JP2007113503A - Device for evaluating reliability of high pressure fuel system - Google Patents

Device for evaluating reliability of high pressure fuel system Download PDF

Info

Publication number
JP2007113503A
JP2007113503A JP2005306593A JP2005306593A JP2007113503A JP 2007113503 A JP2007113503 A JP 2007113503A JP 2005306593 A JP2005306593 A JP 2005306593A JP 2005306593 A JP2005306593 A JP 2005306593A JP 2007113503 A JP2007113503 A JP 2007113503A
Authority
JP
Japan
Prior art keywords
pressure
fuel
reliability
repetitions
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306593A
Other languages
Japanese (ja)
Inventor
Koichi Nagai
光一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005306593A priority Critical patent/JP2007113503A/en
Priority to DE200610035362 priority patent/DE102006035362A1/en
Publication of JP2007113503A publication Critical patent/JP2007113503A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0095Synchronisation of the cylinders during engine shutdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/18Fuel-injection apparatus having means for maintaining safety not otherwise provided for

Abstract

<P>PROBLEM TO BE SOLVED: To perform appropriate reliability evaluation of a high pressure part including an accumulator. <P>SOLUTION: In a common rail type fuel injection system including a fuel pump 11, a common rail 20 and an injector 23, actual rail pressure is variably controlled based on an engine operation condition from time to time. ECU 30 acquires rail pressure information and counts the number of pressure repetitions every amplitude of a plurality of predetermined pressure amplitudes, and judges reliability of the high pressure part including the common rail 20 based on the number of pressure repetitions every counted pressure amplitude. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高圧燃料システムの信頼性評価装置に関するものである。   The present invention relates to a reliability evaluation apparatus for a high-pressure fuel system.

ディーゼルエンジン等に適用される高圧燃料システムとして、燃料の噴射圧に相当する高圧の燃料をコモンレール等の蓄圧容器内に蓄圧するとともに、該蓄圧容器内に蓄圧した高圧燃料を燃料噴射弁を介してエンジンに噴射供給する蓄圧式燃料噴射システムが実用化されている。この蓄圧式燃料噴射システムでは、燃料噴射弁による燃料噴射が行われると蓄圧容器内の燃料圧が低下するが、その際燃料供給ポンプから蓄圧容器に対して高圧燃料が吐出供給されることにより蓄圧容器内が所定の高圧状態で保持される。   As a high pressure fuel system applied to a diesel engine or the like, a high pressure fuel corresponding to the fuel injection pressure is accumulated in a pressure accumulation container such as a common rail, and the high pressure fuel accumulated in the pressure accumulation container is passed through a fuel injection valve. An accumulator fuel injection system that supplies fuel to an engine has been put into practical use. In this accumulator fuel injection system, when fuel injection by the fuel injection valve is performed, the fuel pressure in the accumulator vessel decreases. At that time, the high pressure fuel is discharged and supplied from the fuel supply pump to the accumulator vessel. The inside of the container is held at a predetermined high pressure state.

上記のような高圧燃料システムでは、エンジンの運転状態に基づいて蓄圧容器内の燃料圧が可変調整されるようになっており、例えば、その時々のエンジン回転速度及び燃料噴射量に基づいて燃料圧の目標値が設定されるとともに、実燃料圧が目標燃料圧となるように燃料供給ポンプの燃料吐出量がフィードバック制御される。具体的には、ディーゼルエンジンの場合、目標燃料圧が数10MPa〜200MPa程度の範囲内で可変設定され、それに追従させるようにして実燃料圧が制御される。   In the high-pressure fuel system as described above, the fuel pressure in the pressure accumulating vessel is variably adjusted based on the operating state of the engine. For example, the fuel pressure is determined based on the engine speed and the fuel injection amount at that time. And the fuel discharge amount of the fuel supply pump is feedback controlled so that the actual fuel pressure becomes the target fuel pressure. Specifically, in the case of a diesel engine, the target fuel pressure is variably set within a range of several tens of MPa to 200 MPa, and the actual fuel pressure is controlled so as to follow the target fuel pressure.

かかる場合、蓄圧容器では、エンジン運転状態の変化に応じて圧力変動が繰り返される。こうして圧力変動が繰り返されると、蓄圧容器やそれに接続された高圧燃料配管において金属疲労が生じ、破損等を引き起こすおそれがあった。それ故に、長期に使用した状態におけるシステムの信頼性を適正に評価することができる技術が望まれている。特に近年では、排気エミッションの改善等を図るべく蓄圧容器内の燃料圧を更に高圧化する要望があり、こうした超高圧化システムではより一層適正にシステム信頼性を評価する必要性が生じる。   In such a case, in the pressure accumulator vessel, pressure fluctuations are repeated according to changes in the engine operating state. If pressure fluctuations are repeated in this way, metal fatigue may occur in the pressure accumulator vessel or the high-pressure fuel pipe connected thereto, which may cause damage or the like. Therefore, there is a demand for a technique that can appropriately evaluate the reliability of the system in a state in which it has been used for a long time. In particular, in recent years, there has been a demand for further increasing the fuel pressure in the pressure accumulator vessel in order to improve exhaust emission and the like, and in such an ultra-high pressure system, it becomes necessary to evaluate the system reliability more appropriately.

ちなみに、蓄圧式燃料噴射システムにおける故障判定技術として例えば特許文献1が知られている。同特許文献1では、燃料供給ポンプに設けた燃料吐出制御弁の目標制御量等と基準値との比較により燃料漏れを判定する。そして、燃料漏れが生じている旨の判定時において、安全弁を一旦閉弁させた後に再度目標制御量等と基準値との比較により燃料漏れを判定し、その結果に基づいて燃料供給ポンプから燃料噴射弁への燃料供給系の破損を判定するようにしている。   Incidentally, for example, Patent Document 1 is known as a failure determination technique in an accumulator fuel injection system. In Patent Document 1, fuel leakage is determined by comparing a target control amount of a fuel discharge control valve provided in a fuel supply pump with a reference value. Then, when determining that a fuel leak has occurred, once the safety valve is closed, the fuel leak is determined again by comparing the target control amount and the like with the reference value, and based on the result, the fuel is supplied from the fuel supply pump. The failure of the fuel supply system to the injection valve is determined.

しかしながら上記特許文献1は、実際に燃料配管等が破損して燃料漏れが生じた後に故障判定がなされるものであり、外部への燃料の漏れ出しを防ぐことはできない。そのため、実際に燃料漏れが生じる以前に蓄圧容器等の高圧部分における信頼性を評価することの技術が望まれている。
特開平5−272425号公報
However, in Patent Document 1, a failure determination is made after a fuel pipe or the like is actually damaged and a fuel leak occurs, and the leakage of fuel to the outside cannot be prevented. Therefore, there is a demand for a technique for evaluating the reliability of a high-pressure portion such as a pressure accumulating vessel before fuel leakage actually occurs.
JP-A-5-272425

本発明は、蓄圧容器を含む高圧部分について適正なる信頼性評価を実施することができる高圧燃料システムの信頼性評価装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide a reliability evaluation apparatus for a high-pressure fuel system capable of performing an appropriate reliability evaluation on a high-pressure portion including a pressure accumulating vessel.

本発明の高圧燃料システムでは、都度のエンジン運転状態に基づいて蓄圧容器内の燃料圧が可変制御され、それに伴い圧力変動が繰り返される。かかる場合において、請求項1に記載の発明では、蓄圧容器内の燃料圧又はそれに相関する圧力情報を取得し、その燃料圧又はそれに相関する圧力情報が所定の圧力振幅で変動した圧力繰り返し回数をカウントする。そして、その圧力繰り返し回数に基づいて蓄圧容器を含む高圧部分の信頼性を判定する。   In the high-pressure fuel system of the present invention, the fuel pressure in the pressure accumulating vessel is variably controlled based on the engine operating state every time, and the pressure fluctuation is repeated accordingly. In such a case, in the invention described in claim 1, the fuel pressure in the pressure accumulating vessel or the pressure information correlated therewith is acquired, and the number of pressure repetitions in which the fuel pressure or the pressure information correlated therewith fluctuates with a predetermined pressure amplitude is obtained. Count. Then, the reliability of the high pressure portion including the pressure accumulating container is determined based on the number of pressure repetitions.

本構成によれば、高圧状態下で圧力変動が繰り返されることに起因して蓄圧容器等で疲労破壊が生じる可能性がある場合において、その疲労破壊の可能性を適正に判断することができる。したがって、蓄圧容器を含む高圧部分について適正なる信頼性評価を実施することができる。この場合、実際に燃料漏れ等が生じる以前に適正なる信頼性評価が実施できる。   According to this configuration, when there is a possibility that fatigue failure may occur in the accumulator vessel or the like due to repeated pressure fluctuations under high pressure, the possibility of fatigue failure can be properly determined. Therefore, appropriate reliability evaluation can be performed on the high-pressure portion including the pressure accumulator. In this case, an appropriate reliability evaluation can be performed before fuel leakage actually occurs.

ここで、圧力振幅を以下のように設定し、その圧力振幅について圧力繰り返し回数をカウントすると良い。すなわち、
・請求項2に記載の発明では、エンジン始動前の蓄圧容器内の燃料圧力と蓄圧容器で許容される最大圧力とで設定される圧力振幅について、蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントする。
・請求項3に記載の発明では、エンジンの運転状態下における通常使用域内の最小燃料圧力と最大燃料圧力とで設定される圧力振幅について、蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントする。
・請求項4に記載の発明では、あらかじめ定めた規定の圧力振幅について、蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントする。
Here, the pressure amplitude may be set as follows, and the number of pressure repetitions may be counted for the pressure amplitude. That is,
In the second aspect of the present invention, the fuel pressure in the pressure accumulating vessel or the pressure information correlating with the pressure amplitude set by the fuel pressure in the pressure accumulating vessel before starting the engine and the maximum pressure allowed in the pressure accumulating vessel Count the number of pressure repetitions.
In the invention according to claim 3, with respect to the pressure amplitude set by the minimum fuel pressure and the maximum fuel pressure in the normal use range under the operating state of the engine, the pressure of the fuel pressure in the pressure accumulating vessel or the pressure information correlated therewith Count the number of repetitions.
In the invention according to claim 4, the number of pressure repetitions of the fuel pressure in the pressure accumulator or pressure information correlated therewith is counted for a predetermined pressure amplitude.

請求項5に記載の発明では、蓄圧容器内の燃料圧又はそれに相関する圧力情報を取得し、あらかじめ設定した複数の圧力振幅ごとに、燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントする。そして、圧力振幅ごとの圧力繰り返し回数に基づいて蓄圧容器を含む高圧部分の信頼性を判定する。   According to the fifth aspect of the present invention, the fuel pressure in the pressure accumulating vessel or the pressure information correlated therewith is acquired, and the number of pressure repetitions of the fuel pressure or pressure information correlated therewith is counted for each of a plurality of preset pressure amplitudes. . Then, the reliability of the high-pressure portion including the pressure accumulating vessel is determined based on the number of pressure repetitions for each pressure amplitude.

本構成によれば、高圧状態下で圧力変動が繰り返されることに起因して蓄圧容器等で疲労破壊が生じる可能性がある場合において、その疲労破壊の可能性を適正に判断することができる。したがって、蓄圧容器を含む高圧部分について適正なる信頼性評価を実施することができる。この場合、実際に燃料漏れ等が生じる以前に適正なる信頼性評価が実施できる。   According to this configuration, when there is a possibility that fatigue failure may occur in the accumulator vessel or the like due to repeated pressure fluctuations under high pressure, the possibility of fatigue failure can be properly determined. Therefore, appropriate reliability evaluation can be performed on the high-pressure portion including the pressure accumulator. In this case, an appropriate reliability evaluation can be performed before fuel leakage actually occurs.

また特に、複数設定した圧力振幅ごとに圧力繰り返し回数をカウントし、各圧力繰り返し回数により信頼性評価を行う構成としたため、単一の圧力振幅の圧力繰り返し回数により信頼性評価を行う場合に比べてその評価精度を高めることができる。つまり、圧力振幅と圧力繰り返し回数とはS−N線図等で規定される所定の関係を有しており、圧力振幅が異なると信頼性限界値である圧力繰り返し回数が相違する。この場合、複数の信頼性判定基準を複合的に考察して信頼性評価を行うことができ、その評価精度が向上する。   In particular, the number of pressure repetitions is counted for each set pressure amplitude, and the reliability evaluation is performed based on the number of pressure repetitions. Therefore, compared to the case where the reliability evaluation is performed based on the number of pressure repetitions of a single pressure amplitude. The evaluation accuracy can be increased. That is, the pressure amplitude and the number of pressure repetitions have a predetermined relationship defined by an SN diagram or the like, and the number of pressure repetitions that is a reliability limit value is different if the pressure amplitude is different. In this case, the reliability evaluation can be performed by considering a plurality of reliability determination criteria in combination, and the evaluation accuracy is improved.

ここで、複数の圧力振幅ごとに、燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントする手法として次の手法が考えられる。すなわち、
・請求項6に記載の発明では、エンジン始動前の蓄圧容器内の燃料圧力と蓄圧容器で許容される最大圧力とで設定される圧力振幅と、それとは異なる別の圧力振幅とについて、蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をそれぞれカウントする。
・請求項7に記載の発明では、エンジン始動前の蓄圧容器内の燃料圧力と蓄圧容器で許容される最大圧力とで設定される第1の圧力振幅と、エンジンの運転状態下における通常使用域内の最小燃料圧力と最大燃料圧力とで設定される第2の圧力振幅と、あらかじめ定めた規定の第3の圧力振幅とについて、蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をそれぞれカウントする。
Here, the following method can be considered as a method for counting the number of pressure repetitions of the fuel pressure or pressure information correlated therewith for each of a plurality of pressure amplitudes. That is,
In the invention described in claim 6, the pressure accumulating vessel is set for the pressure amplitude set by the fuel pressure in the accumulating vessel before starting the engine and the maximum pressure allowed in the accumulating vessel, and another pressure amplitude different from the pressure amplitude. The number of pressure repetitions of the internal fuel pressure or pressure information correlated therewith is counted.
In the invention according to claim 7, the first pressure amplitude set by the fuel pressure in the pressure accumulating vessel before starting the engine and the maximum pressure allowed in the pressure accumulating vessel, and in the normal operating range under the operating state of the engine For the second pressure amplitude set by the minimum fuel pressure and the maximum fuel pressure and the predetermined third pressure amplitude, the fuel pressure in the pressure accumulator or the pressure repetition number of the pressure information correlated therewith is determined. Count each.

また、請求項8に記載の発明では、前記複数の圧力振幅ごとにカウントした圧力繰り返し回数の総和に基づいて前記蓄圧容器を含む高圧部分の信頼性を判定する。これにより、複数の信頼性判定基準を複合的に勘案した信頼性評価を行うことができる。なおこの場合、圧力振幅ごとに重み付け量を設定しておき、その重み付け量を乗算した各圧力繰り返し回数を加算して総圧力繰り返し回数を算出するとともに、その総圧力繰り返し回数に基づいて前記蓄圧容器を含む高圧部分の信頼性を判定するようにしても良い。   In the invention according to claim 8, the reliability of the high pressure portion including the pressure accumulating vessel is determined based on the total number of pressure repetitions counted for each of the plurality of pressure amplitudes. As a result, it is possible to perform a reliability evaluation in consideration of a plurality of reliability determination criteria. In this case, a weighting amount is set for each pressure amplitude, and each pressure repetition number multiplied by the weighting amount is added to calculate the total pressure repetition number, and the accumulator vessel is based on the total pressure repetition number. You may make it determine the reliability of the high voltage | pressure part containing.

請求項9に記載の発明では、前記複数の圧力振幅ごとに設定した信頼性限界値とカウント手段によりカウントした圧力繰り返し回数との比較により、圧力振幅ごとに蓄圧容器を含む高圧部分の信頼性を仮判定する。そして、複数の仮判定結果に基づいて、蓄圧容器を含む高圧部分の信頼性を最終判定する。本構成によれば、信頼性評価が2段階で実施され、その評価精度を向上させることができる。なおこの場合、圧力振幅が大きいほど、圧力繰り返し回数の信頼性限界値を小さくすると良い。   In the invention according to claim 9, the reliability of the high pressure portion including the pressure accumulating vessel is determined for each pressure amplitude by comparing the reliability limit value set for each of the plurality of pressure amplitudes and the number of pressure repetitions counted by the counting means. Temporarily judge. Then, the reliability of the high pressure portion including the pressure accumulating container is finally determined based on the plurality of temporary determination results. According to this configuration, the reliability evaluation is performed in two stages, and the evaluation accuracy can be improved. In this case, the reliability limit value of the number of pressure repetitions is preferably decreased as the pressure amplitude is increased.

請求項10に記載したように、前記複数の圧力振幅はいずれも、圧力振幅と圧力繰り返し回数とをパラメータとする疲労限界特性(S−N特性)において、圧力繰り返し回数が無限大となる耐久限度よりも大きい圧力振幅であると良い。   The durability limit at which the number of pressure repetitions is infinite in the fatigue limit characteristic (SN characteristic) using the pressure amplitude and the number of pressure repetitions as parameters. It is preferable that the pressure amplitude is larger than that.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、車両ディーゼルエンジンのコモンレール式燃料噴射システムとして本発明を具体化しており、その詳細な構成を以下に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. The present embodiment embodies the present invention as a common rail fuel injection system for a vehicle diesel engine, and a detailed configuration thereof will be described below.

図1は、コモンレール式燃料噴射システムの概要を示す構成図である。図1において、燃料タンク10と燃料ポンプ11とは燃料配管12を通じて接続されており、燃料ポンプ11は、エンジン(図示略)の回転に伴い駆動されて燃料の吸入及び吐出を繰り返し実行する。図中の符号13は燃料フィルタである。燃料ポンプ11の燃料吸入部には電磁駆動式の吸入調量弁(SCV)14が設けられており、燃料タンク10から汲み上げられた低圧燃料は吸入調量弁14を介して当該ポンプ11の燃料加圧室に吸入される。そして、燃料ポンプ11では、エンジン回転に同期してプランジャが往復動することにより燃料加圧室内の燃料が高圧化され、その高圧燃料が吐出される。   FIG. 1 is a configuration diagram showing an outline of a common rail fuel injection system. In FIG. 1, a fuel tank 10 and a fuel pump 11 are connected through a fuel pipe 12, and the fuel pump 11 is driven in accordance with the rotation of an engine (not shown) to repeatedly execute intake and discharge of fuel. Reference numeral 13 in the figure denotes a fuel filter. The fuel suction portion of the fuel pump 11 is provided with an electromagnetically driven suction metering valve (SCV) 14, and the low-pressure fuel pumped up from the fuel tank 10 is supplied to the fuel of the pump 11 via the suction metering valve 14. Inhaled into the pressure chamber. In the fuel pump 11, the plunger reciprocates in synchronization with the engine rotation, whereby the pressure in the fuel pressurizing chamber is increased, and the high-pressure fuel is discharged.

燃料ポンプ11には、燃料吐出配管18を介してコモンレール20が接続されている。燃料ポンプ11から吐出される高圧燃料は燃料吐出配管18を通じてコモンレール20に逐次給送され、それによりコモンレール20内の燃料は高圧状態に保持されるようになっている。コモンレール20には燃料圧センサ21が設けられており、この燃料圧センサ21によりコモンレール20内の燃料圧(以下、実レール圧とも言う)が検出される。   A common rail 20 is connected to the fuel pump 11 via a fuel discharge pipe 18. The high-pressure fuel discharged from the fuel pump 11 is sequentially fed to the common rail 20 through the fuel discharge pipe 18 so that the fuel in the common rail 20 is maintained in a high-pressure state. The common rail 20 is provided with a fuel pressure sensor 21. The fuel pressure sensor 21 detects the fuel pressure in the common rail 20 (hereinafter also referred to as an actual rail pressure).

また、エンジン(図示略)には気筒ごとに電磁駆動式のインジェクタ23が設けられており、該インジェクタ23には高圧燃料配管24を通じてコモンレール20から高圧燃料が供給される。インジェクタ23の駆動によりエンジンの各気筒に燃料が噴射供給される。インジェクタ23は、二方電磁弁や三方電磁弁を用いた構成となっており、インジェクタ23に供給される高圧燃料の一部はリターン配管25を通じて燃料タンク10に戻されるようになっている。   An engine (not shown) is provided with an electromagnetically driven injector 23 for each cylinder, and high pressure fuel is supplied from the common rail 20 to the injector 23 through a high pressure fuel pipe 24. Fuel is injected and supplied to each cylinder of the engine by driving the injector 23. The injector 23 has a configuration using a two-way solenoid valve or a three-way solenoid valve, and a part of the high-pressure fuel supplied to the injector 23 is returned to the fuel tank 10 through a return pipe 25.

なお、コモンレール20には機械式(又は電磁駆動式でも可)の減圧弁27が設けられており、コモンレール圧が過剰に上昇した場合にはこの減圧弁27が開放される。これにより、リターン配管25を通じて高圧燃料が燃料タンク10に戻され、コモンレール圧が減圧されるようになっている。   The common rail 20 is provided with a mechanical (or electromagnetically driven) pressure reducing valve 27. When the common rail pressure rises excessively, the pressure reducing valve 27 is opened. As a result, the high pressure fuel is returned to the fuel tank 10 through the return pipe 25, and the common rail pressure is reduced.

ECU30は、CPU、ROM、RAM、EEPROM等からなる周知のマイクロコンピュータを備えた電子制御ユニットであり、ECU30には、燃料圧センサ21の検出信号の他、エンジンの回転速度を検出するための回転速度センサ31、ドライバによるアクセル操作量を検出するアクセルセンサ32などの各種センサから検出信号が逐次入力される。そして、ECU30は、エンジン回転速度やアクセル開度等のエンジン運転情報に基づいて最適な燃料噴射量及び噴射時期を決定し、それに応じた噴射制御信号をインジェクタ23に出力する。これにより、各気筒においてインジェクタ23から燃焼室への燃料噴射が制御される。   The ECU 30 is an electronic control unit including a known microcomputer including a CPU, ROM, RAM, EEPROM, and the like. The ECU 30 includes a rotation signal for detecting the rotation speed of the engine in addition to the detection signal of the fuel pressure sensor 21. Detection signals are sequentially input from various sensors such as a speed sensor 31 and an accelerator sensor 32 that detects an accelerator operation amount by a driver. The ECU 30 determines an optimal fuel injection amount and injection timing based on engine operation information such as the engine rotation speed and the accelerator opening, and outputs an injection control signal corresponding to the fuel injection amount to the injector 23. Thereby, the fuel injection from the injector 23 to the combustion chamber is controlled in each cylinder.

また、ECU30は、その時々のエンジン回転速度及び燃料噴射量に基づきコモンレール圧(噴射圧)の目標値を算出するとともに、実レール圧が目標レール圧となるように燃料ポンプ11の燃料吐出量をフィードバック制御する。実際には、実レール圧と目標レール圧との偏差に基づいて燃料ポンプ11の目標吐出量を決定し、それに応じて吸入調量弁14の開度を制御する。このとき、吸入調量弁14の電磁ソレノイドに対する指示電流値(駆動電流)が制御されることにより、吸入調量弁14の開度が増減され、それに伴い燃料ポンプ11による燃料吐出量が調整される。   Further, the ECU 30 calculates the target value of the common rail pressure (injection pressure) based on the engine speed and the fuel injection amount at that time, and sets the fuel discharge amount of the fuel pump 11 so that the actual rail pressure becomes the target rail pressure. Feedback control. Actually, the target discharge amount of the fuel pump 11 is determined based on the deviation between the actual rail pressure and the target rail pressure, and the opening of the intake metering valve 14 is controlled accordingly. At this time, by controlling the command current value (drive current) for the electromagnetic solenoid of the intake metering valve 14, the opening of the intake metering valve 14 is increased or decreased, and the fuel discharge amount by the fuel pump 11 is adjusted accordingly. The

ところで、コモンレール20では、都度のエンジン運転状態に応じて実レール圧が変動し、最大で約200MPa程度まで上昇する。このとき、エンジン始動前は実レール圧=0であるため、エンジン始動時を基準にすると、実レール圧の最大変動幅は200MPa程度となる。また、エンジン運転中のアイドル状態では実レール圧が約30MPa程度であるとすると、エンジン運転時における常用使用域の最大変動幅は170MPa程度となる。   By the way, in the common rail 20, the actual rail pressure fluctuates according to the engine operating state every time, and rises to about 200 MPa at the maximum. At this time, since the actual rail pressure is 0 before the engine is started, the maximum fluctuation range of the actual rail pressure is about 200 MPa when the engine is started. Further, assuming that the actual rail pressure is about 30 MPa in the idle state during engine operation, the maximum fluctuation range of the normal use range during engine operation is about 170 MPa.

この場合、実レール圧の変動が繰り返されることにより、コモンレール20やその他の高圧状態下の燃料配管(燃料吐出配管18や高圧燃料配管24)で金属疲労が生じ、破損等が生じることが懸念される。そこで本実施の形態では、車両のイグニッションON後(エンジン始動後)における実レール圧の変動をモニタするとともに、実レール圧の変動幅に基づいてコモンレール20等の高圧部分の信頼性を判定する。   In this case, there is a concern that the fatigue of the common rail 20 and other high-pressure fuel pipes (the fuel discharge pipe 18 and the high-pressure fuel pipe 24) may cause metal fatigue due to repeated fluctuations in the actual rail pressure. The Therefore, in the present embodiment, the fluctuation of the actual rail pressure after the vehicle ignition is turned on (after the engine is started) is monitored, and the reliability of the high-pressure portion such as the common rail 20 is determined based on the fluctuation range of the actual rail pressure.

特に本実施の形態では、大小異なる複数の圧力振幅を設定しておき、各圧力振幅分の圧力変動が生じた場合にそれを検知するとともに、その圧力繰り返し回数をカウントする。そして、その圧力繰り返し回数に応じてコモンレール20等の高圧部分の信頼性を判定する。具体的には、以下の3つの圧力振幅ΔP1〜ΔP3を設定しておき、各圧力振幅での圧力繰り返し回数をカウントする。
(1)エンジン始動時圧力〜最大圧力(0〜200MPa)を圧力振幅ΔP1とし、そのΔP1分の圧力繰り返し回数をカウントする。
(2)エンジンの常用使用域の最小圧力〜最大圧力(30〜200MPa)を圧力振幅ΔP2とし、そのΔP2分の圧力繰り返し回数をカウントする。
(3)あらかじめ定めた規定の圧力振幅ΔP3分の圧力繰り返し回数をカウントする。例えば、ΔP3=100MPaである。
In particular, in the present embodiment, a plurality of pressure amplitudes having different sizes are set, and when a pressure fluctuation corresponding to each pressure amplitude occurs, it is detected and the number of pressure repetitions is counted. And the reliability of high voltage | pressure parts, such as the common rail 20, etc. is determined according to the pressure repetition frequency. Specifically, the following three pressure amplitudes ΔP1 to ΔP3 are set, and the number of pressure repetitions at each pressure amplitude is counted.
(1) A pressure amplitude ΔP1 is defined as the engine starting pressure to the maximum pressure (0 to 200 MPa), and the number of pressure repetitions for ΔP1 is counted.
(2) The minimum pressure to the maximum pressure (30 to 200 MPa) in the normal use range of the engine is set as a pressure amplitude ΔP2, and the number of pressure repetitions for ΔP2 is counted.
(3) Count the number of pressure repetitions for a predetermined pressure amplitude ΔP3. For example, ΔP3 = 100 MPa.

ただし上記(1),(2)に関し、圧力振幅の上限側圧力を、コモンレール20の耐圧である最大圧力とすることに代えて「最大圧力−α」としても良い。例えば、上記(1)の圧力振幅ΔP1を0〜180MPaとし、上記(2)の圧力振幅ΔP2を30〜180MPaとする。   However, regarding the above (1) and (2), the upper limit pressure of the pressure amplitude may be set to “maximum pressure−α” instead of the maximum pressure which is the pressure resistance of the common rail 20. For example, the pressure amplitude ΔP1 in (1) is set to 0 to 180 MPa, and the pressure amplitude ΔP2 in (2) is set to 30 to 180 MPa.

ここで、コモンレール20等の高圧部分の圧力振幅(S)とその圧力繰り返し回数(N)とは図2のS−N線図に示す関係となり、図2の(a)において、例えば圧力振幅がA1である場合には、圧力繰り返し回数がB1を超えた時点で疲労破壊が発生すると考えられる。なお図2において、A2は、この値以下では疲労破壊が生じないと考えられる応力振幅(耐久限度)であり、上記(1)〜(3)における圧力振幅ΔP1〜ΔP3はいずれもA2(耐久限度)以上の値となっている。   Here, the pressure amplitude (S) of the high-pressure portion such as the common rail 20 and the number of pressure repetitions (N) have the relationship shown in the SN diagram of FIG. 2, and in FIG. In the case of A1, it is considered that fatigue failure occurs when the number of pressure repetitions exceeds B1. In FIG. 2, A2 is the stress amplitude (endurance limit) that is considered to cause no fatigue failure below this value, and the pressure amplitudes ΔP1 to ΔP3 in (1) to (3) above are all A2 (endurance limit). ) Or more.

図2の(b)に示すように、上記(1)〜(3)の圧力振幅ΔP1〜ΔP3に対応する疲労限界は各々相違し、
・圧力振幅ΔP1の場合には、圧力繰り返し回数がK1になると疲労破壊が生じ、
・圧力振幅ΔP2の場合には、圧力繰り返し回数がK2になると疲労破壊が生じ、
・圧力振幅ΔP3の場合には、圧力繰り返し回数がK3になると疲労破壊が生じる、
と考えられる。
As shown in FIG. 2B, the fatigue limits corresponding to the pressure amplitudes ΔP1 to ΔP3 in the above (1) to (3) are different from each other,
In the case of pressure amplitude ΔP1, fatigue failure occurs when the number of pressure repetitions is K1,
In the case of pressure amplitude ΔP2, fatigue failure occurs when the number of pressure repetitions reaches K2,
In the case of pressure amplitude ΔP3, fatigue failure occurs when the number of pressure repetitions is K3.
it is conceivable that.

そこで、圧力振幅ごとにその圧力繰り返し回数の判定値を個別に設定する(信頼性限界値K1,K2,K3)。そして、各圧力振幅ΔP1〜ΔP3における圧力繰り返し回数をそれぞれにカウントするとともに、該カウント値と各判定値との比較によりコモンレール20等の高圧部分の信頼性を判定する。なお、圧力振幅ΔP3に関しては、該ΔP3分の実レール圧の上昇及び下降が交互に繰り返されるたびにその繰り返し回数がカウントされる。   Therefore, a determination value for the number of pressure repetitions is individually set for each pressure amplitude (reliability limit values K1, K2, K3). Then, the number of pressure repetitions at each of the pressure amplitudes ΔP1 to ΔP3 is counted, and the reliability of the high-pressure portion such as the common rail 20 is determined by comparing the count value with each determination value. Regarding the pressure amplitude ΔP3, the number of repetitions is counted each time the increase and decrease of the actual rail pressure by ΔP3 are alternately repeated.

