JP2007109669A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007109669A
JP2007109669A JP2006339325A JP2006339325A JP2007109669A JP 2007109669 A JP2007109669 A JP 2007109669A JP 2006339325 A JP2006339325 A JP 2006339325A JP 2006339325 A JP2006339325 A JP 2006339325A JP 2007109669 A JP2007109669 A JP 2007109669A
Authority
JP
Japan
Prior art keywords
manifold
fuel cell
oxidant
reaction fluid
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339325A
Other languages
Japanese (ja)
Other versions
JP4663623B2 (en
Inventor
Yasunori Yoshimoto
保則 吉本
Koji Yasuo
耕司 安尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006339325A priority Critical patent/JP4663623B2/en
Publication of JP2007109669A publication Critical patent/JP2007109669A/en
Application granted granted Critical
Publication of JP4663623B2 publication Critical patent/JP4663623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell not disturbing flow in a reaction fluid exhausting port of a cell plate in a fuel cell stack. <P>SOLUTION: The fuel cell includes a reaction fluid supply manifold 3 for supplying reaction fluid, a reaction fluid exhausting manifold 4 installed in a point symmetrical position to the reaction fluid supply manifold for exhausting reaction fluid, a cooling medium supply manifold 6 for supplying a cooling medium cooling the fuel cell stack, and a cooling medium exhausting manifold 8 installed in a point symmetrical position to the cooling medium supply manifold for exhausting the cooling medium, and the reaction fluid exhausting manifold 4 is formed to have a cross section lager than that of the cooling medium exhaust manifold 8, and extended to a more lower part than a reaction fluid outflow port of the cell plate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反応ガス流路を形成した電池プレートに特徴を有する固体高分子型燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell characterized by a battery plate in which a reaction gas channel is formed.

従来の固体高分子型燃料電池は、固体高分子電解質膜の一方の面にアノード(燃料極)を他方の面にカソード(酸化剤極)を配してなる単セルを、電池プレート(セパレータ)で挟み付けるようにして多数積層することで燃料電池スタックが形成されている。前記アノードに接する電池プレート面には燃料流路が形成され、カソードに接する電池プレート面には酸化剤流路が形成される。   A conventional polymer electrolyte fuel cell includes a single cell in which an anode (fuel electrode) is arranged on one surface of a solid polymer electrolyte membrane and a cathode (oxidant electrode) on the other surface, and a battery plate (separator). A fuel cell stack is formed by stacking a large number of layers so as to be sandwiched between. A fuel flow path is formed on the battery plate surface in contact with the anode, and an oxidant flow path is formed on the battery plate surface in contact with the cathode.

電池プレートは、通常燃料(水素主体の改質ガス又は水素ガス)供給マニホールド、燃料排出マニホールド、酸化剤(空気又は酸素ガス)供給マニホールド、酸化剤排出マニホールドが前記燃料流路又は酸化剤流路と関連して形成されている。各マニホールドには供給口又は排出口が電池プレートを貫通して設けられ、これらの供給口又は排出口は燃料電池スタックにおいて積層方向に連通し、燃料供給路、燃料排出路、酸化剤供給路、酸化剤排出路をそれぞれ構成している(例えば、特開平9−92308号公報)。   The battery plate includes a normal fuel (hydrogen-based reformed gas or hydrogen gas) supply manifold, a fuel discharge manifold, an oxidant (air or oxygen gas) supply manifold, and an oxidant discharge manifold. Formed in relation. Each manifold is provided with a supply port or a discharge port penetrating the battery plate. These supply ports or discharge ports communicate with each other in the stacking direction in the fuel cell stack, and include a fuel supply path, a fuel discharge path, an oxidant supply path, Each of the oxidizing agent discharge paths is configured (for example, Japanese Patent Laid-Open No. 9-92308).

燃料電池スタックの燃料供給口に改質ガス等の燃料ガスが供給されると、この燃料ガスは前記燃料供給路を通過しながら各電池プレートの燃料供給マニホールドに分配供給され、その燃料供給マニホールドから燃料流路にそれぞれ供給される。これと同様に、燃料電池スタックの酸化剤供給路に空気等の酸化剤ガスが供給されると、この酸化剤ガスは前記酸化剤供給路を通過しながら各電池プレートの酸化剤供給マニホールドに分配供給され、その酸化剤供給マニホールドから酸化剤流路にそれぞれ供給される。   When fuel gas such as reformed gas is supplied to the fuel supply port of the fuel cell stack, the fuel gas is distributed and supplied to the fuel supply manifold of each battery plate while passing through the fuel supply path, and from the fuel supply manifold. Each is supplied to a fuel flow path. Similarly, when an oxidant gas such as air is supplied to the oxidant supply path of the fuel cell stack, the oxidant gas is distributed to the oxidant supply manifold of each battery plate while passing through the oxidant supply path. And supplied from the oxidant supply manifold to the oxidant flow path.

各電池プレートに分配供給された燃料ガスと酸化剤ガスとにより、前記固体高分子電解質膜を介して電気化学反応が起こり、起電力を生じる。これらの起電力を集めて燃料電池スタックから取り出し、DC/ACインバータ等の電力変換装置で所望の電力に変換して使用に供される。   The fuel gas and the oxidant gas distributed and supplied to each battery plate cause an electrochemical reaction through the solid polymer electrolyte membrane to generate an electromotive force. These electromotive forces are collected and taken out from the fuel cell stack, converted into desired power by a power converter such as a DC / AC inverter, and used.

各電池プレートで未反応に終わった燃料ガスは、前記燃料排出マニホールドに排出され、燃料電池スタックの積層方向に連通する燃料排出路を経て外部に排出される。排出された未反応燃料ガスは、燃料改質装置の改質器バーナに導かれて燃焼される。一方、各電池プレートで未反応に終わった酸化剤ガスは、前記酸化剤排出マニホールドに排出され、燃料電池スタックの積層方向に連通する酸化剤排出路を経て外部に排出される。
特開平09−092308号公報 特開平11−354142号公報 特開2001−143740号公報 特開2001−202984号公報
The unreacted fuel gas in each cell plate is discharged to the fuel discharge manifold and discharged to the outside through a fuel discharge path communicating in the stacking direction of the fuel cell stack. The discharged unreacted fuel gas is guided to the reformer burner of the fuel reformer and burned. On the other hand, the oxidant gas that has not reacted in each battery plate is discharged to the oxidant discharge manifold, and is discharged to the outside through an oxidant discharge path communicating in the stacking direction of the fuel cell stack.
Japanese Unexamined Patent Publication No. 09-092308 JP-A-11-354142 JP 2001-143740 A JP 2001-202984 A

上記のような従来の固体高分子型燃料電池においては、固体高分子電解質膜を湿潤状態に保持するため、反応ガスは燃料電池システム内に設けられた水タンクで加湿した後、加湿反応ガスとして燃料電池スタックに供給される。しかしながら、加湿反応ガス中の水分が凝縮することにより凝縮水が発生し、この凝縮水が電池プレートの反応ガス流路に付着すると、反応ガスの流れを阻害して発電性能を低下させる問題があった。図2に示すような従来構造の電池プレートであると、電池プレートAの反応ガス排出口B(反応ガス排出路)が反応ガス流路Cの出口に位置しているため、排出口Bの下部に凝縮水Dが溜まって反応ガス流路出口を狭め、反応ガスの流れを阻害する事態が発生した。   In the conventional solid polymer fuel cell as described above, in order to keep the solid polymer electrolyte membrane in a wet state, the reaction gas is humidified in a water tank provided in the fuel cell system, and is then used as a humidified reaction gas. Supplied to the fuel cell stack. However, when water in the humidified reaction gas is condensed, condensed water is generated, and if this condensed water adheres to the reaction gas flow path of the battery plate, there is a problem that the flow of the reaction gas is hindered and power generation performance is reduced. It was. In the case of a battery plate having a conventional structure as shown in FIG. 2, the reaction gas discharge port B (reaction gas discharge channel) of the battery plate A is located at the outlet of the reaction gas channel C. Condensed water D accumulated in the reaction gas, and the reaction gas channel outlet was narrowed, resulting in a situation where the flow of the reaction gas was hindered.

本発明は、このような従来の事態に対処するためになされ、電池プレートの反応ガス排出口に溜まる凝縮水により、反応ガスの流れが阻害されないようにした固体高分子型燃料電池を提供することを目的とする。   The present invention has been made to cope with such a conventional situation, and provides a polymer electrolyte fuel cell in which the flow of the reaction gas is not inhibited by the condensed water accumulated in the reaction gas discharge port of the battery plate. With the goal.

上記の目的を達成するための本発明の手段は、請求項1に記載したように、電解質膜の一方の面に燃料極を他方の面に酸化剤極を配してなる単セルを、電池プレートを介して水平面に対して垂直状態で面方向に多数積層して燃料電池スタックを形成する燃料電池において、燃料または酸化剤のうち少なくとも一方の反応流体を供給する反応流体供給マニホールドと、前記反応流体供給マニホールドに対して点対称な位置に設けられ、前記反応流体を排出する反応流体排出マニホールドと、前記燃料電池スタックを冷却する冷却媒体を供給する冷却媒体供給マニホールドと、前記冷却媒体供給マニホールドに対して点対称な位置に設けられ、前記冷却媒体を排出する冷却媒体排出マニホールドと、を有し、前記反応流体排出マニホールドは、前記冷却媒体排出マニホールドの断面積よりも断面積が大きく形成されると共に、前記電池プレートの反応流体流路出口よりも下方に延長形成されることを特徴とするものである。   The means of the present invention for achieving the above-described object includes a unit cell comprising a fuel electrode on one surface of an electrolyte membrane and an oxidant electrode on the other surface, as described in claim 1. In a fuel cell in which a fuel cell stack is formed by stacking a large number in a plane direction perpendicular to a horizontal plane via a plate, a reaction fluid supply manifold that supplies at least one reaction fluid of fuel or oxidant, and the reaction A reaction fluid discharge manifold for discharging the reaction fluid; a cooling medium supply manifold for supplying a cooling medium for cooling the fuel cell stack; and a cooling medium supply manifold. A cooling medium discharge manifold provided at a point-symmetrical position to discharge the cooling medium, and the reaction fluid discharge manifold With the cross-sectional area is larger than the cross-sectional area of the coolant discharge manifold, it is characterized in that is formed extending downward from the reaction fluid flow path outlet of the cell plate.

また、請求項2に記載したように、請求項1記載の燃料電池において、前記反応流体排出マニホールドは、鉛直方向の寸法が水平方向の寸法よりも大きく形成されることを特徴とするものである。   Further, as described in claim 2, in the fuel cell according to claim 1, the reaction fluid discharge manifold is formed such that a dimension in a vertical direction is larger than a dimension in a horizontal direction. .

以上説明したように、本発明は、固体高分子型燃料電池の燃料電池スタックにおいて、電池プレートに設ける反応ガス排出マニホールドを反応ガス流路出口より下方に延長形成し、反応ガス流路出口より下方に燃料電池スタック外へ導く排出口を設けたので、反応ガス流路出口付近で生じる凝縮水を反応ガス排出マニホールドに沿って下方に移動させ、排出口の下端部に溜めることができる。この排出口は反応ガス流路出口より下方に位置しているため、凝縮水によって流路出口が狭められることはない。これにより、反応ガスの流れは阻害されず、発電性能を良好に保持する効果を奏する。特に電池プレートの反応ガス流路が横方向に蛇行する屈曲形態で、電池プレートの下部から上部に流す場合に反応ガス流路出口が反応ガス流路の上部にくるため、反応ガス排出口を反応ガス流路出口より下方向に電池プレートのスペースを有効利用しながら設置することができる。   As described above, according to the present invention, in the fuel cell stack of the polymer electrolyte fuel cell, the reaction gas discharge manifold provided on the battery plate is formed to extend downward from the reaction gas channel outlet and below the reaction gas channel outlet. Since the discharge port leading to the outside of the fuel cell stack is provided, the condensed water generated in the vicinity of the reaction gas channel outlet can be moved downward along the reaction gas discharge manifold and stored at the lower end of the discharge port. Since this discharge port is located below the reaction gas channel outlet, the channel outlet is not narrowed by the condensed water. Thereby, the flow of the reaction gas is not hindered, and the effect of maintaining the power generation performance satisfactorily is achieved. Especially when the reaction gas flow path of the battery plate is meandering in the horizontal direction, the reaction gas outlet is connected to the upper part of the reaction gas flow path when flowing from the bottom to the top of the battery plate. The battery plate can be installed while effectively utilizing the space of the battery plate below the gas flow path outlet.

次に、本発明に係る固体高分子型燃料電池(酸化剤マニホールドが横にある場合)の実施形態について添付図面により説明する。   Next, an embodiment of a polymer electrolyte fuel cell according to the present invention (when the oxidant manifold is located on the side) will be described with reference to the accompanying drawings.

図1において、1は電池プレートであり、その一面に複数並設された凹溝からなる酸化剤流路2が横向きに蛇行する屈曲形態に形成され、その下端部を流路入口2a、上端部を流路出口2bとしてある。電池プレート1の一方の側部には凹溝状の酸化剤供給マニホールド3が垂直方向に形成され、その上部には供給口3aが電池プレート1を貫通して設けられている。この反応ガス供給マニホールド3は、下部において前記酸化剤流路2の流路入口2aに連通している。電池プレート1の他方の側部には凹溝状の酸化剤排出マニホールド4が垂直方向に形成され、その下部には排出口4aが電池プレート1を貫通して設けられている。この酸化剤排出マニホールド4は、上部において前記酸化剤流路2の流路出口2bに連通している。   In FIG. 1, reference numeral 1 denotes a battery plate, which is formed in a bent shape in which an oxidant flow path 2 composed of a plurality of concave grooves arranged in parallel on one side is meandering in the horizontal direction, and its lower end is a flow path inlet 2a and upper end. Is the channel outlet 2b. A concave groove-like oxidant supply manifold 3 is formed in a vertical direction on one side of the battery plate 1, and a supply port 3 a is provided through the battery plate 1 at an upper part thereof. The reaction gas supply manifold 3 communicates with the channel inlet 2a of the oxidant channel 2 at the lower part. A concave groove-like oxidant discharge manifold 4 is formed in the vertical direction on the other side of the battery plate 1, and a discharge port 4 a is provided through the battery plate 1 at a lower portion thereof. The oxidant discharge manifold 4 communicates with the channel outlet 2b of the oxidant channel 2 at the top.

前記酸化剤供給マニホールド3の供給口3a及び酸化剤排出マニホールド4の排出口4aは、燃料電池スタックの積層方向に連通してそれぞれ酸化剤供給路、酸化剤排出路を構成する。これにより、燃料電池スタックの端部から酸化剤供給路に加湿酸化剤ガスが供給されると、この加湿酸化剤ガスは酸化剤供給路を通過しながら各電池プレート1の酸化剤供給マニホールド3に分配供給され、未反応に終わった酸化剤ガスは酸化剤排出マニホールド4に排出され、更に酸化剤排出路を通過して燃料電池スタックの端部から排気ガスとして外部に排出される。   The supply port 3a of the oxidant supply manifold 3 and the discharge port 4a of the oxidant discharge manifold 4 communicate with each other in the stacking direction of the fuel cell stack to form an oxidant supply path and an oxidant discharge path, respectively. As a result, when the humidified oxidant gas is supplied from the end of the fuel cell stack to the oxidant supply path, the humidified oxidant gas passes through the oxidant supply path to the oxidant supply manifold 3 of each battery plate 1. The oxidant gas that has been distributed and unreacted is discharged to the oxidant discharge manifold 4, passes through the oxidant discharge passage, and is discharged to the outside as exhaust gas from the end of the fuel cell stack.

電池プレート1の下部には、燃料排出口5及び冷却水供給口6が貫通して形成され、電池プレート1の上部には燃料供給口7及び冷却水排出口8が貫通して形成されている。これらは燃料電池スタックの積層方向にそれぞれ連通して燃料排出路、冷却水供給路、燃料供給路、冷却水排出路を構成する。電池プレート1の酸化剤流路2面と反対側の面には、図示は省略したが燃料流路が形成され、且つ前記燃料排出口5に関連する燃料排出マニホールドと、燃料供給口7に関連する燃料供給マニホールドとが設けられる。又、燃料電池スタック内には冷却用のプレートが介在されるが、この冷却プレートには前記冷却水排出口8に関連する冷却水排出マニホールドと、冷却水供給口6に関連する冷却水供給マニホールドとが設けられる。   A fuel discharge port 5 and a cooling water supply port 6 are formed through the lower part of the battery plate 1, and a fuel supply port 7 and a cooling water discharge port 8 are formed through the upper part of the battery plate 1. . These communicate with each other in the stacking direction of the fuel cell stack to constitute a fuel discharge path, a cooling water supply path, a fuel supply path, and a cooling water discharge path. Although not shown, a fuel flow path is formed on the surface of the battery plate 1 opposite to the oxidant flow path 2 surface, and a fuel discharge manifold related to the fuel discharge port 5 and a fuel supply port 7 are related. A fuel supply manifold is provided. A cooling plate is interposed in the fuel cell stack. The cooling plate has a cooling water discharge manifold related to the cooling water discharge port 8 and a cooling water supply manifold related to the cooling water supply port 6. And are provided.

前記電池プレート1の酸化剤供給マニホールド3に分配供給された加湿酸化剤ガスは、下端部の流路入口2aから酸化剤流路2内に流入し、横に蛇行しながら流れて上端部の流路出口2bに至る。この電池プレート1の酸化剤流路2面は、前記のように固体高分子電解質膜のカソードに面接合しており、反対側の燃料流路面はアノードに面接合している。そして、燃料流路には前記燃料供給路から分配供給される燃料ガスが、燃料供給マニホールドを介して流れる。このようにして燃料ガスと酸化剤ガスとが電池プレート1に供給され、固体高分子電解質膜を介して電気化学反応が生じることにより直流電力が発電される。この発電時において、前記酸化剤流路2を流れる加湿酸化剤ガスは、特に流路出口2b付近で水分が凝縮して凝縮水が発生することが多い。   The humidified oxidant gas distributed and supplied to the oxidant supply manifold 3 of the battery plate 1 flows into the oxidant flow path 2 from the flow path inlet 2a at the lower end, flows while meandering horizontally, and flows at the upper end. It reaches the road exit 2b. The surface of the oxidant flow path 2 of the battery plate 1 is surface bonded to the cathode of the solid polymer electrolyte membrane as described above, and the opposite fuel flow path surface is surface bonded to the anode. The fuel gas distributed and supplied from the fuel supply path flows through the fuel supply passage through the fuel supply manifold. In this way, the fuel gas and the oxidant gas are supplied to the battery plate 1, and an electrochemical reaction occurs through the solid polymer electrolyte membrane to generate DC power. During this power generation, the humidified oxidant gas flowing through the oxidant flow channel 2 often condenses water in the vicinity of the flow channel outlet 2b to generate condensed water.

凝縮により生じた凝縮水9は、流路出口2b付近から酸化剤排出マニホールド4に沿って下方に移動し、排出口4aの下端部に溜まる。排出口4aの下端部に凝縮水9が溜まっても、この排出口4aは酸化剤流路出口2bよりも下方に位置しているため、流路出口2bが凝縮水9によって狭められることはない。従って、酸化剤流路2を流れる酸化剤ガスの流れは阻害されず、発電性能を良好に保持することができる。   The condensed water 9 generated by the condensation moves downward along the oxidant discharge manifold 4 from the vicinity of the flow path outlet 2b and accumulates at the lower end of the discharge port 4a. Even if the condensed water 9 accumulates at the lower end of the discharge port 4a, the discharge port 4a is positioned below the oxidant flow channel outlet 2b, so that the flow channel outlet 2b is not narrowed by the condensed water 9. . Therefore, the flow of the oxidant gas flowing through the oxidant flow path 2 is not hindered, and the power generation performance can be kept good.

電池プレート1で未反応に終わった酸化剤ガスは、前記のように流路出口2bから酸化剤排出マニホールド4内に排出される。そして、排出口4a(酸化剤排出路)を経て燃料電池スタックの端部から外部に排出される。この未反応酸化剤ガスが排気口4aを通過する際に、前記排出口4aの下部に溜まっている凝縮水9を速やかに排除するため、多量の凝縮水が排出口4aの下部に長時間滞留することない。従って、未反応酸化剤ガスの流れも凝縮水9によって阻害されることなく、前記のように酸化剤排出路を経て燃料電池スタックの外部に円滑に排出される。   The oxidant gas that has not yet reacted in the battery plate 1 is discharged into the oxidant discharge manifold 4 from the flow path outlet 2b as described above. And it is discharged | emitted outside from the edge part of a fuel cell stack through the discharge port 4a (oxidant discharge path). When the unreacted oxidant gas passes through the exhaust port 4a, a large amount of condensed water stays in the lower portion of the discharge port 4a for a long time in order to quickly remove the condensed water 9 accumulated in the lower portion of the discharge port 4a. Not to do. Accordingly, the flow of the unreacted oxidant gas is also smoothly discharged outside the fuel cell stack through the oxidant discharge path as described above without being inhibited by the condensed water 9.

ところで、酸化剤排出マニホールド4の一部を利用し、燃料電池スタックの締付用タイロッド10を貫通させて設けることが可能である。この際、タイロッド10と酸化剤排出マニホールド4との間にガスの流れる隙間を設けておく。この隙間によってガスの流れを絞ることで流速を速め、排出口4a下部に溜まる凝縮水9を短時間で排除することができる。   By the way, a part of the oxidant discharge manifold 4 can be used to penetrate the tie rod 10 for tightening the fuel cell stack. At this time, a gap through which gas flows is provided between the tie rod 10 and the oxidant discharge manifold 4. By constricting the gas flow through this gap, the flow velocity can be increased, and the condensed water 9 accumulated in the lower portion of the discharge port 4a can be eliminated in a short time.

上記の実施形態では、電池プレートの酸化剤マニホールドが横方向に位置する場合について説明したが、電池プレートの燃料マニホールドが横方向に位置する場合にも同様に実施して効果をあげることが可能である。要するに、反応ガスが酸化剤ガスであっても燃料ガスであっても同様に適用することができる。   In the above embodiment, the case where the oxidant manifold of the battery plate is positioned in the lateral direction has been described. However, the same effect can be obtained when the fuel manifold of the battery plate is positioned in the lateral direction. is there. In short, the present invention can be similarly applied regardless of whether the reaction gas is an oxidant gas or a fuel gas.

本発明に係る固体高分子型燃料電池の実施形態を示すもので、電池プレートの酸化剤流路面側の正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of a solid polymer fuel cell according to the present invention, and is a front view of an oxidant flow path surface side of a battery plate. 従来の固体高分子型燃料電池における電池プレートの酸化剤流路面側の正面図である。It is a front view by the side of the oxidant channel surface side of the battery plate in the conventional polymer electrolyte fuel cell.

符号の説明Explanation of symbols

1…電池プレート
2…酸化剤流路
2a…流路入口
2b…流路出口
3…酸化剤供給マニホールド
3a…供給口
4…酸化剤排出マニホールド
4a…排出口
5…燃料排出口
6…冷却水供給口
7…燃料供給口
8…冷却水排出口
9…凝縮水
10…タイロッド
DESCRIPTION OF SYMBOLS 1 ... Battery plate 2 ... Oxidant channel 2a ... Channel inlet 2b ... Channel outlet 3 ... Oxidant supply manifold 3a ... Supply port 4 ... Oxidant discharge manifold 4a ... Discharge port 5 ... Fuel discharge port 6 ... Cooling water supply Port 7 ... Fuel supply port 8 ... Cooling water discharge port 9 ... Condensed water 10 ... Tie rod

Claims (2)

電解質膜の一方の面に燃料極を他方の面に酸化剤極を配してなる単セルを、電池プレートを介して水平面に対して垂直状態で面方向に多数積層して燃料電池スタックを形成する燃料電池において、
燃料または酸化剤のうち少なくとも一方の反応流体を供給する反応流体供給マニホールドと、前記反応流体供給マニホールドに対して点対称な位置に設けられ、前記反応流体を排出する反応流体排出マニホールドと、前記燃料電池スタックを冷却する冷却媒体を供給する冷却媒体供給マニホールドと、前記冷却媒体供給マニホールドに対して点対称な位置に設けられ、前記冷却媒体を排出する冷却媒体排出マニホールドと、を有し、
前記反応流体排出マニホールドは、前記冷却媒体排出マニホールドの断面積よりも断面積が大きく形成されると共に、前記電池プレートの反応流体流路出口よりも下方に延長形成されることを特徴とする燃料電池。
A fuel cell stack is formed by laminating a number of unit cells, each of which has a fuel electrode on one side of the electrolyte membrane and an oxidant electrode on the other side, in the plane direction perpendicular to the horizontal plane via the battery plate. In the fuel cell
A reaction fluid supply manifold that supplies at least one reaction fluid of fuel or oxidant; a reaction fluid discharge manifold that is provided at a point-symmetrical position with respect to the reaction fluid supply manifold and that discharges the reaction fluid; and the fuel A cooling medium supply manifold that supplies a cooling medium for cooling the battery stack, and a cooling medium discharge manifold that is provided at a point-symmetrical position with respect to the cooling medium supply manifold and discharges the cooling medium,
The fuel cell is characterized in that the reaction fluid discharge manifold is formed to have a cross-sectional area larger than a cross-sectional area of the cooling medium discharge manifold, and extends downward from a reaction fluid channel outlet of the battery plate. .
請求項1記載の燃料電池において、
前記反応流体排出マニホールドは、鉛直方向の寸法が水平方向の寸法よりも大きく形成されることを特徴とする燃料電池。
The fuel cell according to claim 1, wherein
The fuel cell according to claim 1, wherein the reaction fluid discharge manifold has a vertical dimension larger than a horizontal dimension.
JP2006339325A 2006-12-18 2006-12-18 Fuel cell Expired - Fee Related JP4663623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339325A JP4663623B2 (en) 2006-12-18 2006-12-18 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339325A JP4663623B2 (en) 2006-12-18 2006-12-18 Fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002020363A Division JP2003223922A (en) 2002-01-29 2002-01-29 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2007109669A true JP2007109669A (en) 2007-04-26
JP4663623B2 JP4663623B2 (en) 2011-04-06

Family

ID=38035336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339325A Expired - Fee Related JP4663623B2 (en) 2006-12-18 2006-12-18 Fuel cell

Country Status (1)

Country Link
JP (1) JP4663623B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354142A (en) * 1998-06-11 1999-12-24 Toshiba Corp Solid polymer electrolyte type fuel cell
JP2000021422A (en) * 1998-06-30 2000-01-21 Toshiba Corp Manufacture of separator for fuel cell, and the separator for fuel cell
JP2001118596A (en) * 1999-10-19 2001-04-27 Honda Motor Co Ltd Fuel cell stack
JP2001143740A (en) * 1999-09-03 2001-05-25 Honda Motor Co Ltd Fuel cell stack
WO2002015312A1 (en) * 2000-08-17 2002-02-21 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354142A (en) * 1998-06-11 1999-12-24 Toshiba Corp Solid polymer electrolyte type fuel cell
JP2000021422A (en) * 1998-06-30 2000-01-21 Toshiba Corp Manufacture of separator for fuel cell, and the separator for fuel cell
JP2001143740A (en) * 1999-09-03 2001-05-25 Honda Motor Co Ltd Fuel cell stack
JP2001118596A (en) * 1999-10-19 2001-04-27 Honda Motor Co Ltd Fuel cell stack
WO2002015312A1 (en) * 2000-08-17 2002-02-21 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell

Also Published As

Publication number Publication date
JP4663623B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
US7691511B2 (en) Fuel cell having coolant flow field wall
EP2461403B1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
JP2011014530A (en) Fuel cell stack
JP5245315B2 (en) Fuel cell
JP5054080B2 (en) Fuel cell stack
JP2006236612A (en) Fuel cell
JP4672989B2 (en) Fuel cell stack
JP2006278177A (en) Fuel cell
JP4826144B2 (en) Fuel cell stack
JP2010282866A (en) Fuel cell stack
JPWO2011155286A1 (en) Fuel cell operating method and fuel cell system
JP4314183B2 (en) Fuel cell and fuel cell separator
JP2011060449A (en) Fuel cell stack
JP2003223922A (en) Polymer electrolyte fuel cell
JP5714432B2 (en) Fuel cell stack
JP5385033B2 (en) Fuel cell
JP5274908B2 (en) Fuel cell stack
JP4678821B2 (en) Fuel cell
JP4663623B2 (en) Fuel cell
JP5073723B2 (en) Fuel cell
JP2006100016A (en) Fuel cell stack
JP5802066B2 (en) Fuel cell stack
JP5450312B2 (en) Fuel cell stack
JP2010086852A (en) Fuel cell stack
JP2006147217A (en) Fuel cell system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees