JP2007113599A - Diffuser for fluid control valve and fluid control valve - Google Patents

Diffuser for fluid control valve and fluid control valve Download PDF

Info

Publication number
JP2007113599A
JP2007113599A JP2005302848A JP2005302848A JP2007113599A JP 2007113599 A JP2007113599 A JP 2007113599A JP 2005302848 A JP2005302848 A JP 2005302848A JP 2005302848 A JP2005302848 A JP 2005302848A JP 2007113599 A JP2007113599 A JP 2007113599A
Authority
JP
Japan
Prior art keywords
valve
diffuser
control valve
fluid
fluid control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005302848A
Other languages
Japanese (ja)
Other versions
JP4627242B2 (en
Inventor
Norio Nomaguchi
謙雄 野間口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2005302848A priority Critical patent/JP4627242B2/en
Priority to TW095130041A priority patent/TWI307391B/en
Priority to CN2006101392890A priority patent/CN1952460B/en
Priority to KR1020060100142A priority patent/KR100834865B1/en
Publication of JP2007113599A publication Critical patent/JP2007113599A/en
Application granted granted Critical
Publication of JP4627242B2 publication Critical patent/JP4627242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Valves (AREA)
  • Lift Valve (AREA)
  • Sliding Valves (AREA)
  • Taps Or Cocks (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffuser for a fluid control valve capable of more surely suppressing or preventing generation of cavity and suppressing decrease of maximum flow rate and the fluid control valve. <P>SOLUTION: The diffuser 31 for decreasing flowing speed of fluid 30 and converting kinetic energy into pressure is assembled in a downstream side opening part of a valve body 2. The diffuser 31 is formed in a hollow cone shape with an open bottom part 34, an inner angle (θ) of a top part 33 is 90° or smaller and a large number of small holes 32 are formed in a circumference wall. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体の流れを減速し、運動エネルギを圧力に変換する流体制御弁用ディフューザおよび流体制御弁に関するものである。   The present invention relates to a diffuser for a fluid control valve and a fluid control valve that reduce the flow of fluid and convert kinetic energy into pressure.

被制御流体の流量や圧力を制御する流体制御弁において、流体圧力を著しく減圧する場合とか流速が早い場合には、弁の絞り部分で発生する流れの乱れによって異常に高い騒音が発生したり、キャビテーションが発生する。この場合、圧縮性流体においては振動、騒音が発生し易く、非圧縮性流体においてはキャビテーションが発生し易い。キャビテーションが発生すると、流量低下、弁の腐食(キャビテーションエロージョン)、さらには振動、騒音等の原因となり、弁の性能や耐久性等を著しく低下させる。   In the fluid control valve that controls the flow rate and pressure of the controlled fluid, when the fluid pressure is significantly reduced or the flow velocity is high, abnormally high noise is generated due to the flow disturbance generated in the throttle part of the valve, Cavitation occurs. In this case, vibration and noise are likely to occur in the compressible fluid, and cavitation is likely to occur in the incompressible fluid. When cavitation occurs, it causes a decrease in flow rate, valve corrosion (cavitation erosion), vibration, noise, and the like, and the performance and durability of the valve are significantly reduced.

そこで、このようなキャビテーションの発生を防止する従来技術として、例えば特許文献1〜3に開示されている弁が知られている。   Thus, as a conventional technique for preventing the occurrence of such cavitation, for example, valves disclosed in Patent Documents 1 to 3 are known.

特許文献1に開示されている流体制御弁は、弁本体の下流側となる配管接続口にキャビテーションの発生を抑制または防止するためにオリフィスプレートを設けたものである。このオリフィスプレートは、平板な多孔板で構成されている。このような多孔板からなるオリフィスプレートを弁体の下流側に配設すると、バルブ全体として流体を2段減圧、すなわちシートリングと弁体とで形成される絞り部によって一次減圧した後、オリフィスプレートによってさらに二次減圧するため、絞り部単体による一段減圧に比べて減圧効果が大きく、キャビテーションの発生を低減または防止することができるとしている。   The fluid control valve disclosed in Patent Document 1 is provided with an orifice plate in order to suppress or prevent the occurrence of cavitation at a pipe connection port on the downstream side of the valve body. The orifice plate is a flat perforated plate. When an orifice plate made of such a perforated plate is disposed on the downstream side of the valve body, the fluid as a whole is decompressed in two stages, that is, after the primary pressure is reduced by the throttle formed by the seat ring and the valve body, the orifice plate Therefore, the pressure is further reduced by the second pressure reduction, so that the pressure reduction effect is larger than that of the single-stage pressure reduction by the throttle unit alone, and the occurrence of cavitation can be reduced or prevented.

特許文献2に記載されている弁装置は、弁本体内の流通路を上流側と下流側に仕切る隔壁に形成した開口に有底円筒形のケージを貫通させて設け、このケージの上流側周壁に第1の多孔を形成し、底部中央にケージ内方に突出する筒状の突部を設け、この筒状突部の周壁に第2の多孔を互いに対向するように、かつこの第2の多孔を通過する流体の流れがケージ底部の凹部(前記筒状突部を取り囲む空間)によって形成される通路と直交するように形成したものである。このような弁装置によれば、筒状突部の小孔を通過した噴流を互いに衝突させることによりその運動エネルギを低減するため、噴流が弁本体の内底面に直接衝突せず、弁本体の振動、騒音、下流側配管の共振、キャビテーション気泡の発生等を効果的に防止することができるとしている。   In the valve device described in Patent Document 2, a cylindrical cage with a bottom is provided through an opening formed in a partition wall that divides a flow passage in a valve body into an upstream side and a downstream side, and an upstream peripheral wall of the cage is provided. A first projection is formed in the center of the bottom, and a cylindrical projection projecting inward of the cage is provided. The second porosity is opposed to each other on the peripheral wall of the cylindrical projection, and the second The flow of the fluid passing through the perforations is formed so as to be orthogonal to a passage formed by a concave portion (a space surrounding the cylindrical protrusion) at the bottom of the cage. According to such a valve device, since the kinetic energy is reduced by causing the jets that have passed through the small holes of the cylindrical projection to collide with each other, the jet does not directly collide with the inner bottom surface of the valve body, It is said that vibration, noise, resonance of downstream piping, generation of cavitation bubbles, etc. can be effectively prevented.

特許文献3に記載されている蒸気変換弁は、ケージ型弁胴の下流側に、未気化冷却水の蒸発を促進するとともに減圧部で発生する騒音エネルギが下流に伝達するのを防止するディフューザプレートを配設している。このディフューザプレートは、多孔板によって平板に近い笠状に形成されている。   The steam conversion valve described in Patent Document 3 is a diffuser plate that promotes the evaporation of unvaporized cooling water downstream of the cage-type valve body and prevents noise energy generated in the decompression section from being transmitted downstream. Is arranged. This diffuser plate is formed in the shape of a shade close to a flat plate by a perforated plate.

特開2001−59583号公報JP 2001-59583 A 特開平8−93964号公報JP-A-8-93964 特開昭61−153082号公報JP 61-153082 A

しかしながら、特許文献1に記載された流体制御弁は、平板な多孔板からなるディフューザを用いているので、キャビテーションを抑制する効果が小さいという問題があった。すなわち、平板の多孔板の場合は、小孔から噴流するときの広がり角(約180°程度)が大きいために、流体が小孔から急速度で噴流すると、小孔から出た噴流が互いに衝突することなく、そのまま下流に流れていくために、キャビテーションや騒音の原因となる。   However, since the fluid control valve described in Patent Document 1 uses a diffuser made of a flat perforated plate, there is a problem that the effect of suppressing cavitation is small. That is, in the case of a flat perforated plate, since the spread angle (about 180 °) when jetting from a small hole is large, when the fluid jets from the small hole at a rapid speed, the jets coming out from the small hole collide with each other Therefore, it flows downstream as it is, causing cavitation and noise.

特許文献2に記載されている流体制御弁は、流体の流れの方向を略直角な方向に変換することにより、流体を第2の多孔を通ってケージの筒状突部内に流入させているため、弁の最大流量が小さくなり、最大流量を大きくしようとすると弁を大きくしなければならないという問題があった。また、筒部の各多孔の流速が均一でないために、キャビテーションを抑制する効果も小さい。   The fluid control valve described in Patent Document 2 allows the fluid to flow into the cylindrical protrusion of the cage through the second hole by changing the direction of the fluid flow to a substantially perpendicular direction. However, when the maximum flow rate of the valve is reduced and the maximum flow rate is increased, the valve has to be enlarged. In addition, since the flow speed of each porous portion of the cylinder portion is not uniform, the effect of suppressing cavitation is small.

特許文献3に記載されている蒸気変換弁は、笠状のディフューザの頂部の内角度が大きいため、特許文献1に記載されている平板な多孔板からなるディフューザと同様に、キャビテーションの発生を抑制または防止する効果が小さいという問題があった。   Since the steam conversion valve described in Patent Document 3 has a large inner angle at the top of the cap-shaped diffuser, it suppresses the occurrence of cavitation, similar to the diffuser made of a flat porous plate described in Patent Document 1. Or there was a problem that the effect to prevent was small.

本発明は上記した従来の問題を解決するためになされたもので、その目的とするところはキャビテーションの発生をより確実に抑制または防止することができ、また最大流量の減少を抑えることができる流体制御弁用ディフューザおよび流体制御弁を提供することにある。   The present invention has been made to solve the above-described conventional problems, and the object of the present invention is to provide a fluid that can more reliably suppress or prevent the occurrence of cavitation and can suppress the decrease in the maximum flow rate. The object is to provide a diffuser for a control valve and a fluid control valve.

上記目的を達成するために本発明に係る流量制御弁用ディフューザは、弁本体内に組み込まれ流体の流れを減速し、運動エネルギを圧力に変換する流量制御弁用ディフューザにおいて、底部が開放する中空円錐形に形成され、頂部の内角度が90°以下で、周壁に多数の小孔が形成されているものである。   In order to achieve the above object, a diffuser for a flow control valve according to the present invention is a hollow flow control valve diffuser that is incorporated in a valve body and decelerates the flow of fluid to convert kinetic energy into pressure. It is formed in a conical shape, the inner angle of the top is 90 ° or less, and a large number of small holes are formed in the peripheral wall.

また、本発明に係る流体制御弁は、上記ディフューザを備え、このディフューザを弁本体内の弁体より下流側であって、頂部が前記弁体側で底部が前記弁本体の流出口側となるように組み込んだものである。   In addition, a fluid control valve according to the present invention includes the diffuser, and the diffuser is located downstream of the valve body in the valve body, the top being the valve body side and the bottom being the outlet side of the valve body. It is built in.

本発明においては、ディフューザを中空円錐形に形成したので、ディフューザの内径が円錐形ベンチュリー管のように下流側に緩やかに拡大する。ディフューザの頂部の内角度(開き角)を90°以下にしておくと、多孔から出た噴流が互いに衝突することによりキャビテーションの発生を抑制でき、液体圧力回復係数の大きい弁を実現できる。また、小孔からディフューザ内に流れる流体は、偏向角度が小さいので、弁として必要な最大流量を確保することができ弁の大型化を回避することができる。   In the present invention, since the diffuser is formed in a hollow conical shape, the inner diameter of the diffuser gradually expands to the downstream side like a conical Venturi tube. If the inner angle (opening angle) of the top part of the diffuser is set to 90 ° or less, the jets coming out of the perforations collide with each other, thereby suppressing the occurrence of cavitation and realizing a valve having a large liquid pressure recovery coefficient. In addition, since the fluid flowing from the small hole into the diffuser has a small deflection angle, the maximum flow rate required for the valve can be ensured, and the enlargement of the valve can be avoided.

ディフューザの頂部の内角度が90°以下であると、流体の偏向角度が小さく、最大流量の減少を抑えることができ、キャビテーションの発生が少ない。内角度が90°以上であると、多孔から出た流れが互いに衝突することによるキャビテーション抑制効果が少なくなる。   When the inner angle of the top of the diffuser is 90 ° or less, the deflection angle of the fluid is small, the reduction of the maximum flow rate can be suppressed, and the occurrence of cavitation is small. When the inner angle is 90 ° or more, the effect of suppressing cavitation due to the collision of the flows coming out of the pores with each other is reduced.

以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。
図1は本発明を回転型弁に適用した一実施の形態を示す断面図、図2は弁体の斜視図、図3はディフューザの断面図、図4(a)〜(c)は回転型弁の動作を説明するための図で、(a)は回転型弁の全開状態を示す図、(b)は中間開度状態を示す図、(c)は全閉状態を示す図である。これらの図において、全体を符号1で示す回転型弁は、貫通孔からなる流通路3を有し配管4の途中に接続された弁本体2と、この弁本体2の内部中央に設けられ前記流通路3を開閉制御する回転自在なバルブプラグ5と、このバルブプラグ5を外部から回転操作する弁軸6等を備えている。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a cross-sectional view showing an embodiment in which the present invention is applied to a rotary valve, FIG. 2 is a perspective view of a valve body, FIG. 3 is a cross-sectional view of a diffuser, and FIGS. It is a figure for demonstrating operation | movement of a valve, (a) is a figure which shows the fully open state of a rotary type | mold valve, (b) is a figure which shows an intermediate opening state, (c) is a figure which shows a fully closed state. In these drawings, the rotary valve indicated by reference numeral 1 as a whole has a valve body 2 having a flow passage 3 composed of a through-hole and connected in the middle of a pipe 4, and is provided at the center of the valve body 2. A rotatable valve plug 5 for opening and closing the flow passage 3 and a valve shaft 6 for rotating the valve plug 5 from the outside are provided.

前記弁本体2は、全体形状が逆T字状の管体に形成されており、両側および上方の3方向に開放している。   The valve body 2 is formed as a tube having an inverted T-shape as a whole, and is open in three directions on both sides and above.

前記バルブプラグ5は、略半球状で内部がくりぬかれた殻構造体からなる弁体5Aと、この弁体5Aの上下面にそれぞれ一体に設けられた円筒状の軸受部5B,5Cとで構成されている。弁体5Aには、流量特性部(以下、開口部という)7と、球面着座部8が形成されている。開口部7は、弁体5Aの内外を連通させる略銀杏の葉のような形状の開口からなり、イコールパーセンテイジ特性を有している。球面着座部8は、弁体5Aの外周面側に弁軸6の回転方向に長く延在する帯状に形成されている。上側の軸受部5Bは、前記弁軸6の内端部6Aに嵌合されて溶接等により一体的に接合されている。一方、下側の軸受部5Cは弁本体2の内底面中央部に設けたガイド9によって回転自在に軸支されている。   The valve plug 5 includes a valve body 5A formed of a substantially hemispherical shell structure, and cylindrical bearing portions 5B and 5C integrally provided on the upper and lower surfaces of the valve body 5A. Has been. The valve body 5A is formed with a flow rate characteristic portion (hereinafter referred to as an opening) 7 and a spherical seating portion 8. The opening 7 is made of an opening shaped like a ginkgo leaf that allows the inside and outside of the valve body 5A to communicate with each other, and has equal percentage characteristics. The spherical seating portion 8 is formed in a belt shape extending long in the rotation direction of the valve shaft 6 on the outer peripheral surface side of the valve body 5A. The upper bearing portion 5B is fitted to the inner end portion 6A of the valve shaft 6 and is integrally joined by welding or the like. On the other hand, the lower bearing portion 5 </ b> C is rotatably supported by a guide 9 provided at the center of the inner bottom surface of the valve body 2.

前記弁軸6は、バルブプラグ5と共に回転型弁1の駆動系を形成するもので、上端部が蓋部材11に設けた弁軸用孔12をシート状ガイド、Oリング、グランド部品等のシール部材14等を介して回転自在に貫通しており、蓋部材11の上方に突出する突出端6Bには図示を省略した電動アクチュエータが連結されている。蓋部材11は、弁本体2の上方に開口する蓋取付孔15にガスケット16を介して嵌合され、ボルト(図示せず)によって固定されている。   The valve shaft 6 forms a drive system for the rotary valve 1 together with the valve plug 5, and the valve shaft hole 12 provided at the upper end portion of the lid member 11 is sealed with a sheet-shaped guide, an O-ring, a ground component, and the like. An electric actuator (not shown) is connected to the protruding end 6B that penetrates through the member 14 and the like and protrudes above the lid member 11. The lid member 11 is fitted into a lid mounting hole 15 opened above the valve body 2 via a gasket 16 and fixed by bolts (not shown).

前記弁本体2の流通路3内で前記バルブプラグ5より上流側である流入口側流通路部3Aには、シートリング20と、このシートリング20を前記バルブプラグ5の球面着座部8に押し付けるシートリテーナ21が組み込まれている。   A seat ring 20 and the seat ring 20 are pressed against the spherical seating portion 8 of the valve plug 5 against the inlet side flow passage portion 3A upstream of the valve plug 5 in the flow passage 3 of the valve body 2. A seat retainer 21 is incorporated.

前記シートリング20は筒状体に形成されて、前記弁本体2の流入口流通路部3Aに摺動自在に嵌挿され、外周面にはシートスプリング22が装着されている。シートリテーナ21は同じく円筒体からなり、流入口側流通路部3Aに螺合によって組み込まれ、内端部がシートリング20の外周面に嵌合し、前記シートスプリング22を押圧することにより、シートリング20をバルブプラグ5の球面着座部8に所定圧をもって圧接している。   The seat ring 20 is formed in a cylindrical body, is slidably fitted into the inlet flow passage portion 3A of the valve body 2, and a seat spring 22 is mounted on the outer peripheral surface. The seat retainer 21 is also formed of a cylindrical body, and is assembled into the inflow side flow passage portion 3A by screwing. The inner end portion is fitted to the outer peripheral surface of the seat ring 20, and the seat spring 22 is pressed to thereby seat. The ring 20 is pressed against the spherical seating portion 8 of the valve plug 5 with a predetermined pressure.

一方、前記流通路3の下流側である流出口側開口部3Bには、流通路3内を流れる流体30の流れを減速してその運動エネルギーを圧力に変換し、キャビテーションの発生を抑制するディフューザ31が組み込まれている。このディフューザ31は、底部34が開放する中空円錐形に形成され、周面には多数の小孔32が形成され、頂部33が上流側を指向し、底部34が下流側となるように流出口側流通路部3B内に組み込まれている。   On the other hand, in the outlet side opening 3B, which is the downstream side of the flow passage 3, a diffuser that decelerates the flow of the fluid 30 flowing in the flow passage 3 and converts the kinetic energy into pressure to suppress the occurrence of cavitation. 31 is incorporated. The diffuser 31 is formed in a hollow conical shape with the bottom 34 opened, and a plurality of small holes 32 are formed on the peripheral surface, the top 33 is directed upstream, and the bottom 34 is downstream. It is incorporated in the side flow passage portion 3B.

ディフューザ31の頂部33の内角度θの大きさによって流体30の流れ方が大きく変化する。内角度θが小さいときには、多孔から出た流れが互いに衝突することによるキャビテーション抑制効果が少なくなる。このため、内角度θとしては、90°以下に設定されることが好ましい。   The flow of the fluid 30 varies greatly depending on the size of the inner angle θ of the top 33 of the diffuser 31. When the inner angle θ is small, the cavitation suppressing effect due to the collision of the flows coming out of the perforations decreases. For this reason, the inner angle θ is preferably set to 90 ° or less.

次に、上記構造からなる回転型弁1の動作を図4に基づいて説明する。
図4(a)は、回転型弁1の全開状態を示す。この全開状態において、バルブプラグ5は、弁軸6により時計方向に最大角度回動されて開口部7がシートリング20の内側開口部と一致している。このため、流体30はバルブプラグ5とディフューザ31によって二段減圧され下流側に流れている。すなわち、バルブプラグ5の開口部7は流路断面積を絞ることにより流体30を減圧し通過流速を抑える。また、ディフューザ31の小孔32は同じく流路断面積を絞ることにより流体30を減圧し通過流速を抑える。
Next, the operation of the rotary valve 1 having the above structure will be described with reference to FIG.
FIG. 4A shows the fully open state of the rotary valve 1. In this fully open state, the valve plug 5 is rotated by the maximum angle clockwise by the valve shaft 6 so that the opening 7 coincides with the inner opening of the seat ring 20. For this reason, the fluid 30 is depressurized in two stages by the valve plug 5 and the diffuser 31 and flows downstream. That is, the opening 7 of the valve plug 5 depressurizes the fluid 30 by restricting the cross-sectional area of the flow path, and suppresses the passage flow velocity. Further, the small holes 32 of the diffuser 31 also reduce the fluid 30 by reducing the cross-sectional area of the flow path to suppress the passage flow velocity.

また、ディフューザ31は、小孔32を通過するときに流体30の流れをディフューザ31の中心方向に偏向し、通過した後はディフューザ31内で互いに衝突させることにより運動エネルギを低減させる。また、流れの偏向角度が小さいため、弁を大型化させることなく必要な最大流量を確保することができる。これは、ディフューザ31の頂部33の内角度θを90°以下に形成したことによる効果である。ディフューザ31の内角度θを90°以下にする理由は、キャビテーションの発生を抑制し、圧力回復係数FL 値を大きくするためである。 Further, the diffuser 31 deflects the flow of the fluid 30 toward the center of the diffuser 31 when passing through the small hole 32, and reduces the kinetic energy by causing it to collide with each other in the diffuser 31. Further, since the flow deflection angle is small, the required maximum flow rate can be ensured without increasing the size of the valve. This is an effect obtained by forming the inner angle θ of the top 33 of the diffuser 31 to 90 ° or less. The reason why the inner angle θ of the diffuser 31 is set to 90 ° or less is to suppress the occurrence of cavitation and increase the pressure recovery coefficient FL value.

図5は回転型弁1において、ディフューザ31の内角度θに対する圧力回復係数FL 値を実測した図である。
従来の回転弁は一般にFL =0.5〜0.7程度である。キャビテーションエロージョンの発生しにくいグローブ弁は、一般にFL =0.8〜0.9以上であるため、本発明に係る回転弁1においてもFL =0.8〜0.9以上になることが好ましい。このため、ディフューザ31の内角度θを90°以下にすれば、FL ≧0.8とすることができる。
FIG. 5 is a diagram in which the pressure recovery coefficient FL value with respect to the inner angle θ of the diffuser 31 is measured in the rotary valve 1.
Conventional rotary valve is generally about F L = 0.5 to 0.7. Hardly occurs globe valve of cavitation erosion, because generally it is F L = 0.8 to 0.9 or more, it becomes F L = 0.8 to 0.9 or more even in the rotary valve 1 according to the present invention preferable. For this reason, if the inner angle θ of the diffuser 31 is 90 ° or less, F L ≧ 0.8.

バルブプラグ5を所要角度回動させて図4(b)に示すように回転型弁1を中間開度に切り替えると、バルブプラグ5の開口部7は絞られて断面積が減少する。したがって、開口部7を通る流体30の圧力が降下して流速が急激に速くなる。しかしながら、この中間開度においても、開口部7を通過した流体30は、ディフューザ31によって絞られ運動エネルギが減じられた後、徐々に圧力回復するので、全開時と同様にキャビテーションの発生が抑えられる。   When the valve plug 5 is rotated by a required angle and the rotary valve 1 is switched to the intermediate opening as shown in FIG. 4B, the opening 7 of the valve plug 5 is throttled to reduce the cross-sectional area. Therefore, the pressure of the fluid 30 passing through the opening 7 decreases, and the flow velocity increases rapidly. However, even at this intermediate opening, the fluid 30 that has passed through the opening 7 is gradually reduced in pressure after being squeezed by the diffuser 31 and reduced in kinetic energy, so that the occurrence of cavitation is suppressed as in the case of full opening. .

バルブプラグ5を図4(c)に示すように全閉状態に切り替えると、バルブプラグ5の開口部7がシートリング20の外側に完全に退出し、球面着座部8がシートリング20の下流側開口部を塞ぐ。したがって、バルブプラグ5は流通路3を完全に遮断し、流体30の流れを止める。   When the valve plug 5 is switched to the fully closed state as shown in FIG. 4C, the opening 7 of the valve plug 5 is completely retracted to the outside of the seat ring 20, and the spherical seating portion 8 is downstream of the seat ring 20. Close the opening. Therefore, the valve plug 5 completely blocks the flow passage 3 and stops the flow of the fluid 30.

図6は本発明を単座調節弁に適用した他の実施の形態を示す断面図である。
全体を符号50で示す単座調節弁50は、内部中央に流通路52を流入口側通路52aと流出口側通路52bに仕切る仕切壁53が設けられた弁本体51と、この弁本体51内に上下動自在に配設されたバルブプラグ54と、このバルブプラグ54を上下動させる弁軸55と、前記バルブプラグ54に対応して前記仕切壁53の開口部56に嵌め込まれ全閉時に前記バルブプラグ54が着座する着座部57aを有するたシートリング57と、前記バルブプラグ54を摺動自在に保持する筒状ガイド58等を備え、前記弁本体51の流出口側通路52b内に前述した中空円錐形のディフューザ31を組み込んだものである。なお、単座調節弁50のバルブプラグ54による流体制御動作は周知の通りであるため、その説明を省略する。
FIG. 6 is a sectional view showing another embodiment in which the present invention is applied to a single seat control valve.
A single-seat control valve 50 indicated as a whole by a reference numeral 50 includes a valve body 51 provided with a partition wall 53 that divides the flow passage 52 into an inlet-side passage 52a and an outlet-side passage 52b in the center of the interior, A valve plug 54 that can be moved up and down, a valve shaft 55 that moves the valve plug 54 up and down, and an opening 56 of the partition wall 53 that corresponds to the valve plug 54 and is fully closed. A seat ring 57 having a seating portion 57a on which the plug 54 is seated, a cylindrical guide 58 for slidably holding the valve plug 54, and the like are provided in the outlet side passage 52b of the valve body 51. A conical diffuser 31 is incorporated. Since the fluid control operation by the valve plug 54 of the single seat control valve 50 is well known, the description thereof is omitted.

このような単座調節弁50においても、中空円錐形のディフューザ31を備えているので、上記した回転型弁1と同様にキャビテーションや騒音の発生を防止することができることは明らかであろう。   Such a single seat control valve 50 is also provided with the hollow conical diffuser 31, so that it is obvious that cavitation and noise can be prevented in the same manner as the rotary valve 1 described above.

図7は本発明を三方ボール弁に適用した他の実施の形態を示す断面図である。
同図において、三方ボール弁60は、第1、第2の流入口通路62,63と流出口通路64を有する弁本体61と、この弁本体61内に回動自在に組み込まれたボールプラグ65と、前記弁本体61を貫通し前記ボールプラグ65を回動させる弁軸66とを備えている。第1、第2の流入口通路62,63は、弁軸66の軸線と直交し、ボールプラグ65を介して対向し、第1、第2の配管67,68に連通している。流出口通路64は、第1、第2の流入口通路62,63に対して直交するように前記弁軸66の軸線上に位置して前記した中空円錐形のディフューザ31が組み込まれており、第3の配管69に連通している。
FIG. 7 is a cross-sectional view showing another embodiment in which the present invention is applied to a three-way ball valve.
In the figure, a three-way ball valve 60 includes a valve body 61 having first and second inlet passages 62 and 63 and an outlet passage 64, and a ball plug 65 rotatably incorporated in the valve body 61. And a valve shaft 66 that penetrates the valve main body 61 and rotates the ball plug 65. The first and second inlet passages 62, 63 are orthogonal to the axis of the valve shaft 66, face each other via the ball plug 65, and communicate with the first and second pipes 67, 68. The outlet passage 64 has the above-described hollow conical diffuser 31 incorporated on the axis of the valve shaft 66 so as to be orthogonal to the first and second inlet passages 62, 63. It communicates with the third pipe 69.

前記ボールプラグ65は、外周面に開口する第1、第2、第3のポート70,71,72と嵌合孔73を有している。第1、第2のポート70,71は、ボールプラグ65の外周面で弁軸66の軸線と直交する方向において回転方向に90°離間して形成されており、前記第1、第2の流入口通路62,63と流出口通路64との連通を可能にしている。第3のポート72は、第1、第2のポート70,71に対して直交するように形成され、前記流出口通路64に常時連通している。嵌合孔73には、前記弁軸66の内端が嵌合している。なお、74はシートリング、75は上蓋である。   The ball plug 65 has first, second, and third ports 70, 71, 72 that are open on the outer peripheral surface, and a fitting hole 73. The first and second ports 70 and 71 are formed on the outer peripheral surface of the ball plug 65 so as to be 90 ° apart from each other in the rotation direction in the direction orthogonal to the axis of the valve shaft 66. Communication between the inlet passages 62 and 63 and the outlet passage 64 is made possible. The third port 72 is formed so as to be orthogonal to the first and second ports 70 and 71, and is always in communication with the outlet passage 64. The inner end of the valve shaft 66 is fitted in the fitting hole 73. In addition, 74 is a seat ring and 75 is an upper lid.

このような三方ボール弁60は、弁軸66によってボールプラグ65を90°の角度範囲内で図7において左右方向に往復回動させることによりボールプラグ65によって独立した2つの流路を形成することができる。すなわち、ボールプラグ65を回動させて第1のポート70を第1の流入口通路62に対して全開状態とし、第2のポート71を第2の流入口通路63に対して全閉状態にすると、第1のポート70と第3のポート72を介して第1の流入口通路62と流出口通路64を接続する流路が形成される。したがって、第1の配管67より第1の流入口通路62に導かれた流体30は、第1のポート70−ボールプラグ65の内部−第3のポート72−流出口通路64−ディフューザ31を通って第3の配管69に流れる。流体30は、ディフューザ31の小孔32を通過することにより、運動エネルギが減じられ、キャビテーションの発生が抑えられる。   Such a three-way ball valve 60 forms two independent flow paths by the ball plug 65 by reciprocally turning the ball plug 65 in the left-right direction in FIG. Can do. That is, the ball plug 65 is rotated so that the first port 70 is fully opened with respect to the first inlet passage 62 and the second port 71 is fully closed with respect to the second inlet passage 63. Then, a flow path that connects the first inflow passage 62 and the outflow passage 64 via the first port 70 and the third port 72 is formed. Therefore, the fluid 30 guided from the first pipe 67 to the first inlet passage 62 passes through the first port 70 -the inside of the ball plug 65 -the third port 72 -the outlet passage 64 -the diffuser 31. To the third pipe 69. When the fluid 30 passes through the small holes 32 of the diffuser 31, the kinetic energy is reduced and the occurrence of cavitation is suppressed.

この状態からボールプラグ65を右方向に90°回動させて第1のポート70を第1の流入口通路62に対して全閉状態、第2のポート71を第2の流入口通路63に対して全開状態に切り替えると、第2のポート71と第3のポート72を介して第2の流入口通路63と流出口通路64を接続する流路が形成される。したがって、第2の配管68に導かれた流体30’は、第2の流入口通路63−第2のポート71−ボールプラグ65の内部−第3のポート72−流出口通路64−ディフューザ31を通って第3の配管69に流れる。このときも流体30’は、ディフューザ31の小孔32を通過することにより、運動エネルギが減じられ、キャビテーションの発生が抑えられる。   From this state, the ball plug 65 is rotated 90 ° rightward so that the first port 70 is fully closed with respect to the first inlet passage 62, and the second port 71 is changed to the second inlet passage 63. On the other hand, when switched to the fully open state, a flow path connecting the second inlet passage 63 and the outlet passage 64 via the second port 71 and the third port 72 is formed. Therefore, the fluid 30 ′ guided to the second pipe 68 passes through the second inlet passage 63, the second port 71, the inside of the ball plug 65, the third port 72, the outlet passage 64, and the diffuser 31. And flows to the third pipe 69. Also at this time, the fluid 30 ′ passes through the small hole 32 of the diffuser 31, so that the kinetic energy is reduced and the occurrence of cavitation is suppressed.

また、図7に示す状態からボールプラグ65を右方向に45°回動させて第1、第2のポート70,71を第1、第2の流入口通路62,63に対して中間開度にすると、第1、第2、第3のポート70,71,72を介して第1、第2の流入口通路62,63と流出口通路64を接続する流路が形成される。このため、第1、第2の配管62,63を流れる流体30,30’は第1、第2のポート70,71を通ってボールプラグ65内に導かれることにより混合され、第3のポート72−流出口通路64−ディフューザ31を通って第3配管69に流れる。このときも流体30と30’の混合流体は、ディフューザ31の小孔32を通過することにより、運動エネルギが減じられ、キャビテーションの発生が抑えられる。   In addition, the ball plug 65 is rotated 45 ° to the right from the state shown in FIG. 7 so that the first and second ports 70 and 71 have intermediate openings relative to the first and second inlet passages 62 and 63. Then, a flow path connecting the first and second inlet passages 62 and 63 and the outlet passage 64 via the first, second and third ports 70, 71 and 72 is formed. Therefore, the fluids 30 and 30 ′ flowing through the first and second pipes 62 and 63 are mixed by being guided into the ball plug 65 through the first and second ports 70 and 71, and the third port. 72-Outlet passage 64-flows through the diffuser 31 to the third pipe 69. Also at this time, the mixed fluid of the fluids 30 and 30 ′ passes through the small hole 32 of the diffuser 31, thereby reducing the kinetic energy and suppressing the occurrence of cavitation.

なお、上記した実施の形態は、回転型弁1と単座調節弁50に適用した例を示したが、本発明はこれに何ら限定されるものではなく、他の型式の流体制御弁にも適用することができる。   In the above-described embodiment, an example in which the present invention is applied to the rotary valve 1 and the single seat control valve 50 has been described. However, the present invention is not limited to this, and is applicable to other types of fluid control valves. can do.

本発明を回転型弁に適用した一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment which applied this invention to the rotary valve. 弁体の斜視図である。It is a perspective view of a valve body. ディフューザの断面図である。It is sectional drawing of a diffuser. (a)はボール弁の全開状態を示す図、(b)は中間開度状態を示す図、(c)は全閉状態を示す図である。(A) is a figure which shows the fully open state of a ball valve, (b) is a figure which shows an intermediate opening state, (c) is a figure which shows a fully closed state. 圧力回復係数とディフューザの内角度との関係を示す図である。It is a figure which shows the relationship between a pressure recovery coefficient and the internal angle of a diffuser. 本発明を単座調節弁に適用した他の実施の形態の断面図である。It is sectional drawing of other embodiment which applied this invention to the single seat control valve. 本発明を三方ボール弁に適用した他の実施の形態の断面図である。It is sectional drawing of other embodiment which applied this invention to the three-way ball valve.

符号の説明Explanation of symbols

1…回転型弁、2…弁本体、3…流通路、5…バルブプラグ、6…弁軸、7…流量特性部、31…ディフューザ、32…小孔、33…頂部、θ…頂部の内角度。
DESCRIPTION OF SYMBOLS 1 ... Rotary type valve, 2 ... Valve body, 3 ... Flow path, 5 ... Valve plug, 6 ... Valve shaft, 7 ... Flow characteristic part, 31 ... Diffuser, 32 ... Small hole, 33 ... Top part, (theta) ... Top part angle.

Claims (2)

弁本体内に組み込まれ流体の流れを減速し、運動エネルギを圧力に変換する流量制御弁用ディフューザにおいて、
底部が開放する中空円錐形に形成され、頂部の内角度が90°以下で、周壁に多数の小孔が形成されていることを特徴とする流体制御弁用ディフューザ。
In a diffuser for a flow control valve that is built into the valve body and decelerates the flow of fluid and converts kinetic energy into pressure,
A diffuser for a fluid control valve, which is formed in a hollow conical shape having an open bottom, an inner angle of the top is 90 ° or less, and a plurality of small holes are formed in a peripheral wall.
請求項1記載のディフューザを備えた流体制御弁であって、
前記ディフューザは、弁本体内の弁体より下流側であって、頂部が前記弁体側で底部が前記弁本体の流出口側となるように組み込まれていることを特徴とする流体制御弁。
A fluid control valve comprising the diffuser according to claim 1,
The said diffuser is the downstream of the valve body in a valve main body, Comprising: The fluid control valve integrated so that a top part may become the said valve body side and a bottom part may become the outflow port side of the said valve main body.
JP2005302848A 2005-10-18 2005-10-18 Fluid control valve diffuser and fluid control valve Active JP4627242B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005302848A JP4627242B2 (en) 2005-10-18 2005-10-18 Fluid control valve diffuser and fluid control valve
TW095130041A TWI307391B (en) 2005-10-18 2006-08-16 Diffuser of flow control valve and flow control valve
CN2006101392890A CN1952460B (en) 2005-10-18 2006-09-21 Diffuser for fluid control valve and fluid control valve
KR1020060100142A KR100834865B1 (en) 2005-10-18 2006-10-16 Diffuser for fluid control valve and fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302848A JP4627242B2 (en) 2005-10-18 2005-10-18 Fluid control valve diffuser and fluid control valve

Publications (2)

Publication Number Publication Date
JP2007113599A true JP2007113599A (en) 2007-05-10
JP4627242B2 JP4627242B2 (en) 2011-02-09

Family

ID=38058925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302848A Active JP4627242B2 (en) 2005-10-18 2005-10-18 Fluid control valve diffuser and fluid control valve

Country Status (4)

Country Link
JP (1) JP4627242B2 (en)
KR (1) KR100834865B1 (en)
CN (1) CN1952460B (en)
TW (1) TWI307391B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879303A (en) * 2012-09-17 2013-01-16 中国石油天然气股份有限公司 Experimental device and method for diffusion performance of oil-gas components in pore medium
JP2016176493A (en) * 2015-03-19 2016-10-06 アズビル株式会社 Valve plug discrimination device
JP2016176492A (en) * 2015-03-19 2016-10-06 アズビル株式会社 Valve plug discrimination device
CN106475349A (en) * 2016-12-09 2017-03-08 无锡银联齿轮传动机械有限公司 Automatic brake board cleaning machine cleans water tank valve cylinders structure
TWI611129B (en) * 2017-03-07 2018-01-11 峻億貿易股份有限公司 One gauge/one turn regulator manifold
CN107654689A (en) * 2017-09-21 2018-02-02 永嘉县荣信科技有限公司 A kind of ball valve

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115271A (en) * 2007-11-09 2009-05-28 Yamatake Corp Flow rate measurement valve
KR101113375B1 (en) * 2011-06-28 2012-02-22 유해운 Micro bubble gererating device
CN103851217A (en) * 2012-12-06 2014-06-11 中核苏阀科技实业股份有限公司 V-shaped ball valve capable of realizing rapid detaching and overhauling
WO2015111831A1 (en) * 2014-01-22 2015-07-30 한국전력기술 주식회사 Cone type multi-perforated laminate orifice
CN103791117A (en) * 2014-01-24 2014-05-14 北京航空航天大学 High-adjustable-ratio small-flow linear control regulating valve
KR101487905B1 (en) * 2014-03-12 2015-02-03 (주)디알밸브 Valve assembly
CN104633213A (en) * 2015-02-10 2015-05-20 无锡智能自控工程股份有限公司 External seal butterfly valve flow divider device
JP6415418B2 (en) * 2015-11-27 2018-10-31 株式会社アドヴィックス Fluid control valve device
US11162613B2 (en) * 2018-10-26 2021-11-02 Fisher Controls International Llc Flow conditioner for a valve assembly
CN112032317B (en) * 2020-07-21 2022-04-22 北京航天石化技术装备工程有限公司 Jacket type cam deflection regulating valve
CN112081944A (en) * 2020-09-25 2020-12-15 浙江联大阀门有限公司 Right-angle type regulating ball valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54178130U (en) * 1978-06-07 1979-12-15
JPS61153082A (en) * 1984-12-26 1986-07-11 Gadelius Kk Steam converting valve
DE3717128A1 (en) * 1987-05-21 1988-12-08 Welland & Tuxhorn Armaturen Un Flow control valve for a liquid or gaseous flow medium
JPH01312296A (en) * 1988-06-09 1989-12-18 Chiyoda Corp Pressure reducing porous plate for fluid
JPH08200014A (en) * 1995-01-23 1996-08-06 Hitachi Zosen Corp Steam converter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418719A (en) 1980-11-26 1983-12-06 Downs Jr Edward T Air control apparatus
US5332004A (en) * 1991-08-30 1994-07-26 Fisher Controls International, Inc. Rotary noise attenuator
US5482249A (en) 1994-06-21 1996-01-09 Fisher Controls International, Inc. Fluid control valve with attenuator and dynamic seal
US5588635A (en) 1994-08-26 1996-12-31 Hartman; Thomas A. Liquid flow velocity diffuser
WO1997047904A2 (en) * 1996-06-13 1997-12-18 Fisher Controls International, Inc. Rotary valve
DE19841215B4 (en) * 1998-09-09 2007-10-31 Vetec Ventiltechnik Gmbh Rotary plug valve
DE102004009041B3 (en) * 2004-02-23 2005-08-11 Vetec Ventiltechnik Gmbh Throttling device to reduce noise in flowing material has base body with a second outer flat region which has further through apertures arranged in circle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54178130U (en) * 1978-06-07 1979-12-15
JPS61153082A (en) * 1984-12-26 1986-07-11 Gadelius Kk Steam converting valve
DE3717128A1 (en) * 1987-05-21 1988-12-08 Welland & Tuxhorn Armaturen Un Flow control valve for a liquid or gaseous flow medium
JPH01312296A (en) * 1988-06-09 1989-12-18 Chiyoda Corp Pressure reducing porous plate for fluid
JPH08200014A (en) * 1995-01-23 1996-08-06 Hitachi Zosen Corp Steam converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879303A (en) * 2012-09-17 2013-01-16 中国石油天然气股份有限公司 Experimental device and method for diffusion performance of oil-gas components in pore medium
JP2016176493A (en) * 2015-03-19 2016-10-06 アズビル株式会社 Valve plug discrimination device
JP2016176492A (en) * 2015-03-19 2016-10-06 アズビル株式会社 Valve plug discrimination device
CN106475349A (en) * 2016-12-09 2017-03-08 无锡银联齿轮传动机械有限公司 Automatic brake board cleaning machine cleans water tank valve cylinders structure
TWI611129B (en) * 2017-03-07 2018-01-11 峻億貿易股份有限公司 One gauge/one turn regulator manifold
CN107654689A (en) * 2017-09-21 2018-02-02 永嘉县荣信科技有限公司 A kind of ball valve

Also Published As

Publication number Publication date
CN1952460A (en) 2007-04-25
KR20070042459A (en) 2007-04-23
TW200716896A (en) 2007-05-01
JP4627242B2 (en) 2011-02-09
CN1952460B (en) 2012-07-25
KR100834865B1 (en) 2008-06-03
TWI307391B (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4627242B2 (en) Fluid control valve diffuser and fluid control valve
US9903481B2 (en) Control valve
KR101094552B1 (en) Three-way ball valve
CA1181320A (en) Control valve
WO2013084607A1 (en) Butterfly valve
JP2007162851A (en) Motor operated valve
JP2010091110A (en) Butterfly valve flow controller
CN100378385C (en) Adjusting valve
US9933089B2 (en) Decompression insert for rotary valve and rotary valve provided with such an insert
US6520209B1 (en) Device in a valve
JP2009259136A (en) Throttling structure for use in fluid pressure device
JP6744441B1 (en) Eccentric rotary valve
JP4950265B2 (en) Low noise rotary valve
WO2013183723A1 (en) Showerhead
JP2011007263A (en) Three-way valve
JP4563770B2 (en) Low noise rotary valve
JP4694341B2 (en) Fluid control valve
KR101634084B1 (en) Valve assembly mounted with compressing differential pressure reducing structure
JP2011033160A (en) Flow rate adjusting stop cock
JP2010236686A (en) Flow passage opening/closing valve
JP6390659B2 (en) Fuel injection valve
JP6118283B2 (en) Ball valve
JP2003120829A (en) Butterfly valve with constant-flow flooding function
JP2001059583A (en) Fluid control valve
JPH1130340A (en) Butterfly valve provided with air intake function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150