図3は、エンジン始動後からの実レール圧の挙動についての一例を示すタイムチャートである。図3では、1トリップ分の実レール圧の挙動を示しており、タイミングt1でエンジン始動の始動に伴い実レール圧が0から上昇し始め、タイミングt13でエンジン停止に伴い実レール圧が0に戻るものとしている。第1カウンタC1は圧力振幅ΔP1の圧力繰り返し回数をカウントするためのカウンタであり、第2カウンタC2は圧力振幅ΔP2の圧力繰り返し回数をカウントするためのカウンタであり、第3カウンタC3は圧力振幅ΔP3の圧力繰り返し回数をカウントするためのカウンタである。   FIG. 3 is a time chart showing an example of the behavior of the actual rail pressure after the engine is started. FIG. 3 shows the behavior of the actual rail pressure for one trip. At the timing t1, the actual rail pressure starts to increase from 0 as the engine starts, and at the timing t13, the actual rail pressure decreases to 0. I'm going back. The first counter C1 is a counter for counting the number of pressure repetitions of the pressure amplitude ΔP1, the second counter C2 is a counter for counting the number of pressure repetitions of the pressure amplitude ΔP2, and the third counter C3 is a pressure amplitude ΔP3. It is a counter for counting the number of pressure repetitions.

図3において、タイミングt1ではエンジンの始動に伴い実レール圧が上昇し始める。例えばタイミングt2から暫くはエンジンがアイドル状態にあり、実レール圧が約30MPaに制御される。またその後、エンジンが高負荷状態になると、タイミングt4で実レール圧が最大圧力(約200MPa)まで上昇する。このとき、エンジン始動後の圧力振幅がΔP3になるタイミングt3では第3カウンタC3が1カウントアップされる。また、実レール圧が最大圧力に達するタイミングt4では第1カウンタC1及び第2カウンタC2がそれぞれ1ずつカウントアップされる。   In FIG. 3, at the timing t1, the actual rail pressure starts to increase as the engine starts. For example, the engine is in an idle state for a while from the timing t2, and the actual rail pressure is controlled to about 30 MPa. Thereafter, when the engine is in a high load state, the actual rail pressure rises to the maximum pressure (about 200 MPa) at timing t4. At this time, the third counter C3 is incremented by 1 at a timing t3 when the pressure amplitude after the engine starts becomes ΔP3. Further, at the timing t4 when the actual rail pressure reaches the maximum pressure, each of the first counter C1 and the second counter C2 is incremented by one.

タイミングt4以降は、実レール圧が都度の運転状態に応じて変動した後、エンジン停止に伴い0になるため、第1カウンタC1に関しては、エンジン停止に伴い実レール圧が0になるタイミングt13で再度カウントアップが行われる。また、第2カウンタC2に関しては、実レール圧がアイドル状態下での圧力(30MPa)と最大圧力(200MPa)とで交互に振幅するたびにカウントアップが行われる(タイミングt6,t10,t12)。   After timing t4, after the actual rail pressure fluctuates in accordance with each driving state, it becomes 0 when the engine is stopped. Therefore, for the first counter C1, at the timing t13 when the actual rail pressure becomes 0 when the engine stops. Count up is performed again. The second counter C2 is counted up every time the actual rail pressure alternately alternates between the pressure (30 MPa) under the idle state and the maximum pressure (200 MPa) (timing t6, t10, t12).

また、第3カウンタC3に関しては、実レール圧が圧力振幅ΔP3分だけ上昇したタイミングt3の後、圧力振幅ΔP3分の下降及び上昇が交互に繰り返されるたびにカウントアップが行われる(タイミングt5,t7,t8,t9,t11)。   Further, regarding the third counter C3, after the timing t3 when the actual rail pressure increases by the pressure amplitude ΔP3, the count-up is performed every time the decrease and increase by the pressure amplitude ΔP3 are alternately repeated (timing t5, t7). , T8, t9, t11).

図3の事例では、実レール圧が所定の圧力振幅分だけ上昇するか又は下降するたびに各カウンタC1〜C3がそれぞれカウントアップされるとしたが、これを変更し、所定の圧力振幅分の上昇及び下降が行われることを1サイクルとし、1サイクルの圧力変動が生じるたびに各カウンタC1〜C3がそれぞれカウントアップされるようにしても良い。すなわちこの場合、図3のような実レール圧の推移に際し、第1カウンタC1は「1」カウントアップされ、第2カウンタC2は「2」カウントアップされ、第3カウンタC3は「3」カウントアップされる。   In the example of FIG. 3, each time the actual rail pressure is increased or decreased by a predetermined pressure amplitude, the counters C1 to C3 are counted up. Ascending and descending may be performed as one cycle, and the counters C1 to C3 may be counted up each time a pressure fluctuation in one cycle occurs. That is, in this case, when the actual rail pressure changes as shown in FIG. 3, the first counter C1 is incremented by “1”, the second counter C2 is incremented by “2”, and the third counter C3 is incremented by “3”. Is done.

上記の各カウンタC1〜C3のカウント値はEEPROMやバックアップRAM等のバックアップ用メモリに逐次記憶され、車両のイグニッションスイッチのOFF後もその記憶内容(カウント値)が保持されるようになっている。故に、図3では便宜上、各カウンタのカウントアップを0から開始しているが、実際には同カウンタの値は前回トリップ時のカウント値の続きでカウントされる。   The count values of the counters C1 to C3 are sequentially stored in a backup memory such as an EEPROM or a backup RAM, and the stored contents (count values) are held even after the ignition switch of the vehicle is turned off. Therefore, in FIG. 3, for the sake of convenience, the count-up of each counter is started from 0, but the value of the counter is actually counted after the count value at the previous trip.

図4は、コモンレール20等の高圧部分における信頼性評価処理を示すフローチャートであり、本処理は所定の時間周期でECU30により繰り返し実行される。   FIG. 4 is a flowchart showing a reliability evaluation process in a high-voltage portion such as the common rail 20. This process is repeatedly executed by the ECU 30 at a predetermined time period.

図4において、まずステップS101では、燃料圧センサ21の検出信号により算出される実レール圧を読み込む。次に、ステップS102では、圧力振幅ΔP1分の圧力変動が生じたか否かを判定し、YESであればステップS103で第1カウンタC1を1インクリメントする。また、ステップS104では、圧力振幅ΔP2分の圧力変動が生じたか否かを判定し、YESであればステップS105で第2カウンタC2を1インクリメントする。ステップS106では、圧力振幅ΔP3分の圧力変動が生じたか否かを判定し、YESであればステップS107で第3カウンタC3を1インクリメントする。   In FIG. 4, first, in step S101, the actual rail pressure calculated from the detection signal of the fuel pressure sensor 21 is read. Next, in step S102, it is determined whether or not a pressure fluctuation corresponding to the pressure amplitude ΔP1 has occurred. If YES, the first counter C1 is incremented by 1 in step S103. In step S104, it is determined whether or not a pressure fluctuation corresponding to the pressure amplitude ΔP2 has occurred. If YES, the second counter C2 is incremented by 1 in step S105. In step S106, it is determined whether or not a pressure fluctuation corresponding to the pressure amplitude ΔP3 has occurred. If YES, the third counter C3 is incremented by 1 in step S107.

その後、ステップS108では、第1〜第3カウンタC1〜C3の各カウンタ値に基づいてコモンレール20等の高圧部分における信頼性評価を実施する。このとき、信頼性の評価手法としては、
(A)第1〜第3カウンタC1〜C3の各カウンタ値を単独で用いて信頼性評価を実施する手法と、
(B)第1〜第3カウンタC1〜C3の各カウンタ値を複合的に用いて信頼性評価を実施する手法と、
のいずれかが採用される。
Thereafter, in step S108, reliability evaluation is performed on the high voltage portion such as the common rail 20 based on the counter values of the first to third counters C1 to C3. At this time, as a reliability evaluation method,
(A) a method of performing reliability evaluation using each counter value of the first to third counters C1 to C3 independently;
(B) a method of performing reliability evaluation by using each counter value of the first to third counters C1 to C3 in combination;
One of these is adopted.

