JP2007112681A - Method of manufacturing inorganic particle - Google Patents

Method of manufacturing inorganic particle Download PDF

Info

Publication number
JP2007112681A
JP2007112681A JP2005307818A JP2005307818A JP2007112681A JP 2007112681 A JP2007112681 A JP 2007112681A JP 2005307818 A JP2005307818 A JP 2005307818A JP 2005307818 A JP2005307818 A JP 2005307818A JP 2007112681 A JP2007112681 A JP 2007112681A
Authority
JP
Japan
Prior art keywords
firing
inorganic particles
papermaking
mass
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005307818A
Other languages
Japanese (ja)
Other versions
JP3836493B1 (en
Inventor
Masaaki Takahashi
聖明 高橋
Hisao Nanba
日佐男 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2005307818A priority Critical patent/JP3836493B1/en
Application granted granted Critical
Publication of JP3836493B1 publication Critical patent/JP3836493B1/en
Publication of JP2007112681A publication Critical patent/JP2007112681A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing inorganic particles by which the uniform inorganic particles are manufactured by carrying out uniform firing using deinking froth as a main raw material. <P>SOLUTION: The method of manufacturing the inorganic particles uses the deinking froth as the main raw material and has a drying step and a firing step. In the drying step before the deinking froth is fired in the firing step, the deinking froth is dried to have 2-20 mass% water content in the drying step and the inorganic particles having 355-2,000 μm particle diameters are ≥70 mass% in the outlet of the drying step. In the firing step, the firing is carried out at 500-750°C firing temperature in a stage that unfired portion is 5-30% to obtain the inorganic particle F. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、脱墨フロスを主原料に、焼成して得られる製紙用やプラスチック用等の無機粒子を製造する方法に関し、更に詳しくは脱墨フロスを主原料に所定の条件下で焼成することで、多孔性、各種製紙用薬品との親和性、低磨耗性を有し製紙用やプラスチック用等の充填剤として好適に使用できる無機粒子の製造方法に関する。   The present invention relates to a method for producing inorganic particles for papermaking or plastics obtained by firing using deinking floss as a main raw material, and more specifically, firing deinking floss under main conditions under a predetermined condition. In addition, the present invention relates to a method for producing inorganic particles having porosity, affinity with various papermaking chemicals, and low wear, and can be suitably used as a filler for papermaking or plastics.

紙パルプ工場の各種工程から排出される製紙スラッジは、無機充填剤及び無機顔料粒子をかなりの割合で含み、これらの製紙スラッジは、回収され、流動床炉やストーカー炉などの焼却炉で製紙スラッジ中の有機物を燃焼して製紙スラッジの減容化を図るとともに、エネルギーとして回収されている。   Paper sludge discharged from various processes in a pulp and paper mill contains a large proportion of inorganic fillers and inorganic pigment particles. These paper sludge is collected and recovered in incinerators such as fluidized bed furnaces and stalker furnaces. The organic matter inside is burned to reduce the volume of papermaking sludge and is recovered as energy.

しかしながら、製紙スラッジには、多量の無機物が含有されているため、燃焼しても多量の燃焼灰(無機物)が残り、減容化にも限度がある。そこで、この燃焼灰をセメント原料の助剤として活用することや、土壌改良剤として活用すること等の努力もなされている。しかし、これらセメント原料や土壌改良剤の助剤としての焼却灰の使用量はわずかなものであり、結局、大部分の燃焼灰は埋立処分されているのが実情である。   However, since papermaking sludge contains a large amount of inorganic substances, a large amount of combustion ash (inorganic substances) remains even after combustion, and there is a limit to volume reduction. Thus, efforts have been made to utilize the combustion ash as an auxiliary material for cement raw materials and as a soil conditioner. However, the amount of incineration ash used as an auxiliary for these cement raw materials and soil conditioners is very small, and in the end, most of the combustion ash is landfilled.

このため、焼却によってエネルギーとして回収するだけでなく、焼却灰中の無機物を製紙用填料、顔料、プラスチック用充填剤等として再利用することは、製紙業界において古紙利用率の向上とともに環境問題に関わる重要な改善課題である。しかしながら、単なる製紙スラッジの焼却灰には燃焼されずに残った有機物がカーボンとして含まれるため白色度が低く、あるいは、無機物の焼結が進み、粒径が不揃いで大きくなっており、そのままの状態では紙の填料や塗工用顔料、プラスチック用の充填剤等として使用するのに適さない。   For this reason, in addition to recovering energy from incineration, the reuse of inorganic materials in incineration ash as fillers for papermaking, pigments, fillers for plastics, etc. is related to environmental problems as well as improving the utilization of used paper in the papermaking industry. This is an important improvement issue. However, the incineration ash of papermaking sludge contains organic substances that remain without being burned as carbon, so the whiteness is low, or the sintering of inorganic substances progresses, the particle size is uneven and large, and it remains as it is However, it is not suitable for use as a filler for paper, a pigment for coating, a filler for plastics, and the like.

そこで、特許文献1は燃焼灰(焼却灰)を再燃焼し、白色度を向上させてから使用する方法を開示している。   Therefore, Patent Document 1 discloses a method of using combustion ash (incineration ash) after reburning and improving the whiteness.

しかしながら、特許文献1の焼却灰を再燃焼する方法の場合、未燃焼カーボンを完全に燃焼させるため再燃焼温度を500〜900℃に設定する必要があり、焼却灰の白色度は50%程度にまでしか向上せず、紙の填料や塗工用顔料として使用するに適するものとはならないことが知見された。また、再燃焼温度を900℃超に設定すると、燃焼灰(無機物)が焼結、溶融し、極めて硬くなることが知見された。また、再燃焼灰を填料として使用すると、この再燃焼灰は非常に硬い性質をもつため、抄紙ワイヤーの磨耗進行が早く、抄紙ワイヤーの寿命が非常に短くなるため、実操業には使用できるものではなかった。また、この再燃焼灰を塗工用顔料として使用すると、再燃焼灰が非常に硬い性質であるため、カレンダー処理を行ってもその塗工層表面の平滑性が劣るという問題が生じる。   However, in the method of recombusting the incinerated ash of Patent Document 1, it is necessary to set the recombustion temperature to 500 to 900 ° C. in order to completely burn the unburned carbon, and the whiteness of the incinerated ash is about 50%. It has been found that it is not suitable for use as a paper filler or coating pigment. It has also been found that when the reburning temperature is set to over 900 ° C., the burning ash (inorganic material) is sintered and melted and becomes extremely hard. Also, when reburned ash is used as a filler, this reburned ash has very hard properties, so the papermaking wire wears out quickly and the life of the papermaking wire becomes very short, so it can be used in actual operations. It wasn't. Further, when the reburned ash is used as a coating pigment, the reburned ash has a very hard property, so that there arises a problem that the smoothness of the surface of the coating layer is inferior even when the calendar treatment is performed.

この点、再燃焼灰を粉砕し、その粒径を小さくして、磨耗の低減、平滑性の向上を図ることも考えられるが、内添填料として使用する場合には、抄紙時における歩留りが低いものであったり、燃焼灰自体が極めて硬いため、粉砕のためのエネルギーコストが極めて高いものとなる。   In this regard, it is conceivable to grind the reburned ash and reduce its particle size to reduce wear and improve smoothness, but when used as an internal filler, the yield during paper making is low. Since the combustion ash itself is extremely hard, the energy cost for pulverization is extremely high.

また、特許文献2では、製紙スラッジを、酸素含有ガスを注入した反応器内に供給し、250〜300℃、3000psig程度の加温加圧下で0.25〜5時間酸化して、製紙スラッジ中の無機物を製紙用の顔料として再生化する方法が提案されている。   Moreover, in patent document 2, papermaking sludge is supplied in the reactor which inject | poured oxygen-containing gas, and it oxidizes for 0.25-5 hours under the heating pressurization about 250-300 degreeC and 3000 psig, and in papermaking sludge A method of regenerating the inorganic material as a papermaking pigment has been proposed.

しかし、この方法は、製紙スラッジの湿式空気酸化処理によるものであるから、有機物除去が十分でなく、また、得られた顔料の白色度が低く、粒径も不揃いで、製紙用の填料や顔料として使用するには不適であり、しかも反応操作が複雑でコストが高いという問題がある。   However, since this method is based on wet air oxidation treatment of papermaking sludge, organic matter removal is not sufficient, and the obtained pigment has low whiteness and uneven particle size, and papermaking fillers and pigments. This is unsuitable for use as a reaction product, and has a problem that the reaction operation is complicated and expensive.

一方、特許文献3には、製紙スラッジをいぶし焼きしてPS炭とした後、さらにこれをキルンで焼却して製紙用原料となる白土を生成させる方法が提案されている。しかし、この方法は製紙スラッジをいぶし焼きするため、製紙スラッジからエネルギーを有効に取り出すことができないばかりか、逆に投入エネルギーが必要になるという大きなデメリットがある。更に、生成した白土も粒径が不揃いで大きくなっており、製紙用顔料としては使用できないという問題がある。   On the other hand, Patent Document 3 proposes a method in which after making papermaking sludge into PS charcoal, it is further incinerated with a kiln to produce white clay as a papermaking raw material. However, this method has a great demerit that not only energy cannot be effectively extracted from the papermaking sludge but also input energy is required because the papermaking sludge is fried. Further, the generated white clay also has a large particle size and has a problem that it cannot be used as a papermaking pigment.

また、特許文献4のように、排水処理汚泥をロータリーキルン内で連続して乾燥・炭化・焼成する方法が知られている。この方法において、焼成に先立って、造粒・成形するのは、焼成を均一に行うためであり、実施の形態に記載されている固形分濃度40〜60%(換言すれば水分率60〜40%)の状態でロータリーキルン内で連続して乾燥・炭化・焼成する場合、乾燥状態、炭化状態のいかんに係らず、キルンの回転によって汚泥粒子は強制的に処理が進行する。従って、乾燥が不十分であると粒子内部に未燃分が多く残留しその結果焼成が不完全となって白色度の低下を生じ、逆に過乾燥になると焼成は完全となるが過焼成を招き、得られた無機粒子の硬度が高くなり、この無機粒子を使用すると抄紙機でのワイヤー磨耗や紙を断裁する場合のカッター刃磨耗が生じやすくなるという問題を引き起こす。   Further, as in Patent Document 4, a method is known in which wastewater treatment sludge is continuously dried, carbonized, and fired in a rotary kiln. In this method, granulation and shaping are performed prior to firing in order to perform firing uniformly. The solid content concentration described in the embodiment is 40 to 60% (in other words, moisture content is 60 to 40). %) In the rotary kiln continuously, the sludge particles are forcibly processed by the rotation of the kiln regardless of the dry state or carbonized state. Therefore, if the drying is inadequate, a large amount of unburned matter remains inside the particles, resulting in incomplete firing, resulting in a decrease in whiteness. Invited, the resulting inorganic particles have a high hardness, and the use of these inorganic particles causes problems such as wire wear in a paper machine and cutter blade wear when cutting paper.

先行する特許文献1〜4に記載の製紙スラッジを原料とする場合における最も大きな問題点は、原料とする製紙スラッジが、抄紙工程でワイヤーを通過して流出したもの、パルプ化工程での洗浄過程で発生した固形分を含む排水から回収したもの、排水処理工程において、沈殿あるいは浮上などを利用した固形分分離装置によりその固形分を分離、回収したもの、古紙処理工程での混入異物除去したもの等の各種スラッジが混在している点である。   The biggest problem when using papermaking sludge described in the preceding Patent Documents 1 to 4 as a raw material is that the papermaking sludge used as a raw material flows out through the wire in the papermaking process, and the washing process in the pulping process Collected from wastewater containing solids generated in wastewater, separated and recovered by solids separation equipment using precipitation or flotation, etc., in wastewater treatment process, removed foreign matter in wastepaper treatment process It is a point where various sludges such as are mixed.

これらのスラッジのうち、例えば、抄紙工程でワイヤーを通過して流出したものは、紙力剤等が混入しており、また、抄紙工程における抄造物の変更によって品質に変動が生じる。   Among these sludges, for example, those that flow out through the wire in the paper making process are mixed with a paper strength agent or the like, and quality changes due to changes in the paper made in the paper making process.

排水スラッジであれば凝集剤が混入しており、更に、工場全体の抄造物、生産量の変動、あるいは生産設備の工程内洗浄などにより大きな変動が生じる。   In the case of drainage sludge, a flocculant is mixed, and furthermore, large fluctuations occur due to papermaking in the whole factory, fluctuations in production volume, or in-process washing of production facilities.

パルプ化工程での洗浄過程から生じる製紙スラッジにおいては、チップ水分やパルプ製造条件で変動が生じるなど、さまざまな填料、顔料とすることができない物質が混入したり、品質変動が生じる。従って、全ての製紙スラッジを無選別に用いようとすると、製紙用の填料・顔料の品質が大きく低下し、しかも品質の変動が極めて大きく、不安定なものとなる。   In papermaking sludge generated from the washing process in the pulping process, various materials that cannot be used as fillers and pigments are mixed, such as fluctuations in chip moisture and pulp production conditions, and quality fluctuations occur. Therefore, if all the papermaking sludge is used without selection, the quality of the papermaking filler / pigment is greatly deteriorated, and the quality fluctuation is extremely large and unstable.

すなわち、従来公知の方法で得られる無機粒子は、製紙用の無機粒子やプラスチック用等の充填剤として使用するには品質が適さず、品質安定性に欠けるものであった。
特開平11−310732号公報 特公昭56−27638号公報 特開昭54−14367号公報 特開2004−176208号公報
That is, the inorganic particles obtained by a conventionally known method are not suitable for use as a filler for papermaking inorganic particles or plastics, and lack quality stability.
JP-A-11-310732 Japanese Examined Patent Publication No. 56-27638 Japanese Patent Laid-Open No. 54-14367 JP 2004-176208 A

本発明が解決しようとする主たる課題は、無機粒子として求められる品質を安定的に、大量生産可能であり、しかも製造コストを低く抑えることができる、などの実用化に最適な製紙用の填料や顔料等、またプラスチック用等の充填剤として利用可能な無機粒子の製造方法を提供することにある。   The main problem to be solved by the present invention is that the quality required for inorganic particles can be stably and mass-produced, and the manufacturing cost can be kept low, and the optimum filler for papermaking and the like for practical use. An object of the present invention is to provide a method for producing inorganic particles that can be used as a filler for pigments, plastics, and the like.

この課題を解決した本発明は、次のとおりである。
〔請求項1記載の発明〕
古紙パルプを製造する脱墨工程で、パルプ繊維から分離された脱墨フロスを主原料として、
前記主原料を脱水工程、乾燥工程、焼成工程、粉砕工程を経て、無機粒子を得る無機粒子の製造方法であって、
脱水工程後の原料を乾燥工程において、水分率を2〜20質量%とし、
前記焼成工程は少なくとも、入口部が上部にあり縦向きの第1段燃焼焼成炉及びこれに続く炉内温度が前記第1段燃焼焼成炉の上端部の温度より低い第2段燃焼焼成炉の2段階の焼成工程からなる、
ことを特徴とする製紙用の填料又は顔料として使用できる無機粒子の製造方法。
The present invention that has solved this problem is as follows.
[Invention of Claim 1]
Deinking floss separated from pulp fibers in the deinking process for producing waste paper pulp,
A method for producing inorganic particles, wherein the main raw material is subjected to a dehydration step, a drying step, a firing step, and a pulverization step, to obtain inorganic particles,
In the drying process of the raw material after the dehydration process, the moisture content is 2 to 20% by mass,
The firing step includes at least a first-stage combustion firing furnace having an inlet at an upper portion and a vertically oriented first-stage combustion firing furnace and a second-stage combustion firing furnace having a temperature in the furnace lower than that of the upper end portion of the first-stage combustion firing furnace. It consists of a two-step firing process.
A method for producing inorganic particles that can be used as a filler or pigment for papermaking.

〔請求項2記載の発明〕
前記第1段燃焼焼成炉による、焼成工程前の無機粒子の粒子径を、355〜2000μmのものを70質量%以上にする、
請求項1記載の無機粒子の製造方法。
[Invention of Claim 2]
The particle size of the inorganic particles before the firing step by the first-stage combustion firing furnace is 70% by mass or more from 355 to 2000 μm.
The manufacturing method of the inorganic particle of Claim 1.

〔請求項3記載の発明〕
前記第1段燃焼焼成炉において燃焼焼成し、未燃分を5〜30%として、
前記第1段燃焼焼成炉に続く第2段燃焼焼成炉で燃焼焼成する焼成工程を経る、
請求項1または請求項2記載の無機粒子の製造方法。
[Invention of Claim 3]
Combusted and fired in the first stage firing furnace, unburned content is 5-30%,
Through a firing step of burning and firing in a second-stage combustion firing furnace following the first-stage combustion firing furnace,
The manufacturing method of the inorganic particle of Claim 1 or Claim 2.

〔請求項4記載の発明〕
前記第2段燃焼焼成炉の温度を前記第1段燃焼焼成炉上端部の温度より低くし、
かつ前記第2段燃焼焼成炉の温度を500〜700℃とする、
請求項1〜3のいずれか1項に記載の無機粒子の製造方法。
[Invention of Claim 4]
The temperature of the second stage combustion firing furnace is lower than the temperature of the upper end of the first stage combustion firing furnace,
And the temperature of the said 2nd stage combustion baking furnace shall be 500-700 degreeC,
The manufacturing method of the inorganic particle of any one of Claims 1-3.

〔請求項5記載の発明〕
前記乾燥工程における乾燥手段として、少なくとも原料をかきあげる一対のロールと、上方に熱風を吹き上げる熱風吹上手段とを備える、
請求項1〜4のいずれか1項に記載の無機粒子の製造方法。
[Invention of Claim 5]
As a drying means in the drying step, at least a pair of rolls for scooping up the raw material, and hot air blowing means for blowing hot air upward are provided.
The manufacturing method of the inorganic particle of any one of Claims 1-4.

本発明によると、無機粒子として求められる品質を安定的に、大量生産可能であり、製造コストを低く抑えることができる、などの実用化に最適な製紙用填料・顔料、またプラスチック等の充填剤として供することができる無機粒子の製造方法を提供することができる。   According to the present invention, the quality required for inorganic particles can be stably and mass-produced, and the manufacturing cost can be kept low. The manufacturing method of the inorganic particle which can be provided as can be provided.

次に、本発明の実施の形態の一例を、図面を参照しながら説明する。
〔概要〕
本形態の無機粒子の製造設備フローは、脱水工程、乾燥工程、燃焼焼成工程、粉砕工程を有するが、更に、脱墨フロスの凝集工程、造粒工程、各工程間に設けられる分級工程等を設けてもよい。
Next, an example of an embodiment of the present invention will be described with reference to the drawings.
〔Overview〕
The manufacturing flow of the inorganic particles of this embodiment has a dehydration process, a drying process, a combustion firing process, and a pulverization process, but further includes a deinking floss agglomeration process, a granulation process, a classification process provided between each process, and the like. It may be provided.

図1に、本形態の無機粒子の製造設備フローの一部構成例を示した。本設備には、各種センサーが備わっており、被処理物や設備の状態、処理速度のコントロール等を行っている。   In FIG. 1, the example of a partial structure of the manufacturing equipment flow of the inorganic particle of this form was shown. This equipment is equipped with various sensors, and controls the state of processing objects, equipment, processing speed, and so on.

また、以下の具体的説明で示す移送流路、給送流路、排送流路、循環流路、返送流路等の各種流路は、例えば、管、ダクト等で構成することができる。   Moreover, various flow paths such as a transfer flow path, a supply flow path, a discharge flow path, a circulation flow path, and a return flow path shown in the following specific description can be constituted by, for example, a pipe, a duct, or the like.

本形態においては、以下に脱墨フロスSを原料として用いた場合を例示するが、脱墨フロスを主原料に、抄紙工程における製紙スラッジ等の他製紙スラッジを適宜用いることができる。   In the present embodiment, the case where the deinking floss S is used as a raw material will be exemplified below, but other papermaking sludge such as papermaking sludge in the papermaking process can be appropriately used with the deinking floss as a main raw material.

〔原料〕
古紙パルプ製造工程では、安定した品質の古紙パルプを連続的に生産する目的から、使用する古紙の選定、選別を行い、一定品質の古紙を使用する。
〔material〕
In the used paper pulp manufacturing process, in order to continuously produce used paper pulp of stable quality, used paper is selected and selected, and used paper of a certain quality is used.

そのため、古紙パルプ製造工程に持ち込まれる無機物の種類やその比率、量が基本的に一定になる。しかも、無機粒子の製造方法において未燃物の変動要因となるビニールやフィルムなどのプラスチック類が古紙中に含まれていた場合においても、これらの異物は脱墨フロスを得る脱墨工程に至る前段階で除去することができる。従って、脱墨フロスは、工場排水工程や製紙原料調整工程等、他の工程で発生するスラッジと比べ、極めて安定した品質の無機粒子を製造するための原料となる。   For this reason, the types, ratios, and amounts of inorganic substances brought into the used paper pulp manufacturing process are basically constant. Moreover, even when waste paper contains plastics such as vinyl and film, which cause unburned materials to fluctuate in the method of producing inorganic particles, these foreign substances are before the deinking process to obtain deinking floss. Can be removed in stages. Accordingly, the deinking floss is a raw material for producing inorganic particles with extremely stable quality as compared with sludge generated in other processes such as a factory drainage process and a papermaking raw material adjustment process.

本発明で云う脱墨フロスとは、古紙パルプを製造する古紙処理工程において、主に、古紙に付着したインクを取り除く脱墨工程で、パルプ繊維から分離されるものをいう。   The deinking floss referred to in the present invention refers to what is separated from the pulp fiber in the deinking process for removing ink adhering to the used paper in the used paper processing process for producing the used paper pulp.

〔脱水工程〕
脱墨フロスSの更なる脱水は、公知の脱水手段を適宜に使用できる。本形態における一例では、脱墨フロスSは、脱水手段たる例えばロータリースクリーン14によって、脱墨フロスSから水を分離して脱水する。 ロータリースクリーン14において、水分95〜98%に脱水した脱墨フロスSは、好適には例えばスクリュープレス15に送り、更に40%〜70%に脱水することができる。
[Dehydration process]
For further dehydration of the deinking floss S, known dehydration means can be used as appropriate. In one example of this embodiment, the deinking floss S is dehydrated by separating water from the deinking floss S by a rotary screen 14 serving as a dehydrating unit. In the rotary screen 14, the deinking floss S dehydrated to 95 to 98% of the moisture can be suitably sent to, for example, the screw press 15 and further dehydrated to 40% to 70%.

以上のように、脱墨フロスSの脱水を多段工程で行い急激な脱水を避けると、無機物の流出が抑制でき脱墨フロスSのフロックが硬くなりすぎるおそれがない。脱水処理においては、脱墨フロスSを凝集させる凝集剤等の脱水効率を向上させる助剤を添加しても良いが、凝集剤には、鉄分を含まないものを使用することが好ましい。鉄分が含有されると、鉄分の酸化により無機粒子の白色度を下げる問題を引き起こす。   As described above, if the deinking floss S is dehydrated in a multi-stage process and abrupt dehydration is avoided, the outflow of the inorganic substance can be suppressed and there is no possibility that the flocs of the deinking floss S will become too hard. In the dehydration treatment, an auxiliary agent for improving the dehydration efficiency such as a flocculant for aggregating the deinking froth S may be added, but it is preferable to use a coagulant that does not contain iron. When iron is contained, it causes a problem of lowering the whiteness of the inorganic particles due to oxidation of the iron.

脱墨フロスSの脱水工程は、本発明における無機粒子製造工程に隣接することが、生産効率の面で好ましいが、予め古紙パルプ製造工程に隣接して設備を設け、脱水を行った物を搬送することも可能である。   The deinking process of the deinking froth S is preferably adjacent to the inorganic particle manufacturing process in the present invention from the viewpoint of production efficiency, but is equipped with a facility adjacent to the waste paper pulp manufacturing process in advance to transport the dehydrated product. It is also possible to do.

〔乾燥工程〕
脱墨フロスSを脱水して得た脱水物Dは、トラックやベルトコンベア等の搬送手段によって定量供給機16まで搬送し、この定量供給機16から乾燥手段17に供給する。
[Drying process]
The dehydrated product D obtained by dehydrating the deinking floss S is transported to the constant supply unit 16 by transporting means such as a truck and a belt conveyor, and supplied from the constant supply unit 16 to the drying unit 17.

この乾燥手段17は、脱水物Dが供給される乾燥容器17bと、この乾燥容器17bの底部に備わり供給された脱水物Dをかきあげる一対のロール17a,17aと、この一対のロール17a,17a相互間から上方に熱風を吹き上げる熱風吹上手段と、から主になる。また、熱風吹上手段は、乾燥容器17bの底部に給送流路56が接続され、この給送流路56を通して、乾燥容器17b内に熱風が吹き込まれる構成となっている。   The drying means 17 includes a drying container 17b to which a dehydrated product D is supplied, a pair of rolls 17a and 17a that scrapes the supplied dehydrated product D provided at the bottom of the drying container 17b, and the pair of rolls 17a and 17a. Hot air blowing means that blows hot air upward from the middle, mainly. Further, the hot air blowing means is configured such that a feeding flow path 56 is connected to the bottom of the drying container 17 b and hot air is blown into the drying container 17 b through the feeding flow path 56.

すなわち、本乾燥手段17は、脱水物Dを、一対のロール17a,17aという有形的な手段によって、強くかつ大まかにほぐし、これに加えて熱風という無形的な手段によって、弱くかつ精細にほぐすことにより、大きい・小さい、硬い・柔らかい等さまざまな性質を有する脱水物Dの水分率の制御と粒揃えを安定的に行うことができる。   That is, the main drying means 17 loosens the dehydrated product D weakly and finely by a tangible means such as a pair of rolls 17a and 17a, and loosely and loosely by an intangible means such as hot air. Thus, the moisture content of the dehydrated product D having various properties such as large, small, hard and soft can be controlled and the grain size can be stably controlled.

特に、乾燥容器17b内に供給する脱水物Dを、水分率40〜70質量%に脱水している場合は、熱風の温度を、100〜200℃にするのが好ましく、120〜180℃にするのがより好ましく、130〜170℃にするのが特に好ましい。脱水物Dの水分率が40〜60質量%の場合は、100℃の熱風でも十分に乾燥することができる。他方、熱風の温度は200℃以下とすることが好ましい。熱風の温度が200℃を超える場合は、大きい・小さい、硬い・柔らかい等さまざまな性質を有する脱水物Dの粒揃えが進行するよりも早く乾燥が進むため、粒子表面と内部の水分率の差を少なく均一にすることが困難になる。   In particular, when the dehydrated product D supplied into the drying container 17b is dehydrated to a moisture content of 40 to 70% by mass, the temperature of the hot air is preferably 100 to 200 ° C, and is preferably 120 to 180 ° C. Is more preferable, and 130 to 170 ° C. is particularly preferable. When the moisture content of the dehydrated product D is 40 to 60% by mass, it can be sufficiently dried even with hot air at 100 ° C. On the other hand, the temperature of the hot air is preferably 200 ° C. or lower. When the temperature of the hot air exceeds 200 ° C, the drying proceeds faster than the particle alignment of the dehydrated material D having various properties such as large, small, hard, and soft, so the difference in moisture content between the particle surface and the inside It is difficult to make the amount uniform.

以上の脱水物Dの乾燥は、焼成工程前の乾燥物Kの水分率が2〜20質量%となるように乾燥するのが好ましく、乾燥物Kの水分率が3〜15質量%となるように乾燥するのがより好ましく、乾燥物Kの水分率が3〜10質量%となるように乾燥するのが特に好ましい。脱水物Dを、水分率が2質量%未満の範囲まで乾燥すると、後行する焼成において、過焼する問題が生じる。他方、脱水物Dを、水分率が20質量%を超える範囲で乾燥すると、後行する焼成を確実に行うことが困難になる。   It is preferable to dry the above dehydrated product D so that the moisture content of the dried product K before the firing step is 2 to 20% by mass, and the moisture content of the dried product K is 3 to 15% by mass. It is more preferable to dry it so that the moisture content of the dried product K is 3 to 10% by mass. When the dehydrated product D is dried to a range where the moisture content is less than 2% by mass, a problem of over-burning occurs in the subsequent baking. On the other hand, when the dehydrated product D is dried in a range where the moisture content exceeds 20% by mass, it is difficult to reliably perform subsequent firing.

乾燥物Kの粒揃えは、粒子径355〜2000μmのものが70質量%以上となるように調整するのが好ましく、粒子径355〜2000μmのものが75質量%以上となるように調整するのがより好ましく、粒子径355〜2000μmのものが80質量%以上となるように調整するのが特に好ましい。   The particle size of the dried product K is preferably adjusted so that the particle size of 355 to 2000 μm is 70% by mass or more, and adjusted so that the particle size of 355 to 2000 μm is 75% by mass or more. More preferably, it is particularly preferable to adjust the particle size of 355 to 2000 μm so that it is 80% by mass or more.

また、乾燥物Kを、粒子径355μm〜2000μm以上のものが70質量%以上となるように製造すると、つまり小径な粒子の乾燥物Kを除去すると、部分的な過焼が防止され、焼成が均一になる。従って、得られる無機粒子の品質を均一にするという観点における実用化可能性に、有益である。更に、本形態のように、分級を乾燥後とすると、小径な粒子の乾燥物Kを確実に除去することができ、また、処理効率も向上する。   Further, when the dried product K is produced so that the particles having a particle diameter of 355 μm to 2000 μm or more are 70% by mass or more, that is, when the dried product K of small-sized particles is removed, partial over-burning is prevented and firing is performed. It becomes uniform. Therefore, it is useful for practical application in terms of making the quality of the obtained inorganic particles uniform. Furthermore, when the classification is after drying as in the present embodiment, the dried product K of small-diameter particles can be reliably removed, and the processing efficiency is improved.

〔焼成工程〕
サイクロン18内を底部まで落下した乾燥物Kは、移送流路58を通して、かつこの移送流路58の途中に備わる排風ファンHで勢いを増して、サイクロン式の第1焼成段階を構成する第1燃焼焼成炉21に送られる。
[Baking process]
The dried material K that has fallen to the bottom in the cyclone 18 is increased in vigor by the exhaust fan H provided in the transfer flow path 58 and in the middle of the transfer flow path 58, and constitutes the first firing stage of the cyclone type. 1 is sent to the combustion firing furnace 21.

この第1燃焼焼成炉21では、乾燥物Kを、旋回落下させることで粒子の微細化を抑制し、また、この過程で、焼成し未燃分を調整する。   In the first combustion firing furnace 21, the dried material K is swirled and dropped to suppress particle refinement, and in this process, firing is performed to adjust the unburned content.

第1燃焼焼成炉21での焼成は、未燃率が5〜30質量%となるように行うのが好ましく、8〜25質量%となるように行うのがより好ましく、10〜20質量%となるように行うのが特に好ましい。第1燃焼焼成が、未燃率が5質量%未満では、焼成における粒子表面の過焼が生じ表面が硬くなるとともに、内部の酸素不足が生じ、無機粒子の白色度が低下する問題が生じる。他方、第1燃焼焼成を、未燃率が30質量%を超えると、後行する第2燃焼焼成後においても未燃分が残る問題、更にはこの未燃分が残るのを防止するためとして粒子表面が過焼するまで燃焼焼成してしまい、無機粒子表面が硬くなる問題が生じる。   Firing in the first combustion firing furnace 21 is preferably performed such that the unburned rate is 5 to 30% by mass, more preferably 8 to 25% by mass, and 10 to 20% by mass. It is particularly preferable to carry out the above. If the unburned rate is less than 5% by mass in the first combustion firing, the particle surface is overfired in the firing, the surface becomes hard, the internal oxygen is insufficient, and the whiteness of the inorganic particles is lowered. On the other hand, if the unburned rate exceeds 30% by mass in the first combustion firing, the problem remains that the unburned portion remains after the second combustion firing that follows, and further to prevent the unburned portion from remaining. There is a problem that the surface of the inorganic particles is hardened by burning and burning until the particle surface is overfired.

第1燃焼焼成炉21の形態は、特に限定されないが、サイクロン式であることが好ましい。サイクロン式によると、前述のとおり、粒子の微細化を抑制することで未燃率を均一かつ確実に調節することができる。   Although the form of the 1st combustion baking furnace 21 is not specifically limited, It is preferable that it is a cyclone type. According to the cyclone type, as described above, the unburned rate can be adjusted uniformly and reliably by suppressing the refinement of the particles.

焼成温度範囲は、510〜750℃の範囲で行うことが好ましく、第1段階燃焼焼成は、第1燃焼焼成炉21上端部の温度を510〜750℃とし、第2燃焼焼成炉25内の温度を第1燃焼焼成炉21上端部の温度より低い500〜700℃とするのが好ましく、第1燃焼焼成炉21上端部の温度を550〜730℃とし、第第2燃焼焼成炉25内の温度を第1燃焼焼成炉21上端部の温度より低い510〜680℃とするのがより好ましく、第1燃焼焼成炉21上端部の温度を580〜700℃とし、第2燃焼焼成炉内の温度を焼成炉21上端部の温度より低い550〜660℃とするのが特に好ましい。第1燃焼焼成炉21上端部の温度を600〜680℃とし、第2燃焼焼成炉25内の温度を第1燃焼焼成炉21上端部の温度より低い580〜650℃とすると、製造される製紙用微細粒子が再生填料や顔料として使用するに好適なものとなる。   The firing temperature range is preferably in the range of 510 to 750 ° C., and the first stage combustion firing is performed at a temperature of the upper end of the first combustion firing furnace 21 of 510 to 750 ° C. and the temperature in the second combustion firing furnace 25. Is preferably 500 to 700 ° C. lower than the temperature at the upper end of the first combustion firing furnace 21, the temperature at the upper end of the first combustion firing furnace 21 is set to 550 to 730 ° C., and the temperature in the second combustion firing furnace 25 is Is more preferably 510-680 ° C., which is lower than the temperature at the upper end of the first combustion firing furnace 21, the temperature at the upper end of the first combustion firing furnace 21 is 580-700 ° C., and the temperature in the second combustion firing furnace is It is particularly preferable to set the temperature to 550 to 660 ° C., which is lower than the temperature at the upper end of the firing furnace 21. When the temperature of the upper end of the first combustion firing furnace 21 is 600 to 680 ° C., and the temperature in the second combustion firing furnace 25 is 580 to 650 ° C. lower than the temperature of the upper end of the first combustion firing furnace 21, paper is manufactured. The fine particles for use are suitable for use as recycled fillers or pigments.

第2燃焼焼成炉25内の温度を第1燃焼焼成炉21上端部の温度より10〜50℃低くすることで、製紙用微細粒子表面の過焼を防止しながら、未燃物を燃焼させることができる。   By making the temperature in the second combustion firing furnace 25 lower by 10 to 50 ° C. than the temperature at the upper end of the first combustion firing furnace 21, the unburned material is burned while preventing overheating of the surface of the fine particles for papermaking. Can do.

第1燃焼焼成炉21で得た焼成物は、第2焼成段階である第2燃焼焼成炉25に送り、燃焼焼成する。第2燃焼焼成炉25は、ロータリーキルン炉、流動床炉、ストーカー炉、サイクロン炉、半乾留・負圧燃焼式炉等、公知の装置を用いることができるが、本発明においては、温度変化が少ない環境下で過大な物理的圧力を掛けることなく攪拌しながら満遍なく燃焼させることができる方策として、ロータリーキルン炉が好ましい。   The fired product obtained in the first combustion firing furnace 21 is sent to the second combustion firing furnace 25, which is the second firing stage, and is fired and fired. As the second combustion firing furnace 25, a known apparatus such as a rotary kiln furnace, a fluidized bed furnace, a stalker furnace, a cyclone furnace, a semi-dry distillation / negative pressure combustion furnace, etc. can be used. A rotary kiln furnace is preferred as a measure that can be uniformly burned with stirring without applying excessive physical pressure in the environment.

〔粉砕工程〕
本発明に基づく無機粒子の製造方法においては、必要に応じ、更に公知の分散・粉砕工程を設け、適宜必要な粒径に微細粒化することで塗工用の顔料、内添用の填料として使用できる。
[Crushing process]
In the method for producing inorganic particles based on the present invention, if necessary, further known dispersion and pulverization steps are provided, and finely granulated to a necessary particle size as appropriate, as a pigment for coating and a filler for internal addition. Can be used.

一例では、焼成後、得られた微細粒子は、ジェットミルや高速回転式ミル等の乾式粉砕機、あるいは、アトライター、サンドグラインダー、ボールミル等の湿式粉砕機を用いて粉砕する。填料、顔料用途への使用においては、粒径の均一化や微細化が必要であるが、本発明に基づく製造方法にて得られた微細無機粒子を用いた、填料、顔料用途等への最適な粒径、顔料径については、本形態の微細粒子は、一次粒子が平均粒子径0.01〜0.1μmであり、この一次粒子が凝集した二次粒子が平均粒子径0.1〜10μmであるのが好ましい。   In one example, the fine particles obtained after firing are pulverized using a dry pulverizer such as a jet mill or a high-speed rotary mill, or a wet pulverizer such as an attritor, a sand grinder, or a ball mill. For use in fillers and pigments, it is necessary to make the particle size uniform and fine, but it is optimal for fillers, pigments, etc. using fine inorganic particles obtained by the production method according to the present invention. As for the fine particle diameter and pigment diameter, the fine particles of this embodiment have primary particles with an average particle diameter of 0.01 to 0.1 μm, and secondary particles in which the primary particles are aggregated have an average particle diameter of 0.1 to 10 μm. Is preferred.

〔付帯工程〕
本製造設備において、より品質の安定化を求めるにおいては、無機粒子の粒度を、各工程で均一に揃えるための分級を行うことが好ましく、粗大や微小粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。
[Attached process]
In this production facility, in order to further stabilize the quality, it is preferable to classify the inorganic particles in order to make the particle size uniform in each step, and the quality can be improved by feeding back coarse particles and fine particles to the previous step. Can be stabilized.

また、乾燥工程の前段階において、脱水処理を行った脱墨フロスを造粒することが好ましく、更には、造粒物の粒度を均一に揃えるための分級を行うことがより好ましく、粗大や微小の造粒粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。造粒においては、公知の造粒設備を使用でき、回転式、攪拌式、押し出し式等の設備が好適である。   In addition, it is preferable to granulate the deinked floss that has been subjected to dehydration in the previous stage of the drying process, and it is more preferable to classify the granulated product to have a uniform particle size. It is possible to further stabilize the quality by feeding back the granulated particles to the previous process. In granulation, a known granulation facility can be used, and facilities such as a rotary type, a stirring type and an extrusion type are suitable.

本製造設備においては、微細粒子以外の異物を除去することが好ましく、例えば古紙パルプ製造工程の脱墨工程に至る前段階のパルパーやスクリーン、クリーナー等で砂、プラスチック異物、金属等を除去することが、除去効率の面で好ましい。特に鉄分の混入は、鉄分が酸化により微粒子の白色度低下の起因物質になるため、鉄分の混入を避け、選択的に取り除くことが推奨され、各工程を鉄以外の素材で設計又はライニングし、磨滅等により鉄分が系内に混入することを防止するとともに、更に、乾燥・分級設備内等に磁石等の高磁性体を設置し選択的に鉄分を除去することが好ましい。   In this production facility, it is preferable to remove foreign matters other than fine particles. For example, sand, plastic foreign matters, metals, etc. are removed with a pulper, a screen, a cleaner, etc. before reaching the deinking step of the used paper pulp manufacturing process. Is preferable in terms of removal efficiency. In particular, iron contamination is a substance that reduces the whiteness of fine particles due to oxidation, so it is recommended to avoid iron contamination and selectively remove it. Design or lining each process with materials other than iron, It is preferable to prevent iron from being mixed into the system due to abrasion or the like, and to further remove iron selectively by installing a high magnetic material such as a magnet in the drying / classifying equipment.

更に、本発明に基づく無機粒子の製造方法による無機粒子凝集体は、X線マイクロアナライザーによる微細粒子の元素分析において、カルシウム、シリカ及びアルミニウムの比率が酸化物換算で30〜82:9〜35:9〜35の質量割合で含むことが好ましく、より好ましくは、40〜82:9〜30:9〜30の質量割合、更に好ましくは、60〜82:9〜20:9〜20の割合である。   Furthermore, the inorganic particle aggregate obtained by the method for producing inorganic particles according to the present invention has a ratio of calcium, silica, and aluminum of 30 to 82: 9 to 35: in terms of oxide in elemental analysis of fine particles by an X-ray microanalyzer. It is preferable to contain by the mass ratio of 9-35, More preferably, it is the mass ratio of 40-82: 9-30: 9-30, More preferably, it is the ratio of 60-82: 9-20: 9-20. .

カルシウム、シリカ及びアルミニウムを酸化物換算で30〜82:9〜35:9〜35の質量割合で含ませることで、比重が軽く、過度の水溶液吸収が抑えられるため、脱水工程のおける脱水性が良好であり、乾燥工程における水分調整が容易であるだけでなく、焼成工程における未燃物の割合や、焼結による過度の硬さを生じる恐れを低減できる。   By including calcium, silica, and aluminum in a mass ratio of 30 to 82: 9 to 35: 9 to 35 in terms of oxides, the specific gravity is light and excessive aqueous solution absorption can be suppressed, so that the dehydrating ability in the dehydration process can be reduced. It is good, and not only the moisture adjustment in the drying process is easy, but also the ratio of unburned substances in the firing process and the possibility of excessive hardness due to sintering can be reduced.

焼成工程において、本発明の割合に調整するための方法としては、脱墨フロスにおける原料構成を調整することが本筋ではあるが、乾燥工程、焼成工程において、出所が明確な塗工フロスや調整工程フロスをスプレー等で工程内に含有させる手段や、焼却炉スクラバー石灰を含有させる手段にて調整することも可能である。   As a method for adjusting the ratio of the present invention in the firing process, the main point is to adjust the raw material composition in the deinking floss, but in the drying process and the firing process, the origin of the coating floss and the adjustment process are clear. It is also possible to adjust by means of containing floss in the process by spraying or the like, or means of containing incinerator scrubber lime.

例えば、脱墨フロスを主原料に、無機粒子凝集体中のカルシウムの調整には、中性抄紙系の排水スラッジや、塗工紙製造工程の排水スラッジを用い、シリカの調整には、不透明度向上剤として多量添加されている新聞用紙製造系の排水スラッジを、アルミニウムの調整には酸性抄紙系等の硫酸バンドの使用がある抄紙系の排水スラッジや、タルク使用の多い上質紙抄造工程における排水スラッジを用いることができる。   For example, using deinked floss as the main raw material, neutral papermaking wastewater sludge and wastewater sludge from the coated paper manufacturing process are used to adjust calcium in the inorganic particle aggregate, and opacity is used to adjust silica. Newspaper manufacturing wastewater sludge, which is added in large quantities as an improver, papermaking wastewater sludge that uses sulfuric acid bands such as acidic papermaking to adjust aluminum, and wastewater in the high quality papermaking process that often uses talc Sludge can be used.

本発明の実施例及び比較例を示す。
各種要因を変化させて、得られた無機粒子の品質を調べたところ、表1に示す結果が得られた。
品質の評価は次記のように行った。
(生産性評価):原料の脱水効率、生産性、粉砕に必要な電力を4段階評価し、 最も効率の良かった条件を◎、良かったものを〇、水効率、生産性、粉砕のいずれかに問題を見出したものを△、実操業困難なものを×とした。
(ワイヤー磨耗度):プラスチックワイヤー磨耗度(日本フィルコン製 3時間)、スラリー濃度2重量%で測定した。
(品質安定性):所定の方法で得られた微粒子の、白色度、粒径、一定時間間隔における生産量の各項目について、変動程度を測定し、変動が少ない順にランク付けを行い、上位5位までを◎、6位から10位を〇、11位から13位を△、それ以下を×とした。
(見た目):目視で無機粒子の色を比較判断し、白色と灰色に区分した。
(質量割合):4.7メッシュの篩にて2000μmを超える質量割合を、42メッシュの篩にて、355μm未満の質量割合を想定した。
(粒子径):X線マイクロアナライザーにて実測した。
The Example and comparative example of this invention are shown.
When the quality of the obtained inorganic particles was examined by changing various factors, the results shown in Table 1 were obtained.
The quality was evaluated as follows.
(Productivity evaluation): Evaluate the dehydration efficiency of raw materials, productivity, and power required for pulverization in four stages. ◎ is the most efficient condition, ◯ is the best, water efficiency, productivity, pulverization The problem was found as △, and the actual operation difficult as x.
(Wire wear degree): Measured at a plastic wire wear degree (manufactured by Nippon Filcon, 3 hours) and a slurry concentration of 2% by weight.
(Quality stability): The degree of variation is measured for each item of the whiteness, particle size, and production amount at a fixed time interval of the fine particles obtained by a predetermined method, and ranked in the order of small variation. ◎ up to the rank, ◯ from the 6th to 10th, △ from the 11th to the 13th, and x below.
(Appearance): The color of the inorganic particles was visually judged and classified into white and gray.
(Mass ratio): A mass ratio exceeding 2000 μm was assumed with a 4.7 mesh sieve, and a mass ratio less than 355 μm was assumed with a 42 mesh sieve.
(Particle diameter): Measured with an X-ray microanalyzer.

Figure 2007112681
Figure 2007112681

本発明は、製紙用スラッジを焼成して無機粒子を製造する方法として、適用可能である。   The present invention is applicable as a method for producing inorganic particles by firing papermaking sludge.

製紙用填料の製造設備フロー図である。It is a manufacturing equipment flowchart of the filler for paper manufacture.

符号の説明Explanation of symbols

16…定量供給機、17…乾燥手段、21…焼成炉、23…熱交換器、25…燃焼焼成炉、D…脱水物、F…粉砕物、J…焼成物、K…乾燥物、S…脱墨フロス。   DESCRIPTION OF SYMBOLS 16 ... Constant quantity feeder, 17 ... Drying means, 21 ... Firing furnace, 23 ... Heat exchanger, 25 ... Combustion calcination furnace, D ... Dehydrated matter, F ... Ground material, J ... Firing material, K ... Dry material, S ... Deinking floss.

Claims (4)

脱墨フロスを主原料に、脱水工程、乾燥工程、焼成工程、粉砕工程を有する無機粒子の製造方法であって、前記焼成工程前の原料の水分率を2〜20質量%にすることを特徴とする無機粒子の製造方法。   A method for producing inorganic particles having a deinking floss as a main raw material, a dehydration step, a drying step, a baking step, and a pulverization step, wherein the moisture content of the raw material before the baking step is 2 to 20% by mass A method for producing inorganic particles. 前記焼成工程前の無機粒子の粒子径を、355〜2000μmのものを70質量%以上にすることを特徴とする請求項1記載の無機粒子の製造方法。   The method for producing inorganic particles according to claim 1, wherein the particle diameter of the inorganic particles before the baking step is 70 mass% or more of particles having a particle size of 355 to 2000 µm. 脱墨フロスを主原料に、脱水工程、乾燥工程、焼成工程、粉砕工程を有する無機粒子の製造方法であって、前記焼成工程が少なくとも2段階の焼成工程を有し、最終焼成工程に至る前の段階において、未燃分を5〜30%にする焼成工程を経ることを特徴とする無機粒子の製造方法。   A method for producing inorganic particles having a deinking floss as a main raw material, a dehydration step, a drying step, a firing step, and a pulverization step, wherein the firing step has at least two stages of firing steps before reaching the final firing step. In this step, the method for producing inorganic particles is characterized by passing through a firing step for reducing the unburned content to 5 to 30%. 請求項3記載の未燃分を5〜30%にする焼成工程において、焼成処理温度を、500〜750℃で行うことを特徴とする請求項3記載の無機粒子の製造方法。   The method for producing inorganic particles according to claim 3, wherein in the firing step for reducing unburned content according to claim 3 to 5 to 30%, the firing temperature is 500 to 750 ° C.
JP2005307818A 2005-10-21 2005-10-21 Method for producing inorganic particles Expired - Fee Related JP3836493B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307818A JP3836493B1 (en) 2005-10-21 2005-10-21 Method for producing inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307818A JP3836493B1 (en) 2005-10-21 2005-10-21 Method for producing inorganic particles

Publications (2)

Publication Number Publication Date
JP3836493B1 JP3836493B1 (en) 2006-10-25
JP2007112681A true JP2007112681A (en) 2007-05-10

Family

ID=37416156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307818A Expired - Fee Related JP3836493B1 (en) 2005-10-21 2005-10-21 Method for producing inorganic particles

Country Status (1)

Country Link
JP (1) JP3836493B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156773A (en) * 2006-12-22 2008-07-10 Daio Paper Corp Coated paperboard and method for producing the same
JP5222865B2 (en) * 2010-02-22 2013-06-26 大王製紙株式会社 Book paper and manufacturing method thereof
JP5351222B2 (en) * 2011-08-02 2013-11-27 大王製紙株式会社 Regenerated particle aggregate

Also Published As

Publication number Publication date
JP3836493B1 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US5846378A (en) Treatment of solid containing material derived from effluent of wastepaper treating plant
JP4850082B2 (en) Method for producing recycled particle aggregate
JP4783715B2 (en) Method for producing recycled particle aggregate
JP2008144347A (en) Filled paper and method for producing the same
JP3836493B1 (en) Method for producing inorganic particles
JP5446284B2 (en) Method for producing inorganic particles
JP2009286857A (en) Method for producing white inorganic particle
JP3999799B2 (en) Method for producing inorganic particles
JP5468281B2 (en) Method for producing regenerated particles
JP4020955B2 (en) Method for producing inorganic particles
JP4879213B2 (en) Method for producing regenerated particles
JP4938743B2 (en) Method for producing regenerated particles
JP5596354B2 (en) Method for producing regenerated particles and regenerated particles
JP2011098277A (en) Regenerated particle production method and regenerated particle
JP5049917B2 (en) Method for producing regenerated particles
JP2011127256A (en) Method for producing regenerated particle, and regenerated particle
JP3907689B1 (en) Method for producing recycled paper agglomerated paper
JP2010194486A (en) Method for manufacturing regenerated particles
JP5184975B2 (en) Method for producing regenerated particles
JP5351222B2 (en) Regenerated particle aggregate
JP3907688B1 (en) Recycled particle agglomerated paper containing regenerated particle agglomerates
JP5608380B2 (en) Method for producing regenerated particles and regenerated particles
JP5580028B2 (en) Method for producing regenerated particles
JP5317875B2 (en) Method for producing regenerated particles
JP5566739B2 (en) Regenerated particle manufacturing method, regenerated particle and regenerated particle manufacturing facility

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Ref document number: 3836493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees