a heat exchanger of a heat exchanger constituting an apparatus and system for producing a clathrate compound by heat exchange in a technical field utilizing the characteristics of the clathrate compound, for example, an air conditioning field or a heat storage field. Prevents the inclusion compound from adhering to the surface of the object where the inclusion compound can adhere, such as the inner wall surface of the heat storage container, the valve valve surface, and the sensor housing of the measuring device, and the operation, performance, and operation of the device and system The purpose is to provide technology that can improve and maintain the stability and soundness of the situation.

特開2000−26844号公報JP 2000-26844 A 特開2002−88347号公報JP 2002-88347 A 特開昭62−500043号公報JP 62-500043 A 特開平1−249863号公報JP-A-1-249863 特願2004−308355号Japanese Patent Application No. 2004-308355 特願2005−016863号Japanese Patent Application No. 2005-016863 特開2005−36197号公報JP 2005-36197 A 特開平10−253195号公報JP-A-10-253195

本発明に係る物体の第1の態様は、摂氏零度以上の熱源との熱交換により生成する非水系物質が付着する可能性があり、非水系物質と異なる物質が存在する環境に置かれ、その非水系物質と異なる物質との親和性を有する表面処理膜が形成されている表面を備えるものである。本発明に係る物体の第2の態様は、熱源との熱交換により生成する包接化合物が付着する可能性があり、前記包接化合物と異なる物質が存在する環境に置かれ、その包接化合物と異なる物質と親和性を有する表面処理膜が形成されている表面を備えるものである。本発明に係る物体の第3の態様は、同物体の第1又は第2の態様において、表面処理膜が無機系親水性塗装膜であるものである。本発明に係る物体の第4の態様は、同物体の第3の態様において、無機系親水性塗装膜がガラス構造を備える無機系親水性塗装膜であるものである。この無機系親水性塗装膜は、ホウ素イオンを含有するガラス構造を備えるものであることが望ましい。本発明に係る物体の第5の態様は、同物体の第3又は第4の態様において、物体の表面に付着した非水系物質の滑脱を促進する強制力が作用する環境に設置されるものである。   In the first aspect of the object according to the present invention, there is a possibility that a non-aqueous substance generated by heat exchange with a heat source of zero degrees Celsius or higher may adhere, and the object is placed in an environment where a substance different from the non-aqueous substance exists, It has a surface on which a surface treatment film having affinity for a non-aqueous substance and a different substance is formed. In the second aspect of the object according to the present invention, there is a possibility that an inclusion compound produced by heat exchange with a heat source adheres, and the inclusion compound is placed in an environment where a substance different from the inclusion compound exists, and the inclusion compound. And a surface on which a surface treatment film having an affinity with a different substance is formed. According to a third aspect of the object of the present invention, in the first or second aspect of the object, the surface treatment film is an inorganic hydrophilic coating film. According to a fourth aspect of the object of the present invention, in the third aspect of the object, the inorganic hydrophilic coating film is an inorganic hydrophilic coating film having a glass structure. The inorganic hydrophilic coating film preferably has a glass structure containing boron ions. According to a fifth aspect of the object of the present invention, in the third or fourth aspect of the object, the object is installed in an environment in which a forcing force that promotes slipping of the non-aqueous substance attached to the surface of the object acts. is there.

本発明に係る物体表面の処理方法の第1の態様は、摂氏零度以上の熱源との熱交換により生成する非水系物質が付着する可能性があり、前記非水系物質とは異なる物質が存在する環境に置かれる物体の表面に、前記非水系物質と異なる物質との親和性を与える表面処理を予め施しておくものである。本発明に係る同処理方法の第2の態様は、熱源との熱交換により生成する包接化合物質が付着する可能性があり、前記包接化合物と異なる物質が存在する環境に置かれる物体の表面に、前記包接化合物とは異なる物質との親和性を与える表面処理を予め施しておくものである。本発明に係る同処理方法の第3の態様は、同処理方法の第1又は第2の態様において、表面処理が無機系親水性塗装であるものである。本発明に係る同処理方法の第4の態様は、同処理方法の第3の態様において、無機系親水性塗装により形成される被膜がガラス構造を備える無機系親水性塗装膜であるものである。この無機系親水性塗装膜は、ホウ素イオンを含有するガラス構造を備えるものであることが望ましい。本発明に係る同処理方法の第5の態様は、同処理方法の第3又は第4の態様において、物体が、その表面に付着した非水系物質の滑脱を促進する強制力が作用する環境に設置されるものである。   In the first aspect of the object surface treatment method according to the present invention, there is a possibility that a non-aqueous substance generated by heat exchange with a heat source of zero degrees Celsius or higher may adhere, and there is a substance different from the non-aqueous substance. The surface of an object placed in the environment is subjected in advance to a surface treatment that gives an affinity between the non-aqueous substance and a different substance. In the second aspect of the processing method according to the present invention, there is a possibility that a clathrate compound produced by heat exchange with a heat source may adhere, and an object placed in an environment where a substance different from the clathrate compound exists. A surface treatment for giving affinity to a substance different from the inclusion compound is applied to the surface in advance. A third aspect of the processing method according to the present invention is the first or second aspect of the processing method, wherein the surface treatment is an inorganic hydrophilic coating. According to a fourth aspect of the processing method of the present invention, in the third aspect of the processing method, the coating formed by the inorganic hydrophilic coating is an inorganic hydrophilic coating film having a glass structure. . The inorganic hydrophilic coating film preferably has a glass structure containing boron ions. According to a fifth aspect of the processing method of the present invention, in the third or fourth aspect of the processing method, the object acts in an environment in which a forcing force that promotes slipping of the non-aqueous substance attached to the surface acts. It will be installed.

本発明に係る物体の処理システムは、本発明に係る物体のうち第1乃至第4いずれかの態様のものと、その物体の表面に付着した包接化合物の滑脱を促進するように作用する強制力を発生させる強制力発生手段とを備えるものである。この処理システムにより、本発明に係る物体及び物体表面の処理方法の各第5の態様のものが実現される。   The object processing system according to the present invention is a compulsory that acts to promote slipping of the inclusion compound attached to the surface of the object according to any one of the first to fourth aspects of the object according to the present invention. Forcing force generating means for generating force. With this processing system, the fifth aspect of the object and object surface processing method according to the present invention is realized.

本発明によれば、水分子が存在する環境に置かれる物体の表面に親水性表面処理膜を形成することで、摂氏零度以上の熱源との熱交換により生成する非水系物質や熱源との熱交換により生成する包接化合物の付着防止や滑脱性の向上の効果を得ることができる。特に親水性表面処理膜を無機系親水性塗装膜とすると、より高い強度と耐久性を有する被膜になるので、かかる効果を維持したまま広い用途で当該物体を使用することができる。また、無機系親水性塗装膜がガラス構造を備える場合には、強度と耐久性がより高くなる。   According to the present invention, by forming a hydrophilic surface treatment film on the surface of an object placed in an environment where water molecules exist, heat with a non-aqueous substance or heat source generated by heat exchange with a heat source of zero degrees Celsius or more is obtained. The effect of preventing adhesion of clathrate compounds produced by exchange and improving slipperiness can be obtained. In particular, when the hydrophilic surface-treated film is an inorganic hydrophilic coating film, it becomes a film having higher strength and durability, so that the object can be used in a wide range of applications while maintaining such effects. Further, when the inorganic hydrophilic coating film has a glass structure, the strength and durability are further increased.

物体の表面に付着した包接化合物その他の非水系物質の滑脱を促進する強制力が作用する場合には、物体表面に付着した非水系物質の滑脱が促進され再付着も阻止されるので、非水系物質の付着防止の効果が高まり、滑脱性も向上する。この場合、物体表面に強制力が作用するので被膜の強度と耐久性に懸念が生じてくる。しかし、無機系親水性塗装膜、特にガラス構造を備える被膜であればかかる懸念は払拭される。   When a forcible force that promotes the slipping of clathrate compounds and other non-aqueous substances attached to the surface of the object acts, the slipping of the non-aqueous substances attached to the object surface is promoted and reattachment is prevented. The effect of preventing the adhesion of water-based substances is enhanced, and the slipperiness is also improved. In this case, since a forcing force acts on the surface of the object, there are concerns about the strength and durability of the coating. However, such a concern is eliminated if it is an inorganic hydrophilic coating film, particularly a film having a glass structure.

以下に、本発明に係る実施例を説明する。物体表面に施す親水性表面処理としては、例えば、(あ)アルカリ金属シリケートにホウ酸塩を添加し、無機充填材として微細な鱗片状の透明シリカを混合した組成物(特開2005−15728号参照)、(い)アルカリ金属シリケートに、珪酸カルシウム又は燐酸亜鉛を添加し、無機充填材としてコレマナイトやウレキサイトを主成分とした天然ガラスを微細な鱗片状として混合した組成物(特開平6−329949号、特開平6−329950号等参照)を塗料とする無機系親水性塗装が好適である。(あ)(い)のいずれの組成物も、更に微量物質が配合されることがある。   Examples according to the present invention will be described below. Examples of the hydrophilic surface treatment applied to the surface of the object include, for example, a composition obtained by adding borate to (a) alkali metal silicate and mixing fine scaly transparent silica as an inorganic filler (Japanese Patent Laid-Open No. 2005-15728). And (ii) a composition in which calcium silicate or zinc phosphate is added to an alkali metal silicate, and natural glass mainly composed of colemanite or urexite as an inorganic filler is mixed in the form of fine scales (Japanese Patent Laid-Open No. 6-329949). No. 6, JP-A-6-329950, etc.) and an inorganic hydrophilic coating is preferred. In any of the compositions (a) and (ii), trace substances may be further blended.

ここでは、(い)の組成物を水に均一分散させた塗料を使用し、これを物体表面に塗装して親水性表面処理膜を形成した。かくして出来上がる物体表面の断面を図1に模式的に示す。この図において、物体1の材質は、塗装膜形成が可能、特に塗料の焼付け温度に晒されても実害が生じないもの、例えばステンレス鋼、アルミニウム、銅等の無機材料の中から選択できる。親水性表面処理膜2は無機系親水性塗装膜、特にホウ酸イオンを含むガラス構造を有する塗装膜であり、一般に有機物系塗料に比べて焼付け温度が高く、非常に強度が高い。鉛筆硬度試験(JIS・K7125準拠)によれば「9H」以上であり、耐摩耗試験(JIS・K7125参照)によれば「擦り傷が認められない」程度である。なお、揮発性溶媒ではなく非揮発性の水を溶媒とする塗料を採用したのは、一般に、揮発性溶媒を使用すると塗料の焼付け時に急激に溶媒が揮発し、揮発物質が膜構造の緻密さ、延いては塗装膜の強度や耐久性が相対的に低下する傾向があるためである。   Here, a paint in which the composition (ii) was uniformly dispersed in water was used, and this was applied to the object surface to form a hydrophilic surface treatment film. A cross section of the surface of the object thus obtained is schematically shown in FIG. In this figure, the material of the object 1 can be selected from inorganic materials such as those capable of forming a coating film and not causing any actual damage even when exposed to the baking temperature of the paint, such as stainless steel, aluminum, and copper. The hydrophilic surface treatment film 2 is an inorganic hydrophilic coating film, particularly a coating film having a glass structure containing borate ions, and generally has a higher baking temperature and a very high strength as compared with organic coatings. According to the pencil hardness test (conforming to JIS / K7125), it is “9H” or more, and according to the abrasion resistance test (see JIS / K7125), it is about “no scratches are recognized”. Note that paints that use non-volatile water as a solvent instead of volatile solvents are generally used when a volatile solvent is used. This is because the strength and durability of the coating film tend to be relatively lowered.

非水系物質としては包接化合物、特に包接水和物を使用し、非水系物質生成溶液としては包接化合物生成溶液、特に包接水和物生成溶液を使用した。この包接水和物生成溶液は、ホスト物質及びゲスト物質をそれぞれ水及びTBABとするTBAB10重量%水溶液とした。既述の通り、この包接水和物生成溶液は、摂氏零度以上の包接水和物生成温度を有する。それ故、摂氏零度以上の熱源との熱交換により非水系物質を生成する非水系物質生成溶液に該当する。   An inclusion compound, particularly an inclusion hydrate, was used as the non-aqueous substance, and an inclusion compound formation solution, particularly an inclusion hydrate formation solution, was used as the non-aqueous substance formation solution. This clathrate hydrate forming solution was a TBAB 10 wt% aqueous solution in which the host material and the guest material were water and TBAB, respectively. As described above, this clathrate hydrate formation solution has a clathrate hydrate formation temperature of zero degrees Celsius or higher. Therefore, it corresponds to a non-aqueous substance production solution that produces a non-aqueous substance by heat exchange with a heat source of zero degrees Celsius or higher.

(包接水和物生成溶液のぬれ性簡易実験)
一辺50センチメートル、厚さ5ミリメートルのアルミニウム平板の一面に上記(い)の組成物を水に均一分散させた塗料を30ミクロンメートルの厚さで塗布し、焼き付けることで無機系親水性塗装膜を形成した。この無機系親水性塗装膜を形成した平板を平台座に設置し、その平板に対し、同じ高さから同量の蒸留水及び包接水和物生成溶液をそれぞれ鉛直方向から滴下し、平板上に拡がった液滴の面積及び最小幅を計測した。その結果、包接水和物生成溶液は蒸留水と同程度又は水を上回る面積であることが分かった。最小幅を基準にすると、包接水和物生成溶液は蒸留水の1.1〜1.2倍であった。因みに、この結果は、TBAB水溶液の濃度を4〜30重量%の範囲(包接水和物を蓄熱媒体として現実に使用しようとする場合に設定される包接水和物生成溶液の濃度範囲)で変動させても大差はなかった。それ故、上記の無機系親水性塗装膜に対し、包接水和物生成溶液は水と同程度又は水を上回る親和性を有するといえる。
(Simple wetting test of clathrate hydrate formation solution)
An inorganic hydrophilic coating film is applied by coating a surface of an aluminum flat plate with a side of 50 centimeters and a thickness of 5 millimeters in which the above composition (i) is uniformly dispersed in water at a thickness of 30 microns and baking. Formed. A flat plate on which this inorganic hydrophilic coating film was formed was placed on a flat pedestal, and the same amount of distilled water and clathrate hydrate forming solution were dropped from the same height from the same height onto the flat plate. The area and the minimum width of the droplets that spread out were measured. As a result, it was found that the clathrate hydrate forming solution had an area equivalent to or larger than distilled water. Based on the minimum width, the clathrate hydrate forming solution was 1.1 to 1.2 times distilled water. By the way, this result shows that the concentration of the TBAB aqueous solution is in the range of 4 to 30% by weight (the concentration range of the clathrate hydrate production solution set when the clathrate hydrate is actually used as a heat storage medium). There was no big difference even if it was changed. Therefore, it can be said that the clathrate hydrate forming solution has the same degree of affinity as or higher than water for the inorganic hydrophilic coating film.

(溶媒のぬれ性簡易実験)
一辺50センチメートル、厚さ5ミリメートルのアルミニウム平板を一組用意し、一方の平板の一面に上記(い)の組成物を水に均一分散させた塗料を30ミクロンメートルの厚さで塗布し、焼き付けることで無機系親水性塗装膜を形成した。他方の平板は対照用であり塗装膜を形成することなく無垢のままとした。次に、無機系親水性塗装膜を形成した平板と対照用平板に対し、同じ高さから同量のメタノール、エタノール、アセトン、ベンゼンをそれぞれ鉛直方向から滴下し、各平板上に拡がった液滴の面積及び最小幅を計測した。その結果、いずれの有機溶媒であっても、塗装膜を形成した平板上に形成された液滴の面積は対照用平板上に形成されたそれを上回ることが分かった。最小幅を基準にすると、メタノール及びエタノールでは1.8倍以上、アセトンでは1.3〜1.4倍、ベンゼンでは1.2〜1.3倍であった。それ故、上記の無機系親水性塗装膜は、水のみに親和性(親水性)を有するのではなく、メタノール、エタノール、アセトン、ベンゼンといった典型的な有機溶剤にも親和性を有するといえる。
(Solvent wettability simple experiment)
A set of aluminum flat plates each having a side of 50 centimeters and a thickness of 5 millimeters was prepared, and a paint in which the above composition (i) was uniformly dispersed in water was applied to one surface of one flat plate at a thickness of 30 microns. An inorganic hydrophilic coating film was formed by baking. The other flat plate was used as a control and was left solid without forming a paint film. Next, the same amount of methanol, ethanol, acetone, and benzene was dropped from the same height from the same height onto the flat plate on which the inorganic hydrophilic coating film was formed and the control flat plate, and the droplets spread on each flat plate. The area and minimum width were measured. As a result, it was found that the area of the droplet formed on the flat plate on which the coating film was formed was larger than that formed on the control flat plate with any organic solvent. Based on the minimum width, it was 1.8 times or more for methanol and ethanol, 1.3 to 1.4 times for acetone, and 1.2 to 1.3 times for benzene. Therefore, it can be said that the above-mentioned inorganic hydrophilic coating film does not have affinity (hydrophilicity) only for water but also has affinity for typical organic solvents such as methanol, ethanol, acetone, and benzene.

(非水系物質とは異なる物質の滴下実験)
一辺50センチメートル、厚さ5ミリメートルのアルミニウム平板を一組用意し、一方の平板の一面に上記(い)の組成物を水に均一分散させた塗料を30ミクロンメートルの厚さで塗布し、焼き付けることで無機系親水性塗装膜を形成した。他方の平板は対照用であり、底面に塗装膜を形成することなく無垢のままとした。無機系親水性塗装膜を形成した平板と対照用平板を水平台座に設置し、同一の高さから同量の包接水和物生成溶液を鉛直方向から滴下して冷凍庫に入れ、両平板上に包接水和物を形成した。その後、水平台座に設置し、一定の高さから同量の包接水和物生成溶液を少しずつ鉛直方向から滴下し、包接水和物の剥離の進捗を調べた。その結果、無機系親水性塗装膜を形成した平板の方が、付着した包接水和物がより早期に、また一度により多くの包接水和物が塊となって滑脱した。
(Drip experiment of substances different from non-aqueous substances)
A set of aluminum flat plates each having a side of 50 centimeters and a thickness of 5 millimeters was prepared, and a paint in which the above composition (i) was uniformly dispersed in water was applied to one surface of one flat plate at a thickness of 30 microns. An inorganic hydrophilic coating film was formed by baking. The other flat plate was used for control, and was left solid without forming a coating film on the bottom surface. A flat plate with an inorganic hydrophilic coating film and a flat plate for control are placed on a horizontal pedestal, and the same amount of clathrate hydrate formation solution is dropped from the same height from the vertical direction into the freezer. Clathrate hydrate was formed. Then, it installed in the horizontal base, the same amount clathrate hydrate production | generation solution was dripped little by little from the perpendicular direction from fixed height, and the progress of peeling of clathrate hydrate was investigated. As a result, the clathrate hydrate adhered earlier on the flat plate on which the inorganic hydrophilic coating film was formed, and more clathrate hydrates slipped as a lump at a time.

上記の滴下実験において、包接水和物生成溶液を滴下するのではなく、蒸留水、メタノール、エタノール、アセトン、ベンゼンといた被膜に親和性を有する物質を滴下しても結果は同様であった。   In the above drop experiment, the result was the same even when a clathrate hydrate formation solution was not dropped but a substance having affinity for distilled water, methanol, ethanol, acetone, and benzene was dropped. .

(滑脱せん断力試験)
いずれも厚さ0.8mmのステンレス鋼板(SUS304)及びアルミニウム板(市販品)を用意し、そこから切り出した基板表面に上記(い)の組成物を水に均一分散させた塗料を30〜40ミクロンメートル程度の厚さで塗布し焼き付ける。これにより形成された塗装膜の上に包接水和物生成溶液の液滴を垂らして直径約30mm程度の液の集合体(液溜り)とし、冷却して包接水和物の固体状の塊とする(以下、この固体状の塊を「固塊」といい、包接水和物生成溶液を冷却して包接水和物の固塊を作り出すことを、包接水和物生成溶液の「固塊化」という)。この固塊を表面に備える基板を冷却環境から取り出し、衝撃を与えることなくゆっくり傾けてゆくと、幾つかの基板から固塊が自重により滑脱した。また、包接水和物生成溶液の液滴を固塊(特にその固塊の外縁にある基板表面との境目)に垂らすとすべての基板の表面上で固塊の一部又は全部が滑脱した。
(Sliding shear test)
In each case, a stainless steel plate (SUS304) and an aluminum plate (commercially available) with a thickness of 0.8 mm are prepared, and a coating obtained by uniformly dispersing the composition (ii) in water on the substrate surface cut out from the plate is 30 to 40. Apply and bake at a thickness of about a micrometer. A droplet of clathrate hydrate forming solution is dropped on the coating film formed in this way to form a liquid aggregate (liquid reservoir) having a diameter of about 30 mm, and cooled to form a solid form of clathrate hydrate. (Hereinafter, this solid mass is called “solid mass” and the clathrate hydrate forming solution is cooled to produce the clathrate hydrate solid mass. Called "solidification"). When the substrate having the solid mass on the surface was taken out of the cooling environment and slowly tilted without giving an impact, the solid mass slipped out of several substrates by its own weight. In addition, when a droplet of the clathrate hydrate forming solution is dropped on a solid mass (particularly at the boundary with the substrate surface at the outer edge of the solid mass), part or all of the solid mass slipped on the surface of all the substrates. .

また、上記のステンレス鋼板及びアルミニウム板から1辺100mmの正方形平板を試験片として切り出し、一組の試験片をもって塗装膜形成用と対照用とし、その組を相当数用意する。上記(い)の組成物を水に均一分散させた塗料を30〜40ミクロンメートル程度の厚さで塗装膜形成用試験片に塗布し焼き付ける。次に水道用硬質塩化ビニル管(外径38mm程度、内径31mmの市販品)から円筒環を切り出し、その円筒環の両端面を水平面上に置いたとき隙間ができないように平滑に研磨するとともに、高さを同一に揃えておく。また、同じ高さの位置にステンレスワイヤ9(後述)の端部が係合可能な部材13(後述)を取り付けておく。次に無機系親水性塗装膜が形成された試験片(以下「塗装膜試験片」という)と対照用試験片を水平面上に配置し、各表面の中央に円筒環を配置する。このとき、円筒環の端面が試験片(塗装膜試験片の場合は塗装膜が形成されている側)の表面に対向し密着するように円筒環を配置し、且つ、試験片と円筒環とが離隔しないように圧力を掛けながら、同一量の包接水和物生成溶液を円筒環内に流し込み、塗装膜試験片と対照用試験片の組を冷却温度、冷却速度、過冷却度その他の冷却条件を同一にして冷却し、また冷却条件を変えて別の試験片の組を同様に冷却し、円筒環内の包接水和物生成溶液を試験片表面上で冷却し、固塊化する。   Further, a square flat plate having a side of 100 mm is cut out as a test piece from the above stainless steel plate and aluminum plate, and a set of test pieces is used for coating film formation and for comparison, and a considerable number of sets are prepared. A paint in which the above composition (ii) is uniformly dispersed in water is applied to a test piece for forming a coating film at a thickness of about 30 to 40 μm and baked. Next, the cylindrical ring is cut out from a hard polyvinyl chloride pipe for water supply (commercially available product having an outer diameter of about 38 mm and an inner diameter of 31 mm), and polished smoothly so that there is no gap when both ends of the cylindrical ring are placed on a horizontal plane, Keep the height the same. Further, a member 13 (described later) with which an end of a stainless steel wire 9 (described later) can be engaged is attached at the same height. Next, a test piece (hereinafter referred to as “coating film test piece”) on which an inorganic hydrophilic coating film is formed and a control test piece are arranged on a horizontal plane, and a cylindrical ring is arranged at the center of each surface. At this time, the cylindrical ring is arranged so that the end face of the cylindrical ring faces and closely contacts the surface of the test piece (in the case of the coated film test piece, the side on which the coated film is formed), and the test piece and the cylindrical ring Pour the same amount of clathrate hydrate formation solution into the cylindrical ring while applying pressure so as not to separate the coating film test piece and the control test piece as the cooling temperature, cooling rate, supercooling degree, etc. Cool with the same cooling conditions, or change the cooling conditions to cool another set of test pieces in the same way, cool the clathrate hydrate formation solution in the cylindrical ring on the test piece surface, and solidify To do.

引き続き、図2に示す試験装置を用いて、塗装膜試験片31と対照用試験片32の組について滑脱せん断力(試験片に付着した包接水和物を滑脱させるのに必要なせん断力)を測定した。この試験装置は、試験片3(31、32)を水平に載荷する水平台座4、試験片3を固定し、その水平方向の移動を阻害する固定治具5、6、試験片3上の円筒環11の上端部極近傍に非接触且つ水平に配置し、円筒環11の垂直方向の移動を阻害する上部制限部材7、上部制限部材7を水平に支える垂直台座8、試験片3上の円筒環11の部材13との係合により、これに水平方向の引張力を印加するステンレスワイヤ9、ステンレスワイヤ9の水平移動をプーリ101、102で支持する水平支持台座10を備える。上部制限部材7の垂直方向の位置は座標調整手段(図示せず)により調整可能であり、プーリ101、102の垂直方向の位置、従ってステンレスワイヤ9の垂直方向の位置も別の座標調整手段(図示せず)により調整可能である。この装置に試験片3を設置しステンレスワイヤ9用いて、試験片3の表面と平行な方向Hへ一定速度で引っ張り、部材13とは反対側のワイヤ9の端部に接続するロードセル(図示せず)で荷重変化を読み取る。試験片3上の円筒環11の内部には試験片3の表面に固塊の包接水和物12が存在するが、ワイヤ9で円筒環11を引っ張るとある一定の張力に至ったときにその固塊が試験片3の表面から滑脱する。この滑脱の際にロードセルで読み取った最大の荷重を滑脱せん断力とする。なお、この試験装置により滑脱せん断力を測定する際には、試験片を冷却雰囲気から取り出した後、速やかに水平台座に設置し、試験片と円筒環とが離隔しないように印加していた圧力を解除し、その測定を行う。   Subsequently, by using the test apparatus shown in FIG. 2, a sliding shear force (shearing force necessary for sliding the clathrate hydrate attached to the test piece) with respect to the set of the coating film test piece 31 and the control test piece 32. Was measured. This test apparatus includes a horizontal pedestal 4 for horizontally loading the test piece 3 (31, 32), a fixing jig 5 and 6 for fixing the test piece 3 and hindering its horizontal movement, and a cylinder on the test piece 3. An upper limiting member 7 that is arranged in a non-contact and horizontal manner in the vicinity of the pole at the upper end of the ring 11 and obstructs the vertical movement of the cylindrical ring 11, a vertical base 8 that horizontally supports the upper limiting member 7, and a cylinder on the test piece 3 A stainless steel wire 9 that applies a tensile force in the horizontal direction to the member 13 of the ring 11 and a horizontal support base 10 that supports horizontal movement of the stainless steel wire 9 by pulleys 101 and 102 are provided. The vertical position of the upper restricting member 7 can be adjusted by a coordinate adjusting means (not shown), and the vertical position of the pulleys 101 and 102, and hence the vertical position of the stainless steel wire 9, is also another coordinate adjusting means ( (Not shown) can be adjusted. A load cell (not shown) connected to the end of the wire 9 opposite to the member 13 by installing the test piece 3 in this apparatus and pulling it at a constant speed in the direction H parallel to the surface of the test piece 3 using the stainless steel wire 9. Read the load change. A solid inclusion clathrate hydrate 12 exists on the surface of the test piece 3 inside the cylindrical ring 11 on the test piece 3. When the cylindrical ring 11 is pulled with the wire 9, a certain tension is reached. The solid mass slips off from the surface of the test piece 3. The maximum load read by the load cell at the time of sliding is defined as the sliding shear force. When measuring the sliding shear force with this test device, after removing the test piece from the cooling atmosphere, immediately install it on the horizontal pedestal and apply the pressure so that the test piece and the cylindrical ring are not separated from each other. And cancel the measurement.

塗装膜試験片と対照用試験片の組について滑脱せん断力を測定し、各組において測定値の比を計算し、取りまとめたものが図3である。冷却条件を3通り設定し、各冷却条件について6点測定し、最大値及び最小値を除いた残り4点で評価した結果、無機系親水性塗装膜が形成されていた方が形成されていない場合に比べ、滑脱せん断力が平均50%(最大63%、最小30%)減少することが分かった。6点から除いた最大値及び最小値は、いずれも1.0未満であった。   FIG. 3 shows the results obtained by measuring the sliding shear force of the set of the coating film test piece and the control test piece and calculating the ratio of the measured values in each set. Three cooling conditions were set, 6 points were measured for each cooling condition, and the remaining 4 points excluding the maximum and minimum values were evaluated. As a result, the inorganic hydrophilic coating film was not formed. It was found that the sliding shear force was reduced by 50% (maximum 63%, minimum 30%) on average. The maximum value and the minimum value excluding 6 points were both less than 1.0.

なお、図2に示す試験装置を用いて滑脱せん断力を測定する際に試験片と円筒環とが離隔しないように印加していた圧力を解除すると、試験片の水平方向の極僅かな加速(又は慣性力)により、約32%の塗装膜試験片において、表面に付着していたはずの包接化合物が円筒環とともに初期の設置位置から滑脱した。このことからも、塗装膜試験片に形成された無機系親水性塗装膜による包接水和物の滑脱性は相当に高く、包接水和物の付着の防止又は抑制の効果が著しいことが分かる。   When the pressure applied so that the test piece and the cylindrical ring are not separated when the sliding shear force is measured using the test apparatus shown in FIG. 2, the test piece is slightly accelerated in the horizontal direction ( Or about 32% of the coating film test piece, the clathrate compound that should have adhered to the surface slipped from the initial installation position together with the cylindrical ring. Also from this, the slipping property of clathrate hydrate by the inorganic hydrophilic coating film formed on the coating film test piece is considerably high, and the effect of preventing or suppressing the clathrate hydrate adhesion is remarkable. I understand.

冷却条件を一定にし、同一の塗装膜試験片(SUS304)と対照用試験片の組に対して6点測定を行い、最大値及び最小値を除いた残り4点で行う評価を10回繰り返し、滑脱せん断力の比を計算して取りまとめたものが図4である。この図から、滑脱せん断力が0.45〜0.50のとき発生頻度が最多、平均では0.48となり、滑脱せん断力の50%超の減少が確認できる。   With the cooling conditions fixed, 6 point measurements were performed on the same coating film test piece (SUS304) and control test piece set, and the evaluation performed on the remaining 4 points excluding the maximum and minimum values was repeated 10 times. FIG. 4 shows a summary of the ratio of the sliding shear force. From this figure, when the sliding shear force is 0.45 to 0.50, the frequency of occurrence is the highest, and the average is 0.48, and a decrease of more than 50% in the sliding shear force can be confirmed.

次に、強制力が作用する環境における包接水和物の付着性と滑脱性の実験及びその結果をについて説明する。   Next, a description will be given of an experiment on the adhesion and sliding properties of clathrate hydrate in an environment in which a forcing force acts and the results thereof.

(攪拌旋回試験)
図5に示す攪拌装置を用いて、攪拌手段の旋回により直接又は間接的に働く強制力の効果について検討した。この攪拌装置は、冷媒入出口161、162を備える容器16とその内側に配置する容器17で構成され、両容器の間の空間(少なくとも両容器の底面間の空間)に目標温度(摂氏零度)に調節した冷媒が通流し、容器17に収容されている包接水和物生成溶液が、容器17の壁面を熱交換面として冷媒により冷却され、容器17の底面に平行な回転面を有する2枚の攪拌翼18により攪拌される。攪拌翼18は、容器16外部のモータ19と回転軸20を介して接続し、容器17の底面に非接触な近接した位置(当該底面から1mmから数mmだけ離隔した位置)で回転する。モータ19は回転速度、回転トルクが可変であり、回転軸20は、容器16の上蓋21の中央付近を貫通するように配置している。上蓋21には透明板張りののぞき窓(図示せず)が付いている。容器16、17及び攪拌翼18はステンレス鋼製であり、容器16、17の底面は観察者の顔が不鮮明に映る程度の略鏡面状とする。
(Agitation swirl test)
Using the stirrer shown in FIG. 5, the effect of the forcing force that acts directly or indirectly by the turning of the stirring means was examined. This stirrer is composed of a container 16 having refrigerant inlets and outlets 161 and 162 and a container 17 disposed on the inside thereof, and a target temperature (zero degrees Celsius) is set in a space between both containers (at least a space between the bottom surfaces of both containers). The clathrate hydrate forming solution contained in the container 17 is cooled by the refrigerant with the wall surface of the container 17 as a heat exchange surface, and has a rotating surface parallel to the bottom surface of the container 17. Stirring is performed by a single stirring blade 18. The stirring blade 18 is connected to a motor 19 outside the container 16 via a rotary shaft 20 and rotates at a position close to the bottom surface of the container 17 that is not in contact (a position separated from the bottom surface by 1 mm to several mm). The rotational speed and rotational torque of the motor 19 are variable, and the rotational shaft 20 is disposed so as to penetrate near the center of the upper lid 21 of the container 16. The upper lid 21 is provided with a transparent plate-lined observation window (not shown). The containers 16 and 17 and the stirring blade 18 are made of stainless steel, and the bottom surfaces of the containers 16 and 17 have a substantially mirror-like shape so that the face of the observer appears unclear.

冷却対象を包接水和物生成溶液とし、同一寸法、同一材質の容器17(171、172)を一組用意し、一方の容器171の底面に、上記(い)の組成物を水に均一分散させた塗料を30ミクロンメートルの厚さで塗布し、焼き付けることで無機系親水性塗装膜を形成した。他方の容器は対照用であり、底面に塗装膜を形成することなく無垢のままとした。まず、対照用容器172に包接化合物生成溶液を入れ、容器16内に設置し、攪拌翼18を容器17内に設置し、翼18の高速回転による攪拌を開始するとともに冷媒の通流を開始した。暫くすると攪拌翼18の旋回音に混じって異音が突発的に発生し始めた。容器17内の包接水和物生成溶液は徐々に白濁し、包接水和物粒子の発生と増加が確認され、スラリー状態になった。回転停止前に攪拌を停止し、速やかに上蓋21を外し、容器17から包接水和物粒子と残余の包接水和物生成溶液を取り除き、底部を観察したところ、容器17の底面に広く包接水和物が群状に形成され、後述の容器171の場合よりも厚みがあった。長時間攪拌し続けた場合には容器17の底部に同心円状の擦疵(図示せず)が確認された。攪拌翼18は容器17の底部と非接触に回転していたので、攪拌翼18の回転面と容器17の底面との間に巻き込まれた包接水和物(当該底面に発生した包接水和物及び沖合の包接水和物生成溶液の中で発生、成長した包接水和物を含む)が擦疵の原因と考えられる。   A clathrate hydrate forming solution is used as the object to be cooled, and a set of containers 17 (171, 172) of the same size and the same material is prepared. The dispersed paint was applied at a thickness of 30 μm and baked to form an inorganic hydrophilic coating film. The other container was for control purposes and was left solid without forming a paint film on the bottom. First, the clathrate generation solution is placed in the control container 172, placed in the container 16, the stirring blade 18 is placed in the container 17, and stirring by the high-speed rotation of the blade 18 is started and refrigerant flow is started. did. After a while, abnormal noise suddenly started to be mixed with the turning sound of the stirring blade 18. The clathrate hydrate formation solution in the container 17 gradually became cloudy, and the generation and increase of clathrate hydrate particles were confirmed, and a slurry state was obtained. Stirring is stopped before the rotation is stopped, the upper lid 21 is quickly removed, the clathrate hydrate particles and the remaining clathrate hydrate forming solution are removed from the container 17, and the bottom is observed. The clathrate hydrate was formed in a group and was thicker than the case of the container 171 described later. When stirring was continued for a long time, concentric rubbing (not shown) was confirmed at the bottom of the container 17. Since the stirring blade 18 was rotating in a non-contact manner with the bottom of the container 17, clathrate hydrate caught between the rotating surface of the stirring blade 18 and the bottom surface of the container 17 (inclusion water generated on the bottom surface). It is considered that the cause of scuffing is the inclusion and growth of clathrate hydrate generated and grown in Japanese and offshore clathrate hydrate formation solutions.

次に、容器171に同種、同量の包接水和物生成溶液を入れ、容器16内に設置し、攪拌翼18を容器17内に設置し、高速攪拌を開始するとともに、容器172の場合と同一の冷却条件になるように冷媒の通流を開始した。暫くすると攪拌翼18の旋回音に混じって異音が突発的に発生し始めたが、容器172の場合に比べるとその発音頻度又は音量は遥かに小さかった。容器172の場合と同様に、冷却過程で容器17内の包接水和物生成溶液は徐々に白濁し、包接水和物粒子の発生と増加が確認された。攪拌停止後、速やかに上蓋21を外し、容器17から包接水和物粒子と残余の包接水和物生成溶液を取り除き、容器17の底面を観察したところ、殆どの場合、全く包接水和物が形成されていないか、底面の局所に包接水和物が群状に形成される程度であり、後者の場合であっても、容器172の場合よりは包接水和物の付着量は遥かに少なかった。長時間攪拌し続けても容器17の底部に擦疵は確認できなかった。   Next, the same kind and the same amount of clathrate hydrate forming solution is put in the container 171 and installed in the container 16, the stirring blade 18 is installed in the container 17, high-speed stirring is started, and in the case of the container 172 The refrigerant flow was started to achieve the same cooling conditions. After a while, abnormal noise suddenly started to be mixed with the turning sound of the stirring blade 18, but the sounding frequency or volume was much lower than that of the container 172. As in the case of the container 172, the clathrate hydrate formation solution in the container 17 gradually became cloudy during the cooling process, and the generation and increase of clathrate hydrate particles were confirmed. After the stirring is stopped, the upper lid 21 is immediately removed, the clathrate hydrate particles and the remaining clathrate hydrate forming solution are removed from the container 17, and the bottom surface of the container 17 is observed. The Japanese hydrate is not formed or the clathrate hydrate is formed in a group form locally on the bottom surface. Even in the latter case, the clathrate hydrate adheres more than in the case of the container 172. The amount was much less. Even if stirring was continued for a long time, no rubbing could be confirmed at the bottom of the container 17.

なお、翼18の旋回を停止した後容器17の底部を観察する際、容器17から包接水和物粒子と残余の包接水和物生成溶液を取り除く作業中、振動や加速度を極力与えないように容器17を取り扱っても底部に付着していた包接水和物粒子のうちかなりの量が滑脱してしまった。包接水和物粒子の自重による滑脱と考えられる。   In addition, when observing the bottom of the container 17 after the rotation of the blade 18 is stopped, vibration and acceleration are not applied as much as possible during the operation of removing the clathrate hydrate particles and the remaining clathrate hydrate forming solution from the container 17. Thus, even when the container 17 was handled, a considerable amount of the clathrate hydrate particles adhering to the bottom part slipped off. It is thought that the clathrate hydrate particles slip off due to their own weight.

図5に示す装置において容器17の底面に付着した包接水和物の滑脱を可能にした強制力は、主として上記(B)の強制力、より詳しくは攪拌翼18の回転面と容器17の底面との間に巻き込まれた包接水和物生成溶液や包接水和物(当該底面に発生した包接水和物及び沖合の包接水和物生成溶液の中で発生、成長した包接水和物を含む)によるせん断力や衝撃力であると推察できる。その場合、当該強制力の発生手段は、狭義には攪拌翼18であり、より広義には翼18、モータ19及び回転軸20である。   In the apparatus shown in FIG. 5, the forcing force that allows the clathrate hydrate attached to the bottom surface of the container 17 to slide off is mainly the forcing force of the above (B), more specifically, the rotating surface of the stirring blade 18 and the container 17. Clathrate hydrate formation solution or clathrate hydrate entrained between the bottom and the clathrate hydrate generated or grown in the clathrate hydrate generated on the bottom and offshore clathrate hydrate formation solution It can be inferred that this is a shearing force or impact force due to contact with the hydrate. In this case, the means for generating the forcing force is the stirring blade 18 in a narrow sense, and the blade 18, the motor 19, and the rotating shaft 20 in a broader sense.

(掻出旋回試験)
図6に示す掻出装置を用いて、掻出手段の旋回により直接又は間接的に働く強制力の効果について検討した。この掻出装置は、図5に示す攪拌装置と基本的に同じ構成なので、図6において図5と同じ部分または相当する若しくは共通する部分には図5のそれと同じ符号を付し、一部の説明を省略する。他方、図6において特有なものは、掻出翼22であり、これは図5に示す攪拌翼18の先端略全域にわたりアクリル樹脂部材221を固着したものに相当する。このアクリル樹脂部材221は、容器17の底面と一定の圧力をもって接触する。このため容器16外部のモータ19と回転軸20を介して接続する掻出翼22が回転すると、容器17の底面はアクリル樹脂部材221により掻き出されるような摩擦を受け、容器17の底面に付着した包接水和物と当該底面との間には両者を離隔させるようなせん断力、即ちその包接水和物を滑脱させる強制力(主として上記(A)の強制力)が生じる。言うまでもなく、当該強制力の発生手段は、掻出翼22、特にその先端のアクリル樹脂部材221であり、広義には翼22、モータ19及び回転軸20である。
(Scraping turning test)
Using the scraping device shown in FIG. 6, the effect of a forcing force that works directly or indirectly by turning of the scraping means was examined. Since this scraping device has basically the same configuration as the stirring device shown in FIG. 5, the same reference numerals as those in FIG. 5 are assigned to the same parts in FIG. Description is omitted. On the other hand, what is unique in FIG. 6 is a scraping blade 22, which corresponds to a structure in which an acrylic resin member 221 is fixed over substantially the entire tip of the stirring blade 18 shown in FIG. 5. The acrylic resin member 221 contacts the bottom surface of the container 17 with a certain pressure. For this reason, when the scraping blade 22 connected to the motor 19 outside the container 16 via the rotating shaft 20 rotates, the bottom surface of the container 17 receives friction that is scraped by the acrylic resin member 221 and adheres to the bottom surface of the container 17. A shearing force that separates the clathrate hydrate and the bottom surface, that is, a forcing force (mainly the forcing force (A) described above) causing the clathrate hydrate to slide off is generated. Needless to say, the means for generating the forcing force is the scraping blade 22, particularly the acrylic resin member 221 at the tip thereof, and the blade 22, the motor 19, and the rotating shaft 20 in a broad sense.

冷却対象を包接水和物生成溶液とし、同一寸法、同一材質の容器17(171、172)を一組用意し、一方の容器171の底面に、上記(い)の組成物を水に均一分散させた塗料を30ミクロンメートルの厚さで塗布し、焼き付けることで無機系親水性塗装膜を形成した。他方の容器は対照用であり、底面に塗装膜を形成することなく無垢のままとした。まず、対照用容器172に包接水和物生成溶液を入れ、容器16内に設置し、掻出翼22を容器17内に設置し、掻き出しを開始するとともに冷媒の通流を開始した。翼22の回転は、攪拌翼18の場合に比べて低速で、高トルクとした。暫くすると掻出翼22の旋回音(アクリル樹脂部材221と容器17の底面との摩擦音を含む)に混じって異音が突発的に発生し始め、時間の経過とともに音量が増加し、発音も継続的になった。掻き出しの過程で容器17内の包接水和物生成溶液は徐々に白濁し、包接水和物粒子の発生と増加が確認され、スラリー状態になった。掻き出し停止後、速やかに上蓋21を外し、容器17から包接水和物粒子と残余の包接水和物生成溶液を取り除き、底部を観察したところ、容器17の底部に包接水和物が群状に形成されていた。長時間掻き出しを行った殆どの場合、容器17の底部に同心円状又は同心円弧状の擦疵(図示せず)が確認された。この擦疵は、攪拌翼18による場合よりは遥かに早く発生した。容器17の底部表面に生成した包接水和物粒子や沖合の包接水和合物生成溶液の中で発生し成長した大きめの包接水和物粒子が巻き込まれ、これに掻出翼22による強制力が加わったのが擦疵の原因であると考えられる。   A clathrate hydrate forming solution is used as the object to be cooled, and a set of containers 17 (171, 172) of the same size and the same material is prepared. The dispersed paint was applied at a thickness of 30 μm and baked to form an inorganic hydrophilic coating film. The other container was for control purposes and was left solid without forming a paint film on the bottom. First, the clathrate hydrate production solution was placed in the control container 172, placed in the container 16, the raking blade 22 was placed in the container 17, and scraping was started and the refrigerant flow was started. The blades 22 were rotated at a lower speed and higher torque than the case of the stirring blades 18. After a while, an unusual noise begins to occur suddenly mixed with the swirling sound of the scraping blade 22 (including the friction sound between the acrylic resin member 221 and the bottom surface of the container 17), the volume increases with time, and the sound continues. It became. During the scraping process, the clathrate hydrate forming solution in the container 17 gradually became cloudy, and the generation and increase of clathrate hydrate particles were confirmed, and a slurry state was obtained. After the scraping is stopped, the upper lid 21 is quickly removed, the clathrate hydrate particles and the remaining clathrate hydrate forming solution are removed from the container 17, and the bottom is observed. As a result, the clathrate hydrate is found at the bottom of the container 17. It was formed in groups. In most cases of scraping for a long time, a concentric or concentric arc-shaped rubbing (not shown) was confirmed at the bottom of the container 17. This rubbing occurred much earlier than with the stirring blade 18. The clathrate hydrate particles generated on the bottom surface of the container 17 and the large clathrate hydrate particles generated and grown in the offshore clathrate hydrate formation solution are entrained by the scraping blade 22. It is thought that it was the cause of the abrasion that the forcing force was added.

次に、容器171に同種、同量の包接水和物生成溶液を入れ、容器16内に設置し、掻出翼22を容器17内に設置し、攪拌を開始するとともに、容器172の場合と同一の冷却条件になるように冷媒の通流を開始した。掻出翼22の旋回音に混じって異音が発生する頻度はかなり低く、発生した場合であっても容器172の場合に比べるとその音量は遥かに小さかった。しかし、容器172の場合と同様に、冷却過程で容器17内の包接水和物生成溶液は徐々に白濁し、包接水和物粒子の発生と増加が確認された。掻出停止後、速やかに上蓋21を外し、容器17から包接水和物粒子と残余の包接水和物生成溶液を取り除き、底部を観察したところ、全く包接水和物が形成されていなかった。長時間攪拌し続けても容器17の底部に擦疵は確認できなかった。   Next, the same kind and the same amount of clathrate hydrate forming solution is put in the container 171, installed in the container 16, the raking blade 22 is installed in the container 17, stirring is started, and in the case of the container 172 The refrigerant flow was started to achieve the same cooling conditions. The frequency of occurrence of abnormal noise mixed with the swirling sound of the scraping blade 22 is considerably low, and even when it occurs, the volume is much lower than in the case of the container 172. However, as in the case of the container 172, the clathrate hydrate forming solution in the container 17 gradually became cloudy during the cooling process, and generation and increase of clathrate hydrate particles were confirmed. After the scraping is stopped, the upper lid 21 is quickly removed, the clathrate hydrate particles and the remaining clathrate hydrate forming solution are removed from the container 17, and the bottom is observed. As a result, clathrate hydrate is completely formed. There wasn't. Even if stirring was continued for a long time, no rubbing could be confirmed at the bottom of the container 17.

なお、翼22の旋回を停止した後容器17の底部を観察する際、容器17から包接水和物粒子と残余の包接水和物生成溶液を取り除く作業中、振動や加速度を極力与えないように容器17を取り扱っても底部に付着していた包接水和物粒子のうちかなりの量が滑脱してしまった。包接水和物粒子の自重による滑脱と考えられる。   In addition, when observing the bottom of the container 17 after the rotation of the blades 22 is stopped, vibration and acceleration are not applied as much as possible during the operation of removing the clathrate hydrate particles and the remaining clathrate hydrate forming solution from the container 17. Thus, even when the container 17 was handled, a considerable amount of the clathrate hydrate particles adhering to the bottom part slipped off. It is thought that the clathrate hydrate particles slip off due to their own weight.

(試験結果のまとめ)
以上により、次のことが分かる。
(A)無機系親水性塗装膜を形成した物体表面が、その塗装膜と親和性を有する水や有機溶剤が存在する環境に置かれていれば、包接水和物の滑脱性が増加し、包接水和物の付着性が防止される。換言すれば、熱源との熱交換により生成する非水系物質が付着する可能性がある物体表面が水、有機溶剤その他非水系物質とは異なる物質が存在する環境に置かれる場合、その物体表面に、水、有機溶剤その他非水系物質とは異なる物質との親和性を有する表面処理膜を形成しておけば非水系物質の付着を防止することができることを意味している。また、より具体的には、包接水和物を製造する熱交換器、包接化合物のスラリーを搬送する管路、包接水和物を貯蔵する槽等の壁面といった「包接水和物生成溶液やその溶媒と接触する環境に置かれ、熱交換により生成した包接水和物が付着する可能性があり、そのような付着を防止すべき物体表面」の処理方法として、無機系親水性塗装膜の形成が有効であるといえる。
(B)無機系親水性塗装膜の形成により、包接水和物の滑脱性が増加し、包接水和物の付着性が抑制又は防止されるとともに、包接水和物生成溶液のせん断力、包接水和物粒子の衝突に起因する衝撃力、アクリル樹脂部材との接触に起因するせん断力、摩擦力その他の応力、即ち強制力が作用しても容器17底部の強度と耐久性が確保される。
(Summary of test results)
From the above, the following can be understood.
(A) If the surface of an object on which an inorganic hydrophilic coating film is formed is placed in an environment where water or an organic solvent having an affinity for the coating film is present, the slipping property of clathrate hydrate increases. Adhesion of clathrate hydrate is prevented. In other words, when the surface of an object on which a non-aqueous substance generated by heat exchange with a heat source may adhere is placed in an environment where water, an organic solvent, or other substances different from the non-aqueous substance exist, This means that if a surface treatment film having an affinity with water, an organic solvent or other substances different from non-aqueous substances is formed, adhesion of non-aqueous substances can be prevented. More specifically, a clathrate hydrate such as a heat exchanger for producing a clathrate hydrate, a pipe line for transporting the clathrate slurry, a wall surface of a tank for storing the clathrate hydrate, etc. There is a possibility that clathrate hydrates generated by heat exchange will be deposited in an environment that comes into contact with the product solution or its solvent. It can be said that the formation of a conductive coating film is effective.
(B) By the formation of the inorganic hydrophilic coating film, the slipping property of the clathrate hydrate is increased, the adhesion of the clathrate hydrate is suppressed or prevented, and the clathrate hydrate forming solution is sheared. Even if force, impact force resulting from clathrate hydrate particle collision, shear force resulting from contact with acrylic resin member, frictional force or other stress, that is, forced force, strength and durability at the bottom of container 17 Is secured.

なお、上記の結果は、熱源との熱交換により生成する非水系物質について当て嵌まり、従って、熱交換により生成する包接化合物についても当て嵌まることは言うまでもない。また、上記の結果は、摂氏零度以上の熱源との熱交換により生成する非水系物質については新しい知見である。   In addition, it is needless to say that the above result is applied to the non-aqueous substance generated by heat exchange with the heat source, and accordingly, the clathrate compound generated by heat exchange is also applied. The above results are new findings regarding non-aqueous substances produced by heat exchange with a heat source of zero degrees Celsius or higher.

(試験結果の適用例)
図7は、包接水和物の製造装置の要部に係る熱交換ドラム及び掻き羽根部分を示す前半身切り欠き斜視図である。この熱交換ドラムは、吊り部材(図示せず)により槽(図示せず)内に吊り下げられ、槽内の包接水和物生成溶液を冷却することで包接水和物の粒又はスラリーを製造する機能を有し、円筒形のドラム717と、ドラム717の中心に設置され、モータ719(図示せず)により回転駆動する回転軸720と、回転軸720に取り付けられた旋回羽根状部材718と、ドラム717を構成する周面材料に設けられた多数の冷媒管路760を備える。冷媒管路760を通流する冷媒は摂氏零度で冷媒往管761(図示せず)から管路760に入り、冷媒還管762(図示せず)から管路760外に出る。それ故内表面717Sは摂氏零度以上の温度に冷却され、ドラム717の内側に存在する包接水和物生成溶液が冷却され、包接水和物が生成する。かかる熱交換により生成した包接水和物は、内表面717Sに付着し、そこに堆積する。鉛直に設定された回転軸720は上下2つのカップリング730により遊嵌され、カップリング730とこのカップリング730から延びる支持杆740によって回転軸720とドラム717との相対距離が一定に保たれる。旋回羽根状部材718はドラムの内表面717Sと僅かなクリアランスをもって回転軸720を中心に周回し、これによりドラムの内表面717Sに付着している包接水和物を掻き剥がし、その内表面717Sから沖合の溶液中に向かって離隔させ、溶液中に浮遊させる。
(Application example of test results)
FIG. 7 is a front half-cutaway perspective view showing a heat exchange drum and scraper blades according to the main part of the clathrate hydrate production apparatus. The heat exchange drum is suspended in a tank (not shown) by a suspension member (not shown), and the clathrate hydrate particles or slurry are cooled by cooling the clathrate hydrate forming solution in the tank. A cylindrical drum 717, a rotary shaft 720 installed at the center of the drum 717 and driven to rotate by a motor 719 (not shown), and a swirling blade-like member attached to the rotary shaft 720 718 and a large number of refrigerant pipes 760 provided on the peripheral surface material constituting the drum 717. The refrigerant flowing through the refrigerant pipe 760 enters the pipe 760 from the refrigerant forward pipe 761 (not shown) at zero degrees Celsius, and goes out of the pipe 760 from the refrigerant return pipe 762 (not shown). Therefore, the inner surface 717S is cooled to a temperature of zero degrees Celsius or higher, and the clathrate hydrate forming solution existing inside the drum 717 is cooled, and clathrate hydrate is generated. The clathrate hydrate produced by such heat exchange adheres to the inner surface 717S and accumulates there. The vertically set rotating shaft 720 is loosely fitted by two upper and lower couplings 730, and the relative distance between the rotating shaft 720 and the drum 717 is kept constant by the coupling 730 and the support rod 740 extending from the coupling 730. . The swirling blade-like member 718 orbits around the rotating shaft 720 with a slight clearance from the inner surface 717S of the drum, thereby scraping off the clathrate hydrate adhering to the inner surface 717S of the drum, and its inner surface 717S. Separate from the water to the offshore solution and float in the solution.

ここで、内表面717Sに予め親水性表面処理膜、望ましくは無機系親水性塗装膜であってガラス構造を備えるもの(更に望ましくはホウ酸イオンを含有するガラス構造を備えるもの)を形成しておくと、内表面717Sからの包接水和物の滑脱性が向上し、旋回羽根状部材718による掻き剥がしが容易になると同時に、内表面717Sの強度と耐久性が向上する。それ故、長時間安定的に包接水和物を製造することが可能になる。   Here, a hydrophilic surface treatment film, desirably an inorganic hydrophilic coating film, having a glass structure (more desirably having a glass structure containing borate ions) is formed on the inner surface 717S in advance. This improves the slipping property of the clathrate hydrate from the inner surface 717S, facilitates the scraping by the swirling blade-like member 718, and improves the strength and durability of the inner surface 717S. Therefore, it becomes possible to produce clathrate hydrate stably for a long time.

なお、ドラム717及びその内表面717Sが容器17及びその底面に対応し、冷媒管路760及びそこを通流する冷媒が容器16と容器17との間の空間(特に容器17の底面の領域)及びそこを通流する冷媒、回転軸720が回転軸20、旋回羽根状部材718が攪拌翼18(狭義の強制力発生手段)にそれぞれ対応する。また、ドラム717の内表面717Sに予め親水性表面処理膜、望ましくは無機系親水性塗装膜であってガラス構造を備えるもの(更に望ましくはホウ酸イオンを含有するガラス構造を備えるもの)、又はそれらを組み込んだ各構造物が本発明に係る物体に相当し、ドラム内表面717Sにかかる親水性表面処理膜を形成しておくことが本発明に係る物体表面の処理方法に相当する。更に、図7に示す包接水和物の製造装置であって、ドラム717の内表面717Sにかかる親水性表面処理膜を備えるもの、又はそれを組み込むことで予定される機能を発揮する設備、施設、仕組み等が本発明に係る物体の処理システムに相当する。   Note that the drum 717 and its inner surface 717S correspond to the container 17 and its bottom surface, and the refrigerant pipe 760 and the space through which the refrigerant flows are between the container 16 and the container 17 (particularly in the region of the bottom surface of the container 17). The rotating shaft 720 corresponds to the rotating shaft 20, and the swirling blade-shaped member 718 corresponds to the stirring blade 18 (forced force generating means in a narrow sense). Further, the inner surface 717S of the drum 717 has a hydrophilic surface treatment film, preferably an inorganic hydrophilic coating film, which has a glass structure (more preferably a glass structure containing borate ions), or Each structure incorporating them corresponds to an object according to the present invention, and forming a hydrophilic surface treatment film on the drum inner surface 717S corresponds to the object surface treatment method according to the present invention. Furthermore, the clathrate hydrate production apparatus shown in FIG. 7 is provided with a hydrophilic surface treatment film applied to the inner surface 717S of the drum 717, or a facility that exhibits a function planned by incorporating it. Facilities, mechanisms, and the like correspond to the object processing system according to the present invention.

図8及び図9は、包接水和物の製造装置の概略構成及び縦断面をそれぞれ示す図である。この製造装置は、包接水和物生成溶液を冷却して固塊化させ、包接水和物の固塊を含有する溶液又はその固塊のスラリーを製造する装置であり、包接水和物生成溶液を通流させる内管817と、その溶液を摂氏零度(又はそれ以上の制御された温度)に冷却する冷却媒体を通流させる外管816と、内管817に内装され、内管の内面817Sと弾性的に接触する刃先831を備えるブレード830を複数個持った回転体820と、回転体820を回転軸821の周りで駆動するモータ819を備える。冷却媒体により内管の内面817Sが冷却されるので、その近傍の包接水和物生成溶液が冷却され、包接水和物が生成する。かかる熱交換により生成した包接水和物は内管の内面817Sに付着し、そこに堆積する。回転体820は、ブレード830と、内管817の半径方向に沿ったブレード830の移動を可能にするブレードガイド870と、ブレードガイド870の内部に装填され、各ブレード830が備える刃先831が内管の内面817Sに常時均一の押圧力で接触するよう付勢するスプリング880とを備えるので、回転軸821の軸心が内管817に対し偏心してもブレード830が常時、安定して、内管の内面817Sに付着している包接水和物を掻取ることができる。   8 and 9 are diagrams showing a schematic configuration and a longitudinal section of the clathrate hydrate production apparatus, respectively. This production apparatus is an apparatus for producing a solution containing a solid mass of clathrate hydrate or a slurry of the solid mass by cooling the clathrate hydrate production solution to solidify it. An inner pipe 817 through which the product-generating solution flows, an outer pipe 816 through which a cooling medium for cooling the solution to zero degrees Celsius (or a controlled temperature higher), and an inner pipe 817 are provided. A rotating body 820 having a plurality of blades 830 each having a cutting edge 831 that elastically contacts the inner surface 817S of the inner surface 817S, and a motor 819 that drives the rotating body 820 around the rotation shaft 821. Since the inner surface 817S of the inner tube is cooled by the cooling medium, the clathrate hydrate producing solution in the vicinity thereof is cooled, and clathrate hydrate is produced. The clathrate hydrate generated by such heat exchange adheres to the inner surface 817S of the inner tube and accumulates there. The rotating body 820 is loaded into the blade 830, a blade guide 870 that enables movement of the blade 830 along the radial direction of the inner tube 817, and the blade guide 870, and the blade tip 831 included in each blade 830 includes an inner tube. Since the spring 880 that urges the inner surface 817S to contact with the inner surface 817S at all times with a uniform pressing force is provided, even if the axis of the rotary shaft 821 is eccentric with respect to the inner tube 817, the blade 830 is always stable, The clathrate hydrate adhering to the inner surface 817S can be scraped off.

ここで、内管の内面817Sに予め親水性表面処理膜、望ましくは無機系親水性塗装膜であってガラス構造を備えるもの(更に望ましくはホウ酸イオンを含有するガラス構造を備えるもの)を形成しておくと、内面817Sからの包接水和物の滑脱性が向上し、ブレード830による掻取りが容易になると同時に、内面817Sの強度と耐久性が向上する。それ故、長時間安定的に包接水和物を製造することが可能になる。   Here, a hydrophilic surface treatment film, preferably an inorganic hydrophilic coating film, having a glass structure (more preferably having a glass structure containing borate ions) is formed in advance on the inner surface 817S of the inner tube. As a result, the slipping property of the clathrate hydrate from the inner surface 817S is improved, the scraping by the blade 830 is facilitated, and the strength and durability of the inner surface 817S are improved. Therefore, it becomes possible to produce clathrate hydrate stably for a long time.

なお、回転体820の回転軸821が回転軸22に対応し、外管816、内管817及び冷却媒体が容器16、容器17及び両容器の間の空間を通流する冷媒にそれぞれ対応する。ブレード830及びその刃先831が掻出翼22及びアクリル樹脂部材221にそれぞれ対応し、各ブレードの刃先831が内管の内面817Sに弾性的に接触している状態が、硬質とはいえアクリル樹脂製の部材221が容器17の底面に接触している状態に対応する。ブレード830、特にその先端部を構成する刃先831が(狭義の)強制力発生手段に相当するが、より広義には回転体820、ブレードガイド870、スプリング880などもこれに含まれるとしても構わない。また、内管の内面817Sに予め親水性表面処理膜、望ましくは無機系親水性塗装膜であってガラス構造を備えるもの(更に望ましくはホウ酸イオンを含有するガラス構造を備えるもの)、又はそれらを組み込んだ各構造物が本発明に係る物体に相当し、内管内表面817Sにかかる親水性表面処理膜を形成しておくことが本発明に係る物体表面の処理方法に相当する。更に、図8及び図9に示す包接水和物の製造装置であって、内管の内面817Sにかかる親水性表面処理膜を備えるもの、又はそれを組み込むことで予定される機能を発揮する設備、施設、仕組み等が本発明に係る物体の処理システムに相当する。更に、図7乃至図9に示す装置を、包接水和物生成溶液を熱源との熱交換により包接水和物生成溶液から包接水和物を生成させる装置として説明したが、これに限定されない。即ち、図7乃至図9において、熱源との熱交換により包接水和物以外の非水系物質(包接水和物以外の包接化合物を含む)を生成させるために、包接化合物生成溶液ではなく、その他の非水系物質生成溶液を選択し、目的とする非水系物質に適した冷却温度になるように熱源を調整してやれば、これらの図面に描かれた装置は、広く非水系物質製造装置となる。   The rotating shaft 821 of the rotating body 820 corresponds to the rotating shaft 22, and the outer tube 816, the inner tube 817 and the cooling medium correspond to the refrigerant flowing through the container 16, the container 17, and the space between the two containers, respectively. The state in which the blade 830 and its blade edge 831 respectively correspond to the scraping blade 22 and the acrylic resin member 221 and the blade edge 831 of each blade is elastically in contact with the inner surface 817S of the inner tube is made of acrylic resin although it is hard. This corresponds to the state in which the member 221 is in contact with the bottom surface of the container 17. The blade 830, particularly the cutting edge 831 constituting its tip, corresponds to a forcible force generating means (in a narrow sense), but in a broader sense, a rotating body 820, a blade guide 870, a spring 880, and the like may be included therein. . Further, a hydrophilic surface-treated film, preferably an inorganic hydrophilic coating film, having a glass structure (more preferably having a glass structure containing borate ions) on the inner surface 817S of the inner tube, or those Each of the structures in which is incorporated corresponds to the object according to the present invention, and forming the hydrophilic surface treatment film on the inner tube inner surface 817S corresponds to the object surface treatment method according to the present invention. Furthermore, the clathrate hydrate manufacturing apparatus shown in FIGS. 8 and 9 is provided with a hydrophilic surface treatment film on the inner surface 817S of the inner tube, or exhibits a function planned by incorporating it. Equipment, facilities, mechanisms, and the like correspond to the object processing system according to the present invention. Furthermore, the apparatus shown in FIGS. 7 to 9 has been described as an apparatus for generating an clathrate hydrate from an clathrate hydrate formation solution by heat exchange with the heat source. It is not limited. That is, in FIG. 7 to FIG. 9, in order to generate non-aqueous substances other than clathrate hydrate (including clathrate compounds other than clathrate hydrate) by heat exchange with the heat source, the clathrate compound generation solution However, if you select other non-aqueous substance production solutions and adjust the heat source to a cooling temperature suitable for the desired non-aqueous substance, the devices depicted in these drawings will be widely used in non-aqueous substance production. It becomes a device.

過冷却状態にある非水系物質生成溶液を配管で搬送する必要がある場合、搬送途中で過冷却状態が解除すると非水系物質が短時間で固塊化し、配管内面に付着し、搬送に支障を来たす。そこで配管内面に、非水系物質とは異なる物質と親和性を有する表面処理膜を形成し、当該非水系物質とは異なる物質を溶媒にして非水系物質生成溶液とするか、非水系物質生成溶液に混入した上で搬送を行う。すると、搬送途中で過冷却状態が解除し配管内面に非水系物質が付着しても、付着性は低下するので、しかも当該溶液によるせん断力を受けるので、非水系物質の滑脱が起こり易くなる。よって、過冷却状態の非水系物質生成溶液の長距離搬送が可能になる。   When it is necessary to transport a supercooled non-aqueous substance generating solution by piping, if the supercooling state is canceled during transport, the non-aqueous substance will solidify in a short time and adhere to the inner surface of the pipe, hindering transport. cause. Therefore, a surface treatment film having affinity with a substance different from the non-aqueous substance is formed on the inner surface of the pipe, and the substance different from the non-aqueous substance is used as a solvent to form a non-aqueous substance generation solution, or a non-aqueous substance generation solution. Carry in after being mixed. Then, even if the supercooled state is canceled during the conveyance and the non-aqueous substance adheres to the inner surface of the pipe, the adhesion is lowered, and the shearing force by the solution is received, so that the non-aqueous substance is easily slipped off. Therefore, it is possible to transport the supercooled non-aqueous substance generating solution over a long distance.

その他にも、過冷却状態の非水系物質生成溶液を通流させる際に乱流が形成されやすい異形配管やバルブ装置の内面、過冷却状態の非水系物質生成溶液を衝突させて過冷却状態を解除するための衝突板の表面、過冷却状態の非水系物質生成溶液中でキャビテーションを発生させ、過冷却状態を解除する回転プロペラの表面なども、本発明の適用対象として好適である。これらの対象は、非水系物質生成溶液の移動に起因するせん断力や衝撃力を受けるので、その表面に、当該非水系物質とは異なる物質と親和性のある表面処理膜を予め形成しておき、当該非水系物質とは異なる物質を溶媒にして非水系物質生成溶液とするか、非水系物質生成溶液に混入しておくことにより、非水系物質の付着の防止又は抑制の効果がより顕著になる。   In addition, when the supercooled non-aqueous substance generating solution is allowed to flow, deformed pipes that easily form turbulent flow, the inner surface of the valve device, and the supercooled nonaqueous substance generating solution collide with the supercooled state. The surface of the impingement plate for releasing, the surface of a rotating propeller that releases cavitation by generating cavitation in the supercooled non-aqueous substance generating solution, and the like are also suitable as the application target of the present invention. Since these objects are subjected to shearing force and impact force due to the movement of the non-aqueous substance generating solution, a surface treatment film having affinity with a substance different from the non-aqueous substance is previously formed on the surface. By using a substance different from the non-aqueous substance as a solvent to make a non-aqueous substance-generating solution, or mixing it in the non-aqueous substance-generating solution, the effect of preventing or suppressing the adhesion of the non-aqueous substance becomes more prominent. Become.

なお、上記の異形配管やバルブ装置の場合には、それらの内部構造そのものが強制力発生手段として機能しているといえる。また、上記の衝突板に衝突するに足る力を過冷却状態の非水系物質生成溶液に与える手段(例えばポンプ装置)及び過冷却状態の非水系物質生成溶液中でキャビテーションを発生させる上記の回転プロペラがそれぞれの場合の強制力発生手段に相当する。   In addition, in the case of the above-described irregularly-shaped pipes and valve devices, it can be said that the internal structure itself functions as a force generation means. Further, a means (for example, a pump device) for applying a force sufficient to collide with the collision plate to the supercooled non-aqueous substance generating solution, and the rotary propeller for generating cavitation in the supercooled nonaqueous substance generating solution. Corresponds to the force generation means in each case.

本発明によれば、摂氏零度以上の熱源との熱交換により生成する非水系物質が付着する可能性があり、前記非水系物質と異なる物質が存在する環境に置かれる物体の表面に、その非水系物質とは異なる物質と親和性を有する表面処理膜を形成することにより、また、熱源との熱交換により生成する包接化合物が付着する可能性があり、前記包接化合物は異なる物質が存在する環境に置かれる物体の表面に、その包接化合物とは異なる物質と親和性を有する表面処理膜を形成することにより、物体表面の非水系物質の付着防止や滑脱性の増加を図ると同時に、その表面の強度と耐久性の向上を図ることができるので、現実的な環境においてより好適な物体、物体表面の処理方法及び物体の処理システムを提供することができる。   According to the present invention, there is a possibility that a non-aqueous substance generated by heat exchange with a heat source of zero degrees Celsius or higher may adhere, and the non-aqueous substance is placed on the surface of an object placed in an environment where a substance different from the non-aqueous substance exists. By forming a surface treatment film that has an affinity with a substance different from an aqueous substance, there is a possibility that an inclusion compound produced by heat exchange with a heat source may be attached, and the inclusion compound has a different substance. By forming a surface treatment film on the surface of an object placed in an environment that has an affinity for a substance different from the inclusion compound, it is possible to prevent adhesion of non-aqueous substances on the surface of the object and increase slipperiness. Since the strength and durability of the surface can be improved, it is possible to provide an object, an object surface processing method, and an object processing system that are more suitable in a realistic environment.

本発明に係る物体の断面の要部を示す説明図である。It is explanatory drawing which shows the principal part of the cross section of the object which concerns on this invention. 滑脱せん断力の試験装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the test apparatus of sliding shear force. 滑脱せん断力の試験結果(滑脱せん断力比)を素材別、冷却条件別に取りまとめて示す説明図である。It is explanatory drawing which collects and shows the test result (sliding shear force ratio) of sliding shear force according to a raw material and cooling conditions. 滑脱せん断力の試験結果(滑脱せん断力比)を発生頻度に着目して取りまとめて示す説明図である。It is explanatory drawing which summarizes and shows the test result (sliding shear force ratio) of sliding shear force paying attention to generation frequency. 強制力が作用する場合の包接化合物の付着性又は滑脱性の試験装置(掻出装置)の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the test apparatus (scraping apparatus) of the adhesion property or sliding property of a clathrate compound when a forcing force acts. 強制力が作用する場合の包接化合物の付着性又は滑脱性の試験装置(圧接装置)の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the test apparatus (pressure welding apparatus) of the adhesion property or slipperiness | attachment property of a clathrate compound when a forced force acts. 本発明に係る包接水和物製造装置の要部に係るドラム及び掻き羽根部分を説明するための前半身切り欠き斜視図である。It is a front-half body cutout perspective view for demonstrating the drum and scraper blade part which concern on the principal part of the clathrate hydrate manufacturing apparatus which concerns on this invention. 本発明に係る包接水和物製造装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the clathrate hydrate manufacturing apparatus which concerns on this invention. 本発明に係る包接水和物製造装置の縦断面図である。It is a longitudinal cross-sectional view of the clathrate hydrate manufacturing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 物体
2 表面処置膜
3 試験片
4 水平台座
9 ステンレスワイヤ
11 円筒環
17 容器
18 攪拌翼
19 モータ
20 回転軸
22 掻出翼
221 アクリル樹脂部材
1 object
2 Surface treatment membrane
3 Test pieces
4 horizontal pedestals
9 Stainless steel wire 11 Cylindrical ring 17 Container 18 Stirring blade 19 Motor 20 Rotating shaft 22 Scraping blade 221 Acrylic resin member

Claims (11)

摂氏零度以上の熱源との熱交換により生成する非水系物質が付着する可能性があり、前記非水系物質と異なる物質が存在する環境に置かれ、前記非水系物質とは異なる物質と親和性を有する表面処理膜が形成されている表面を備えることを特徴とする物体。   There is a possibility that a non-aqueous substance generated by heat exchange with a heat source of zero degrees Celsius or higher is attached, and it is placed in an environment where a substance different from the non-aqueous substance exists, and has an affinity for a substance different from the non-aqueous substance. An object comprising a surface on which a surface treatment film is formed. 熱源との熱交換により生成する包接化合物が付着する可能性があり、前記包接化合物は異なる物質が存在する環境に置かれ、前記包接化合物とは異なる物質と親和性を有する表面処理膜が形成されている表面を備えることを特徴とする物体。   There is a possibility that the clathrate compound generated by heat exchange with the heat source may be attached, and the clathrate compound is placed in an environment where a different substance exists, and has a affinity for a substance different from the clathrate compound. An object comprising a surface on which is formed. 前記表面処理膜は、無機系親水性塗装膜であることを特徴とする請求項1又は2に記載の物体。   The object according to claim 1, wherein the surface treatment film is an inorganic hydrophilic coating film. 前記無機系親水性塗装膜は、ガラス構造を備える無機系親水性塗装膜であることを特徴とする請求項3記載の物体。   The object according to claim 3, wherein the inorganic hydrophilic coating film is an inorganic hydrophilic coating film having a glass structure. 前記物体は、その表面に付着した非水系物質の滑脱を促進する強制力が作用する環境に設置されることを特徴とする請求項3又は4に記載の物体。   5. The object according to claim 3, wherein the object is installed in an environment in which a forcing force that promotes slipping of the non-aqueous substance attached to the surface acts. 摂氏零度以上の熱源との熱交換により生成する非水系物質が付着する可能性があり、前記非水系物質と異なる物質が存在する環境に置かれる物体の表面に、前記非水系物質と異なる物質との親和性を与える表面処理を予め施しておくことを特徴とする物体表面の処理方法。   There is a possibility that a non-aqueous substance generated by heat exchange with a heat source of zero degrees Celsius or higher may adhere to the surface of an object placed in an environment where a substance different from the non-aqueous substance exists, and a substance different from the non-aqueous substance A method for treating the surface of an object, characterized in that a surface treatment is applied in advance to give an affinity for. 熱源との熱交換により生成する包接化合物質が付着する可能性があり、前記包接化合物と異なる物質が存在する環境に置かれる物体の表面に、前記包接化合物とは異なる物質との親和性を与える表面処理を予め施しておくことを特徴とする物体表面の処理方法。   There is a possibility that the clathrate compound produced by heat exchange with the heat source adheres to the surface of an object placed in an environment where a substance different from the clathrate compound is present. A method for treating an object surface, wherein surface treatment for imparting properties is performed in advance. 前記表面処理は、無機系親水性塗装であることを特徴とする請求項6又は7記載の物体表面の処理方法。   The method for treating an object surface according to claim 6 or 7, wherein the surface treatment is an inorganic hydrophilic coating. 前記無機系親水性塗装により形成される被膜が、ガラス構造を備える無機系親水性塗装膜であることを特徴とする請求項8記載の物体表面の処理方法。   9. The method for treating an object surface according to claim 8, wherein the coating film formed by the inorganic hydrophilic coating is an inorganic hydrophilic coating film having a glass structure. 前記物体は、その表面に付着した包接化合物の滑脱を促進する強制力が作用する環境に設置されることを特徴とする請求項8又は9に記載の物体表面の処理方法。   The method for treating an object surface according to claim 8 or 9, wherein the object is placed in an environment in which a forcing force that promotes slipping of the clathrate compound adhering to the surface acts. 請求項1乃至4のいずれかに記載の物体と、その物体の表面に付着した包接化合物の滑脱を促進するように作用する強制力を発生させる強制力発生手段とを備えることを特徴とする物体の処理システム。   An object according to any one of claims 1 to 4, and a forcing force generating means for generating a forcing force that acts to promote slipping of the clathrate compound adhering to the surface of the object. Object processing system.
JP2005306151A 2005-10-20 2005-10-20 Object provided with surface having possibility of adherence of nonaqueous matter, treatment method for object surface, and treatment system for object Pending JP2007113850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306151A JP2007113850A (en) 2005-10-20 2005-10-20 Object provided with surface having possibility of adherence of nonaqueous matter, treatment method for object surface, and treatment system for object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306151A JP2007113850A (en) 2005-10-20 2005-10-20 Object provided with surface having possibility of adherence of nonaqueous matter, treatment method for object surface, and treatment system for object

Publications (1)

Publication Number Publication Date
JP2007113850A true JP2007113850A (en) 2007-05-10

Family

ID=38096203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306151A Pending JP2007113850A (en) 2005-10-20 2005-10-20 Object provided with surface having possibility of adherence of nonaqueous matter, treatment method for object surface, and treatment system for object

Country Status (1)

Country Link
JP (1) JP2007113850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117671A (en) * 2009-12-03 2011-06-16 Jfe Engineering Corp Method of manufacturing hydrate and device for manufacturing the hydrate
JP2013174413A (en) * 2012-02-27 2013-09-05 Mitsubishi Heavy Ind Ltd Steel member covering layer and surface treatment method for heat transfer tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117671A (en) * 2009-12-03 2011-06-16 Jfe Engineering Corp Method of manufacturing hydrate and device for manufacturing the hydrate
JP2013174413A (en) * 2012-02-27 2013-09-05 Mitsubishi Heavy Ind Ltd Steel member covering layer and surface treatment method for heat transfer tube
US10024609B2 (en) 2012-02-27 2018-07-17 Mitsubishi Heavy Industries, Ltd. Steel covering layer and method of surface treatment of heat transfer tube

Similar Documents

Publication Publication Date Title
Solomon et al. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow
Boinovich et al. Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings
Lim et al. Nanofluids alter the surface wettability of solids
Dowling et al. Evaluation of the anti-fouling properties of nm thick atmospheric plasma deposited coatings
Song et al. One-step electrochemical machining of superhydrophobic surfaces on aluminum substrates
EP2842911A1 (en) Coating, coating method, and coated article
Rashidi et al. Erosion–corrosion synergism in an alumina/sea water nanofluid
CN105358664A (en) Aqueous lubricant for plastic working of metal material and having superior gas clogging resistance and post-moisture absorption workability
Huang et al. The corrosion of X52 steel at an elbow of loop system based on array electrode technology
Liang et al. Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion
JP2007113850A (en) Object provided with surface having possibility of adherence of nonaqueous matter, treatment method for object surface, and treatment system for object
Zhang et al. Long‐Term Stability of a Liquid‐Infused Coating with Anti‐Corrosion and Anti‐Icing Potentials on Al Alloy
Rana et al. Effect of graphene nanoplatelets (GNPs) addition on erosion–corrosion resistance of electroless Ni–P Coatings
Shu et al. Mechanically robust superhydrophobic copper surface with self-cleaning, anti-icing, and corrosion resistance
Kumar et al. Sputter-grown hierarchical nitride (TiN & h-BN) coatings on BN nanoplates reinforced Al7079 alloy with improved corrosion resistance
Esmeryan et al. On the development of ultradurable extremely water-repellent and oleophobic soot-based fabrics with direct relevance to sperm cryopreservation
JP2022549835A (en) heat transfer mixture
Mousavi et al. Temperature-dependent dynamic fouling on superhydrophobic and slippery nonwetting copper surfaces
Wang et al. Properties of Zn-Al-Mg-TiO2 coating prepared by cold spraying
Zhao et al. Preparation of silica-epoxy superhydrophobic coating with mechanical stability and multifunctional performance via one-step approach
Butt et al. The preparation of cerium nitrate and attapulgite based superhydrophobic epoxy coatings for the corrosion protection of Q355 mild steel surface
Zheng et al. The effect of superhydrophobic surface topography on underwater corrosion resistance of steel
Guo et al. Phosphoric chemical conversion coating with excellent wax-repellent performance
Wang et al. Design and development of anti-icing aluminum surface
Goswami et al. Micro/Nanoscale surface modifications to combat heat exchanger fouling