(A)について述べると、圧力振幅ΔP1〜ΔP3ごとに、信頼性限界値である判定値K1〜K3を設定し、「C1値≧K1であるか?」、「C2値≧K2であるか?」、「C3値≧K3であるか?」を個別に判定する。そして、上記3つの判定のうちいずれかがYESの場合に、コモンレール20等の高圧部分での信頼性が低下した旨(すなわち疲労限界に近い旨)を判定する。信頼性が低下したと判定された場合、その旨を記憶するためにダイアグコード等の記憶処理を行ったり、異常警告灯の点灯などによりドライバに告知したりする。   Regarding (A), determination values K1 to K3, which are reliability limit values, are set for each pressure amplitude ΔP1 to ΔP3, and “C1 value ≧ K1?”, “C2 value ≧ K2? And “Is C3 value ≧ K3?” Individually. Then, if any of the above three determinations is YES, it is determined that the reliability of the high-voltage portion such as the common rail 20 has been reduced (that is, the fatigue limit is close). When it is determined that the reliability has been lowered, a storage process such as a diag code is performed in order to store the fact, or the driver is notified by turning on an abnormality warning lamp or the like.

なお(A)において、圧力振幅ごとに重み付け量を設定しておき、その重み付け量を乗算した各圧力繰り返し回数により信頼性評価を行うことも可能である。つまり、圧力振幅ΔP1〜ΔP3ごとに重み係数f1,f2,f3を設定し(ΔP1>ΔP1>ΔP3となる関係上、f1>f2>f3である)、各カウンタ値C1〜C3にそれぞれ重み係数f1〜f3を乗算する。この場合、同一の信頼性限界値Krefを用い、「C1値×f1≧Krefであるか?」、「C2値×f2≧Krefであるか?」、「C3値×f3≧Krefであるか?」を個別に判定する。そして、上記3つの判定のうちいずれかがYESの場合に、コモンレール20等の高圧部分での信頼性が低下した旨を判定する。   In (A), it is also possible to set a weighting amount for each pressure amplitude, and to perform reliability evaluation based on the number of pressure repetitions multiplied by the weighting amount. In other words, the weighting factors f1, f2, and f3 are set for each of the pressure amplitudes ΔP1 to ΔP3 (f1> f2> f3 because of the relationship of ΔP1> ΔP1> ΔP3), and the weighting factors f1 are set to the counter values C1 to C3, respectively. Multiply ~ 3. In this case, the same reliability limit value Kref is used, “C1 value × f1 ≧ Kref?”, “C2 value × f2 ≧ Kref?”, “C3 value × f3 ≧ Kref?” Are individually determined. Then, if any of the above three determinations is YES, it is determined that the reliability of the high voltage portion such as the common rail 20 has decreased.

また、(B)について述べると、第1〜第3カウンタC1〜C3の各カウンタ値を全て加算して総カウント値CTを算出する(CT=C1+C2+C3)。そして、その総カウント数CTと、信頼性限界値である判定値Kthとを比較し、CT値≧Kthとなる場合に、コモンレール20等の高圧部分での信頼性が低下した旨を判定する。   As for (B), the total count value CT is calculated by adding all the counter values of the first to third counters C1 to C3 (CT = C1 + C2 + C3). Then, the total count number CT is compared with a determination value Kth that is a reliability limit value, and when CT value ≧ Kth, it is determined that the reliability in the high-voltage portion such as the common rail 20 has decreased.

なお(B)において、圧力振幅ごとに重み付け量を設定しておき、その重み付け量を乗算した各圧力繰り返し回数を加算して総カウント数を算出することも可能である。つまり、圧力振幅ΔP1〜ΔP3ごとに重み係数f1,f2,f3を設定する(ΔP1>ΔP1>ΔP3となる関係上、f1>f2>f3である)。そして、
CT=C1×f1+C2×f2+C3×f3
とし、CT値≧Kthとなる場合に、コモンレール20等の高圧部分での信頼性が低下した旨を判定する。
In (B), it is also possible to set a weighting amount for each pressure amplitude, and calculate the total count number by adding the number of pressure repetitions multiplied by the weighting amount. That is, the weighting factors f1, f2, and f3 are set for each of the pressure amplitudes ΔP1 to ΔP3 (f1>f2> f3 because of the relationship of ΔP1>ΔP1> ΔP3). And
CT = C1 * f1 + C2 * f2 + C3 * f3
When CT value ≧ Kth, it is determined that the reliability of the high-voltage portion such as the common rail 20 has decreased.

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

複数の圧力振幅ΔP1〜ΔP3ごとに、実レール圧の圧力繰り返し回数をカウントし、各圧力繰り返し回数に基づいてコモンレール20等の高圧部分の信頼性を判定するようにしたため、高圧状態下で圧力変動が繰り返されることに起因してコモンレール20等で疲労破壊が生じる可能性がある場合において、その疲労破壊の可能性を適正に判断することができる。したがって、コモンレール20を含む高圧部分について適正なる信頼性評価を実施することができる。この場合、実際に燃料漏れ等が生じる以前に適正なる信頼性評価が実施できる。   For each of a plurality of pressure amplitudes ΔP1 to ΔP3, the number of times the actual rail pressure is repeated is counted, and the reliability of the high-pressure portion such as the common rail 20 is determined based on the number of times the pressure is repeated. In the case where there is a possibility that fatigue failure may occur in the common rail 20 or the like due to repetition of the above, the possibility of the fatigue failure can be properly determined. Therefore, an appropriate reliability evaluation can be performed on the high-voltage portion including the common rail 20. In this case, an appropriate reliability evaluation can be performed before fuel leakage actually occurs.

この場合特に、複数の圧力振幅で圧力繰り返し回数をカウントして信頼性評価を行うようにしたため、単一の圧力振幅の圧力繰り返し回数により信頼性評価を行う場合に比べてその評価精度を高めることができる。   In this case, since the reliability evaluation is performed by counting the number of pressure repetitions with a plurality of pressure amplitudes, the evaluation accuracy can be improved compared to the case where the reliability evaluation is performed with the number of pressure repetitions of a single pressure amplitude. Can do.

なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。   In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

上記実施の形態では、実レール圧を評価パラメータとして実レール圧の圧力繰り返し回数に基づいて信頼性評価を実施したが、これに代えて、目標レール圧を評価パラメータとして目標レール圧の圧力繰り返し回数に基づいて信頼性評価を実施することも可能である。この場合、目標レール圧が「蓄圧容器内の燃料圧に相関する圧力情報」に相当する。   In the above-described embodiment, the reliability evaluation is performed based on the actual rail pressure as the evaluation parameter based on the number of repetitions of the actual rail pressure, but instead, the target rail pressure is used as the evaluation parameter and the number of repetitions of the target rail pressure. It is also possible to perform reliability evaluation based on In this case, the target rail pressure corresponds to “pressure information correlating with the fuel pressure in the pressure accumulating vessel”.

上記実施の形態では、3つの圧力振幅ΔP1〜ΔP3を設定したが、2つの圧力振幅を設定したり、4つ以上の圧力振幅を設定したりすることも可能である。ただしこの場合、少なくともエンジン始動時圧力〜最大圧力を圧力振幅とするケースが含まれているのが望ましい。   In the above-described embodiment, three pressure amplitudes ΔP1 to ΔP3 are set. However, two pressure amplitudes can be set, or four or more pressure amplitudes can be set. However, in this case, it is desirable to include a case where the pressure amplitude is at least from the engine starting pressure to the maximum pressure.

複数の圧力振幅ΔP1〜ΔP3ごとに圧力繰り返し回数をカウントする構成において、圧力振幅ΔP1〜ΔP3ごとに各カウンタC1〜C3と信頼性限界値とを比較して信頼性評価の仮判定を行うとともに、複数の仮判定結果に基づいて信頼性評価の最終判定を行うようにしても良い。例えば、圧力振幅ΔP1〜ΔP3のうち、2つ以上の圧力振幅で疲労限界である旨(すなわち疲労限界に近い旨)の仮判定がなされた場合に、疲労限界である旨の最終判定を行うようにする。本構成によれば、信頼性評価が2段階で実施され、その評価精度を向上させることができる。なおこれは、上記した(A)及び(B)の両手法を組み合わせたものに相当する。   In the configuration in which the number of pressure repetitions is counted for each of a plurality of pressure amplitudes ΔP1 to ΔP3, each counter C1 to C3 is compared with the reliability limit value for each pressure amplitude ΔP1 to ΔP3, and a temporary determination for reliability evaluation is performed. You may make it perform the final determination of reliability evaluation based on several temporary determination results. For example, when a temporary determination is made that the fatigue limit is reached (ie, the pressure is close to the fatigue limit) at two or more pressure amplitudes among the pressure amplitudes ΔP1 to ΔP3, the final determination that the fatigue limit is reached is performed. To. According to this configuration, the reliability evaluation is performed in two stages, and the evaluation accuracy can be improved. This corresponds to a combination of both methods (A) and (B).

上記実施の形態では、3つの圧力振幅ΔP1〜ΔP3を設定したが、そのうち何れか一つの圧力振幅を設定する構成とし、その圧力繰り返し回数に基づいてコモンレール20等の高圧部分の信頼性を判定することも可能である。   In the above embodiment, three pressure amplitudes ΔP1 to ΔP3 are set. However, any one of the pressure amplitudes is set, and the reliability of the high-pressure portion such as the common rail 20 is determined based on the number of pressure repetitions. It is also possible.

上記実施の形態では、ディーゼルエンジン用のコモンレール式燃料噴射システムに本発明を適用したが、他のシステムへの適用も可能である。例えば、直噴式ガソリンエンジンの燃料噴射システムに本発明を適用する。直噴式ガソリンエンジンの場合でも、高圧燃料が蓄圧容器(デリバリパイプとも称される)に蓄えられ、その際圧力変動が繰り返されると考えられる。故に本発明の適用により、好適なる信頼性評価が実現できる。   In the above embodiment, the present invention is applied to a common rail fuel injection system for a diesel engine, but application to other systems is also possible. For example, the present invention is applied to a fuel injection system of a direct injection gasoline engine. Even in the case of a direct-injection gasoline engine, it is considered that high-pressure fuel is stored in an accumulator (also referred to as a delivery pipe), and pressure fluctuations are repeated at that time. Therefore, suitable reliability evaluation can be realized by applying the present invention.

発明の実施の形態におけるコモンレール式燃料噴射システムの概略を示す構成図である。It is a lineblock diagram showing an outline of a common rail type fuel injection system in an embodiment of the invention. 圧力振幅と圧力繰り返し回数とをパラメータとして示すS−N線図である。It is a SN diagram which shows a pressure amplitude and the pressure repetition frequency as a parameter. 実レール圧の挙動の一例を示すタイムチャートである。It is a time chart which shows an example of the behavior of an actual rail pressure. 信頼性評価処理を示すフローチャートである。It is a flowchart which shows a reliability evaluation process.

符号の説明Explanation of symbols

11…燃料ポンプ、18…燃料吐出配管、20…コモンレール、23…インジェクタ、24…高圧燃料配管、30…ECU。   DESCRIPTION OF SYMBOLS 11 ... Fuel pump, 18 ... Fuel discharge piping, 20 ... Common rail, 23 ... Injector, 24 ... High pressure fuel piping, 30 ... ECU.

Claims (10)

噴射圧に相当する高圧の燃料を蓄える蓄圧容器と、該蓄圧容器に対して高圧燃料を圧送する燃料供給ポンプと、前記蓄圧容器内の燃料をエンジンに噴射供給する燃料噴射弁とを備え、都度のエンジン運転状態に基づいて前記蓄圧容器内の燃料圧が可変制御される高圧燃料システムに適用され、
前記蓄圧容器内の燃料圧又はそれに相関する圧力情報を取得する圧力取得手段と、
前記蓄圧容器内の燃料圧又はそれに相関する圧力情報が所定の圧力振幅で変動した圧力繰り返し回数をカウントするカウント手段と、
前記カウント手段によりカウントした圧力繰り返し回数に基づいて前記蓄圧容器を含む高圧部分の信頼性を判定する判定手段と、
を備えたことを特徴とする高圧燃料システムの信頼性評価装置。
A pressure accumulating container that stores high-pressure fuel corresponding to the injection pressure, a fuel supply pump that pumps high-pressure fuel to the pressure accumulating container, and a fuel injection valve that injects the fuel in the pressure accumulating container into the engine. Applied to a high pressure fuel system in which the fuel pressure in the pressure accumulating vessel is variably controlled based on the engine operating state of
Pressure acquisition means for acquiring fuel pressure in the pressure accumulator vessel or pressure information correlated therewith;
Counting means for counting the number of pressure repetitions in which the fuel pressure in the pressure accumulating vessel or pressure information correlated therewith fluctuates with a predetermined pressure amplitude;
Determination means for determining the reliability of the high-pressure portion including the pressure accumulating vessel based on the number of pressure repetitions counted by the counting means;
An apparatus for evaluating the reliability of a high-pressure fuel system, comprising:
前記カウント手段は、エンジン始動前の蓄圧容器内の燃料圧力と蓄圧容器で許容される最大圧力とで設定される圧力振幅について、前記蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントすることを特徴とする請求項1に記載の高圧燃料システムの信頼性評価装置。   For the pressure amplitude set by the fuel pressure in the pressure accumulating container before starting the engine and the maximum pressure allowed in the pressure accumulating container, the counting means is the number of pressure repetitions of the fuel pressure in the pressure accumulating container or pressure information correlated therewith. The high pressure fuel system reliability evaluation apparatus according to claim 1, wherein: 前記カウント手段は、エンジンの運転状態下における通常使用域内の最小燃料圧力と最大燃料圧力とで設定される圧力振幅について、前記蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントすることを特徴とする請求項1に記載の高圧燃料システムの信頼性評価装置。   The counting means counts the number of pressure repetitions of the fuel pressure in the pressure accumulating vessel or pressure information correlated therewith for the pressure amplitude set by the minimum fuel pressure and the maximum fuel pressure in the normal operating range under the operating state of the engine. The reliability evaluation apparatus for a high-pressure fuel system according to claim 1. 前記カウント手段は、あらかじめ定めた規定の圧力振幅について、前記蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントすることを特徴とする請求項1に記載の高圧燃料システムの信頼性評価装置。   2. The high-pressure fuel system reliability according to claim 1, wherein the counting unit counts the number of pressure repetitions of the fuel pressure in the pressure accumulating vessel or pressure information correlated therewith for a predetermined pressure amplitude. Sex evaluation device. 噴射圧に相当する高圧の燃料を蓄える蓄圧容器と、該蓄圧容器に対して高圧燃料を圧送する燃料供給ポンプと、前記蓄圧容器内の燃料をエンジンに噴射供給する燃料噴射弁とを備え、都度のエンジン運転状態に基づいて前記蓄圧容器内の燃料圧が可変制御される高圧燃料システムに適用され、
前記蓄圧容器内の燃料圧又はそれに相関する圧力情報を取得する圧力取得手段と、
あらかじめ設定した複数の圧力振幅ごとに、前記蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をカウントするカウント手段と、
前記カウント手段によりカウントした圧力振幅ごとの圧力繰り返し回数に基づいて前記蓄圧容器を含む高圧部分の信頼性を判定する判定手段と、
を備えたことを特徴とする高圧燃料システムの信頼性評価装置。
An accumulator that stores high-pressure fuel corresponding to the injection pressure, a fuel supply pump that pumps high-pressure fuel to the accumulator, and a fuel injection valve that injects fuel in the accumulator into the engine, Applied to a high pressure fuel system in which the fuel pressure in the pressure accumulating vessel is variably controlled based on the engine operating state of
Pressure acquisition means for acquiring fuel pressure in the pressure accumulator vessel or pressure information correlated therewith;
For each of a plurality of preset pressure amplitudes, a counting means for counting the number of pressure repetitions of the fuel pressure in the accumulator vessel or pressure information correlated therewith,
Determining means for determining the reliability of the high-pressure portion including the pressure accumulating vessel based on the number of pressure repetitions for each pressure amplitude counted by the counting means;
An apparatus for evaluating the reliability of a high-pressure fuel system, comprising:
前記カウント手段は、エンジン始動前の蓄圧容器内の燃料圧力と蓄圧容器で許容される最大圧力とで設定される圧力振幅と、それとは異なる別の圧力振幅とについて、前記蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をそれぞれカウントすることを特徴とする請求項5に記載の高圧燃料システムの信頼性評価装置。   The counting means includes a fuel pressure in the pressure accumulator for a pressure amplitude set by a fuel pressure in the pressure accumulator before starting the engine and a maximum pressure allowed in the pressure accumulator and another pressure amplitude different from the pressure amplitude. 6. The reliability evaluation apparatus for a high-pressure fuel system according to claim 5, wherein the number of pressure repetitions of pressure information correlated therewith is counted. 前記カウント手段は、エンジン始動前の蓄圧容器内の燃料圧力と蓄圧容器で許容される最大圧力とで設定される第1の圧力振幅と、エンジンの運転状態下における通常使用域内の最小燃料圧力と最大燃料圧力とで設定される第2の圧力振幅と、あらかじめ定めた規定の第3の圧力振幅とについて、前記蓄圧容器内の燃料圧又はそれに相関する圧力情報の圧力繰り返し回数をそれぞれカウントすることを特徴とする請求項5に記載の高圧燃料システムの信頼性評価装置。   The counting means includes a first pressure amplitude set by a fuel pressure in the pressure accumulating container before starting the engine and a maximum pressure allowed in the pressure accumulating container, and a minimum fuel pressure in a normal use range under an engine operating state. For each of the second pressure amplitude set by the maximum fuel pressure and a predetermined third pressure amplitude, the fuel pressure in the pressure accumulator or the number of pressure repetitions of pressure information correlated therewith is counted. The reliability evaluation apparatus for a high-pressure fuel system according to claim 5. 前記判定手段は、前記複数の圧力振幅ごとにカウントした圧力繰り返し回数の総和に基づいて前記蓄圧容器を含む高圧部分の信頼性を判定することを特徴とする請求項5乃至7のいずれかに記載の高圧燃料システムの信頼性評価装置。   The said determination means determines the reliability of the high pressure part containing the said pressure accumulation container based on the sum total of the pressure repetition frequency counted for each of these several pressure amplitudes. Reliability evaluation system for high pressure fuel systems. 前記判定手段は、前記複数の圧力振幅ごとに設定した信頼性限界値と前記カウント手段によりカウントした圧力繰り返し回数との比較により圧力振幅ごとに前記蓄圧容器を含む高圧部分の信頼性を仮判定する手段と、複数の仮判定結果に基づいて前記蓄圧容器を含む高圧部分の信頼性を最終判定する手段とを備えることを特徴とする請求項5乃至7のいずれかに記載の高圧燃料システムの信頼性評価装置。   The determination means tentatively determines the reliability of the high pressure portion including the pressure accumulating vessel for each pressure amplitude by comparing the reliability limit value set for each of the plurality of pressure amplitudes and the number of pressure repetitions counted by the counting means. The reliability of the high pressure fuel system according to any one of claims 5 to 7, further comprising: means; and means for finally determining the reliability of the high pressure portion including the pressure accumulating vessel based on a plurality of temporary determination results. Sex evaluation device. 前記複数の圧力振幅はいずれも、圧力振幅と圧力繰り返し回数とをパラメータとする疲労限界特性において、圧力繰り返し回数が無限大となる耐久限度よりも大きい圧力振幅であることを特徴とする請求項5乃至9のいずれかに記載の高圧燃料システムの信頼性評価装置。   6. The plurality of pressure amplitudes are pressure amplitudes that are larger than an endurance limit at which the number of pressure repetitions is infinite in a fatigue limit characteristic using the pressure amplitude and the number of pressure repetitions as parameters. The reliability evaluation apparatus of the high pressure fuel system in any one of thru | or 9.
JP2005306593A 2005-10-21 2005-10-21 Device for evaluating reliability of high pressure fuel system Pending JP2007113503A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005306593A JP2007113503A (en) 2005-10-21 2005-10-21 Device for evaluating reliability of high pressure fuel system
DE200610035362 DE102006035362A1 (en) 2005-10-21 2006-10-20 Device for evaluating reliability for high pressure fuel system, has pressure producing device to produce fuel pressure in accumulator whereby determination device determines reliability of high pressure section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306593A JP2007113503A (en) 2005-10-21 2005-10-21 Device for evaluating reliability of high pressure fuel system

Publications (1)

Publication Number Publication Date
JP2007113503A true JP2007113503A (en) 2007-05-10

Family

ID=37912964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306593A Pending JP2007113503A (en) 2005-10-21 2005-10-21 Device for evaluating reliability of high pressure fuel system

Country Status (2)

Country Link
JP (1) JP2007113503A (en)
DE (1) DE102006035362A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057885A (en) * 2007-08-31 2009-03-19 Denso Corp Fuel pressure control device and fuel pressure control system
CN111433448A (en) * 2017-12-08 2020-07-17 法国大陆汽车公司 Warning method for predictive maintenance of a high-pressure pump in an internal combustion engine
WO2021210205A1 (en) * 2020-04-17 2021-10-21 一般財団法人石油エネルギー技術センター Service life check method for accumulator
WO2021210206A1 (en) * 2020-04-17 2021-10-21 一般財団法人石油エネルギー技術センター Operation method of hydrogen filling station using service life check method for accumulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057885A (en) * 2007-08-31 2009-03-19 Denso Corp Fuel pressure control device and fuel pressure control system
JP4591490B2 (en) * 2007-08-31 2010-12-01 株式会社デンソー Fuel pressure control device and fuel pressure control system
CN111433448A (en) * 2017-12-08 2020-07-17 法国大陆汽车公司 Warning method for predictive maintenance of a high-pressure pump in an internal combustion engine
WO2021210205A1 (en) * 2020-04-17 2021-10-21 一般財団法人石油エネルギー技術センター Service life check method for accumulator
WO2021210206A1 (en) * 2020-04-17 2021-10-21 一般財団法人石油エネルギー技術センター Operation method of hydrogen filling station using service life check method for accumulator

Also Published As

Publication number Publication date
DE102006035362A1 (en) 2007-05-03

Similar Documents

Publication Publication Date Title
JP4424395B2 (en) Fuel injection control device for internal combustion engine
US7210459B2 (en) Common-rail fuel injection system
US9588016B2 (en) Fuel injection device and adjustment method thereof
JP4424128B2 (en) Common rail fuel injection system
EP1832737B1 (en) Abnormality-determining device and method for fuel supply system
US8800355B2 (en) Pressure accumulation fuel injection device
JP4780137B2 (en) High pressure fuel control device
JP5141723B2 (en) Fuel injection control device for internal combustion engine
CN106246385B (en) Control system for engine
US9617947B2 (en) Fuel injection control device
EP1925803B1 (en) Fuel injection device and adjustment method thereof
JP2013177824A (en) Detection device for continued injection of fuel
EP2546501A1 (en) Malfunction detection device for engine and malfunction detection method for engine
JP4372466B2 (en) Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine
JP2007113503A (en) Device for evaluating reliability of high pressure fuel system
JP5278290B2 (en) Failure diagnosis device for fuel injection system
JP2010216279A (en) Fuel injection control device and accumulator fuel injection system using the same
JP4488017B2 (en) Accumulated fuel injection device and accumulator fuel injection system
JP2004225630A (en) Accumulator fuel injection system
JP2003041998A (en) Fuel system diagnosing-cum-controlling device for internal combustion engine
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP3948294B2 (en) Fuel injection device
US11193445B2 (en) Fuel injection control device and method for controlling fuel injection valve
JP2013119833A (en) Fuel leakage detecting method and common rail type fuel injection control device
JP2007218208A (en) Fuel injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818