JP2007112976A - Method for producing olefin polymer - Google Patents

Method for producing olefin polymer Download PDF

Info

Publication number
JP2007112976A
JP2007112976A JP2006090546A JP2006090546A JP2007112976A JP 2007112976 A JP2007112976 A JP 2007112976A JP 2006090546 A JP2006090546 A JP 2006090546A JP 2006090546 A JP2006090546 A JP 2006090546A JP 2007112976 A JP2007112976 A JP 2007112976A
Authority
JP
Japan
Prior art keywords
polymerization
olefin
propylene
gas phase
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090546A
Other languages
Japanese (ja)
Other versions
JP5092260B2 (en
Inventor
Hiroyuki Ogawa
弘之 小川
Hideki Sato
秀樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006090546A priority Critical patent/JP5092260B2/en
Priority to PCT/JP2006/318667 priority patent/WO2007034847A1/en
Publication of JP2007112976A publication Critical patent/JP2007112976A/en
Application granted granted Critical
Publication of JP5092260B2 publication Critical patent/JP5092260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economically excellent method for producing an olefin polymer by continuous polymerization. <P>SOLUTION: The method for producing the olefin polymer comprises feeding solid particles (X) for the olefin polymerization, containing (a) a solid catalytic component and (b) an olefin polymer, and an olefin to a vapor-phase polymerization reactor to carry out a moving bed-type vapor-phase polymerization reaction of the olefin, and extracting olefin polymer particles from the vapor-phase polymerization reactor, wherein the content of the olefin polymer (b) in the solid particles (X) for the olefin polymerization is regulated so as to be ≥500 g based on 1 g of the solid catalytic component (a). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、オレフィン重合体の製造方法に関するものである。   The present invention relates to a method for producing an olefin polymer.

ポリプロピレン系重合体、ポリエチレン系重合体などのオレフィン重合体は、自動車部品、家電部品、包装資材などの各種材料に用いられている。該オレフィン重合体の製造方法としては、スラリー重合法、溶液重合法、気相重合法等が知られており、例えば、特許文献1には、攪拌型重合反応器を用いた連続スラリー重合によりプロピレン系重合体を製造する方法、特許文献2には、気相重合反応器を用いた流動床式連続気相重合によりプロピレン系重合体を製造する方法が提案されている。   Olefin polymers such as polypropylene-based polymers and polyethylene-based polymers are used in various materials such as automobile parts, home appliance parts, and packaging materials. As a method for producing the olefin polymer, a slurry polymerization method, a solution polymerization method, a gas phase polymerization method, and the like are known. For example, Patent Document 1 discloses propylene by continuous slurry polymerization using a stirring polymerization reactor. A method for producing a propylene polymer, Patent Document 2, proposes a method for producing a propylene polymer by fluidized bed type continuous gas phase polymerization using a gas phase polymerization reactor.

特開平9−87328号公報JP-A-9-87328 特開2000−344804号公報JP 2000-344804 A

しかしながら、上記の連続重合では、重合反応器内の重合体の置換に時間がかかることがあり、連続重合で得られる重合体の種類を変更する場合、変更した重合体が製品として得られるまでの生成物のロスが多くなり、経済性において充分満足のいくものではなかった。
かかる状況のもと、本発明が解決しようとする課題は、連続重合によるオレフィン重合体の製造方法であって、経済性に優れる製造方法を提供することにある。
However, in the above continuous polymerization, it may take time to replace the polymer in the polymerization reactor, and when changing the type of polymer obtained by continuous polymerization, until the changed polymer is obtained as a product. Product loss increased and the economy was not satisfactory.
Under such circumstances, the problem to be solved by the present invention is to provide a method for producing an olefin polymer by continuous polymerization, which is excellent in economic efficiency.

本発明は、固体触媒成分(a)とオレフィン重合体(b)とを含有するオレフィン重合用固体粒子(X)およびオレフィンを気相重合反応器内に供給して、オレフィンの移動床式気相重合反応を行い、気相重合反応器からオレフィン重合体粒子を抜き出すオレフィン重合体の製造方法であって、
該オレフィン重合用固体粒子(X)中のオレフィン重合体(b)の含有量が、固体触媒成分(a)1gあたり500g以上であることを特徴とするオレフィン重合体の製造方法にかかるものである。
The present invention provides an olefin polymerization solid particle (X) containing a solid catalyst component (a) and an olefin polymer (b) and an olefin in a gas phase polymerization reactor, thereby moving the olefin in a moving bed gas phase. A method for producing an olefin polymer, in which a polymerization reaction is performed and olefin polymer particles are extracted from a gas phase polymerization reactor,
The content of the olefin polymer (b) in the solid particles for olefin polymerization (X) is 500 g or more per 1 g of the solid catalyst component (a). .

本発明により、連続重合によるオレフィン重合体の製造方法であって、経済性に優れる製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing an olefin polymer by continuous polymerization, which is excellent in economic efficiency.

本発明のオレフィン重合用固体粒子(X)は、固体触媒成分(a)とオレフィン重合体(b)とを含有する粒子である。該オレフィン重合用固体粒子(X)は、通常、固体触媒成分(a)を用いて、オレフィンを重合(以下、前段重合と称する。)して得られる。   The solid particles for olefin polymerization (X) of the present invention are particles containing a solid catalyst component (a) and an olefin polymer (b). The olefin polymerization solid particles (X) are usually obtained by polymerizing an olefin (hereinafter referred to as pre-stage polymerization) using the solid catalyst component (a).

固体触媒成分(a)としては、チタンとマグネシウムとハロゲンとを含有する固体触媒成分(以下、固体触媒成分(A)と称する。);有機アルミニウム化合物、有機アルミニウムオキシ化合物、ホウ素化合物、有機亜鉛化合物などの助触媒成分を粒子状担体に担持させてなる固体触媒成分(以下、固体触媒成分(B)と称する。);有機アルミニウム化合物、有機アルミニウムオキシ化合物、ホウ素化合物などの助触媒成分とメタロセン系化合物とを粒子状担体に担持させてなる固体触媒成分(以下、固体触媒成分(C)と称する。)などを用いることができる。また、これらの固体触媒成分を組み合わせて用いることもできる。   As the solid catalyst component (a), a solid catalyst component containing titanium, magnesium and halogen (hereinafter referred to as solid catalyst component (A)); an organoaluminum compound, an organoaluminum oxy compound, a boron compound, an organozinc compound A solid catalyst component (hereinafter referred to as solid catalyst component (B)) supported on a particulate carrier; a promoter component such as an organoaluminum compound, an organoaluminum oxy compound, and a boron compound and a metallocene system A solid catalyst component (hereinafter referred to as a solid catalyst component (C)) obtained by supporting a compound on a particulate carrier can be used. These solid catalyst components can also be used in combination.

