JP2007107495A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2007107495A
JP2007107495A JP2005301596A JP2005301596A JP2007107495A JP 2007107495 A JP2007107495 A JP 2007107495A JP 2005301596 A JP2005301596 A JP 2005301596A JP 2005301596 A JP2005301596 A JP 2005301596A JP 2007107495 A JP2007107495 A JP 2007107495A
Authority
JP
Japan
Prior art keywords
purification catalyst
exhaust purification
exhaust
exhaust gas
grinding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005301596A
Other languages
Japanese (ja)
Inventor
Kunihiko Nakada
邦彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005301596A priority Critical patent/JP2007107495A/en
Publication of JP2007107495A publication Critical patent/JP2007107495A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine which is hardly influenced by the deterioration of an exhaust purifying catalyst easily even at a time of cold start of the internal combustion engine, and keeping exhaust emission control performance high. <P>SOLUTION: This exhaust emission control device is provided with the exhaust purifying catalyst 20 arranged in an engine exhaust passage, and exhaust gas flows in the exhaust purifying catalyst from an upstream side end part and flows out of the same from a downstream side end part. Moreover, the exhaust emission control device is provided with a grinding means 30 grinding the upstream side end part of the exhaust purifying catalyst by moving on the upstream side end part of the exhaust purifying catalyst dyeing operation of the internal combustion engine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

一般に、内燃機関の排気通路内には排気ガスを浄化するための排気浄化触媒が設けられており、排気浄化触媒は排気浄化触媒に流入する排気ガス(以下、「流入排気ガス」と称す)中の有害成分、例えば炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOX)等を酸化又は還元して浄化する。 Generally, an exhaust purification catalyst for purifying exhaust gas is provided in the exhaust passage of the internal combustion engine, and the exhaust purification catalyst is in exhaust gas flowing into the exhaust purification catalyst (hereinafter referred to as “inflow exhaust gas”). Harmful components such as hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO x ) and the like are oxidized or reduced for purification.

斯かる排気浄化触媒による有害成分の浄化能力は、常に一定ではなく流入排気ガス中の鉛成分、リン成分及び硫黄成分等、排気浄化触媒を被毒させる成分(以下、「触媒被毒成分」と称す)が排気浄化触媒に吸蔵されることにより低下せしめられる。このように、排気浄化触媒による浄化能力の低下、すなわち排気浄化触媒の劣化が進むと、流入排気ガス中の有害成分が十分に浄化されなくなり、排気浄化触媒から流出する排気ガス中にも有害成分が含まれてしまう。   The ability to purify harmful components by such an exhaust purification catalyst is not always constant, such as lead components, phosphorus components and sulfur components in the inflowing exhaust gas (hereinafter referred to as “catalyst poisoning components”). Is reduced by being stored in the exhaust purification catalyst. As described above, when the purification capacity of the exhaust purification catalyst is reduced, that is, when the exhaust purification catalyst is deteriorated, harmful components in the inflowing exhaust gas are not sufficiently purified, and harmful components are also contained in the exhaust gas flowing out from the exhaust purification catalyst. Will be included.

このため、特許文献1に記載された排気浄化触媒では、排気浄化触媒の上流側端面に近接して触媒被毒成分を捕集するトラップ層を設けることとしている。このように排気浄化触媒の排気上流側にトラップ層を設けることにより機関本体から排出された排気ガス中の触媒被毒成分はトラップ層に捕集されるため、排気浄化触媒には触媒被毒成分が流入しにくく、よって排気浄化触媒の劣化が低減せしめられる。   For this reason, the exhaust purification catalyst described in Patent Document 1 is provided with a trap layer that collects catalyst poisoning components in the vicinity of the upstream end face of the exhaust purification catalyst. By providing the trap layer on the exhaust upstream side of the exhaust purification catalyst in this manner, the catalyst poisoning component in the exhaust gas discharged from the engine body is collected in the trap layer. Is less likely to flow in, so that the deterioration of the exhaust purification catalyst can be reduced.

特開2002−172329JP 2002-172329 A

ところで、斯かる排気浄化触媒の浄化能力の低下、すなわち排気浄化触媒の劣化は、排気浄化触媒の上流側端部から徐々に進行する。これは、排気浄化触媒への流入排気ガス中の触媒被毒成分が排気浄化触媒の上流側端部から吸蔵され、上流側端部で吸蔵されなかったもののみがその下流側において吸蔵されるためである。   By the way, the reduction of the purification ability of the exhaust purification catalyst, that is, the deterioration of the exhaust purification catalyst gradually proceeds from the upstream end of the exhaust purification catalyst. This is because catalyst poisoning components in the exhaust gas flowing into the exhaust purification catalyst are occluded from the upstream end of the exhaust purification catalyst, and only those not occluded at the upstream end are occluded on the downstream side. It is.

一方、内燃機関の冷間始動時には排気浄化触媒の温度が低く、機関本体から排出される排気ガスによって排気浄化触媒が昇温せしめられる。斯かる排気浄化触媒の昇温は排気浄化触媒の上流側端部から徐々に下流側に向かって進行する。従って、内燃機関の冷間始動時には排気浄化触媒の上流側端部近傍の部分の温度が高くなり易い。排気浄化触媒がその浄化能力を発揮するためには排気浄化触媒の温度が或る程度高いことが必要であるため、排気浄化触媒の上流側端部近傍の部分以外の部分の温度が高くなるまで主に上流側端部近傍の部分により排気ガスの浄化が行われる。   On the other hand, when the internal combustion engine is cold-started, the temperature of the exhaust purification catalyst is low, and the exhaust purification catalyst is heated by the exhaust gas discharged from the engine body. The temperature rise of the exhaust purification catalyst gradually proceeds from the upstream end of the exhaust purification catalyst toward the downstream side. Therefore, when the internal combustion engine is cold started, the temperature in the vicinity of the upstream end of the exhaust purification catalyst tends to be high. In order for the exhaust purification catalyst to exhibit its purification capability, the temperature of the exhaust purification catalyst needs to be somewhat high, so that the temperature of the portion other than the portion near the upstream end of the exhaust purification catalyst becomes high Exhaust gas purification is mainly performed in the vicinity of the upstream end.

ここで、排気浄化触媒の上流側端部近傍の部分が劣化していると、内燃機関の冷間始動時においてまず上流側端部近傍の部分のみの温度が高くなるにも関わらず劣化により排気ガスが浄化されなくなってしまう。すなわち、排気浄化触媒が劣化すると、特に冷間始動時における排気浄化触媒の浄化性能が低下してしまう。   Here, if the portion in the vicinity of the upstream end of the exhaust purification catalyst has deteriorated, at the time of the cold start of the internal combustion engine, the exhaust gas is exhausted due to deterioration even though the temperature of only the portion in the vicinity of the upstream end is first increased. The gas will not be purified. That is, when the exhaust purification catalyst deteriorates, the purification performance of the exhaust purification catalyst particularly at the time of cold start is lowered.

そこで、本発明の目的は、内燃機関の冷間始動時においても排気浄化触媒の劣化の影響を受けにくくその排気浄化性能が高く維持されるような内燃機関の排気浄化装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust purification device for an internal combustion engine that is hardly affected by the deterioration of the exhaust purification catalyst even during a cold start of the internal combustion engine and that maintains its exhaust purification performance at a high level. .

上記課題を解決するために、第1の発明では、機関排気通路内に配置された排気浄化触媒を具備し、該排気浄化触媒には排気ガスがその上流側端部から流入して下流側端部から流出する内燃機関の排気浄化装置において、内燃機関の運転中に上記排気浄化触媒の上流側端部上を移動することにより排気浄化触媒の上流側端部を研削する研削手段を具備する。
第1の発明によれば、排気浄化触媒の上流側端部を研削する研削手段が設けられるため、劣化した排気浄化触媒の上流側端部を徐々に研削することができる。これにより、内燃機関の冷間始動時に特に問題となる排気浄化触媒の上流側端部の劣化が抑制される。
In order to solve the above-mentioned problems, in the first invention, an exhaust purification catalyst is provided in the engine exhaust passage, and exhaust gas flows into the exhaust purification catalyst from its upstream side end, and the downstream side end. In the exhaust gas purification apparatus for an internal combustion engine that flows out from the section, there is provided a grinding means for grinding the upstream end portion of the exhaust purification catalyst by moving on the upstream end portion of the exhaust purification catalyst during operation of the internal combustion engine.
According to the first aspect, since the grinding means for grinding the upstream end portion of the exhaust purification catalyst is provided, the upstream end portion of the deteriorated exhaust purification catalyst can be gradually ground. As a result, the deterioration of the upstream end of the exhaust purification catalyst, which is a particular problem during cold start of the internal combustion engine, is suppressed.

第2の発明では、第1の発明において、上記排気浄化触媒はその上流側端部がその下流側端部よりも鉛直方向上方に位置するように配置され、上記研削部材は排気浄化触媒に流入する排気ガスの流れ又は該排気浄化触媒を搭載した車両の振動により排気浄化触媒の上流側端部上を移動する。
第2の発明によれば、研削部材は排気ガスの流れや車両の振動により移動せしめられるため、研削部材を移動させるための動力を別途設ける必要がなくなる。
According to a second aspect, in the first aspect, the exhaust purification catalyst is disposed such that its upstream end is positioned vertically above the downstream end, and the grinding member flows into the exhaust purification catalyst. The exhaust gas moves on the upstream end of the exhaust purification catalyst by the flow of exhaust gas or the vibration of the vehicle on which the exhaust purification catalyst is mounted.
According to the second invention, since the grinding member is moved by the flow of exhaust gas or the vibration of the vehicle, it is not necessary to separately provide power for moving the grinding member.

第3の発明では、第2の発明において、上記研削部材の重量は、上記排気ガスの流れを受けても該研削部材が上記排気浄化触媒の上流側端部から舞い上がらずに該上流側端部に沿って移動するような重量である。   According to a third invention, in the second invention, the weight of the grinding member is such that the grinding member does not fly up from the upstream end of the exhaust purification catalyst even when the exhaust gas flows. It is such a weight that it moves along.

第4の発明では、第3の発明において、上記研削部材の重量は気筒当たりの排気量に応じて定められる。   According to a fourth aspect, in the third aspect, the weight of the grinding member is determined according to the displacement per cylinder.

第5の発明では、第1〜第4のいずれか一つの発明において、上記研削部材は、耐摩耗性が上記排気浄化触媒を構成する材料の耐摩耗性よりも高い材料から構成される。   In a fifth invention, in any one of the first to fourth inventions, the grinding member is made of a material whose wear resistance is higher than the wear resistance of the material constituting the exhaust purification catalyst.

第6の発明では、第1〜第5のいずれか一つの発明において、上記研削部材は該研削部材の外側に向かって突出する突出部を有し、該突出部は尖った先端部を有する。   In a sixth invention, in any one of the first to fifth inventions, the grinding member has a protruding portion that protrudes toward the outside of the grinding member, and the protruding portion has a pointed tip.

第7の発明では、第1〜第6のいずれか一つの発明において、上記排気浄化触媒はハニカム状に形成されており、上記研削部材の大きさは該研削部材が上記排気浄化触媒のハニカムを構成する排気流通路内に完全に侵入することがないような大きさである。   In a seventh invention, in any one of the first to sixth inventions, the exhaust purification catalyst is formed in a honeycomb shape, and the size of the grinding member is the same as that of the exhaust purification catalyst. The size is such that it does not completely enter the exhaust flow passage.

第8の発明では、第1〜第7のいずれか一つの発明において、上記排気浄化触媒の下流側端面から上流側に向かって所定長さの位置で該排気浄化触媒は上流側触媒部分と下流側触媒部分とに分割され、これら上流側触媒部分と下流側触媒部分との間に上記研削部材の耐摩耗性よりも耐摩耗性の高い材料から構成される仕切り部材が設けられる。
ここで、「所定長さ」とは、例えば排気ガス中の有害成分を浄化するのに必要な排気浄化触媒の長さであり、後述する実施形態における「限界長さ」に等しい。
According to an eighth invention, in any one of the first to seventh inventions, the exhaust purification catalyst is located at a position of a predetermined length from the downstream end face of the exhaust purification catalyst toward the upstream side. A partition member made of a material having higher wear resistance than the wear resistance of the grinding member is provided between the upstream catalyst portion and the downstream catalyst portion.
Here, the “predetermined length” is, for example, the length of the exhaust purification catalyst necessary for purifying harmful components in the exhaust gas, and is equal to the “limit length” in an embodiment described later.

第9の発明では、第1〜第8のいずれか一つの発明において、上記排気浄化触媒の上流側端部には上記研削部材を少なくとも部分的に収容可能な凹部が設けられる。   According to a ninth invention, in any one of the first to eighth inventions, a recess capable of at least partially accommodating the grinding member is provided at an upstream end of the exhaust purification catalyst.

本発明によれば、排気浄化触媒の上流側端部を研削する研削手段が設けられることにより冷間始動時に特に問題となる排気浄化触媒の上流側端部の劣化が抑制されるため、冷間始動時においても排気浄化性能が高く維持されるようになる。   According to the present invention, since the grinding means for grinding the upstream end portion of the exhaust purification catalyst is provided, the deterioration of the upstream end portion of the exhaust purification catalyst, which is particularly problematic during cold start, is suppressed. Even at the time of starting, the exhaust purification performance is maintained high.

以下、図面を参照して本発明の排気浄化装置について詳細に説明する。図1は本発明の排気浄化装置が搭載される内燃機関全体を示す図である。   Hereinafter, an exhaust emission control device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing an entire internal combustion engine in which the exhaust emission control device of the present invention is mounted.

図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。図1に示したようにシリンダヘッド4の内壁面の中央部には点火栓10が配置され、シリンダヘッド4内壁面周辺部には燃料噴射弁11が配置される。またピストン3の頂面上には燃料噴射弁11の下方から点火栓10の下方まで延びるキャビティ12が形成されている。   Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is a piston 3 and a cylinder head 4. A combustion chamber formed therebetween, 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, and 9 is an exhaust port. As shown in FIG. 1, a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is arranged around the inner wall surface of the cylinder head 4. A cavity 12 extending from the lower side of the fuel injection valve 11 to the lower side of the spark plug 10 is formed on the top surface of the piston 3.

各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気ダクト15およびエアフロメータ16を介してエアクリーナ(図示せず)に連結される。吸気ダクト15内にはステップモータ17によって駆動されるスロットル弁18が配置される。一方、各気筒の排気ポート9は排気マニホルド19に連結され、この排気マニホルド19は上流側排気浄化触媒20を内蔵したケーシング21に連結される。ケーシング21の出口は排気管22を介して下流側排気浄化触媒23を内蔵したケーシング24に連結される。   The intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner (not shown) via an intake duct 15 and an air flow meter 16. A throttle valve 18 driven by a step motor 17 is disposed in the intake duct 15. On the other hand, the exhaust port 9 of each cylinder is connected to an exhaust manifold 19, and the exhaust manifold 19 is connected to a casing 21 containing an upstream side exhaust purification catalyst 20. An outlet of the casing 21 is connected to a casing 24 containing a downstream side exhaust purification catalyst 23 via an exhaust pipe 22.

図2(a)及び(b)は、上流側排気浄化触媒20の正面図及び断面側面図を示している。図2(a)及び(b)に示したように上流側排気浄化触媒20はハニカム構造をなしており、上流端と下流端との間で互いに平行に延びる複数の排気流通路20aを有しており、排気ガスはこれら排気流通路20a間の隔壁20bをほとんど通過することなくこれら排気流通路20aに沿って流れる。すなわち、排気ガスは上流側排気浄化触媒20内を上流側排気浄化触媒20の軸線Aの方向に向かって流れる。   FIGS. 2A and 2B show a front view and a cross-sectional side view of the upstream side exhaust purification catalyst 20. As shown in FIGS. 2A and 2B, the upstream side exhaust purification catalyst 20 has a honeycomb structure, and has a plurality of exhaust flow passages 20a extending in parallel with each other between the upstream end and the downstream end. The exhaust gas flows along these exhaust flow passages 20a with hardly passing through the partition walls 20b between the exhaust flow passages 20a. That is, the exhaust gas flows in the upstream side exhaust purification catalyst 20 in the direction of the axis A of the upstream side exhaust purification catalyst 20.

上流側排気浄化触媒20の隔壁20bは、コージェライト等から構成される基体上に多孔質材料であるアルミナ等から構成される担体を担持させて形成される。上流側排気浄化触媒20に流入する排気ガス(以下、「流入排気ガス」と称す)は、排気流通路20aを通過するにあたって、アルミナ等の担体上及び担体内に形成された細孔を通って流れる。担体の表面上及び細孔表面上には触媒貴金属、例えば白金(Pt)等が担持されており、排気ガスが担体の表面上および細孔表面上を通過するときに排気ガス中の有害成分(例えば、炭化水素(HC)及び一酸化炭素(CO)等)が触媒貴金属の酸化作用により酸化、浄化される。   The partition wall 20b of the upstream side exhaust purification catalyst 20 is formed by supporting a carrier made of alumina or the like as a porous material on a base made of cordierite or the like. Exhaust gas flowing into the upstream side exhaust purification catalyst 20 (hereinafter referred to as “inflowing exhaust gas”) passes through the pores formed on the carrier such as alumina and in the carrier when passing through the exhaust flow passage 20a. Flowing. A catalytic noble metal such as platinum (Pt) is supported on the surface of the carrier and on the surface of the pores, and harmful components in the exhaust gas when the exhaust gas passes on the surface of the carrier and on the surface of the pores ( For example, hydrocarbon (HC), carbon monoxide (CO), etc.) are oxidized and purified by the oxidizing action of the catalyst noble metal.

上流側排気浄化触媒20が例えば三元触媒として用いられる場合、アルミナ等から構成される担体には白金に加えて、酸素吸蔵剤としてセリウム(Ce)等が担持される。酸素吸蔵剤は、流入排気ガスの空燃比(上流側排気浄化触媒20上流側の排気通路、燃焼室5および吸気通路に供給された空気と燃料との比率)がリーンのときには排気ガス中の酸素を吸蔵し、流入排気ガス中の空燃比がほぼ理論空燃比又はリッチのときには吸蔵している酸素を離脱させる。   When the upstream side exhaust purification catalyst 20 is used as, for example, a three-way catalyst, cerium (Ce) or the like is supported as an oxygen storage agent on a carrier made of alumina or the like in addition to platinum. The oxygen storage agent is oxygen in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas (the ratio of the air and fuel supplied to the upstream exhaust passage, the combustion chamber 5 and the intake passage) is lean. When the air-fuel ratio in the inflowing exhaust gas is almost the stoichiometric air-fuel ratio or rich, the stored oxygen is released.

或いは、上流側排気浄化触媒20がNOX吸蔵還元触媒として用いられる場合、担体には白金に加えて、NOX吸蔵剤としてカリウム(K)やバリウム(Ba)等が担持される。NOX吸蔵剤は、流入排気ガスの空燃比がリーンのときには排気ガス中のNOXを吸蔵し、流入排気ガスの空燃比がほぼ理論空燃比またはリッチのときには吸蔵しているNOXを離脱させる。これにより、流入排気ガスの空燃比がリーンであっても排気ガス中に含まれるNOXはNOX吸蔵剤に吸蔵されて上流側排気浄化触媒20から排出される排気ガス中にはNOXがほとんど含まれないものとなると共に、流入排気ガスの空燃比がほぼ理論空燃比またはリッチのときにはNOX吸蔵剤から離脱せしめられたNOXが流入排気ガス中に含まれる炭化水素(HC)及び一酸化炭素(CO)によって還元、浄化される。 Alternatively, when the upstream side exhaust purification catalyst 20 is used as a NO x storage reduction catalyst, potassium (K), barium (Ba) or the like is supported on the carrier as the NO x storage agent in addition to platinum. The NO X storage agent, the air-fuel ratio of the inflowing exhaust gas is occluded NO X in the exhaust gas when the lean, disengaging the NO X when the air-fuel ratio of the inflowing exhaust gas is occluded when approximately stoichiometric or rich . Thus, NO X is in the exhaust gas discharged stored in the NO X absorbent from the upstream exhaust purification catalyst 20 NO X even air-fuel ratio is a lean contained in the exhaust gas flowing into the exhaust gas together becomes not almost contain, hydrocarbons nO X which are caused to leave from the nO X storage agent when the air-fuel ratio of the inflowing exhaust gas is substantially stoichiometric or rich is contained in the inflowing exhaust gas (HC) and a single Reduced and purified by carbon oxide (CO).

ところで、上流側排気浄化触媒20への流入排気ガス中にはHC、CO及びNOXに加えて、少量ながら鉛成分(Pb)、リン成分(P)及び硫黄成分(S)が含まれている。鉛成分及びリン成分は主に潤滑油中に含まれており、潤滑油の一部が燃焼室5内で燃焼せしめられることによって機関本体1から排出される排気ガス中に含まれることとなる。一方、硫黄成分は微量ながら燃料中に含まれており、燃焼室5内での燃料の燃焼により機関本体1から排出される排気ガス中に含まれることとなる。 By the way, the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains lead component (Pb), phosphorus component (P) and sulfur component (S) in addition to HC, CO and NO x in a small amount. . The lead component and the phosphorus component are mainly contained in the lubricating oil, and a part of the lubricating oil is contained in the exhaust gas discharged from the engine body 1 by burning in the combustion chamber 5. On the other hand, the sulfur component is contained in the fuel in a small amount, and is contained in the exhaust gas discharged from the engine body 1 by the combustion of the fuel in the combustion chamber 5.

流入排気ガス中に含まれるこれら鉛、リン及び硫黄の各成分は上流側排気浄化触媒20による浄化能力を低下させ、上流側排気浄化触媒20を劣化させる。すなわち、流入排気ガス中の鉛及びリンの両成分の一部は担体の細孔表面上等に吸着する。このように鉛及びリンの両成分が担体の細孔表面上に吸着すると、これら鉛・リン成分により担体に担持された触媒貴金属、酸素吸蔵剤やNOX吸蔵剤等が覆われてしまう。また担体の細孔表面上へのこれら鉛・リン成分の吸着が進行すると、担体の細孔がこれら鉛・リン成分によって塞がれてしまう。このように鉛・リン成分により触媒貴金属等が覆われたり細孔が塞がれたりすると、流入排気ガスが担体に担持されている触媒貴金属、酸素吸蔵剤やNOX吸蔵剤等に接触することができなくなり、よって上流側排気浄化触媒20による排気浄化能力が低下せしめられる。また、流入排気ガス中の硫黄成分の一部はNOX吸蔵剤に吸蔵される。NOX吸蔵剤に硫黄成分が吸蔵されるとNOX吸蔵剤のNOX吸蔵能力が低下せしめられ、よって上流側排気浄化触媒20による排気浄化能力が低下せしめられる。 These lead, phosphorus, and sulfur components contained in the inflowing exhaust gas lower the purification ability of the upstream side exhaust purification catalyst 20 and degrade the upstream side exhaust purification catalyst 20. That is, part of both the lead and phosphorus components in the inflowing exhaust gas is adsorbed on the pore surface of the carrier. When both the lead and phosphorus components are adsorbed on the pore surface of the carrier in this manner, the catalyst noble metal, oxygen storage agent, NO X storage agent, etc. supported on the support are covered with these lead / phosphorus components. Further, when the adsorption of these lead / phosphorus components on the pore surface of the carrier proceeds, the pores of the carrier are blocked by these lead / phosphorus components. With this or pores or catalyst noble metal is covered is blocked by a lead-phosphorus component, the catalyst noble metal inflow exhaust gas is supported on a carrier, to contact the oxygen storage agent and the NO X storage agent Therefore, the exhaust purification ability of the upstream side exhaust purification catalyst 20 is reduced. A part of the sulfur component in the inflowing exhaust gas is occluded in the NO X absorbent. Sulfur component in the NO X absorbent is made to decrease the NO X storage ability of the occluded the NO X storage agent, thus the exhaust purification performance by the upstream exhaust purification catalyst 20 is made to decrease.

図3は、一定期間に亘って上流側排気浄化触媒に排気ガスを流通させた後における上流側排気浄化触媒の上流側端面からの長さ、すなわち上流側排気浄化触媒の軸線Aの方向の位置に応じた上流側排気浄化触媒へのリンの吸着量を示す図である。図3において、x軸は上流側排気浄化触媒の上流側端面(隔壁の上流側端面が位置する平面)からの長さ、y軸は上流側排気浄化触媒の単位長さ当たりのリンの吸着量を示している。   FIG. 3 shows the length from the upstream end face of the upstream side exhaust purification catalyst after the exhaust gas has passed through the upstream side exhaust purification catalyst over a certain period, that is, the position in the direction of the axis A of the upstream side exhaust purification catalyst. It is a figure which shows the adsorption amount of the phosphorus to the upstream side exhaust purification catalyst according to this. In FIG. 3, the x-axis is the length from the upstream end surface of the upstream side exhaust purification catalyst (the plane on which the upstream end surface of the partition wall is located), and the y-axis is the amount of phosphorus adsorbed per unit length of the upstream side exhaust purification catalyst. Is shown.

図3から分かるように、上流側排気浄化触媒に排気ガスを流通させた後には、上流側排気浄化触媒の上流側端部近傍の部分に多量にリンが吸着しており、下流側に向かって徐々に吸着量が減少している。鉛及び硫黄についても同様な傾向があり、よって鉛、リン及び硫黄の全ての成分(以下、「触媒被毒成分」と称す)は上流側排気浄化触媒の上流側端部近傍の部分に多量に吸蔵され、下流側に向かうに従って吸蔵量が少なくなる。斯かる傾向となるのは、流入排気ガス中の触媒被毒成分が排気浄化触媒の上流側から吸蔵されていき、上流側端部で吸蔵されなかったもののみがその下流側において吸蔵されるためである。従って、触媒被毒成分による劣化の程度は上流側排気浄化触媒の上流側において大きく、下流側に向かうに従って小さくなる。   As can be seen from FIG. 3, after the exhaust gas is circulated through the upstream side exhaust purification catalyst, a large amount of phosphorus is adsorbed in the vicinity of the upstream end portion of the upstream side exhaust purification catalyst, and toward the downstream side. The amount of adsorption gradually decreases. There is a similar tendency for lead and sulfur. Therefore, all the components of lead, phosphorus and sulfur (hereinafter referred to as “catalyst poisoning components”) are abundant in the vicinity of the upstream end of the upstream side exhaust purification catalyst. Occluded and the amount of occlusion decreases toward the downstream side. This is because the catalyst poisoning component in the inflowing exhaust gas is occluded from the upstream side of the exhaust purification catalyst, and only what is not occluded at the upstream end is occluded at the downstream side. It is. Therefore, the degree of deterioration due to the catalyst poisoning component is large on the upstream side of the upstream side exhaust purification catalyst, and decreases toward the downstream side.

一方、図1から分かるように、上流側排気浄化触媒20は、排気マニホルド19の直ぐ下流に配置されており、その温度が低いときであっても機関本体1から排出される排気ガスによって昇温され易い。このため、上流側排気浄化触媒20は、主に内燃機関の冷間始動時において排気ガスの浄化を行うことを目的として配置されている。   On the other hand, as can be seen from FIG. 1, the upstream side exhaust purification catalyst 20 is disposed immediately downstream of the exhaust manifold 19, and the temperature is raised by the exhaust gas discharged from the engine body 1 even when the temperature is low. It is easy to be done. For this reason, the upstream side exhaust purification catalyst 20 is arranged mainly for the purpose of purifying exhaust gas when the internal combustion engine is cold-started.

しかしながら、内燃機関の冷間始動時には、まず機関本体1から排出された高温の排気ガスによって上流側排気浄化触媒20の上流側端部近傍の部分が昇温され、その後徐々に上流側排気浄化触媒20の下流側の部分が昇温されていく。従って、内燃機関の冷間始動直後に上流側排気浄化触媒20の上流側端部近傍の部分が昇温されてから下流側の部分が昇温されるまで、機関本体1から排出された排気ガスの浄化は基本的に上流側排気浄化触媒20の上流側端部近傍の部分のみによって行われることになる。   However, at the time of cold start of the internal combustion engine, first, the temperature in the vicinity of the upstream end of the upstream side exhaust purification catalyst 20 is raised by the high-temperature exhaust gas discharged from the engine body 1, and thereafter the upstream side exhaust purification catalyst is gradually increased. The temperature on the downstream side of 20 is increased. Therefore, immediately after the internal combustion engine is cold-started, the exhaust gas discharged from the engine body 1 until the downstream portion is heated after the temperature in the vicinity of the upstream end of the upstream exhaust purification catalyst 20 is raised. This purification is basically performed only by the portion in the vicinity of the upstream end portion of the upstream side exhaust purification catalyst 20.

ここで、上述したように触媒被毒成分による劣化の程度は上流側排気浄化触媒の上流側端部近傍の部分において大きい。従って、上流側排気浄化触媒全体としてはその劣化の程度が小さいときでもその上流側端部近傍の部分の劣化の程度が大きい場合がある。斯かる場合には、上流側排気浄化触媒20の上流側端部近傍の部分による浄化能力が低くなる。このため、内燃機関の冷間始動時に上流側排気浄化触媒20の上流側端部近傍の部分のみが昇温されている期間においては、上流側排気浄化触媒20によって流入排気ガスを十分に浄化することができない。   Here, as described above, the degree of deterioration due to the catalyst poisoning component is large in the vicinity of the upstream end portion of the upstream side exhaust purification catalyst. Therefore, even when the degree of deterioration of the entire upstream side exhaust purification catalyst is small, there is a case where the degree of deterioration in the vicinity of the upstream end is large. In such a case, the purification capability by the portion in the vicinity of the upstream end of the upstream side exhaust purification catalyst 20 becomes low. For this reason, in the period when only the temperature in the vicinity of the upstream end of the upstream side exhaust purification catalyst 20 is raised during the cold start of the internal combustion engine, the upstream side exhaust purification catalyst 20 sufficiently purifies the inflowing exhaust gas. I can't.

そこで、本発明の実施形態では、内燃機関の運転中に排気浄化触媒の上流側端部を研削する研削部材が用いられる。以下、研削部材について詳細に説明する。   Therefore, in the embodiment of the present invention, a grinding member for grinding the upstream end of the exhaust purification catalyst during operation of the internal combustion engine is used. Hereinafter, the grinding member will be described in detail.

図4は、本発明の上流側排気浄化触媒20及び上流側排気浄化触媒20を内蔵するケーシング21の断面図である。本実施形態では、上流側排気浄化触媒20はその上流側端部がその下流側端部よりも鉛直上方に位置するようにほぼ鉛直に配置されている。   FIG. 4 is a sectional view of the upstream side exhaust purification catalyst 20 and the casing 21 containing the upstream side exhaust purification catalyst 20 of the present invention. In the present embodiment, the upstream side exhaust purification catalyst 20 is arranged substantially vertically so that its upstream end is positioned vertically above the downstream end.

本実施形態では、上流側排気浄化触媒20の上流側端部上には研削部材30が配置される。研削部材30は、上流側排気浄化触媒20を構成する材料よりも耐摩耗性の高い材料で構成される。本実施形態では、上述したように上流側排気浄化触媒20がコージェライトで形成されており、研削部材30はそれよりも耐摩耗性の高い材料、例えばステンレス(SUS316、SUS310等)で形成される。   In the present embodiment, the grinding member 30 is disposed on the upstream end portion of the upstream side exhaust purification catalyst 20. The grinding member 30 is made of a material having higher wear resistance than the material constituting the upstream side exhaust purification catalyst 20. In the present embodiment, as described above, the upstream side exhaust purification catalyst 20 is formed of cordierite, and the grinding member 30 is formed of a material having higher wear resistance, such as stainless steel (SUS316, SUS310, etc.). .

また、本実施形態では、研削部材30の形状は研削部材30の外側に向かって延びる突出部を一つ又は複数有するような形状となっており、これら突出部は尖った先端部を有するように構成される。研削部材30の形状の具体例を図5(a)〜図5(e)に示す。図5(a)に示した例では、研削部材30の形状は立方体又は直方体となっており、図5(b)に示した例では研削部材30の形状は側面が台形状となるように、すなわち切頭角錐状となるように構成されており、図5(c)に示した例では研削部材30の形状は三角柱状となっており、図5(d)に示した例では研削部材30の形状は星形断面の柱状となっており、図5(d)に示した例では研削部材30の形状は円柱状となっておいる。しかしながら、研削部材30の形状は上記図5(a)〜図5(e)の五つの例に限定されるものではなく、外側に向かって延び且つ尖った先端部を有するように構成された突出部を少なくとも一つ有していれば如何なる形状であってもよい。   In this embodiment, the shape of the grinding member 30 is such that it has one or more protrusions extending outward from the grinding member 30, and these protrusions have a pointed tip. Composed. Specific examples of the shape of the grinding member 30 are shown in FIGS. In the example shown in FIG. 5 (a), the shape of the grinding member 30 is a cube or a rectangular parallelepiped, and in the example shown in FIG. 5 (b), the side of the grinding member 30 is trapezoidal. That is, it is configured to have a truncated pyramid shape. In the example shown in FIG. 5C, the shape of the grinding member 30 is a triangular prism shape, and in the example shown in FIG. Is a columnar shape with a star-shaped cross section, and in the example shown in FIG. 5D, the shape of the grinding member 30 is a columnar shape. However, the shape of the grinding member 30 is not limited to the five examples shown in FIGS. 5 (a) to 5 (e), and the protrusion is configured to extend outward and have a sharp tip. As long as it has at least one part, it may have any shape.

さらに、本実施形態では、研削部材30は研削部材30が排気流通路20a内に完全に侵入することのないような大きさ、すなわち排気流通路20aを画成する各セルを通過することができないような大きさとされる。例えば、図5(a)に示した研削部材30の場合には、立方体の各側面の断面は各セルの断面よりも大きいものとされる。   Further, in the present embodiment, the grinding member 30 has a size that prevents the grinding member 30 from completely entering the exhaust flow passage 20a, that is, cannot pass through each cell defining the exhaust flow passage 20a. It is made such a size. For example, in the case of the grinding member 30 shown in FIG. 5A, the cross section of each side surface of the cube is larger than the cross section of each cell.

このように構成された研削部材30は上流側排気浄化触媒20を通過する排気ガスの流れにより又は排気浄化触媒を搭載した車両の振動により上流側排気浄化触媒20の上流側端部上を移動する。この研削部材30の移動に伴って上流側排気浄化触媒20の上流側端部と研削部材30との間には摩擦がおきる。上述したように研削部材30は上流側排気浄化触媒20を構成する材料よりも耐摩耗性の高い材料で構成されるため、上流側排気浄化触媒20の上流側端部と研削部材30と間で摩擦がおきると、研削部材30はほとんど研削されることなく上流側排気浄化触媒20の上流側端部のみが徐々に研削される。特に、研削部材30は先端部の尖った複数の突出部を有するような形状となっているため、上流側排気浄化触媒20の上流側端部を研削し易い。さらに、研削部材30は排気流通路20a内に完全に侵入することのないような大きさとなっているため、研削部材30が排気ガスの流れを受けても上流側排気浄化触媒20の排気流通路20aを通過してしまうことはない。   The grinding member 30 configured in this way moves on the upstream end of the upstream exhaust purification catalyst 20 by the flow of exhaust gas passing through the upstream exhaust purification catalyst 20 or by the vibration of the vehicle on which the exhaust purification catalyst is mounted. . As the grinding member 30 moves, friction occurs between the upstream end of the upstream side exhaust purification catalyst 20 and the grinding member 30. Since the grinding member 30 is made of a material having higher wear resistance than the material constituting the upstream side exhaust purification catalyst 20 as described above, the grinding member 30 is disposed between the upstream end of the upstream side exhaust purification catalyst 20 and the grinding member 30. When friction occurs, the grinding member 30 is hardly ground and only the upstream end of the upstream side exhaust purification catalyst 20 is gradually ground. In particular, since the grinding member 30 has a shape having a plurality of protrusions with sharp tips, it is easy to grind the upstream end of the upstream exhaust purification catalyst 20. Further, since the grinding member 30 is sized so as not to completely enter the exhaust flow passage 20a, the exhaust flow passage of the upstream side exhaust purification catalyst 20 even if the grinding member 30 receives the flow of exhaust gas. It does not pass through 20a.

このように、上流側排気浄化触媒20の上流側端部が徐々に研削されることにより、上流側排気浄化触媒20の劣化に伴う内燃機関の冷間始動時における排気ガスの浄化能力の低下を防止することができる。すなわち、上述したように上流側排気浄化触媒20の劣化はその上流側端部近傍の部分において大きいが、本実施形態によれば劣化した上流側排気浄化触媒20の上流側端部近傍の部分は研削部材30により徐々に削り取られていく。このため、上流側排気浄化触媒20が或る程度の期間に亘って使用されても上流側排気浄化触媒20の上流側端部近傍の部分の劣化の程度は比較的小さいままである。上述したように内燃機関の冷間始動時における排気ガスの浄化能力は上流側排気浄化触媒20の上流側端部近傍の部分の劣化の程度に依存するため、上流側排気浄化触媒20の上流側端部近傍の部分の劣化の程度が比較的小さく維持される本発明によれば、内燃機関の冷間始動時における排気ガスの浄化能力は比較的高いまま維持される。   As described above, the upstream end portion of the upstream side exhaust purification catalyst 20 is gradually ground, thereby reducing the exhaust gas purification capability when the internal combustion engine is cold-started due to the deterioration of the upstream side exhaust purification catalyst 20. Can be prevented. That is, as described above, the deterioration of the upstream side exhaust purification catalyst 20 is large in the vicinity of the upstream end portion, but according to the present embodiment, the portion of the deteriorated upstream side exhaust purification catalyst 20 in the vicinity of the upstream end portion is It is gradually scraped off by the grinding member 30. For this reason, even if the upstream side exhaust purification catalyst 20 is used for a certain period of time, the degree of deterioration in the vicinity of the upstream end portion of the upstream side exhaust purification catalyst 20 remains relatively small. As described above, the exhaust gas purification capacity at the time of cold start of the internal combustion engine depends on the degree of deterioration in the vicinity of the upstream end portion of the upstream side exhaust purification catalyst 20, and therefore, the upstream side of the upstream side exhaust purification catalyst 20 According to the present invention in which the degree of deterioration in the vicinity of the end portion is maintained to be relatively small, the exhaust gas purification capability at the time of cold start of the internal combustion engine is maintained at a relatively high level.

また、本実施形態では、研削部材30の重量は、上流側排気浄化触媒20に流入する排気ガスの流れにより研削部材30が上流側排気浄化触媒20の上流側端部と接触しつつ移動するような重量とされる。すなわち、上流側排気浄化触媒20に流入する排気ガスの一部が上流側排気浄化触媒20の隔壁20bの上流側端面にあたるため上流側排気浄化触媒20の上流側端部上では排気ガスの流れに乱れが生じるが、研削部材30の重量が軽すぎると研削部材30はこの乱れにより上流側排気浄化触媒20の上流側端部から舞い上げられてしまい、上流側端部と接触しつつ移動することができなくなってしまう。逆に、研削部材30の重量が重すぎると、上流側排気浄化触媒20の上流側端部上で生じる排気ガスの流れの乱れによっても上流側排気浄化触媒20の上流側端部上で研削部材30を移動させることができなくなってしまう。ここで、本実施形態では、研削部材30の重量は研削部材30が上流側端部と接触しつつ移動するような重量とされるため、研削部材30が上流側排気浄化触媒20の上流側端部上で生じる乱れによって舞い上げられてしまったり、或いは研削部材30が上流側排気浄化触媒20の上流側端部上でほとんど移動しなくなってしまったりするのが防止される。   In the present embodiment, the weight of the grinding member 30 is such that the grinding member 30 moves in contact with the upstream end of the upstream exhaust purification catalyst 20 by the flow of exhaust gas flowing into the upstream exhaust purification catalyst 20. Weight. That is, since a part of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 hits the upstream end face of the partition wall 20b of the upstream side exhaust purification catalyst 20, the exhaust gas flows on the upstream end portion of the upstream side exhaust purification catalyst 20. Disturbance occurs, but if the weight of the grinding member 30 is too light, the grinding member 30 is swung up from the upstream end of the upstream side exhaust purification catalyst 20 due to this disturbance, and moves while contacting the upstream end. Will not be able to. On the other hand, if the weight of the grinding member 30 is too heavy, the grinding member on the upstream end of the upstream side exhaust purification catalyst 20 also due to the disturbance of the exhaust gas flow generated on the upstream end of the upstream side exhaust purification catalyst 20. It becomes impossible to move 30. Here, in the present embodiment, the weight of the grinding member 30 is such that the grinding member 30 moves while being in contact with the upstream end, and therefore the grinding member 30 is at the upstream end of the upstream side exhaust purification catalyst 20. It is prevented that the grinding member 30 is swung up by the turbulence generated on the part, or the grinding member 30 hardly moves on the upstream end of the upstream side exhaust purification catalyst 20.

特に、本実施形態では、研削部材30の重量は各気筒当たりの排気量に応じて設定される。以下、これについて詳細に説明する。   In particular, in this embodiment, the weight of the grinding member 30 is set according to the displacement per cylinder. This will be described in detail below.

図6は、内燃機関が1サイクルする間における上流側排気浄化触媒20を通過する排気ガスの流量(以下、「排気流量」と称す)の時間推移を示す図である。図からわかるように、排気流量は排気弁8の開閉に応じて上下に変動し、いわゆる排気脈動を生じさせる。特に、図6に示した例では、まず1番気筒に対応する排気弁8が開弁することで排気流量が増大し、その後排気弁8が閉弁することで排気流量が減少する。その後、排気弁8が3番気筒、4番気筒、2番気筒の順に開弁することにより同様に排気流量が上下する。   FIG. 6 is a diagram showing a time transition of the flow rate of exhaust gas passing through the upstream side exhaust purification catalyst 20 (hereinafter referred to as “exhaust flow rate”) during one cycle of the internal combustion engine. As can be seen from the figure, the exhaust flow rate fluctuates up and down in accordance with the opening and closing of the exhaust valve 8 and causes so-called exhaust pulsation. In particular, in the example shown in FIG. 6, the exhaust flow rate is increased by first opening the exhaust valve 8 corresponding to the first cylinder, and then the exhaust flow rate is decreased by closing the exhaust valve 8. Thereafter, the exhaust valve 8 opens in the order of the third cylinder, the fourth cylinder, and the second cylinder, so that the exhaust flow rate similarly increases and decreases.

研削部材30は、上流側排気浄化触媒20を通過する排気流量が多いほど上流側排気浄化触媒20の上流側端部上から舞い上がり易いため、上流側排気浄化触媒20を通過する排気流量が最大となっているとき、すなわち最大排気流量(図中の一点鎖線)の排気ガスが通過しているときに最も舞い上がり易い。従って、研削部材30の重量は、最大排気流量の排気ガスが通過しているときにも舞い上がらないような重量である必要があり、最大排気流量に応じて設定される必要がある。   Since the grinding member 30 tends to rise from the upstream end of the upstream exhaust purification catalyst 20 as the exhaust flow rate passing through the upstream exhaust purification catalyst 20 increases, the exhaust flow rate passing through the upstream exhaust purification catalyst 20 is maximized. When the exhaust gas is at the maximum, that is, when the exhaust gas having the maximum exhaust flow rate (the one-dot chain line in the figure) passes, it is most likely to soar. Therefore, the weight of the grinding member 30 needs to be a weight that does not rise even when the exhaust gas having the maximum exhaust flow rate passes, and needs to be set according to the maximum exhaust flow rate.

ここで、最大排気流量は気筒当たりの排気量に応じて変わり、各気筒当たりの排気量が大きくなるほど最大排気流量も多くなる。そこで、本実施形態では、研削部材30の重量を気筒当たりの排気量に応じて設定することとしており、例えば気筒当たりの排気量に比例して設定される。   Here, the maximum exhaust flow rate changes according to the exhaust amount per cylinder, and the maximum exhaust flow rate increases as the exhaust amount per cylinder increases. Therefore, in the present embodiment, the weight of the grinding member 30 is set according to the displacement per cylinder, and is set in proportion to the displacement per cylinder, for example.

例えば、図7(a)に示したように総排気量が1000cm3である4気筒の内燃機関では気筒当たりの排気量が250cm3であり、この場合において研削部材30が上流側排気浄化触媒20の上流側端部と接触しつつ移動するような重量を10gとすると、図7(b)に示したように総排気量が1000cm3である4気筒の内燃機関であってそれぞれ二つの気筒に連通した上流側排気浄化触媒20が二つ設けられている内燃機関についても研削部材30の重量は10gとされる。また、図7(c)に示したように総排気量が2000cm3である4気筒の内燃機関では気筒当たりの排気量が500cm3であり、研削部材30の重量は20gとされる。さらに、図7(d)に示したように総排気量が2000cm3である6気筒の内燃機関では気筒当たりの排気量が333cm3であり、研削部材30の重量は約13.3gとされる。 For example, as shown in FIG. 7A, in a four-cylinder internal combustion engine having a total displacement of 1000 cm 3 , the displacement per cylinder is 250 cm 3. In this case, the grinding member 30 serves as the upstream side exhaust purification catalyst 20. Assuming that the weight that moves while being in contact with the upstream end of the engine is 10 g, a four-cylinder internal combustion engine having a total displacement of 1000 cm 3 as shown in FIG. Also for the internal combustion engine provided with two communicating upstream exhaust purification catalysts 20, the weight of the grinding member 30 is set to 10 g. Further, as shown in FIG. 7C, in a 4-cylinder internal combustion engine having a total displacement of 2000 cm 3 , the displacement per cylinder is 500 cm 3 and the weight of the grinding member 30 is 20 g. Further, as shown in FIG. 7D, in a 6-cylinder internal combustion engine having a total displacement of 2000 cm 3 , the displacement per cylinder is 333 cm 3 and the weight of the grinding member 30 is about 13.3 g. .

図8は、内燃機関を搭載した車両の走行距離と上流側排気浄化触媒20による排気ガスの浄化能力との関係を示す図である。図中の実線は上流側排気浄化触媒20の完成時又は上流側排気浄化触媒20を車両に組み付けたときから、すなわち初期から上流側排気浄化触媒20の上流側端部上に研削部材30が挿入されている場合を、図中の破線は研削部材30が挿入されていない場合を、図中の一点鎖線は時期Aにおいて研削部材30が挿入された場合をそれぞれ示している。   FIG. 8 is a diagram showing the relationship between the travel distance of a vehicle equipped with an internal combustion engine and the exhaust gas purification ability of the upstream side exhaust purification catalyst 20. The solid line in the figure indicates that the grinding member 30 is inserted on the upstream end portion of the upstream side exhaust purification catalyst 20 from the initial stage when the upstream side exhaust purification catalyst 20 is completed or when the upstream side exhaust purification catalyst 20 is assembled to the vehicle. The broken line in the figure indicates the case where the grinding member 30 is not inserted, and the alternate long and short dash line in the figure indicates the case where the grinding member 30 is inserted at time A.

図からわかるように、初期から研削部材30が挿入されている場合(実線)には、上流側排気浄化触媒20による排気浄化能力は研削部材30が挿入されていない場合(破線)に比べて常に高いものとなっている。これは、上述したように、研削部材30が挿入されていると研削部材30により劣化した上流側排気浄化触媒20の部分が徐々に削り取られるためである。一方、上流側排気浄化触媒20の車両組付け時から或る程度の距離を車両が走行した時期Aに研削部材30を上流側排気浄化触媒20の上流側端部上に挿入すると、劣化した上流側排気浄化触媒20の上流側端部近傍の部分が削り取られるため、図8に一点鎖線で示したように上流側排気浄化触媒20による排気浄化能力が回復せしめられる。しかしながら、時期Aに研削部材30を挿入することにより上流側排気浄化触媒20による排気浄化能力が回復せしめられた場合であっても、上流側排気浄化触媒20による排気浄化能力が図8に示したように初期から研削部材30が挿入されていた場合の排気浄化能力以上にまでは回復しない。従って、時期Aに研削部材30を挿入することとすると、少なくとも時期A以前においては初期から研削部材30を挿入した場合に比べて排気浄化能力が低いと共に、時期A以降も排気浄化能力が初期から研削部材30を挿入した場合の排気浄化能力を超えることがない。よって、本実施形態では、初期から研削部材30を挿入することとしている。   As can be seen from the figure, when the grinding member 30 is inserted from the beginning (solid line), the exhaust gas purification capability by the upstream side exhaust purification catalyst 20 is always higher than when the grinding member 30 is not inserted (dashed line). It is expensive. This is because, as described above, when the grinding member 30 is inserted, the portion of the upstream side exhaust purification catalyst 20 deteriorated by the grinding member 30 is gradually scraped off. On the other hand, if the grinding member 30 is inserted on the upstream end portion of the upstream side exhaust purification catalyst 20 at a time A when the vehicle has traveled a certain distance from the time when the upstream side exhaust purification catalyst 20 is assembled, the upstream side deteriorated. Since the portion in the vicinity of the upstream end portion of the side exhaust purification catalyst 20 is scraped off, the exhaust purification capability of the upstream side exhaust purification catalyst 20 is recovered as shown by the one-dot chain line in FIG. However, even if the exhaust purification capability of the upstream side exhaust purification catalyst 20 is recovered by inserting the grinding member 30 at time A, the exhaust purification capability of the upstream side exhaust purification catalyst 20 is shown in FIG. Thus, it does not recover beyond the exhaust gas purification capability when the grinding member 30 is inserted from the beginning. Therefore, if the grinding member 30 is inserted at the time A, the exhaust purification capability is lower than the case where the grinding member 30 is inserted from the beginning at least before the time A, and the exhaust purification capability is also from the initial stage after the timing A. Exhaust gas purification capacity when the grinding member 30 is inserted is not exceeded. Therefore, in this embodiment, the grinding member 30 is inserted from the beginning.

なお、上記実施形態では、上流側排気浄化触媒20はその上流側端部が鉛直上方に位置するようにほぼ鉛直に配置されているが、上流側排気浄化触媒20は鉛直に配置されていなくてもよい。例えば、上流側排気浄化触媒20はその上流側端部がその下流側端部よりも鉛直方向上方に位置するように、すなわち傾斜して配置されてもよい。ただし、この場合、研削部材30は上流側排気浄化触媒20の上流側端部上の位置のうち最も鉛直方向下方の位置へと転がり落ちる傾向にあるため、上流側排気浄化触媒20を通過する排気ガスの流れにより研削部材30が上流側排気浄化触媒20の上流側端部上を隈なく移動して上流側端部を均等に研削するように研削部材30の重量をより慎重に設定しなければならない。或いは、上流側排気浄化触媒20はその軸線が水平になるように配置されてもよい。この場合、研削部材30の重量の設定をさらに慎重に行わなければならない。   In the above-described embodiment, the upstream side exhaust purification catalyst 20 is disposed substantially vertically so that the upstream end thereof is positioned vertically upward, but the upstream side exhaust purification catalyst 20 is not disposed vertically. Also good. For example, the upstream side exhaust purification catalyst 20 may be disposed such that its upstream end is positioned vertically above the downstream end, that is, inclined. However, in this case, the grinding member 30 tends to roll down to the position vertically below the position on the upstream end of the upstream side exhaust purification catalyst 20, so that the exhaust passing through the upstream side exhaust purification catalyst 20 is exhausted. The weight of the grinding member 30 must be set more carefully so that the grinding member 30 moves over the upstream end of the upstream side exhaust purification catalyst 20 by the gas flow and uniformly grinds the upstream end. Don't be. Alternatively, the upstream side exhaust purification catalyst 20 may be arranged so that its axis is horizontal. In this case, the weight of the grinding member 30 must be set more carefully.

また、研削部材30の形状は図5に示したような先端部の尖った突出部を有する形状に限られず、如何なる形状であってもよい。従って、例えば、研削部材30の形状は図9(a)に示したような球状であってもよいし、図9(b)に示したような両端が半球状の円柱であってもよい。図9に示したように研削部材30の形状をその外形が滑らかな形状にすると、上流側排気浄化触媒20の上流側端部は図5に示したような先端部の尖った突出部を有する形状の研削部材30を用いた場合に比べて研削されにくくなる。従って、例えば、上流側排気浄化触媒20を構成する材料と研削部材30を構成する材料との関係で上流側排気浄化触媒20の上流側端部が研削され易い場合には研削部材30の形状を図9に示したような形状とし、逆に上流側排気浄化触媒20の上流側端部が研削されにくい場合には研削部材30の形状を図5に示したような形状とすることにより、上流側排気浄化触媒20の上流側端部の研削量を最適に制御することができる。   Further, the shape of the grinding member 30 is not limited to the shape having the protruding portion with the sharp tip as shown in FIG. 5, and may be any shape. Therefore, for example, the shape of the grinding member 30 may be spherical as shown in FIG. 9A, or may be a hemispherical cylinder with both ends as shown in FIG. 9B. As shown in FIG. 9, when the outer shape of the grinding member 30 is made smooth, the upstream end of the upstream side exhaust purification catalyst 20 has a pointed protrusion as shown in FIG. It becomes difficult to grind compared with the case where the shape grinding member 30 is used. Therefore, for example, when the upstream end of the upstream exhaust purification catalyst 20 is easily ground due to the relationship between the material constituting the upstream exhaust purification catalyst 20 and the material constituting the grinding member 30, the shape of the grinding member 30 is changed. If the upstream end of the upstream side exhaust purification catalyst 20 is difficult to be ground, the shape of the grinding member 30 is changed to the shape shown in FIG. The amount of grinding at the upstream end of the side exhaust purification catalyst 20 can be optimally controlled.

さらに、上流側排気浄化触媒20の上流側端部上で移動する研削部材30は、上流側排気浄化触媒20を内蔵するケーシング21と接触、摩擦する。このため、ケーシング21を研削部材30の耐摩耗性よりも耐摩耗性の低い材料又は耐摩耗性が同程度の材料で構成すると、研削部材30によりケーシング21の側面が研削されてケーシング21に孔が開いてしまう虞がある。このため、本実施形態では、ケーシング21を研削部材30の耐摩耗性よりも耐摩耗性の高い材料で構成するのが好ましい。或いは、ケーシング21を研削部材30と耐摩耗性が同程度の材料で構成する場合には、図4に示したようにケーシング21の内面上であって上流側排気浄化触媒20の上流側端部よりも上流側の位置に補強部材21aが設けられる。これにより、研削部材30の移動によって補強部材21aが研削されるがケーシング21が研削されることがなくなり、よってケーシング21に孔が開いてしまうことが防止される。   Further, the grinding member 30 moving on the upstream end of the upstream side exhaust purification catalyst 20 contacts and rubs against the casing 21 containing the upstream side exhaust purification catalyst 20. For this reason, when the casing 21 is made of a material having a lower wear resistance than the wear resistance of the grinding member 30 or a material having the same degree of wear resistance, the side surface of the casing 21 is ground by the grinding member 30 and the casing 21 has holes. May open. For this reason, in this embodiment, it is preferable that the casing 21 is made of a material having higher wear resistance than the wear resistance of the grinding member 30. Alternatively, when the casing 21 is made of a material having the same wear resistance as that of the grinding member 30, the upstream end of the upstream side exhaust purification catalyst 20 on the inner surface of the casing 21 as shown in FIG. A reinforcing member 21a is provided at a position upstream of the position. As a result, the reinforcing member 21a is ground by the movement of the grinding member 30, but the casing 21 is not ground, so that the casing 21 is prevented from opening a hole.

なお、上記記載では、上流側排気浄化触媒20に研削部材30を用いた場合について説明したが、同様に下流側排気浄化触媒23に研削部材を用いることも可能である。   In the above description, the case where the grinding member 30 is used for the upstream side exhaust purification catalyst 20 has been described, but it is also possible to use a grinding member for the downstream side exhaust purification catalyst 23.

次に、図10〜図12を参照して本発明の第二実施形態の排気浄化装置について説明する。図10は、上流側排気浄化触媒の上流側端面からの長さと当該長さに位置する上流側排気浄化触媒の部分を通過する排気ガス中の炭化水素(HC)の浄化率との関係の例を示す図である。図中の丸印は上流側排気浄化触媒への炭化水素の流入流量が10g/sである場合、図中の四角印は上流側排気浄化触媒への炭化水素の流入流量が20g/sである場合をそれぞれ示している。   Next, an exhaust emission control device according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 10 is an example of the relationship between the length from the upstream end face of the upstream side exhaust purification catalyst and the purification rate of hydrocarbons (HC) in the exhaust gas passing through the portion of the upstream side exhaust purification catalyst located at the length. FIG. Circles in the figure indicate that the flow rate of hydrocarbons flowing into the upstream side exhaust purification catalyst is 10 g / s. Squares in the figure indicate that the flow rate of hydrocarbons into the upstream side exhaust purification catalyst is 20 g / s. Each case is shown.

図10からわかるように、上流側排気浄化触媒に流入した排気ガス中のHCは主に上流側排気浄化触媒の上流側端部近傍の部分において浄化される。特に、図10に示した例では、上流側排気浄化触媒に流入した排気ガスが上流側端面からの長さが50mmの位置を通過する時点ではHCは90%近く浄化されており、80mmの位置を通過する時点ではHCは100%近く浄化されている。従って、図10に示した上流側排気浄化触媒については、上流側排気浄化触媒の全長が約80mm以上あれば流入排気ガスを十分に浄化することができ、逆に上流側排気浄化触媒の全長が80mmよりも短いと上流側排気浄化触媒から流出する排気ガス中にHC等が残ってしまうことがわかる。すなわち、上流側排気浄化触媒によって排気ガス中の有害成分を十分に浄化するためには、或る程度の上流側排気浄化触媒の長さが必要であることがわかる。   As can be seen from FIG. 10, HC in the exhaust gas flowing into the upstream side exhaust purification catalyst is mainly purified in the vicinity of the upstream end portion of the upstream side exhaust purification catalyst. In particular, in the example shown in FIG. 10, when the exhaust gas flowing into the upstream side exhaust purification catalyst passes through a position where the length from the upstream end face is 50 mm, HC is purified by nearly 90%, and the position at 80 mm At the time of passing through HC, HC has been purified by nearly 100%. Therefore, the upstream exhaust purification catalyst shown in FIG. 10 can sufficiently purify the inflowing exhaust gas if the upstream exhaust purification catalyst has a total length of about 80 mm or more, and conversely, the upstream exhaust purification catalyst has a full length of It can be seen that if it is shorter than 80 mm, HC or the like remains in the exhaust gas flowing out from the upstream side exhaust purification catalyst. That is, it can be seen that a certain length of the upstream side exhaust purification catalyst is required in order to sufficiently purify harmful components in the exhaust gas by the upstream side exhaust purification catalyst.

そこで、本実施形態では、研削部材30によって上流側排気浄化触媒20の上流側端部を研削したとしても、一定の長さ(以下、「限界長さ」と称す)の上流側排気浄化触媒20の部分が残るようにしている。ここで、限界長さとは、その長さの上流側排気浄化触媒20の部分が残っていれば上流側排気浄化触媒20によって排気ガス中の有害成分を十分に浄化することができるような長さであり、例えば図10のような傾向を示す排気浄化触媒であれば約80mm以上である。   Therefore, in the present embodiment, even if the upstream end of the upstream side exhaust purification catalyst 20 is ground by the grinding member 30, the upstream side exhaust purification catalyst 20 having a certain length (hereinafter referred to as “limit length”). The part of remains. Here, the limit length is a length that allows the upstream side exhaust purification catalyst 20 to sufficiently purify harmful components in the exhaust gas if the upstream side exhaust purification catalyst 20 of the length remains. For example, in the case of an exhaust purification catalyst showing a tendency as shown in FIG.

図11は、第二実施形態の本発明の上流側排気浄化触媒及びそのケーシングの断面図である。図11に示したように、本実施形態では、研削部材30に削り取られることなく限界長さの上流側排気浄化触媒20の部分が残るようにすべく、上流側排気浄化触媒20の下流側端面から排気上流側に向かって限界長さLの位置に、仕切り部材35が設けられる。見方を変えると、上流側排気浄化触媒20の下流側端面から上流側に向かって限界長さLの位置で上流側排気浄化触媒20は上流側触媒部分201と下流側触媒部分202とに分割され、これら上流側触媒部分201と下流側触媒部分202との間に仕切り部材35が設けられる。仕切り部材35は、上流側排気浄化触媒20の軸線に対して垂直な平面上で延びる。   FIG. 11 is a sectional view of the upstream side exhaust purification catalyst of the present invention and its casing according to the second embodiment. As shown in FIG. 11, in the present embodiment, the downstream end face of the upstream side exhaust purification catalyst 20 remains so that the upstream side exhaust purification catalyst 20 part of the limit length remains without being scraped off by the grinding member 30. A partition member 35 is provided at a position of the limit length L toward the exhaust upstream side. In other words, the upstream side exhaust purification catalyst 20 is divided into the upstream side catalyst portion 201 and the downstream side catalyst portion 202 at the position of the limit length L from the downstream end face of the upstream side exhaust purification catalyst 20 toward the upstream side. A partition member 35 is provided between the upstream catalyst portion 201 and the downstream catalyst portion 202. The partition member 35 extends on a plane perpendicular to the axis of the upstream side exhaust purification catalyst 20.

図12(a)は、仕切り部材35の平面図である。図12(a)からわかるように、仕切り部材35は、上流側排気浄化触媒20の外周部とほぼ同一の半径を有する外枠部材36と、この外枠部材36内で互いに垂直に延びる横断部材37とを具備する。図12(a)に示した実施形態では、仕切り部材35は互いに垂直に延びる二本の横断部材37を具備する。仕切り部材35を構成する外枠部材36及び横断部材37は、仕切り部材35が排気抵抗となるのを防止するため上流側排気浄化触媒20の隔壁20bと整列するのが好ましいが、隔壁20bと整列せずに排気流通路20aを横断するように延びてもよい。   FIG. 12A is a plan view of the partition member 35. As can be seen from FIG. 12A, the partition member 35 includes an outer frame member 36 having substantially the same radius as the outer peripheral portion of the upstream side exhaust purification catalyst 20, and a transverse member extending perpendicularly to each other within the outer frame member 36. 37. In the embodiment shown in FIG. 12A, the partition member 35 includes two transverse members 37 extending perpendicularly to each other. The outer frame member 36 and the transverse member 37 constituting the partition member 35 are preferably aligned with the partition wall 20b of the upstream side exhaust purification catalyst 20 to prevent the partition member 35 from becoming exhaust resistance, but are aligned with the partition wall 20b. Without extending, it may extend across the exhaust flow passage 20a.

仕切り部材35は、耐摩耗性が研削部材30の耐摩耗性よりも高い材料で形成される。これにより、仕切り部材35よりも排気上流側に位置する上流側排気浄化触媒20の部分、すなわち上流側触媒部分201が研削部材30により削り取られて仕切り部材35が研削部材30と接触するようになると、研削部材30は仕切り部材35との間で摩擦が生じることにより研削される。このように研削部材30が仕切り部材35との接触により研削されて排気流通路20a内に完全に侵入できるような大きさまで小さくなると、研削部材30は排気ガスの流れにより排気流通路20a内を通って上流側排気浄化触媒20の下流側へと放出される。このため、上流側排気浄化触媒20は研削部材30によってそれ以上研削されることが防止され、よって限界長さの上流側排気浄化触媒20の部分、すなわち下流側触媒部分202が残る。これにより、上流側排気浄化触媒20は、研削部材30によって研削されても、排気ガス中の有害成分を十分に浄化することができるように維持される。   The partition member 35 is formed of a material whose wear resistance is higher than the wear resistance of the grinding member 30. Accordingly, when the upstream side exhaust purification catalyst 20 portion located upstream of the partition member 35, that is, the upstream catalyst portion 201 is scraped by the grinding member 30, the partition member 35 comes into contact with the grinding member 30. The grinding member 30 is ground by friction between the partition member 35 and the grinding member 30. Thus, when the grinding member 30 is ground by contact with the partition member 35 and is reduced to such a size that it can completely enter the exhaust flow passage 20a, the grinding member 30 passes through the exhaust flow passage 20a by the flow of exhaust gas. To the downstream side of the upstream side exhaust purification catalyst 20. For this reason, the upstream side exhaust purification catalyst 20 is prevented from being further ground by the grinding member 30, so that the upstream side exhaust purification catalyst 20 part of the limit length, that is, the downstream side catalyst part 202 remains. Thereby, even if the upstream side exhaust purification catalyst 20 is ground by the grinding member 30, it is maintained so that harmful components in the exhaust gas can be sufficiently purified.

なお、上記実施形態では、仕切り部材35は互いに垂直に延びる二本の横断部材37を具備しているが、仕切り部材35の形状は他の形状であってもよい。例えば、仕切り部材35は、横断部材37を三本以上具備していてもよく、図12(b)に示した例では互いに平行に延びる一組の五本の横断部材37aと、この一組の横断部材37aに対して垂直に延びる別の組の五本の横断部材37bとを有する。   In the above-described embodiment, the partition member 35 includes the two transverse members 37 extending perpendicularly to each other, but the shape of the partition member 35 may be other shapes. For example, the partition member 35 may include three or more cross members 37. In the example shown in FIG. 12B, a set of five cross members 37a extending in parallel with each other, and this set of cross members. Another set of five cross members 37b extending perpendicular to the cross member 37a.

また、仕切り部材35の断面形状は、如何なる形状であってもよいが、図12(a)のラインc−cから見た仕切り部材35の断面図である図12(c)に示したように、排気上流側を向いた複数の角部を有する形状であるのが好ましい。仕切り部材35の断面形状をこのような形状とすることにより、研削部材30が磨耗し易くなり、研削部材30を上流側排気浄化触媒20の上流側端部上から迅速に除去することができるようになる。   Further, the cross-sectional shape of the partition member 35 may be any shape, but as shown in FIG. 12C, which is a cross-sectional view of the partition member 35 viewed from the line cc in FIG. A shape having a plurality of corners facing the exhaust upstream side is preferable. By setting the cross-sectional shape of the partition member 35 to such a shape, the grinding member 30 is easily worn, and the grinding member 30 can be quickly removed from the upstream end of the upstream side exhaust purification catalyst 20. become.

さらに、上記実施形態では、仕切り部材35を設けることで研削部材30によって研削されても限界長さの上流側排気浄化触媒20の部分が残るようにしているが、研削部材30によって研削される研削量を調整することで限界長さの上流側排気浄化触媒20の部分が残るようにしてもよい。すなわち、研削部材30の材料及び形状を適切に選択することにより、上流側排気浄化触媒20を搭載した車両が目標走行距離(例えば10万kmや7万km)を走行したときに限界長さの上流側排気浄化触媒20の部分が残るようにしてもよい。   Further, in the above embodiment, the partition member 35 is provided so that the upstream side exhaust purification catalyst 20 part of the limit length remains even when the grinding member 30 is ground. The amount of the upstream side exhaust purification catalyst 20 of the limit length may be left by adjusting the amount. That is, by appropriately selecting the material and the shape of the grinding member 30, the limit length is reached when the vehicle on which the upstream side exhaust purification catalyst 20 is mounted travels a target travel distance (for example, 100,000 km or 70,000 km). The portion of the upstream side exhaust purification catalyst 20 may remain.

次に、図13及び図14を参照して本発明の第三実施形態の排気浄化装置について説明する。図13は、第三実施形態の上流側排気浄化触媒40及びそのケーシング21の断面側面図であり、図14は図13のラインXIV−XIVから見た上流側排気浄化触媒40及びケーシング21の断面平面図である。   Next, an exhaust emission control device according to a third embodiment of the present invention will be described with reference to FIGS. 13 is a cross-sectional side view of the upstream side exhaust purification catalyst 40 and its casing 21 according to the third embodiment, and FIG. 14 is a cross section of the upstream side exhaust purification catalyst 40 and the casing 21 as seen from line XIV-XIV in FIG. It is a top view.

ところで、新品の上流側排気浄化触媒に研削部材を挿入すると、上流側排気浄化触媒がほとんど劣化していないときから、すなわち十分な排気浄化能力を発揮しているときから上流側排気浄化触媒の上流側端部の研削が開始されてしまう。斯かる事態を回避するためには、新品の上流側排気浄化触媒の使用を開始してから一定の期間に亘って上流側排気浄化触媒の上流側端部が研削部材30によって研削されにくくなるようにする必要がある。   By the way, when a grinding member is inserted into a new upstream exhaust purification catalyst, the upstream exhaust purification catalyst is not deteriorated, that is, when it exhibits sufficient exhaust purification capability, the upstream of the upstream exhaust purification catalyst. Grinding of the side end is started. In order to avoid such a situation, the upstream end of the upstream side exhaust purification catalyst is less likely to be ground by the grinding member 30 over a certain period after the use of the new upstream side exhaust purification catalyst is started. It is necessary to.

そこで、本実施形態の上流側排気浄化触媒40では、図13に示したように、その上流側端部に凹部41を設けることとしている。凹部41は、上流側排気浄化触媒40の軸線A上に配置され、研削部材30を少なくとも部分的に収容可能な大きさである。具体的には、上流側排気浄化触媒40の軸線方向における凹部41の深さDは凹部41内に研削部材30が収容されているときに上流側排気浄化触媒40を通過する排気ガスの流れ又は上流側排気浄化触媒40を搭載した車両の振動により凹部41内から研削部材30が飛び出してしまうことのないような深さとされ、上流側排気浄化触媒40の軸線Aと垂直な方向における凹部41の幅Wはその幅内に研削部材30が完全に収まるような大きさとされる。より具体的には、上記凹部41に対応した深さD及び幅Wの空間が上流側排気浄化触媒40の上流側端部近傍の部分に形成されるように、上流側排気浄化触媒40を構成する隔壁40bの上流側部分が除去されている。   Therefore, in the upstream side exhaust purification catalyst 40 of the present embodiment, as shown in FIG. 13, a recess 41 is provided at the upstream end portion thereof. The recess 41 is disposed on the axis A of the upstream side exhaust purification catalyst 40 and has a size capable of accommodating the grinding member 30 at least partially. Specifically, the depth D of the recess 41 in the axial direction of the upstream side exhaust purification catalyst 40 is the flow of exhaust gas passing through the upstream side exhaust purification catalyst 40 when the grinding member 30 is accommodated in the recess 41 or The depth of the recess 41 in the direction perpendicular to the axis A of the upstream exhaust purification catalyst 40 is set to such a depth that the grinding member 30 does not jump out of the recess 41 due to the vibration of the vehicle on which the upstream exhaust purification catalyst 40 is mounted. The width W is sized such that the grinding member 30 is completely contained within the width. More specifically, the upstream side exhaust purification catalyst 40 is configured such that a space having a depth D and a width W corresponding to the recess 41 is formed in a portion near the upstream end of the upstream side exhaust purification catalyst 40. The upstream portion of the partition wall 40b is removed.

このように構成された上流側排気浄化触媒40では、新品状態から使用開始される際に研削部材30が凹部41内に収容される。凹部41内に収容された研削部材30は排気ガスの流れを受けても凹部41内から飛び出すことができず、よって凹部41内のみで移動する。このため、研削部材30は上流側排気浄化触媒40の上流側端部上を隈なく移動することができず、よって上流側排気浄化触媒40の上流側端部は基本的に研削部材30によって研削されない。ただし、研削部材30は、排気ガスの流れを受けて凹部41内で運動するため、研削部材30と凹部41を画成する隔壁40bとの間では摩擦が起こり、よって凹部41を画成する隔壁40bは徐々に研削される。特に、研削部材30によって、凹部41を画成する隔壁40bのうち凹部41の側面を画成する隔壁(すなわち研削部材30を囲うように位置する隔壁)が徐々に研削される。   In the upstream side exhaust purification catalyst 40 configured in this manner, the grinding member 30 is accommodated in the recess 41 when the use is started from a new state. The grinding member 30 accommodated in the recess 41 cannot jump out of the recess 41 even if it receives the flow of exhaust gas, and therefore moves only in the recess 41. For this reason, the grinding member 30 cannot move over the upstream end portion of the upstream side exhaust purification catalyst 40, and therefore the upstream end portion of the upstream side exhaust purification catalyst 40 is basically ground by the grinding member 30. Not. However, since the grinding member 30 receives the flow of the exhaust gas and moves in the recess 41, friction occurs between the grinding member 30 and the partition wall 40b that defines the recess 41, and thus the partition wall that defines the recess 41. 40b is gradually ground. In particular, the grinding member 30 gradually grinds the partition walls that define the side surfaces of the recesses 41 among the partition walls 40 b that define the recesses 41 (that is, the partition walls positioned so as to surround the grinding member 30).

このため、新品状態から使用が開始されると、凹部41の側面を画成する隔壁40bが研削部材30によって徐々に研削され、これにより凹部41が徐々に横方向(すなわち、上流側排気浄化触媒40の軸線Aと垂直な方向)へ広がっていき、凹部41を画成する段が滑らかになっていく。その結果、上流側排気浄化触媒40の上流側端部全体が滑らかになり、研削部材30は上流側排気浄化触媒40の上流側端部全体上を自由に移動することができるようになる。このように、研削部材30が上流側排気浄化触媒40の上流側端部全体上を自由に移動することができるようになってから、研削部材30による上流側排気浄化触媒40の上流側端部全体の研削が開始される。   For this reason, when the use is started from a new state, the partition wall 40b that defines the side surface of the recess 41 is gradually ground by the grinding member 30, so that the recess 41 gradually becomes lateral (that is, the upstream side exhaust purification catalyst). 40) (in a direction perpendicular to the axis A of 40), the step defining the recess 41 becomes smooth. As a result, the entire upstream end of the upstream side exhaust purification catalyst 40 becomes smooth, and the grinding member 30 can freely move over the entire upstream end of the upstream side exhaust purification catalyst 40. Thus, after the grinding member 30 can freely move over the entire upstream end of the upstream side exhaust purification catalyst 40, the upstream end of the upstream side exhaust purification catalyst 40 by the grinding member 30. The whole grinding starts.

このように、本実施形態では、上流側排気浄化触媒40の上流側端部に凹部41を設けて上流側排気浄化触媒40を新品状態から使用開始する際に研削部材30を凹部41内に収容することにより、研削部材30による上流側排気浄化触媒40の上流側端部全体の研削開始を遅らせることができる。これにより、研削部材30による上流側端部全体の研削は或る程度上流側排気浄化触媒20が劣化してから開始されるため、上流側排気浄化触媒20がほとんど劣化していないときから上流側排気浄化触媒40の上流側端部全体の研削が開始されるのが防止される。   Thus, in the present embodiment, the recess 41 is provided at the upstream end of the upstream side exhaust purification catalyst 40, and the grinding member 30 is accommodated in the recess 41 when the upstream side exhaust purification catalyst 40 starts to be used from a new state. By doing so, it is possible to delay the start of grinding of the entire upstream end of the upstream side exhaust purification catalyst 40 by the grinding member 30. Thereby, since the grinding of the entire upstream end by the grinding member 30 is started after the upstream exhaust purification catalyst 20 has deteriorated to some extent, the upstream side from the time when the upstream exhaust purification catalyst 20 has hardly deteriorated. The start of grinding of the entire upstream end of the exhaust purification catalyst 40 is prevented.

なお、上流側排気浄化触媒40の上流側端部近傍の部分の劣化速度は内燃機関や、内燃機関の搭載される車両毎に異なる。従って、本実施形態では、上流側排気浄化触媒40の劣化速度に応じて上流側排気浄化触媒40の上流側端部全体の研削開始時期を調整することとしている。   It should be noted that the deterioration rate of the portion in the vicinity of the upstream end portion of the upstream side exhaust purification catalyst 40 varies depending on the internal combustion engine and the vehicle on which the internal combustion engine is mounted. Therefore, in this embodiment, the grinding start timing of the entire upstream end of the upstream side exhaust purification catalyst 40 is adjusted in accordance with the deterioration rate of the upstream side exhaust purification catalyst 40.

具体的に説明すると、上流側排気浄化触媒40の劣化のうち硫黄による劣化は上流側排気浄化触媒40への流入排気ガスの空燃比をほぼ理論空燃比又はリッチにすると共に上流側排気浄化触媒40の温度を離脱開始温度以上の高温にすることによって或る程度回復せしめられるため、上流側排気浄化触媒40の劣化のうち最も問題となるのは排気ガスに含まれる鉛やリンによる劣化である。上流側排気浄化触媒40の鉛やリンによる劣化は、主に内燃機関の潤滑油が燃焼して排気ガス中にこれら成分が含まれることによって生じる。すなわち、潤滑油の消費に伴って上流側排気浄化触媒40の劣化が促進せしめられる。従って上流側排気浄化触媒40の上流側端部の劣化速度は潤滑油の消費速度に応じて変化し、潤滑油の消費速度が速いほど上流側排気浄化触媒40の上流側端部の劣化速度も速い。   More specifically, the deterioration due to sulfur among the deterioration of the upstream side exhaust purification catalyst 40 makes the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 40 substantially the stoichiometric air-fuel ratio or rich, and the upstream side exhaust purification catalyst 40. Therefore, the most serious problem among the deterioration of the upstream side exhaust purification catalyst 40 is deterioration due to lead or phosphorus contained in the exhaust gas. The deterioration of the upstream side exhaust purification catalyst 40 due to lead or phosphorus is mainly caused by combustion of lubricating oil of the internal combustion engine and inclusion of these components in the exhaust gas. That is, the deterioration of the upstream side exhaust purification catalyst 40 is promoted with the consumption of the lubricating oil. Therefore, the deterioration rate of the upstream end portion of the upstream side exhaust purification catalyst 40 changes according to the consumption rate of the lubricating oil, and the deterioration rate of the upstream end portion of the upstream side exhaust purification catalyst 40 increases as the consumption rate of the lubricating oil increases. fast.

一方、新品状態において上流側排気浄化触媒40の凹部41の幅Wが小さいと、上流側排気浄化触媒40の使用開始初期には研削部材30は排気ガスの流れを受けても凹部41内であまり運動することができず、研削部材30による単位時間当たりの隔壁40bの研削量は比較的少ない。また、凹部41を滑らかにするまでに研削部材30によって研削しなければならない隔壁40bの量は多い。このため、新品状態で上流側排気浄化触媒40の使用が開始されてから、研削部材30によって上流側排気浄化触媒40の上流側端部全体の研削が開始されるまでには時間がかかる。逆に、新品状態において上流側排気浄化触媒40の凹部41の幅Wが大きいと、上流側排気浄化触媒40の使用開始初期から研削部材30は排気ガスの流れを受けると凹部41内で大きく運動することができ、よって研削部材30による単位時間当たりの隔壁40bの研削量は比較的多い。また、凹部41を滑らかにするまでに研削部材30によって研削しなければならない隔壁40bの量は少ない。このため、新品状態で上流側排気浄化触媒40の使用が開始されてから、比較的早くに研削部材30によって上流側排気浄化触媒40の上流側端部全体の研削が開始される。   On the other hand, if the width W of the concave portion 41 of the upstream side exhaust purification catalyst 40 is small in the new state, the grinding member 30 will not be much in the concave portion 41 even if it receives the flow of exhaust gas at the beginning of use of the upstream side exhaust purification catalyst 40. It cannot move, and the grinding amount of the partition wall 40b per unit time by the grinding member 30 is relatively small. Further, the amount of the partition 40b that must be ground by the grinding member 30 before the recess 41 is smoothed is large. For this reason, it takes time until the grinding of the entire upstream end of the upstream side exhaust purification catalyst 40 is started by the grinding member 30 after the use of the upstream side exhaust purification catalyst 40 is started in a new state. On the contrary, if the width W of the concave portion 41 of the upstream side exhaust purification catalyst 40 is large in a new state, the grinding member 30 moves greatly in the concave portion 41 when receiving an exhaust gas flow from the beginning of use of the upstream side exhaust purification catalyst 40. Therefore, the grinding amount of the partition 40b per unit time by the grinding member 30 is relatively large. Further, the amount of the partition 40b that must be ground by the grinding member 30 before the recess 41 is smoothed is small. For this reason, grinding of the entire upstream end of the upstream side exhaust purification catalyst 40 is started by the grinding member 30 relatively early after the use of the upstream side exhaust purification catalyst 40 is started in a new state.

そこで、本実施形態では、潤滑油の消費速度が速い内燃機関には、上流側排気浄化触媒40の上流側部分の劣化速度が速いため、凹部41の幅Wが大きい排気浄化触媒を用いるようにしている。一方、潤滑油の消費速度が遅い内燃機関に対しては、上流側排気浄化触媒40の上流側部分の劣化速度が遅いため、凹部41の幅Wの小さい排気浄化触媒を用いるようにしている。これにより、上流側排気浄化触媒40の上流側部分が或る程度劣化してから研削部材30により上流側排気浄化触媒40の上流側端部近傍の部分が研削されるようになる。   Therefore, in the present embodiment, an exhaust purification catalyst having a large width W of the recess 41 is used for an internal combustion engine with a high consumption rate of lubricating oil because the deterioration rate of the upstream portion of the upstream exhaust purification catalyst 40 is fast. ing. On the other hand, for an internal combustion engine with a slow consumption rate of lubricating oil, an exhaust purification catalyst having a small width W of the recess 41 is used because the deterioration rate of the upstream portion of the upstream exhaust purification catalyst 40 is slow. Thus, after the upstream portion of the upstream side exhaust purification catalyst 40 is deteriorated to some extent, the portion near the upstream end portion of the upstream side exhaust purification catalyst 40 is ground by the grinding member 30.

なお、第三実施形態の排気浄化触媒は第二実施形態の排気浄化触媒と組み合わせることも可能である。   The exhaust purification catalyst of the third embodiment can be combined with the exhaust purification catalyst of the second embodiment.

なお、上記説明では、NOXや硫黄成分はNOX吸蔵剤等に吸蔵されるものとして説明しているが、この「吸蔵」という用語は、「吸収」(例えば、硫黄成分であれば硫酸塩等の形で蓄積すること)及び「吸着」(例えば、硫黄成分であればSOXをSO2等の形で吸着すること)の両概念を含むものとして用いられる。また、NOX吸蔵剤等からの「離脱」という用語についても、「吸収」に対応する「放出」及び「吸着」に対応する「脱離」の両概念を含むものとして用いられる。 In the above description, the NO X and sulfur components are described as being stored in the NO X storage agent or the like, but the term “occlusion” is “absorption” (for example, sulfate for a sulfur component). forms that accumulate in) and "adsorption" etc. (e.g., used to include both concepts can) to adsorb in the form of 2 such as SO and SO X if sulfur component. Further, the term “detachment” from the NO X storage agent or the like is also used to include both concepts of “release” corresponding to “absorption” and “desorption” corresponding to “adsorption”.

本発明の排気浄化装置が搭載される内燃機関全体を示す図である。It is a figure which shows the whole internal combustion engine by which the exhaust gas purification apparatus of this invention is mounted. 触媒コンバータの構造を示す図である。It is a figure which shows the structure of a catalytic converter. 一定期間に亘って上流側排気浄化触媒に排気ガスを流通させた後における上流側排気浄化触媒の軸線方向の位置に応じた上流側排気浄化触媒へのリンの吸着量を示す図である。It is a figure which shows the adsorption amount of the phosphorus to the upstream side exhaust purification catalyst according to the position of the axial direction of an upstream side exhaust purification catalyst after distribute | circulating exhaust gas to an upstream side exhaust purification catalyst over a fixed period. 本発明の上流側排気浄化触媒及びそのケーシングの断面図である。It is sectional drawing of the upstream side exhaust purification catalyst of this invention, and its casing. 研削部材の形状の具体例を示す図である。It is a figure which shows the specific example of the shape of a grinding member. 上流側排気浄化触媒を通過する排気ガスの流量の時間推移を示す図である。It is a figure which shows the time transition of the flow volume of the exhaust gas which passes an upstream exhaust-gas purification catalyst. 内燃機関の種類と研削部材の重量との関係を説明するための図である。It is a figure for demonstrating the relationship between the kind of internal combustion engine, and the weight of a grinding member. 内燃機関を搭載した車両の走行距離と上流側排気浄化触媒による排気ガスの排気浄化能力との関係を示す図である。It is a figure which shows the relationship between the travel distance of the vehicle carrying an internal combustion engine, and the exhaust gas purification ability of the exhaust gas by an upstream side exhaust purification catalyst. 研削部材の形状の具体例を示す、図5と同様な図である。It is a figure similar to FIG. 5 which shows the specific example of the shape of a grinding member. 上流側排気浄化触媒の上流側端部からの長さと当該長さに位置する上流側排気浄化触媒の部分を通過する排気ガス中の炭化水素の浄化率との関係の例を示す図である。It is a figure which shows the example of the relationship between the length from the upstream edge part of an upstream side exhaust purification catalyst, and the purification rate of the hydrocarbon in the exhaust gas which passes through the part of the upstream side exhaust purification catalyst located in the said length. 第二実施形態の上流側排気浄化触媒及びそのケーシングの断面図である。It is sectional drawing of the upstream side exhaust purification catalyst of 2nd embodiment, and its casing. 仕切り部材の平面図及び断面図である。It is the top view and sectional drawing of a partition member. 第三実施形態の上流側排気浄化触媒及びそのケーシングの断面側面図である。It is a cross-sectional side view of the upstream side exhaust purification catalyst and its casing of a third embodiment. 図13のラインXIV−XIVから見た上流側排気浄化触媒及びケーシング21の断面平面図である。FIG. 14 is a cross-sectional plan view of the upstream side exhaust purification catalyst and casing 21 as seen from line XIV-XIV in FIG. 13.

符号の説明Explanation of symbols

1 機関本体
19 排気マニホルド
20、40 上流側排気浄化触媒
20a、40a 排気流通路
20b、40b 隔壁
21 ケーシング
22 排気管
23 下流側排気浄化触媒
24 ケーシング
30 研削部材
35 仕切り部材
41 凹部
DESCRIPTION OF SYMBOLS 1 Engine body 19 Exhaust manifold 20, 40 Upstream exhaust purification catalyst 20a, 40a Exhaust flow passage 20b, 40b Partition 21 Casing 22 Exhaust pipe 23 Downstream exhaust purification catalyst 24 Casing 30 Grinding member 35 Partition member 41 Recess

Claims (9)

機関排気通路内に配置された排気浄化触媒を具備し、該排気浄化触媒には排気ガスがその上流側端部から流入して下流側端部から流出する内燃機関の排気浄化装置において、
内燃機関の運転中に上記排気浄化触媒の上流側端部上を移動することにより排気浄化触媒の上流側端部を研削する研削手段を具備する、内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine, comprising an exhaust gas purification catalyst disposed in an engine exhaust passage, wherein exhaust gas flows into the exhaust gas purification catalyst from its upstream end and flows out from its downstream end.
An exhaust gas purification apparatus for an internal combustion engine, comprising grinding means for grinding the upstream end portion of the exhaust purification catalyst by moving on the upstream end portion of the exhaust purification catalyst during operation of the internal combustion engine.
上記排気浄化触媒はその上流側端部がその下流側端部よりも鉛直方向上方に位置するように配置され、上記研削部材は排気浄化触媒に流入する排気ガスの流れ又は該排気浄化触媒を搭載した車両の振動により排気浄化触媒の上流側端部上を移動する、請求項1に記載の内燃機関の排気浄化装置。   The exhaust purification catalyst is arranged such that its upstream end is positioned vertically above the downstream end, and the grinding member is mounted with the flow of exhaust gas flowing into the exhaust purification catalyst or the exhaust purification catalyst 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purification apparatus moves on the upstream end of the exhaust gas purification catalyst due to the vibration of the vehicle. 上記研削部材の重量は、上記排気ガスの流れを受けても該研削部材が上記排気浄化触媒の上流側端部から舞い上がらずに該上流側端部に沿って移動するような重量である、請求項2に記載の内燃機関の排気浄化装置。   The weight of the grinding member is such a weight that the grinding member moves along the upstream end portion without rising from the upstream end portion of the exhaust purification catalyst even when receiving the flow of the exhaust gas. Item 3. An exhaust emission control device for an internal combustion engine according to Item 2. 上記研削部材の重量は気筒当たりの排気量に応じて定められる、請求項3に記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the weight of the grinding member is determined according to an exhaust amount per cylinder. 上記研削部材は、耐摩耗性が上記排気浄化触媒を構成する材料の耐摩耗性よりも高い材料から構成される、請求項1〜4のいずれか1項に記載の排気浄化装置。   The exhaust gas purification apparatus according to any one of claims 1 to 4, wherein the grinding member is made of a material whose wear resistance is higher than the wear resistance of the material constituting the exhaust gas purification catalyst. 上記研削部材は該研削部材の外側に向かって突出する突出部を有し、該突出部は尖った先端部を有する、請求項1〜5のいずれか1項に記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to any one of claims 1 to 5, wherein the grinding member has a protruding portion that protrudes toward the outside of the grinding member, and the protruding portion has a pointed tip. . 上記排気浄化触媒はハニカム状に形成されており、上記研削部材の大きさは該研削部材が上記排気浄化触媒のハニカムを構成する排気流通路内に完全に侵入することがないような大きさである、請求項1〜6のいずれか1項に記載の内燃機関の排気浄化装置。   The exhaust purification catalyst is formed in a honeycomb shape, and the size of the grinding member is such that the grinding member does not completely enter the exhaust flow passage constituting the honeycomb of the exhaust purification catalyst. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 6. 上記排気浄化触媒の下流側端面から上流側に向かって所定長さの位置で該排気浄化触媒は上流側触媒部分と下流側触媒部分とに分割され、これら上流側触媒部分と下流側触媒部分との間に上記研削部材の耐摩耗性よりも耐摩耗性の高い材料から構成される仕切り部材が設けられる、請求項1〜7のいずれか1項に記載の内燃機関の排気浄化装置。   The exhaust purification catalyst is divided into an upstream catalyst portion and a downstream catalyst portion at a position of a predetermined length from the downstream end face of the exhaust purification catalyst toward the upstream side, and the upstream catalyst portion and the downstream catalyst portion are separated from each other. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 7, wherein a partition member made of a material having higher wear resistance than the wear resistance of the grinding member is provided. 上記排気浄化触媒の上流側端部には上記研削部材を少なくとも部分的に収容可能な凹部が設けられる、請求項1〜8のいずれか1項に記載の内燃機関の排気浄化装置。   9. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein a recess capable of accommodating at least a part of the grinding member is provided at an upstream end portion of the exhaust gas purification catalyst.
JP2005301596A 2005-10-17 2005-10-17 Exhaust emission control device for internal combustion engine Pending JP2007107495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301596A JP2007107495A (en) 2005-10-17 2005-10-17 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301596A JP2007107495A (en) 2005-10-17 2005-10-17 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007107495A true JP2007107495A (en) 2007-04-26

Family

ID=38033544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301596A Pending JP2007107495A (en) 2005-10-17 2005-10-17 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007107495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546158A (en) * 2015-11-30 2017-07-12 Johnson Matthey Plc Diesel oxidation catalyst having a capture region for exhaust gas impurities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546158A (en) * 2015-11-30 2017-07-12 Johnson Matthey Plc Diesel oxidation catalyst having a capture region for exhaust gas impurities
US10155197B2 (en) 2015-11-30 2018-12-18 Johnson Matthey Public Limited Company Diesel oxidation catalyst having a capture region for exhaust gas impurities
GB2546158B (en) * 2015-11-30 2019-07-17 Johnson Matthey Plc Diesel oxidation catalyst having a capture region for exhaust gas impurities

Similar Documents

Publication Publication Date Title
JP3969450B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP3758617B2 (en) Exhaust gas purification device for internal combustion engine
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
EP1760282B1 (en) Exhaust purifier for compression ignition type internal combustion engine
JP5337930B2 (en) Exhaust purification method
JP2010112345A (en) Exhaust emission control device
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP4285460B2 (en) Exhaust gas purification device for internal combustion engine
JP6015760B2 (en) Exhaust gas purification device for spark ignition type internal combustion engine
WO2014122728A1 (en) Exhaust gas cleaner for internal combustion engine
JP5725214B2 (en) Exhaust gas purification device for internal combustion engine
JP2006291873A (en) Exhaust emission control device of internal combustion engine
WO2010134204A1 (en) Exhaust emission control device for internal combustion engine
WO2014178110A1 (en) Exhaust purification device for internal combustion engine
JP2007107495A (en) Exhaust emission control device for internal combustion engine
EP2639419B1 (en) Exhaust purification device for internal combustion engine
JP2009041441A (en) Exhaust emission control device of internal combustion engine
WO2014024311A1 (en) Exhaust purification device of spark ignition internal combustion engine
JP4327584B2 (en) Exhaust gas purification device for internal combustion engine
JP4337527B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4321241B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4379099B2 (en) Exhaust gas purification device for internal combustion engine
JP4506544B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4269919B2 (en) Exhaust gas purification device for internal combustion engine
JP4506545B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine