JP2007106947A - Method for manufacturing heat storage material composition and heat storage material composition - Google Patents

Method for manufacturing heat storage material composition and heat storage material composition Download PDF

Info

Publication number
JP2007106947A
JP2007106947A JP2005301317A JP2005301317A JP2007106947A JP 2007106947 A JP2007106947 A JP 2007106947A JP 2005301317 A JP2005301317 A JP 2005301317A JP 2005301317 A JP2005301317 A JP 2005301317A JP 2007106947 A JP2007106947 A JP 2007106947A
Authority
JP
Japan
Prior art keywords
trisodium phosphate
material composition
storage material
heat storage
sodium acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005301317A
Other languages
Japanese (ja)
Inventor
Setsu Okino
攝 興野
Kenji Saida
健二 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Plastech Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Sumika Plastech Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Plastech Co Ltd, Sumitomo Chemical Co Ltd filed Critical Sumika Plastech Co Ltd
Priority to JP2005301317A priority Critical patent/JP2007106947A/en
Publication of JP2007106947A publication Critical patent/JP2007106947A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a method for manufacturing a heat storage material composition as needs only a little consumption of the heat energy when manufacturing the heat storage material composition and as is excellent in the safety when manufacturing thereof owing to no need for a high-temperature operation. <P>SOLUTION: The method for manufacturing a heat storage material composition that contains sodium acetate trihydrate and trisodium phosphate, comprises mixing the trisodium phosphate which contains a trisodium phosphate dehydrate obtained by so dry-dehydrating trisodium phosphate dodecahydrate as for a percentage of weight loss to be 30% by weight or more, with sodium acetate trihydrate in such a way that 100 moles of the above sodium acetate trihydrate have a content of trisodium phosphate of 2.5 moles or more in terms of the anhydride. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建造物の暖房等に用いられる潜熱蓄熱材組成物の製造方法および該方法により得られる蓄熱材組成物に関する。   The present invention relates to a method for producing a latent heat storage material composition used for heating a building or the like, and a heat storage material composition obtained by the method.

固液相変化の性質を有する塩水和物を蓄熱材料として利用しようとする提案が数多くなされており、既に床暖房等の分野において実用化されている。塩水和物の中でも酢酸ナトリウム3水和物は融点58℃、融解熱量約60cal/gの特性を有することから、蓄熱材料候補として注目されてきた。   Many proposals have been made to use a salt hydrate having a solid-liquid phase change property as a heat storage material, which has already been put into practical use in the field of floor heating and the like. Among salt hydrates, sodium acetate trihydrate has attracted attention as a heat storage material candidate because it has a melting point of 58 ° C. and a heat of fusion of about 60 cal / g.

しかし塩水和物を単独で蓄熱材料として用いた場合には、過冷却現象がおこることが、蓄熱材として利用する場合の大きな障壁となっていた。この障壁を克服するために過冷却防止剤についての提案が多数なされてきた。   However, when a salt hydrate is used alone as a heat storage material, the supercooling phenomenon occurs, which has been a big barrier when used as a heat storage material. There have been many proposals for supercooling inhibitors to overcome this barrier.

酢酸ナトリウム3水和物の過冷却を防止する方法としては、特定の担持結晶を用いる方法が提案されている。担持結晶としては、リン酸水素二ナトリウム、リン酸三ナトリウムなどのナトリウム塩などが開示されている(特許文献1、特許文献2参照)。
特公昭61−42957号公報 特公平2−15598号公報
As a method for preventing supercooling of sodium acetate trihydrate, a method using a specific supported crystal has been proposed. Examples of supported crystals include sodium salts such as disodium hydrogen phosphate and trisodium phosphate (see Patent Document 1 and Patent Document 2).
Japanese Patent Publication No. 61-42957 Japanese Patent Publication No. 2-15598

担持結晶としてリン酸三ナトリウム12水和物を用いる場合、酢酸ナトリウム3水和物と共に加熱融解したのち、冷却して種晶を添加して固化させることによって過冷却防止剤として賦活がなされること、加熱温度として353〜363K(80〜90℃)が必要で、それによってリン酸三ナトリウム12水和物が半水和物に変化することが渡辺によって開示されている(非特許文献1参照)。
渡辺、化学工学論文集、第17巻、48〜53頁、1991年
When trisodium phosphate dodecahydrate is used as the support crystal, it is activated as a supercooling inhibitor by heating and melting together with sodium acetate trihydrate, cooling and adding seed crystals to solidify. Watanabe discloses that the heating temperature is 353 to 363 K (80 to 90 ° C.), thereby changing trisodium phosphate dodecahydrate to hemihydrate (see Non-Patent Document 1). .
Watanabe, Chemical Engineering Papers, Vol. 17, pp. 48-53, 1991

しかしながら酢酸ナトリウム3水和物を主材とする蓄熱材組成物においてリン酸三ナトリウムを過冷却防止剤として用いる場合には、酢酸ナトリウム3水和物とリン酸三ナトリウム12水和物とを80〜90℃という高温に加熱し融解する必要があるため、製造時の熱エネルギー消費量が高いこと、高温操作となるため安全上好ましくないことなどの問題があった。   However, when trisodium phosphate is used as a supercooling preventive agent in a heat storage material composition mainly composed of sodium acetate trihydrate, 80 mg of sodium acetate trihydrate and trisodium phosphate 12 hydrate are used. Since it is necessary to heat and melt at a high temperature of ˜90 ° C., there are problems such as high heat energy consumption during production and unfavorable safety because of high temperature operation.

本発明者らは上記の課題を解決するために鋭意検討した結果、リン酸三ナトリウム12水和物の少なくとも一部として、予め乾式脱水したリン酸三ナトリウム12水和物の脱水物を用いることにより、加熱温度を60〜65℃程度にまで低下させることができることを見出し、本発明を完成させたものである。
すなわち本発明は、酢酸ナトリウム3水和物およびリン酸三ナトリウムを含む蓄熱材組成物の製造方法であって、リン酸三ナトリウム12水和物を減量率30重量%以上になるように乾式脱水して得られるリン酸三ナトリウム脱水物を含むリン酸三ナトリウムと、酢酸ナトリウム3水和物とを、前記酢酸ナトリウム3水和物100モル当りのリン酸三ナトリウムの含有量が無水換算で2.5モル以上となるように混合する蓄熱材組成物の製造方法である。また本発明は、前記製造方法により得られる蓄熱材組成物である。
As a result of intensive studies to solve the above-mentioned problems, the present inventors use a dry dehydrated trisodium phosphate dodecahydrate dehydrated in advance as at least part of the trisodium phosphate dodecahydrate. Thus, the present inventors have found that the heating temperature can be lowered to about 60 to 65 ° C. and completed the present invention.
That is, the present invention relates to a method for producing a heat storage material composition containing sodium acetate trihydrate and trisodium phosphate, and dry dehydration so that the weight loss rate of trisodium phosphate 12 hydrate is 30% by weight or more. Trisodium phosphate containing trisodium phosphate dehydrate and sodium acetate trihydrate obtained in the above manner, the content of trisodium phosphate per 100 mol of sodium acetate trihydrate is 2 in terms of anhydrous. It is the manufacturing method of the heat storage material composition mixed so that it may become 0.5 mol or more. Moreover, this invention is a thermal storage material composition obtained by the said manufacturing method.

本発明の蓄熱材組成物の製造方法によれば、60〜65℃という低温加熱により蓄熱材組成物を得ることができる。したがって、蓄熱材組成物製造時の熱エネルギー消費量が少なくてすみ、また高温操作が不要であるため製造時の安全性にも優れる。
According to the method for producing a heat storage material composition of the present invention, the heat storage material composition can be obtained by low-temperature heating of 60 to 65 ° C. Therefore, the amount of heat energy consumed during the production of the heat storage material composition can be reduced, and since no high-temperature operation is required, the production safety is excellent.

本発明では、リン酸三ナトリウム12水和物を減量率30重量%以上になるように乾式脱水して得られるリン酸三ナトリウム脱水物を含むリン酸三ナトリウムを用いる。使用するリン酸三ナトリウムの全てが、乾式脱水して得られるリン酸三ナトリウム脱水物でもよいし、一部が前記リン酸三ナトリウム脱水物であり、その他がリン酸三ナトリウムやリン酸三ナトリウムの水和物であってもよい。
リン酸三ナトリウム12水和物を乾式脱水する方法については限定されることはなく、オーブン、恒温槽、ヒーターなどを用いて、減量率が30重量%以上となるようにリン酸三ナトリウム12水和物を加熱すればよい。減量率とは乾式脱水の前のリン酸三ナトリウム12水和物重量に対して、乾式脱水によって減じた重量の割合として求める。減量率が30重量%に満たない場合には、過冷却防止効果が高温で失われやすくなる。
乾式脱水の条件としては特に限定されないが、リン酸三ナトリウム12水和物の水和水が脱水するためには、通常55℃以上の温度が必要である。好ましくは、
(A)105〜130℃にて乾式脱水する方法
(B)70〜85℃にて1時間以上乾式脱水した後、さらに86〜130℃にて乾式脱水する方法
(C)55〜85℃にて7時間以上乾式脱水する方法
などの条件が用いられる。加熱装置の仕様や作業の効率の観点から、これらの条件の中から適したものを選択できる。
なお本発明における乾式脱水とは、リン酸三ナトリウム12水和物を、空気などのガス下で開放系で加熱し脱水する方法である。これに対しリン酸三ナトリウム12水和物を酢酸ナトリウム3水和物と共に水分の蒸散がない系で、80〜90℃にて加熱したのち、冷却して種晶を添加して固化させるという従来の方法を、湿式脱水と称する。
In the present invention, trisodium phosphate containing trisodium phosphate dehydrate obtained by dry-dehydrating trisodium phosphate dodecahydrate to a weight loss rate of 30% by weight or more is used. All of the trisodium phosphate to be used may be a trisodium phosphate dehydrate obtained by dry dehydration, a part of the trisodium phosphate dehydrate, and others are trisodium phosphate and trisodium phosphate. It may be a hydrate.
The method of dry-dehydrating trisodium phosphate 12 hydrate is not limited, and using an oven, a thermostatic bath, a heater, etc., trisodium phosphate 12 water so that the weight loss rate is 30% by weight or more. What is necessary is just to heat a Japanese thing. The weight loss rate is determined as the ratio of the weight reduced by dry dehydration to the weight of trisodium phosphate dodecahydrate before dry dehydration. When the weight loss rate is less than 30% by weight, the effect of preventing overcooling is easily lost at high temperatures.
The conditions for dry dehydration are not particularly limited, but a temperature of 55 ° C. or higher is usually required for the dehydration of trisodium phosphate dodecahydrate hydrated water. Preferably,
(A) Method of dry dehydration at 105-130 ° C (B) Method of dry dehydration at 70-85 ° C for 1 hour or more and then dry dehydration at 86-130 ° C (C) At 55-85 ° C Conditions such as a method of dry dehydration for 7 hours or more are used. From the viewpoint of the specifications of the heating device and work efficiency, a suitable one can be selected from these conditions.
The dry dehydration in the present invention is a method of dehydrating trisodium phosphate dodecahydrate by heating it in an open system under a gas such as air. In contrast, trisodium phosphate dodecahydrate is a system that does not evaporate with sodium acetate trihydrate, and is heated at 80 to 90 ° C. and then cooled and seeded to solidify. This method is called wet dehydration.

乾式脱水に用いるリン酸三ナトリウム12水和物の形状は特に限定されない。粉末状であることが乾燥の効率からは好ましいが、結晶状であっても構わない。他の材料と混合され顆粒状や塊状であっても構わないが、リン酸三ナトリウム12水和物そのものの減量率が30重量%以上となるように乾式脱水させることが必要である。   The shape of trisodium phosphate dodecahydrate used for dry dehydration is not particularly limited. A powder form is preferable from the viewpoint of drying efficiency, but it may be a crystal form. Although it may be mixed with other materials to form granules or lumps, it is necessary to dry-dehydrate so that the weight loss rate of trisodium phosphate dodecahydrate itself is 30% by weight or more.

リン酸三ナトリウム12水和物を乾式脱水して得られるリン酸三ナトリウム脱水物と酢酸ナトリウム3水和物とを混合する方法についても特に限定されないが、これらを混合する際に、減量率30重量%以上に脱水した状態が維持されていなければならない。リン酸三ナトリウムは、酢酸ナトリウム3水和物または酢酸ナトリウム無水物の水溶液と混合してもよく、酢酸ナトリウム3水和物の粉末と混合してもよい。酢酸ナトリウム3水和物を融点以上に加熱した融液に、リン酸三ナトリウム脱水物を加える方法が、効率の面から特に好ましい。容器の中に所定量のリン酸三ナトリウム脱水物を予め入れておき、その後から酢酸ナトリウム3水和物融液を加える方法が、生産効率の点から特に好ましい。   The method of mixing the trisodium phosphate dehydrate obtained by dry dehydration of trisodium phosphate 12 hydrate and sodium acetate trihydrate is not particularly limited. The dehydrated state must be maintained at a weight percentage or more. Trisodium phosphate may be mixed with an aqueous solution of sodium acetate trihydrate or anhydrous sodium acetate, or may be mixed with a powder of sodium acetate trihydrate. A method of adding trisodium phosphate dehydrate to a melt obtained by heating sodium acetate trihydrate to a melting point or higher is particularly preferable from the viewpoint of efficiency. A method in which a predetermined amount of trisodium phosphate dehydrate is put in a container in advance and then a sodium acetate trihydrate melt is added is particularly preferable from the viewpoint of production efficiency.

酢酸ナトリウム3水和物として水溶液を用いる場合には、水溶液中の酢酸ナトリウムの濃度が、酢酸ナトリウム無水物換算で52〜60重量%の水溶液として用いる。52重量%未満では蓄熱量が低くなりすぎ、60重量%を超えると酢酸ナトリウム無水物が不溶分として存在してしまう。   When an aqueous solution is used as sodium acetate trihydrate, it is used as an aqueous solution having a sodium acetate concentration of 52 to 60% by weight in terms of sodium acetate anhydride. If the amount is less than 52% by weight, the heat storage amount becomes too low, and if it exceeds 60% by weight, sodium acetate anhydride exists as an insoluble matter.

本発明の蓄熱材組成物の製造方法では、リン酸三ナトリウム脱水物を含むリン酸三ナトリウムと酢酸ナトリウム3水和物とを、前記酢酸ナトリウム3水和物100モル当りのリン酸三ナトリウムの含有量が無水換算で2.5モル以上となるように混合する。蓄熱材組成物中のリン酸三ナトリウム脱水物の量は、酢酸ナトリウム3水和物100モル当り0.7〜50モルであることが好ましい。   In the method for producing a heat storage material composition of the present invention, trisodium phosphate containing trisodium phosphate dehydrate and sodium acetate trihydrate are mixed with trisodium phosphate per 100 moles of sodium acetate trihydrate. It mixes so that content may become 2.5 mol or more in anhydrous conversion. The amount of trisodium phosphate dehydrate in the heat storage material composition is preferably 0.7 to 50 mol per 100 mol of sodium acetate trihydrate.

本発明においては、酢酸ナトリウム3水和物にリン酸三ナトリウム脱水物を含むリン酸三ナトリウムを添加して得られる組成物を固化させ、これを別の酢酸ナトリウム3水和物とリン酸三ナトリウムとを含む組成物に種結晶として添加して蓄熱材組成物を製造してもよい。このような蓄熱材組成物の製造方法は、乾式脱水の処理を行うリン酸三ナトリウム12水和物の量が少なくてすむため、生産性の観点から特に好ましい。   In the present invention, a composition obtained by adding trisodium phosphate containing trisodium phosphate dehydrate to sodium acetate trihydrate is solidified, and this is solidified with another sodium acetate trihydrate and triphosphate phosphate. A heat storage material composition may be produced by adding it as a seed crystal to a composition containing sodium. Such a method for producing a heat storage material composition is particularly preferable from the viewpoint of productivity because the amount of trisodium phosphate dodecahydrate for dry dehydration treatment can be reduced.

本発明では、必要に応じて酢酸3水和物およびリン酸三ナトリウムとともに固液分離防止剤を併用してもよい。蓄熱材組成物が固化するときには、3水物結晶と残余の水溶液とに分離することがあり、固液分離防止剤はこのような現象を防止する効果を有するものである。固液分離防止剤としてはポリアクリルアミド、部分加水分解ポリアクリルアミド、またはカルボキシルメチルセルロースなどが例示される。固液分離防止剤の好ましい添加量は、蓄熱材組成物全量に対して通常1〜10重量%である。   In the present invention, a solid-liquid separation inhibitor may be used in combination with acetic acid trihydrate and trisodium phosphate as necessary. When the heat storage material composition is solidified, it may be separated into a trihydrate crystal and the remaining aqueous solution, and the solid-liquid separation inhibitor has an effect of preventing such a phenomenon. Examples of the solid-liquid separation inhibitor include polyacrylamide, partially hydrolyzed polyacrylamide, and carboxymethyl cellulose. The preferable addition amount of the solid-liquid separation inhibitor is usually 1 to 10% by weight with respect to the total amount of the heat storage material composition.

以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて110℃に加熱し2時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は53重量%であった。前記リン酸三ナトリウム脱水物をポリエチレン袋に0.2g入れた。
150mlビーカーに酢酸ナトリウム3水物95.5gと水2.9gを入れ、62℃水浴中で加熱し、酢酸ナトリウム無水物換算濃度58.5重量%の酢酸ナトリウム水溶液98.4gを得た。これを攪拌しながらリン酸三ナトリウム12水和物8.26gを加えて20分間撹拌した後、固液分離防止剤として部分加水分解ポリアクリルアミド(住友化学(株)製、商品名:スミフロックFA−30)3.61gを加えてさらに40分間撹拌した。前記したリン酸三ナトリウム脱水物の入ったポリエチレン袋に、得られた液を10g投入した。10分室温に放置したところ、酢酸ナトリウム3水和物の融解温度以下となったため、酢酸ナトリウム3水和物の結晶を種結晶として数粒(0.01g以下)入れて蓄熱材組成物を得た。
前記ポリエチレン袋をヒートシールして密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃で7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると再び全体が固化しており、高温条件を経過した後にも過冷却防止効果があった。
[Example 1]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish, heated in an oven to 110 ° C. and dry dehydrated for 2 hours to obtain trisodium phosphate dehydrate. The weight loss rate by dry dehydration was 53% by weight. 0.2 g of the trisodium phosphate dehydrate was put in a polyethylene bag.
A 150 ml beaker was charged with 95.5 g of sodium acetate trihydrate and 2.9 g of water, and heated in a 62 ° C. water bath to obtain 98.4 g of an aqueous sodium acetate solution having a sodium acetate anhydride equivalent concentration of 58.5 wt%. While stirring this, 8.26 g of trisodium phosphate 12 hydrate was added and stirred for 20 minutes, and then partially hydrolyzed polyacrylamide (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumifloc FA-) as a solid-liquid separation inhibitor. 30) Add 3.61 g and stir for another 40 minutes. 10 g of the obtained liquid was put into a polyethylene bag containing the aforementioned trisodium phosphate dehydrate. When it was left at room temperature for 10 minutes, it became below the melting temperature of sodium acetate trihydrate, so several grains (0.01 g or less) of sodium acetate trihydrate crystals were used as seed crystals to obtain a heat storage material composition. It was.
When the polyethylene bag was heat-sealed and sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was allowed to stand overnight at room temperature, the whole solidified again, and there was an effect of preventing overcooling even after high temperature conditions had elapsed.

[実施例2]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて80℃で2時間予熱した後、さらに110℃で2時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は53重量%であった。前記リン酸三ナトリウム脱水物をポリエチレン袋に0.2g入れた。
以降、実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃で7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると再び全体が固化しており、高温条件を経過した後にも過冷却防止効果があった。
[Example 2]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish and preheated in an oven at 80 ° C. for 2 hours, followed by dry dehydration at 110 ° C. for 2 hours to obtain trisodium phosphate dehydrate. . The weight loss rate by dry dehydration was 53% by weight. 0.2 g of the trisodium phosphate dehydrate was put in a polyethylene bag.
Thereafter, a heat storage material composition was obtained in the same manner as in Example 1.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was allowed to stand overnight at room temperature, the whole solidified again, and there was an effect of preventing overcooling even after high temperature conditions had elapsed.

[実施例3]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて80℃で2時間予熱した後、さらに90℃で6時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は53重量%であった。前記リン酸三ナトリウム脱水物をポリエチレン袋に0.2g入れた。
以降、実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃で7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると再び全体が固化しており、高温条件を経過した後にも過冷却防止効果があった。
[Example 3]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish and preheated in an oven at 80 ° C. for 2 hours, followed by dry dehydration at 90 ° C. for 6 hours to obtain trisodium phosphate dehydrate. . The weight loss rate by dry dehydration was 53% by weight. 0.2 g of the trisodium phosphate dehydrate was put in a polyethylene bag.
Thereafter, a heat storage material composition was obtained in the same manner as in Example 1.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was allowed to stand overnight at room temperature, the whole solidified again, and there was an effect of preventing overcooling even after high temperature conditions had elapsed.

[実施例4]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて80℃で9時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は34重量%であった。前記リン酸三ナトリウム脱水物をポリエチレン袋に0.2g入れた。
以降、実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃で7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると再び全体が固化しており、高温条件を経過した後にも過冷却防止効果があった。
[Example 4]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish and dried in an oven at 80 ° C. for 9 hours to obtain trisodium phosphate dehydrate. The weight loss rate by dry dehydration was 34% by weight. 0.2 g of the trisodium phosphate dehydrate was put in a polyethylene bag.
Thereafter, a heat storage material composition was obtained in the same manner as in Example 1.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was allowed to stand overnight at room temperature, the whole solidified again, and there was an effect of preventing overcooling even after high temperature conditions had elapsed.

[実施例5]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて60℃で48時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は53重量%であった。前記リン酸三ナトリウム脱水物をポリエチレン袋に0.2g入れた。
以降、実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃で7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると再び全体が固化しており、高温条件を経過した後にも過冷却防止効果があった。
[Example 5]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish and subjected to dry dehydration in an oven at 60 ° C. for 48 hours to obtain trisodium phosphate dehydrate. The weight loss rate by dry dehydration was 53% by weight. 0.2 g of the trisodium phosphate dehydrate was put in a polyethylene bag.
Thereafter, a heat storage material composition was obtained in the same manner as in Example 1.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was allowed to stand overnight at room temperature, the whole solidified again, and there was an effect of preventing overcooling even after high temperature conditions had elapsed.

[実施例6]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて80℃にて15時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は49重量%であった。これをポリエチレン袋に0.2g入れた。
以降、実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃にて7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると再び全体が固化しており、高温条件を経過した後にも過冷却防止効果があった。
[Example 6]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish and subjected to dry dehydration in an oven at 80 ° C. for 15 hours to obtain trisodium phosphate dehydrate. The weight loss rate by dry dehydration was 49% by weight. 0.2 g of this was put into a polyethylene bag.
Thereafter, a heat storage material composition was obtained in the same manner as in Example 1.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was allowed to stand overnight at room temperature, the whole solidified again, and there was an effect of preventing overcooling even after high temperature conditions had elapsed.

[比較例1]
ポリエチレン袋にリン酸三ナトリウム脱水物を入れなかった以外は実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃にて7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると全体が液体のままであり、過冷却状態であった。
[Comparative Example 1]
A heat storage material composition was obtained in the same manner as in Example 1 except that the trisodium phosphate dehydrate was not put in the polyethylene bag.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was left to stand at room temperature overnight, the whole remained liquid and was in a supercooled state.

[比較例2]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて80℃にて2時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は17.5重量%であった。前記リン酸三ナトリウム脱水物をポリエチレン袋に0.2g入れた。
以降、実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃にて7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると全体が液体のままであり、過冷却状態であった。
[Comparative Example 2]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish and dry dehydrated in an oven at 80 ° C. for 2 hours to obtain trisodium phosphate dehydrate. The weight loss rate by dry dehydration was 17.5% by weight. 0.2 g of the trisodium phosphate dehydrate was put in a polyethylene bag.
Thereafter, a heat storage material composition was obtained in the same manner as in Example 1.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was left to stand at room temperature overnight, the whole remained liquid and was in a supercooled state.

[比較例3]
リン酸三ナトリウム12水和物の粉末5gを磁製皿に載せ、オーブンにて60℃にて6時間乾式脱水を行い、リン酸三ナトリウム脱水物を得た。乾式脱水による減量率は23.5重量%であった。前記リン酸三ナトリウム脱水物をポリエチレン袋に0.2g入れた。
以降、実施例1と同様にして蓄熱材組成物を得た。
ポリエチレン袋をヒートシールして蓄熱材組成物を密閉したものを、さらにアルミラミネート袋に入れてシールし、室温に一夜静置すると全体が固化していた。
これをオーブンに入れ、80℃にて7時間加熱して取り出すと、全体が融解していた。これを室温に一夜静置すると全体が液体のままであり、過冷却状態であった。

[Comparative Example 3]
5 g of trisodium phosphate dodecahydrate powder was placed on a porcelain dish and subjected to dry dehydration in an oven at 60 ° C. for 6 hours to obtain trisodium phosphate dehydrate. The weight loss rate by dry dehydration was 23.5% by weight. 0.2 g of the trisodium phosphate dehydrate was put in a polyethylene bag.
Thereafter, a heat storage material composition was obtained in the same manner as in Example 1.
When the polyethylene bag was heat sealed and the heat storage material composition was sealed, it was further sealed in an aluminum laminate bag and allowed to stand at room temperature overnight, and the whole solidified.
When this was put into an oven and heated at 80 ° C. for 7 hours and taken out, the whole was melted. When this was left to stand at room temperature overnight, the whole remained liquid and was in a supercooled state.

Claims (5)

酢酸ナトリウム3水和物およびリン酸三ナトリウムを含む蓄熱材組成物の製造方法であって、リン酸三ナトリウム12水和物を減量率30重量%以上になるように乾式脱水して得られるリン酸三ナトリウム脱水物を含むリン酸三ナトリウムと、酢酸ナトリウム3水和物とを、前記酢酸ナトリウム3水和物100モル当りのリン酸三ナトリウムの含有量が無水換算で2.5モル以上となるように混合する蓄熱材組成物の製造方法。   A method for producing a heat storage material composition comprising sodium acetate trihydrate and trisodium phosphate, the phosphorus obtained by dry-dehydrating trisodium phosphate dodecahydrate to a weight loss rate of 30% by weight or more Trisodium phosphate containing trisodium acid dehydrate and sodium acetate trihydrate have a trisodium phosphate content per 100 moles of sodium acetate trihydrate of 2.5 moles or more in terms of anhydrous The manufacturing method of the thermal storage material composition mixed so that it may become. リン酸三ナトリウム12水和物を105〜130℃にて乾式脱水して得られるリン酸三ナトリウム脱水物を用いる請求項1記載の蓄熱材組成物の製造方法。   The manufacturing method of the heat storage material composition of Claim 1 using the trisodium phosphate dehydrate obtained by carrying out dry dehydration of trisodium phosphate dodecahydrate at 105-130 degreeC. リン酸三ナトリウム12水和物を70〜85℃にて1時間以上乾式脱水した後、さらに86〜130℃にて乾式脱水して得られるリン酸三ナトリウム脱水物を用いる請求項1記載の蓄熱材組成物の製造方法。   The heat storage according to claim 1, wherein trisodium phosphate dehydrate obtained by dry dehydration of trisodium phosphate dodecahydrate at 70 to 85 ° C for 1 hour or more and further dry dehydration at 86 to 130 ° C is used. Manufacturing method of material composition. リン酸三ナトリウム12水和物を、55〜85℃にて7時間以上乾式脱水して得られるリン酸三ナトリウム脱水物を用いる請求項1記載の蓄熱材組成物の製造方法。 The manufacturing method of the heat storage material composition of Claim 1 using the trisodium phosphate dehydrate obtained by carrying out dry dehydration of trisodium phosphate dodecahydrate at 55-85 degreeC for 7 hours or more. 請求項1〜4のいずれかに記載の方法により得られる蓄熱材組成物。 The thermal storage material composition obtained by the method in any one of Claims 1-4.
JP2005301317A 2005-10-17 2005-10-17 Method for manufacturing heat storage material composition and heat storage material composition Withdrawn JP2007106947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301317A JP2007106947A (en) 2005-10-17 2005-10-17 Method for manufacturing heat storage material composition and heat storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301317A JP2007106947A (en) 2005-10-17 2005-10-17 Method for manufacturing heat storage material composition and heat storage material composition

Publications (1)

Publication Number Publication Date
JP2007106947A true JP2007106947A (en) 2007-04-26

Family

ID=38033060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301317A Withdrawn JP2007106947A (en) 2005-10-17 2005-10-17 Method for manufacturing heat storage material composition and heat storage material composition

Country Status (1)

Country Link
JP (1) JP2007106947A (en)

Similar Documents

Publication Publication Date Title
WO2017020574A1 (en) Stable inorganic hydrated salt-based phase change heat storage material and preparation method therefor
CN107556972A (en) Normal low temperature phase change energy-accumulating medium and preparation method thereof
JP2005533142A (en) Heat storage medium
JP2018030924A (en) Heat storage material composition and heating pack containing the same
JP6389891B2 (en) Strontium bromide phase change material
CN106221675A (en) A kind of phase-change and energy-storage medium
CN110564373A (en) Inorganic hydrated salt composite phase-change heat storage material and preparation and use method thereof
CN100595253C (en) Phase-change heat-storing material and preparation thereof
JP2007106947A (en) Method for manufacturing heat storage material composition and heat storage material composition
JP2007314741A (en) Latent heat storage material composition
CN107075353A (en) The accumulator for power plant based on phase-change material (PCM)
JP2005524755A (en) Heat storage medium II
JP2013067720A (en) Supercooling inhibitor, heat storage method, and heat storage system
JP2001031956A (en) Latent heat storage material composition
CN105694821A (en) Phase-change energy storage medium
CN111978925A (en) Composite phase-change material for cleaning and heating and preparation method thereof
KR100291100B1 (en) Novel latent heat/heat storage composition
CN103881661B (en) Phase-change energy storage medium and preparation method thereof
JP3880677B2 (en) Latent heat storage material composition
JP3774530B2 (en) Manufacturing method of heat storage material
RU2790484C1 (en) Method for producing heat storage material based on calcium-potassium nitrate double salt trihydrate (versions)
JPH10298543A (en) Production of supercooling inhibitor for salt hydrate
JP2000282017A (en) Heat storage material composition and heating apparatus using the same
JPH0215598B2 (en)
JPS58180579A (en) Heat storage material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110324