該粒子状担体としては、多孔性の物質が好ましく、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、ThO2等の無機酸化物;スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイト等の粘土や粘土鉱物;ポリエチレン、ポリプロピレン、スチレン−ジビニルベンゼン共重合体などの有機ポリマーなどが使用される。 The particulate carrier is preferably a porous material, and is an inorganic oxide such as SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 ; Clay and clay minerals such as montmorillonite, hectorite, laponite and saponite; organic polymers such as polyethylene, polypropylene and styrene-divinylbenzene copolymer are used.

上記の固体触媒成分(A)としては、例えば、特開昭63−142008号公報、特開平4−227604号公報、特開平5−339319号公報、特開平6−179720号公報、特公平7−116252号公報、特開平8−134124号公報、特開平9−31119号公報、特開平11−228628号公報、特開平11−80234号公報、特開平11−322833号公報等に記載されている固体触媒成分があげられる。該固体触媒成分(A)を用いる前段重合において、通常、有機アルミニウム化合物が併用され、必要に応じて電子供与性化合物が併用される。   Examples of the solid catalyst component (A) include JP-A 63-142008, JP-A-4-227604, JP-A-5-339319, JP-A-6-179720, JP-B-7- 116252, JP-A-8-134124, JP-A-9-31119, JP-A-11-228628, JP-A-11-80234, JP-A-11-322833, and the like. Examples of the catalyst component. In the pre-stage polymerization using the solid catalyst component (A), an organoaluminum compound is usually used in combination, and an electron donating compound is used in combination as necessary.

上記の固体触媒成分(B)としては、例えば、特開昭61−276805号公報、特開2003−171415号公報に記載されている固体触媒成分があげられる。該固体触媒成分(B)を用いる前段重合において、通常、メタロセン系化合物、有機アルミニウム化合物などの触媒成分が併用される。   As said solid catalyst component (B), the solid catalyst component described in Unexamined-Japanese-Patent No. 61-276805 and Unexamined-Japanese-Patent No. 2003-171415 is mention | raise | lifted, for example. In the pre-stage polymerization using the solid catalyst component (B), catalyst components such as metallocene compounds and organoaluminum compounds are usually used in combination.

上記の固体触媒成分(C)としては、例えば、特開昭61−108610号公報、特開昭61−296008号公報、特開昭63−89505号公報、特開平3−234709号公報等に記載されている固体触媒成分があげられる。該固体触媒成分(C)を用いる前段重合では、必要に応じて、有機アルミニウム化合物、ホウ素化合物などの触媒成分が併用される。   Examples of the solid catalyst component (C) described in JP-A-61-108610, JP-A-61-296008, JP-A-63-89505, JP-A-3-234709, and the like. Examples of the solid catalyst component. In the pre-stage polymerization using the solid catalyst component (C), catalyst components such as an organoaluminum compound and a boron compound are used in combination as necessary.

オレフィン重合体(b)としては、エチレン単独重合体、プロピレン単独重合体、プロピレン・エチレン共重合体、プロピレン・1−ブテン共重合体、プロピレン・エチレン・1−ブテン共重合体、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体、エチレン・1−オクテン共重合体などがあげられ、好ましくは、プロピレン単独重合体、プロピレン・エチレン共重合体である。また、オレフィン重合体(b)としては、プロピレンに基づく単量体単位の含有量が95〜100重量%以上であるプロピレン系重合体が好ましい。   As the olefin polymer (b), ethylene homopolymer, propylene homopolymer, propylene / ethylene copolymer, propylene / 1-butene copolymer, propylene / ethylene / 1-butene copolymer, ethylene / 1- A butene copolymer, an ethylene / 1-hexene copolymer, an ethylene / 1-octene copolymer and the like can be mentioned, and a propylene homopolymer and a propylene / ethylene copolymer are preferable. The olefin polymer (b) is preferably a propylene-based polymer having a content of monomer units based on propylene of 95 to 100% by weight or more.

上記固体触媒成分(a)を用いたオレフィンの前段重合によって、固体触媒成分(a)とオレフィン重合体(b)とを含有するオレフィン重合用固体粒子(X)を調製する際に用いるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、5−メチル−1−ヘキセン、1−ヘキセン、1−ヘプテン、1−オクテンなどがあげられる。これらオレフィンは1種以上用いられ、オレフィンを2種以上用いる場合のオレフィンの組み合わせとしては、プロピレン/エチレン、プロピレン/1−ブテン、プロピレン/エチレン/1−ブテン、エチレン/1−ブテン、エチレン/1−ヘキセン、エチレン/1−オクテンなどがあげられる。オレフィンの1種にプロピレンを用いることが好ましい。   As an olefin used when preparing solid particles for olefin polymerization (X) containing a solid catalyst component (a) and an olefin polymer (b) by pre-stage polymerization of the olefin using the solid catalyst component (a), Ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene, 1-hexene, 1-heptene, 1-octene and the like. One or more of these olefins are used, and as a combination of olefins when two or more olefins are used, propylene / ethylene, propylene / 1-butene, propylene / ethylene / 1-butene, ethylene / 1-butene, ethylene / 1 -Hexene, ethylene / 1-octene and the like. Propylene is preferably used as one of the olefins.

前段重合は、公知の重合方法、例えば、スラリー重合法、塊状重合法、攪拌槽式気相重合法、流動床式気相重合法で行われ、こられを複数組み合わせてもよい。また、該前段重合は、回分式、半回分式、連続式のいずれの方式を用いてもよい。   The pre-stage polymerization is performed by a known polymerization method such as a slurry polymerization method, a bulk polymerization method, a stirred tank type gas phase polymerization method, or a fluidized bed type gas phase polymerization method, and a plurality of these may be combined. Further, the pre-stage polymerization may use any of batch, semi-batch and continuous methods.

上記スラリー重合法は、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン等の脂環族炭化水素等の不活性溶媒に、プロピレン、ブテン等のオレフィン単量体を添加したものを重合溶媒とし、重合溶媒中に固体触媒成分をスラリー状に分散させて、生成する重合体が重合溶媒に溶解しない状態で重合を行う方法である。重合は、重合溶媒が液状に保たれ、生成する重合体が重合溶媒に溶解しない温度および圧力で行い、重合温度は、通常、30〜100℃であり、好ましくは50〜80℃である。重合圧力は、通常、常圧〜10MPaG、好ましくは、0.3〜5MPaGである。   The slurry polymerization method includes an olefin such as propylene and butene in an inert solvent such as an aliphatic hydrocarbon such as propane, butane, isobutane, pentane, hexane, heptane and octane; an alicyclic hydrocarbon such as cyclopentane and cyclohexane. In this method, a monomer added is used as a polymerization solvent, a solid catalyst component is dispersed in a slurry in the polymerization solvent, and polymerization is carried out in a state where the polymer to be produced is not dissolved in the polymerization solvent. The polymerization is carried out at a temperature and pressure at which the polymerization solvent is kept in a liquid state and the produced polymer is not dissolved in the polymerization solvent. The polymerization temperature is usually 30 to 100 ° C., preferably 50 to 80 ° C. The polymerization pressure is usually normal pressure to 10 MPaG, preferably 0.3 to 5 MPaG.

スラリー重合法に用いられるスラリー重合反応器としては、公知の重合反応器、例えば、特公昭41−12916号公報、特公昭46−11670号公報、特公昭47−42379号公報に記載の攪拌槽型反応器やループ型反応器などを用いることができる。   As the slurry polymerization reactor used in the slurry polymerization method, a known polymerization reactor, for example, a stirring tank type described in JP-B No. 41-12916, JP-B No. 46-11670, JP-B No. 47-42379, is disclosed. A reactor, a loop reactor, or the like can be used.

上記の塊状重合法は、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン等の脂環族炭化水素等の不活性溶媒が実質的に存在せず、プロピレン、ブテン等のオレフィン単量体を重合溶媒とし、重合溶媒中に固体触媒成分を分散させて、生成する重合体が重合溶媒に溶解しない状態で重合を行う方法である。重合は、重合溶媒が液状に保たれ、生成する重合体が重合溶媒に溶解しない温度および圧力で行い、重合温度は、通常、30〜100℃であり、好ましくは50〜80℃である。重合圧力は、通常、常圧〜10MPaG、好ましくは、0.5〜5MPaGである。   The bulk polymerization method described above is substantially free of inert solvents such as aliphatic hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, and octane; and alicyclic hydrocarbons such as cyclopentane and cyclohexane. In this method, an olefin monomer such as propylene or butene is used as a polymerization solvent, a solid catalyst component is dispersed in the polymerization solvent, and the polymerization is performed in a state where the resulting polymer is not dissolved in the polymerization solvent. The polymerization is carried out at a temperature and pressure at which the polymerization solvent is kept in a liquid state and the produced polymer is not dissolved in the polymerization solvent. The polymerization temperature is usually 30 to 100 ° C., preferably 50 to 80 ° C. The polymerization pressure is usually normal pressure to 10 MPaG, preferably 0.5 to 5 MPaG.

塊状重合法に用いられる塊状重合反応器としては、公知の重合反応器、例えば、特公昭41−12916号公報、特公昭46−11670号公報、特公昭47−42379号公報に記載の攪拌槽型反応器やループ型反応器などを用いることができる。   Examples of the bulk polymerization reactor used in the bulk polymerization method include known polymerization reactors, for example, stirring tank types described in JP-B Nos. 41-12916, 46-11670, and 47-42379. A reactor, a loop reactor, or the like can be used.

上記の攪拌槽式気相重合法は、気体状態の単量体を媒体として、その媒体中で固体触媒成分およびオレフィン重合体を攪拌機によって流動状態に保ちながら、気体状態の単量体を重合する方法である。重合温度は、通常、50〜110℃であり、好ましくは60〜100℃である。重合圧力は、攪拌槽式気相重合反応器内でオレフィンが気相として存在し得る範囲内であればよく、通常、常圧〜5MPaG、好ましくは、0.5〜3MPaGである。   The stirred tank gas phase polymerization method uses a gaseous monomer as a medium, and polymerizes the gaseous monomer in the medium while keeping the solid catalyst component and the olefin polymer in a fluid state with a stirrer. Is the method. The polymerization temperature is usually from 50 to 110 ° C, preferably from 60 to 100 ° C. The polymerization pressure may be within a range in which olefin can exist as a gas phase in the stirred tank gas phase polymerization reactor, and is usually normal pressure to 5 MPaG, and preferably 0.5 to 3 MPaG.

攪拌槽式気相重合法に用いられる攪拌槽式気相重合反応器としては、公知の重合反応器、例えば、特開昭46−31969号公報、特開昭59−21321号公報に記載の反応器を用いることができる。   Examples of the stirred tank type gas phase polymerization reactor used in the stirred tank type gas phase polymerization method include known polymerization reactors, for example, reactions described in JP-A-46-31969 and JP-A-59-21321. Can be used.

上記の流動床式気相重合法は、気体状態の単量体を媒体として、その媒体中で固体触媒成分およびオレフィン重合体を主として媒体の流れによって流動状態に保ちながら、気体状態の単量体を重合する方法であり、流動化を促進するため、補助的に攪拌装置を設ける場合もある。重合温度は、通常、50〜110℃であり、好ましくは60〜100℃である。重合圧力は、流動床式反応器内でオレフィンが気相として存在し得る範囲内であればよく、通常、常圧〜5MPaG、好ましくは、1.5〜3MPaGである。   In the fluidized bed gas phase polymerization method described above, the gaseous monomer is used as a medium, while the solid catalyst component and the olefin polymer are maintained in a fluid state mainly by the flow of the medium in the medium. In order to promote fluidization, an auxiliary stirrer may be provided. The polymerization temperature is usually from 50 to 110 ° C, preferably from 60 to 100 ° C. The polymerization pressure may be within a range in which olefin can exist as a gas phase in the fluidized bed reactor, and is usually normal pressure to 5 MPaG, preferably 1.5 to 3 MPaG.

流動床式気相重合法に用いられる流動床式気相重合反応器としては、公知の反応器、例えば、特開昭58−201802号公報、特開昭59−126406号公報、特開平2−233708号公報に記載の反応器を用いることができる。   Examples of the fluidized bed gas phase polymerization reactor used in the fluidized bed gas phase polymerization method include known reactors such as JP-A Nos. 58-201802, 59-126406 and 2-126. A reactor described in Japanese Patent No. 233708 can be used.

オレフィン重合用固体粒子(X)中のオレフィン重合体(b)の含有量は、固体触媒成分(a)1gあたり500g以上であり、後述の移動床式気相重合反応の安定性を高める観点から、好ましくは1000g以上であり、より好ましくは2000g以上であり、更に好ましくは5000g以上であり、特に好ましくは10000g以上である。また、生産性を高める観点から、通常、該含有量は、固体触媒成分(a)1gあたり30000g以下である。   The content of the olefin polymer (b) in the solid particles for olefin polymerization (X) is 500 g or more per 1 g of the solid catalyst component (a), from the viewpoint of enhancing the stability of the moving bed gas phase polymerization reaction described later. , Preferably it is 1000 g or more, More preferably, it is 2000 g or more, More preferably, it is 5000 g or more, Most preferably, it is 10,000 g or more. Further, from the viewpoint of improving productivity, the content is usually 30000 g or less per 1 g of the solid catalyst component (a).

本発明に用いられる気相重合反応器は、移動床式気相重合反応、すなわち、オレフィンを含有する気相の重合媒体中でオレフィン重合用固体粒子を実質的に混合させることなく移動させて、オレフィンの気相重合反応を行うことができる反応器(以下、移動床式気相重合反応器と記すこともある。)である。オレフィン重合用固体粒子の重合媒体中での移動は、重力、機械的な機構等により行われ、オレフィン重合用固体粒子は、水平、垂直、斜め等の種々の方向に移動される。また、オレフィン重合用固体粒子の移動方向と重合媒体の流れ方向としては、該移動方向と該流れ方向とが並行で同方向である平流式、該移動方向と該流れ方向とが並行で逆方向である向流式、該移動方向と該流れ方向とが垂直の関係にある直交流式(十字流)式等があり、いずれの方式を用いてもよい。なお、オレフィン重合用固体粒子が垂直に落下する向流式移動床では、重合媒体の流速を流動化開始速度以下に抑える必要がある。   The gas phase polymerization reactor used in the present invention is a moving bed type gas phase polymerization reaction, i.e., moving the olefin polymerization solid particles in the gas phase polymerization medium containing olefin without substantially mixing them, A reactor capable of performing an olefin gas phase polymerization reaction (hereinafter also referred to as a moving bed type gas phase polymerization reactor). The movement of the solid particles for olefin polymerization in the polymerization medium is performed by gravity, a mechanical mechanism, or the like, and the solid particles for olefin polymerization are moved in various directions such as horizontal, vertical, and diagonal directions. The moving direction of the solid particles for olefin polymerization and the flow direction of the polymerization medium are a flat flow type in which the moving direction and the flow direction are parallel and the same direction, and the moving direction and the flow direction are parallel and opposite to each other. There are a counter-flow type, a cross-flow type in which the moving direction and the flow direction are perpendicular to each other, and any type may be used. In a counter-current moving bed in which solid particles for olefin polymerization fall vertically, it is necessary to keep the flow rate of the polymerization medium below the fluidization start speed.

移動床式気相重合反応器内で生成する重合熱の除去は、通常、重合媒体であるガスを反応器から排出させ、該ガスを反応器の外側に設置される熱交換器等で冷却した後、該ガスを反応器に循環ガスとして再供給する方法が用いられる。循環ガスは、露点よりも低い温度にまで冷却して気・液二相混合ガスとして供給してもよい。   The removal of the polymerization heat generated in the moving bed gas phase polymerization reactor is usually performed by discharging the gas as the polymerization medium from the reactor and cooling the gas with a heat exchanger or the like installed outside the reactor. Thereafter, a method of re-feeding the gas as a circulating gas to the reactor is used. The circulating gas may be cooled to a temperature lower than the dew point and supplied as a gas / liquid two-phase mixed gas.

移動床式気相重合反応器としては、公知の反応器、例えば、粉体工学会誌 Vol.28 No.12 p.772〜p.773 (1991年)に記載の反応器を用いることができる。   As the moving bed type gas phase polymerization reactor, a known reactor, for example, Journal of Powder Engineering Vol. No. 28 12 p. 772-p. 773 (1991) can be used.

本発明では、上記の移動床式気相重合反応器内に、オレフィン重合用固体粒子(X)およびオレフィンを供給し、移動床式気相重合反応器内で該オレフィンを重合し、移動床式気相重合反応器からオレフィン重合体粒子を抜き出してオレフィン重合体の製造を行う。該オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができ、好ましくは、プロピレン単独、あるいは、プロピレン以外のオレフィンとプロピレンとを併用して、より好ましくは、プロピレン単独、あるいは、エチレン、1−ブテン、1−ヘキセンおよび1−オクテンから選ばれる少なくとも1種のオレフィンとプロピレンとを組み合わせて用いられる。   In the present invention, the solid particles (X) for olefin polymerization and the olefin are supplied into the moving bed gas phase polymerization reactor, and the olefin is polymerized in the moving bed gas phase polymerization reactor, and the moving bed type gas phase polymerization reactor is used. Olefin polymer particles are extracted from the gas phase polymerization reactor to produce an olefin polymer. Examples of the olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene, cyclohexene and the like. These may be used alone or in combination of two or more, preferably propylene alone, or a combination of olefins other than propylene and propylene, more preferably propylene alone, or ethylene, 1-butene, A combination of propylene and at least one olefin selected from 1-hexene and 1-octene is used.

オレフィン重合用固体粒子(X)を移動床式気相重合反応器内に供給するときの搬送媒体としては、例えば、窒素、アルゴン等の不活性ガス;ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、2,2,4−トリメチルペンタン、シクロヘキサン、エチレン、プロピレン、1−ブテン等の炭化水素化合物などがあげられる。該搬送媒体は、気体であっても、液体であってもよい。気体の搬送媒体を用いる場合、オレフィン重合用固体粒子(X)含有搬送気体中のオレフィン重合用固体粒子(X)の濃度は、通常、1〜60体積%であり、好ましくは2〜40体積%であり、より好ましくは5〜30体積%である。液体の搬送媒体を用いる場合、オレフィン重合用固体粒子(X)を含有するスラリーの濃度は、通常5〜60重量%であり、好ましくは7〜55重量%であり、より好ましくは10〜50重量%である。   Examples of the carrier medium for supplying the solid particles for olefin polymerization (X) into the moving bed gas phase polymerization reactor include inert gases such as nitrogen and argon; butane, pentane, hexane, heptane, octane, 2 , 2,4-trimethylpentane, cyclohexane, ethylene, propylene, 1-butene and other hydrocarbon compounds. The carrier medium may be a gas or a liquid. When a gaseous carrier medium is used, the concentration of the solid particles for olefin polymerization (X) in the carrier gas containing olefin polymerization solid particles (X) is usually 1 to 60% by volume, preferably 2 to 40% by volume. And more preferably 5 to 30% by volume. When using a liquid carrier, the concentration of the slurry containing the olefin polymerization solid particles (X) is usually 5 to 60% by weight, preferably 7 to 55% by weight, more preferably 10 to 50% by weight. %.

オレフィンを移動床式気相重合反応器内に供給する方法としては、オレフィンを移動床式気相重合反応器内に直接供給する方法、移動床式気相重合反応器内に供給する循環ガスに、予めオレフィンを導入しておく方法などがあげられる。オレフィンを移動床式気相重合反応器内に直接供給する場合、気体状のオレフィンを供給してもよく、液体状のオレフィンを噴霧させて供給してもよい。   As a method of supplying olefin into the moving bed type gas phase polymerization reactor, a method of supplying olefin directly into the moving bed type gas phase polymerization reactor or a circulating gas supplied into the moving bed type gas phase polymerization reactor. And a method of introducing olefin in advance. When the olefin is directly supplied into the moving bed gas phase polymerization reactor, the gaseous olefin may be supplied, or the liquid olefin may be sprayed and supplied.

移動床式気相重合反応の重合条件としては、重合温度は、通常、50〜110℃であり、好ましくは60〜100℃である。重合圧力は、通常、常圧〜6MPaG、好ましくは、1.5〜5MPaGである。また、重合媒体には、窒素等の不活性ガス、水素等の連鎖移動剤を添加してもよい。   As polymerization conditions for the moving bed type gas phase polymerization reaction, the polymerization temperature is usually 50 to 110 ° C, preferably 60 to 100 ° C. The polymerization pressure is usually normal pressure to 6 MPaG, preferably 1.5 to 5 MPaG. Further, an inert gas such as nitrogen and a chain transfer agent such as hydrogen may be added to the polymerization medium.

本発明の製造方法は、プロピレン単独重合体、プロピレン・エチレン共重合体、プロピレン・1−ブテン共重合体、プロピレン・エチレン・1−ブテン共重合体などのオレフィン重合体の製造に用いられる。また、多段重合法とし、プロピレン−プロピレン・エチレンブロック共重合体、プロピレン−プロピレン・エチレン−プロピレン・エチレンブロック共重合体、プロピレン・エチレン−プロピレン・エチレンブロック共重合体、プロピレン−プロピレン・エチレン・1−ブテンブロック共重合体などのブロック共重合体(なお、ここでは、「−」はブロック間の境界を、「・」は1ブロック内で二種以上のオレフィンが共重合していることを示す。)としてもよく、各段で製造されるオレフィン重合体成分の分子量を異なるものとして広分子量分布のオレフィン重合体、例えば、最も分子量が高い重合体成分を製造する重合工程で製造される重合体成分の極限粘度が、5〜100dl/gであり、該極限粘度は、最も分子量が低い重合体成分を製造する重合工程で製造される重合体成分の極限粘度の5倍以上であり、最も分子量が高い重合体成分を製造する重合工程で製造される重合体成分の量が、オレフィン重合体中に0.1〜80重量%含有するオレフィン重合体としてもよい。本発明の製造方法では、特に、プロピレンに基づく単量体単位の含有量が90〜10重量%であるプロピレン系重合体の製造に好適に用いられる。   The production method of the present invention is used for production of olefin polymers such as propylene homopolymer, propylene / ethylene copolymer, propylene / 1-butene copolymer, propylene / ethylene / 1-butene copolymer. Also, as a multistage polymerization method, propylene-propylene / ethylene block copolymer, propylene / propylene / ethylene / propylene / ethylene block copolymer, propylene / ethylene / propylene / ethylene block copolymer, propylene / propylene / ethylene / 1 -A block copolymer such as a butene block copolymer (here, "-" indicates a boundary between blocks, and "." Indicates that two or more olefins are copolymerized within one block) .), And the olefin polymer component produced in each stage may have a different molecular weight, and the olefin polymer having a wide molecular weight distribution, for example, a polymer produced in a polymerization step for producing a polymer component having the highest molecular weight. The intrinsic viscosity of the component is 5 to 100 dl / g, and the intrinsic viscosity is a polymer component having the lowest molecular weight. The amount of the polymer component produced in the polymerization step for producing the polymer component having the highest molecular weight, which is 5 times or more the intrinsic viscosity of the polymer component produced in the production step, is 0 in the olefin polymer. It is good also as an olefin polymer containing 0.1 to 80 weight%. In particular, the production method of the present invention is suitably used for producing a propylene-based polymer in which the content of monomer units based on propylene is 90 to 10% by weight.

本発明の製造方法は、移動床式気相重合反応によるオレフィン重合体の製造方法であるため、移動床式気相重合反応器内の重合体の置換に要する時間がより短縮され、重合反応で得られる重合体の種類を変更した場合、変更した重合体が得られるまでの生成物のロスがより少なくなる。更には、本発明の製造方法は、移動床式気相重合反応器内において、オレフィン重合用固体粒子の融着が低減し、シーティングやポリマー塊の発生し難くなるため、移動床式気相重合反応の安定性が高い、すなわち、オレフィン重合用固体粒子の移動床式気相重合反応器内の移動や、移動床式気相重合反応器からのオレフィン重合体粒子の抜出を、安定的に行うことができる。   Since the production method of the present invention is a method for producing an olefin polymer by a moving bed type gas phase polymerization reaction, the time required for the replacement of the polymer in the moving bed type gas phase polymerization reactor is further shortened. If the type of polymer obtained is changed, the loss of product until the changed polymer is obtained is reduced. Furthermore, the production method of the present invention reduces the fusion of solid particles for olefin polymerization in a moving bed type gas phase polymerization reactor, and makes it difficult for sheeting and polymer lumping to occur. High stability of reaction, that is, stable movement of olefin polymerization solid particles in moving bed gas phase polymerization reactor and extraction of olefin polymer particles from moving bed gas phase polymerization reactor It can be carried out.

以下、実施例および比較例により本発明を説明する。
実施例および比較例での物性測定は、次の方法に従って行った。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
The physical properties in Examples and Comparative Examples were measured according to the following methods.

嵩密度(単位:g/cm3
JIS K6721に従い、嵩比重測定装置を用いて測定を行った。
Bulk density (unit: g / cm 3 )
According to JIS K6721, the measurement was performed using a bulk specific gravity measuring device.

実施例1
(1)固体触媒成分の合成
特開2004−182981号公報の実施例4(1)および(2)に記載の方法と同様な方法で、固体触媒成分を得た。
Example 1
(1) Synthesis of solid catalyst component A solid catalyst component was obtained by a method similar to the method described in Example 4 (1) and (2) of JP-A No. 2004-182981.

実施例1
(1)固体触媒成分の合成
特開2004−182981号公報の実施例4(1)および(2)に記載の方法と同様な方法で、固体触媒成分を得た。
Example 1
(1) Synthesis of solid catalyst component A solid catalyst component was obtained by a method similar to the method described in Example 4 (1) and (2) of JP-A No. 2004-182981.

(2)第1重合工程
内容積3Lの撹拌機付きSUS製オートクレーブ内に、充分に脱水、脱気処理したn−ヘキサン1.5L、トリエチルアルミニウム37.5ミリモル、tert−ブチル−n−プロピルジメトキシシラン3.75ミリモルと実施例1(1)で得た固体触媒成分15gを投入し、オートクレーブ内の温度を約10℃に保ちながらプロピレン37.5gを約30分かけて連続的に供給して固体触媒成分1gあたり2.5gのプロピレンのスラリー重合を行った後、反応後のスラリー液を内容積150Lの攪拌機付きSUS製オートクレーブに移送し、液状ブタン100Lを加え、第2重合工程供給用スラリーとした。
(2) First polymerization step In a 3 L SUS autoclave with a stirrer, fully dehydrated and degassed 1.5 L of n-hexane, 37.5 mmol of triethylaluminum, tert-butyl-n-propyldimethoxy 3.75 mmol of silane and 15 g of the solid catalyst component obtained in Example 1 (1) were added, and 37.5 g of propylene was continuously supplied over about 30 minutes while maintaining the temperature in the autoclave at about 10 ° C. After slurry polymerization of 2.5 g of propylene per 1 g of the solid catalyst component, the slurry solution after the reaction is transferred to an SUS autoclave with an internal volume of 150 L, and 100 L of liquid butane is added, and slurry for supplying the second polymerization step It was.

(3)第2重合工程
内容積40Lの撹拌機付きSUS製オートクレーブに、プロピレン、水素、トリエチルアルミニウム、tert−ブチル−n−プロピルジメトキシシランおよび第1重合工程で得られたスラリーを連続的に供給し、重合温度:70℃、重合圧力:4.0MPaG、反応器へのプロピレン供給量:35kg/時間、水素供給量:300ノルマルリットル/時間、トリエチルアルミニウムの供給量:41ミリモル/時間、tert−ブチル−n−プロピルジメトキシシランの供給量:6.0ミリモル/時間、スラリーの供給量:固体触媒成分換算として0.86g/時間、平均滞留時間:0.24時間、生成重合体粒子量:4.1kg/時間の条件で、連続式バルク重合を行い、重合体粒子含有スラリーを得た。重合体粒子の重合体含有量は、固体触媒成分1gあたり4800gであった。
(3) Second polymerization step Propylene, hydrogen, triethylaluminum, tert-butyl-n-propyldimethoxysilane and the slurry obtained in the first polymerization step are continuously supplied to an SUS autoclave with an internal volume of 40 L and equipped with a stirrer. Polymerization temperature: 70 ° C., polymerization pressure: 4.0 MPaG, propylene feed rate to reactor: 35 kg / hr, hydrogen feed rate: 300 normal liters / hr, triethylaluminum feed rate: 41 mmol / hr, tert- Butyl-n-propyldimethoxysilane feed rate: 6.0 mmol / hr, slurry feed rate: 0.86 g / hr in terms of solid catalyst component, average residence time: 0.24 hr, product polymer particle count: 4 Continuous bulk polymerization was performed under the conditions of 0.1 kg / hour to obtain a slurry containing polymer particles. The polymer content of the polymer particles was 4800 g per 1 g of the solid catalyst component.

(4)第3重合工程
反応器下部に分散板を供えた内容積1500Lの気相重合反応器を用い、重合温度:70℃、重合圧力:1.8MPaG、循環ガス風量:50m3/時間、反応器内のプロピレン濃度:84体積%、水素濃度:9.5体積%、平均滞留時間:4.1時間、スラリーの供給量:固体触媒成分換算として0.86g/時間、生成重合体粒子量:20.4kg/時間の重合条件で、循環ガスを反応器の底から導入、反応器の頂上から排出し、第2重合工程で得られた重合体粒子含有スラリーを反応器上部から導入して、重合体粒子が流動層を形成しない向流式の移動床式連続気相重合を行った。反応器から連続的に抜き出して得られた重合体粒子の嵩密度0.420g/cm3であり、粒子同士が溶融塊化したものは目視観察では認められなかった。
(4) Third polymerization step Using a 1500 L internal gas phase polymerization reactor provided with a dispersion plate at the bottom of the reactor, polymerization temperature: 70 ° C, polymerization pressure: 1.8 MPaG, circulating gas flow rate: 50 m 3 / hour, Propylene concentration in the reactor: 84% by volume, hydrogen concentration: 9.5% by volume, average residence time: 4.1 hours, slurry supply amount: 0.86 g / hour in terms of solid catalyst component, amount of polymer particles produced : Circulating gas was introduced from the bottom of the reactor under the polymerization conditions of 20.4 kg / hour, discharged from the top of the reactor, and the polymer particle-containing slurry obtained in the second polymerization step was introduced from the top of the reactor. The counter flow type moving bed type continuous gas phase polymerization in which the polymer particles do not form a fluidized bed was performed. The polymer particles obtained by continuously withdrawing from the reactor had a bulk density of 0.420 g / cm 3 , and no melted and agglomerated particles were observed by visual observation.

参考例1
(1)固体触媒成分の合成
特開2004−182981号公報の実施例4(1)および(2)に記載の方法と同様な方法で、固体触媒成分を得た。
Reference example 1
(1) Synthesis of solid catalyst component A solid catalyst component was obtained by a method similar to the method described in Example 4 (1) and (2) of JP-A No. 2004-182981.

(2)第1重合工程
内容積3Lの撹拌機付きSUS製オートクレーブ内に、充分に脱水、脱気処理したn−ヘキサン1.5L、トリエチルアルミニウム37.5ミリモル、tert−ブチル−n−プロピルジメトキシシラン3.75ミリモルと固体触媒成分15gを投入し、オートクレーブ内の温度を約10℃に保ちながらプロピレン15gを約30分かけて連続的に供給して固体触媒成分の重量と同じ重量のプロピレンのスラリー重合を行った後、反応後のスラリー液を内容積150Lの攪拌機付きSUS製オートクレーブに移送し、液状ブタン100Lを加え、第2重合工程供給用スラリーとした。
(2) First polymerization step In a 3 L SUS autoclave with a stirrer, fully dehydrated and degassed 1.5 L of n-hexane, 37.5 mmol of triethylaluminum, tert-butyl-n-propyldimethoxy 3.75 mmol of silane and 15 g of the solid catalyst component were added, and 15 g of propylene was continuously fed over about 30 minutes while maintaining the temperature in the autoclave at about 10 ° C., and propylene having the same weight as that of the solid catalyst component. After slurry polymerization, the slurry liquid after the reaction was transferred to an SUS autoclave with a stirrer having an internal volume of 150 L, and 100 L of liquid butane was added to obtain a slurry for supplying the second polymerization step.

(3)第2重合工程
内容積298Lの円筒型バルク重合反応器に、プロピレン、水素、トリエチルアルミニウム、tert−ブチル−n−プロピルジメトキシシランおよび第1重合工程で得られたスラリーを連続的に供給し、重合温度:70℃、重合圧力:2.4MPaG、反応器内のプロピレン濃度:61体積%、水素濃度:12体積%、トリエチルアルミニウムの供給量:40ミリモル/時間、tert−ブチル−n−プロピルジメトキシシランの供給量:6.3ミリモル/時間、スラリーの供給量:固体触媒成分換算として0.71g/時間、平均滞留時間:1.2時間、生成重合体粒子量:8.7kg/時間の条件で、連続式バルク重合を行った。
(3) Second polymerization step Propylene, hydrogen, triethylaluminum, tert-butyl-n-propyldimethoxysilane and the slurry obtained in the first polymerization step are continuously supplied to a cylindrical bulk polymerization reactor having an internal volume of 298 L. Polymerization temperature: 70 ° C., polymerization pressure: 2.4 MPaG, propylene concentration in the reactor: 61 vol%, hydrogen concentration: 12 vol%, feed amount of triethylaluminum: 40 mmol / hour, tert-butyl-n- Propyl dimethoxysilane supply amount: 6.3 mmol / hour, slurry supply amount: 0.71 g / hour in terms of solid catalyst component, average residence time: 1.2 hours, produced polymer particle amount: 8.7 kg / hour Under these conditions, continuous bulk polymerization was performed.

(4)第3重合工程
第2重合工程のバルク重合反応器から連続的に抜き出された重合体粒子を、反応器下部に分散板を供えた内容積1440Lの気相重合反応器に連続的に供給するとともに、プロピレン、水素を連続的に供給し、重合温度:70℃、重合圧力:1.8MPaG、循環ガス風量:100m3/時間、反応器内のプロピレン濃度:68体積%、水素濃度:10体積%、平均滞留時間:3.9時間、生成重合体粒子量:6.7kg/時間の重合条件で、流動床式連続気相重合反応を行った。得られた重合体粒子は、嵩密度0.421g/cm3であり、粒子同士が溶融塊化したものは目視観察では認められなかった。また、得られた重合体粒子の重合体含有量は、固体触媒成分1gあたり21800gであった。
(4) Third polymerization step The polymer particles continuously extracted from the bulk polymerization reactor of the second polymerization step are continuously supplied to a gas phase polymerization reactor having an internal volume of 1440 L provided with a dispersion plate at the bottom of the reactor. Propylene and hydrogen are continuously supplied, polymerization temperature: 70 ° C., polymerization pressure: 1.8 MPaG, circulating gas flow rate: 100 m 3 / hour, propylene concentration in the reactor: 68% by volume, hydrogen concentration The fluidized bed type continuous gas phase polymerization reaction was performed under the polymerization conditions of: 10% by volume, average residence time: 3.9 hours, and amount of produced polymer particles: 6.7 kg / hour. The obtained polymer particles had a bulk density of 0.421 g / cm 3 , and particles in which the particles were melted and agglomerated were not observed by visual observation. Moreover, the polymer content of the obtained polymer particles was 21800 g per 1 g of the solid catalyst component.

(5)第4重合工程
第3重合工程後、バルク重合反応器から気相重合反応器への重合体粒子の供給を停止し、その後、気相重合反応器における循環ガス風量を0m3/時間として、反応器内の圧力:1.8MPaG、プロピレン濃度:68体積%、水素濃度:10体積%を保持できるように、プロピレンと水素を反応器内供給して、1.55時間の気相重合を行った。次に、重合体粒子を反応器から全量排出した。得られた重合体粒子の嵩密度0.421g/cm3であり、粒子同士が溶融塊化したものは目視観察では認められなかった。
(5) Fourth polymerization step After the third polymerization step, the supply of polymer particles from the bulk polymerization reactor to the gas phase polymerization reactor is stopped, and then the circulating gas flow rate in the gas phase polymerization reactor is set to 0 m 3 / hour. As described above, propylene and hydrogen were fed into the reactor to maintain the pressure in the reactor: 1.8 MPaG, the propylene concentration: 68 vol%, and the hydrogen concentration: 10 vol%, and gas phase polymerization for 1.55 hours. Went. Next, all the polymer particles were discharged from the reactor. The obtained polymer particles had a bulk density of 0.421 g / cm 3 , and no melted and agglomerated particles were observed by visual observation.

比較例1
(1)第1重合工程
内容積3Lの撹拌機付きSUS製オートクレーブ内に、充分に脱水、脱気処理したn−ヘキサン1.5L、トリエチルアルミニウム37.5ミリモル、tert−ブチル−n−プロピルジメトキシシラン3.75ミリモルと参考例1(1)で得た固体触媒成分15gを投入し、オートクレーブ内の温度を約10℃に保ちながらプロピレン37.5gを約30分かけて連続的に供給して固体触媒成分1gあたり2.5gのプロピレンのスラリー重合を行った後、反応後のスラリー液を内容積150Lの攪拌機付きSUS製オートクレーブに移送し、液状ブタン100Lを加え、第2重合工程供給用スラリーとした。
Comparative Example 1
(1) First polymerization step Inside a 3 L SUS autoclave with a stirrer, fully dehydrated and degassed 1.5 L n-hexane, 37.5 mmol triethylaluminum, tert-butyl-n-propyldimethoxy 3.75 mmol of silane and 15 g of the solid catalyst component obtained in Reference Example 1 (1) were charged, and 37.5 g of propylene was continuously supplied over about 30 minutes while maintaining the temperature in the autoclave at about 10 ° C. After slurry polymerization of 2.5 g of propylene per 1 g of the solid catalyst component, the slurry solution after the reaction is transferred to an SUS autoclave with an internal volume of 150 L, and 100 L of liquid butane is added, and slurry for supplying the second polymerization step It was.

(2)第2重合工程
反応器下部に分散板を供えた内容積1440Lの気相重合反応器を用い、トリエチルアルミニウムの供給量:40ミリモル/時間、tert−ブチル−n−プロピルジメトキシシランの供給量:6.3ミリモル/時間、スラリーの供給量:固体触媒成分換算として0.71g/時間、重合温度:70℃、重合圧力:1.8MPaG、循環ガス風量:50m3/時間、反応器内のプロピレン濃度:68体積%、水素濃度:10体積%、の重合条件で、循環ガスを反応器の底から導入、反応器の頂上から排出し、スラリーを反応器上部から導入して、重合体粒子が流動層を形成しない向流式の移動床式連続気相重合を行った。しかしながら、重合の経過につれて、反応器から連続的に重合体粒子を排出させることが困難となったため、重合を停止した。反応器を開放し、重合体粒子を全量取り出したところ、得られた重合体粒子の性状は悪く、粒子同士が溶融塊化したものが認められた。
(2) Second polymerization step Using a 1440 L gas phase polymerization reactor having a dispersion plate at the bottom of the reactor, the supply amount of triethylaluminum: 40 mmol / hour, supply of tert-butyl-n-propyldimethoxysilane Amount: 6.3 mmol / hour, supply amount of slurry: 0.71 g / hour in terms of solid catalyst component, polymerization temperature: 70 ° C., polymerization pressure: 1.8 MPaG, circulating gas flow rate: 50 m 3 / hour, in reactor In the polymerization conditions of propylene concentration of 68% by volume and hydrogen concentration of 10% by volume, a circulating gas is introduced from the bottom of the reactor, discharged from the top of the reactor, and a slurry is introduced from the top of the reactor, thereby polymerizing A counter-current moving bed type continuous gas phase polymerization in which the particles do not form a fluidized bed was performed. However, as the polymerization progressed, it became difficult to continuously discharge the polymer particles from the reactor, so the polymerization was stopped. When the reactor was opened and all of the polymer particles were taken out, the properties of the polymer particles obtained were poor, and it was observed that the particles were melted and agglomerated.

Claims (3)

固体触媒成分(a)とオレフィン重合体(b)とを含有するオレフィン重合用固体粒子(X)およびオレフィンを気相重合反応器内に供給して、オレフィンの移動床式気相重合反応を行い、気相重合反応器からオレフィン重合体粒子を抜き出すオレフィン重合体の製造方法であって、該オレフィン重合用固体粒子(X)中のオレフィン重合体(b)の含有量が、固体触媒成分(a)1gあたり500g以上であることを特徴とするオレフィン重合体の製造方法。   The solid particles for olefin polymerization (X) containing the solid catalyst component (a) and the olefin polymer (b) and the olefin are fed into the gas phase polymerization reactor to carry out a moving bed type gas phase polymerization reaction of the olefin. , An olefin polymer production method for extracting olefin polymer particles from a gas phase polymerization reactor, wherein the content of the olefin polymer (b) in the solid particles for olefin polymerization (X) is a solid catalyst component (a ) A method for producing an olefin polymer, wherein the amount is 500 g or more per gram. オレフィン重合用固体粒子(X)が、固体触媒成分(a)の存在下、プロピレンを単独重合またはプロピレンとエチレンとを共重合してなる粒子であり、オレフィン重合用固体粒子(X)に含有されるオレフィン重合体(b)のプロピレンに基づく単量体単位の含有量が95〜100重量%であることを特徴とする請求項1に記載のオレフィン重合体の製造方法。   Solid particles for olefin polymerization (X) are particles obtained by homopolymerizing propylene or copolymerizing propylene and ethylene in the presence of the solid catalyst component (a), and are contained in the solid particles for olefin polymerization (X). The method for producing an olefin polymer according to claim 1, wherein the content of the monomer unit based on propylene in the olefin polymer (b) is 95 to 100% by weight. 気相重合反応器内に供給するオレフィンが、プロピレン以外のオレフィンとプロピレンであり、気相重合反応器内で、プロピレン以外のオレフィンとプロピレンとを共重合して、プロピレンに基づく単量体単位の含有量が90〜10重量%であるプロピレン系重合体を、気相重合反応器内で生成させることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。
The olefin supplied to the gas phase polymerization reactor is an olefin other than propylene and propylene, and in the gas phase polymerization reactor, an olefin other than propylene and propylene are copolymerized to form a monomer unit based on propylene. The method for producing an olefin polymer according to claim 1 or 2, wherein a propylene-based polymer having a content of 90 to 10% by weight is produced in a gas phase polymerization reactor.
JP2006090546A 2005-09-21 2006-03-29 Process for producing olefin polymer Expired - Fee Related JP5092260B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006090546A JP5092260B2 (en) 2005-09-21 2006-03-29 Process for producing olefin polymer
PCT/JP2006/318667 WO2007034847A1 (en) 2005-09-21 2006-09-14 Method for producing olefin polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005273389 2005-09-21
JP2005273389 2005-09-21
JP2006090546A JP5092260B2 (en) 2005-09-21 2006-03-29 Process for producing olefin polymer

Publications (2)

Publication Number Publication Date
JP2007112976A true JP2007112976A (en) 2007-05-10
JP5092260B2 JP5092260B2 (en) 2012-12-05

Family

ID=37888890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090546A Expired - Fee Related JP5092260B2 (en) 2005-09-21 2006-03-29 Process for producing olefin polymer

Country Status (2)

Country Link
JP (1) JP5092260B2 (en)
WO (1) WO2007034847A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225613A (en) * 1987-03-14 1988-09-20 Mitsubishi Kasei Corp Manufacture of propylene block copolymer
JPH04146912A (en) * 1990-10-09 1992-05-20 Chisso Corp Continuous production of propylene/alpha-olefin block copolymer
JPH05345814A (en) * 1990-01-17 1993-12-27 Basf Ag Propylene-ethylene copolymer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1243188B (en) * 1990-08-01 1994-05-24 Himont Inc POLYOLEFINIC ELASTOPLASTIC COMPOSITIONS
IT1246614B (en) * 1991-06-03 1994-11-24 Himont Inc PROCEDURE FOR THE GAS PHASE POLYMERIZATION OF OLEFINS
JP3325399B2 (en) * 1994-09-13 2002-09-17 三井化学株式会社 Method for producing ABS resin having various surface morphologies
JPH08169924A (en) * 1994-12-20 1996-07-02 Ube Ind Ltd Propylene block copolymer and its production
JP3485806B2 (en) * 1998-08-17 2004-01-13 東燃化学株式会社 Method for producing propylene-ethylene block copolymer
KR100421551B1 (en) * 2000-12-16 2004-03-09 삼성아토피나주식회사 Catalyst obtained by prepolymerization of polyolefin and olefin polymerization method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225613A (en) * 1987-03-14 1988-09-20 Mitsubishi Kasei Corp Manufacture of propylene block copolymer
JPH05345814A (en) * 1990-01-17 1993-12-27 Basf Ag Propylene-ethylene copolymer
JPH04146912A (en) * 1990-10-09 1992-05-20 Chisso Corp Continuous production of propylene/alpha-olefin block copolymer

Also Published As

Publication number Publication date
WO2007034847A1 (en) 2007-03-29
JP5092260B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
US6391985B1 (en) High condensing mode polyolefin production under turbulent conditions in a fluidized bed
US6864332B2 (en) Process for the gas phase polymerization and copolymerization of olefin monomers
CN101848946B (en) Gas-phase polymerization process
EP1962996B1 (en) Gas-phase process and apparatus for the polymerization of olefins
JP5308797B2 (en) Olefin polymerization reaction apparatus, polyolefin production system, and polyolefin production method
JP5308795B2 (en) Polyolefin production method and polyolefin production system provided with spouted bed apparatus
US7993591B2 (en) Spouted bed device and polyolefin production process using the same
RU2610541C2 (en) Method of degassing and imparting intermediate properties to polyolefin particles obtained during polymerisation of olefins
JPH05504786A (en) Multi-stage process for polyethylene synthesis
KR20070085255A (en) Process for the gas-phase polymerization of olefins
KR20160095019A (en) Process for continuous polymerization of olefin monomers in a reactor
JP4960858B2 (en) Method for controlling the flow rate of a polymer in a polymerization process
KR20160095018A (en) Process for continuous polymerization of olefin monomers in a reactor
CS59591A2 (en) Method and equipment for alpha-olefins&#39; polimerization in gas phase
CN102482372A (en) Polymerization reaction system
EP2723781A1 (en) Method and apparatus for discharging a polymer from a gas-phase reactor
US11505625B2 (en) Polymerization process including discharging polyolefin particles from a gas-phase polymerization reactor
JP2009509017A (en) Method for vapor phase polymerization of olefins
JP2008247999A (en) Manufacturing method for polypropylene
JP5092260B2 (en) Process for producing olefin polymer
KR100999555B1 (en) Method for three-phase polymerization of alpha-olefin using three-phase fluidized bed
EP1458771B1 (en) High condensing mode polyolefin production under turbulent conditions in a fluidized bed
JP2018021123A (en) Polyolefin production system, method for producing polyolefin, and method for producing heterophasic propylene polymerization material
JP2007084645A (en) Production method of olefin polymer and multistage polymerization reactor
JPH029047B2 (en)

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees