JP2007106811A - Resin powder composition for slush molding and molding thereof - Google Patents

Resin powder composition for slush molding and molding thereof Download PDF

Info

Publication number
JP2007106811A
JP2007106811A JP2005297134A JP2005297134A JP2007106811A JP 2007106811 A JP2007106811 A JP 2007106811A JP 2005297134 A JP2005297134 A JP 2005297134A JP 2005297134 A JP2005297134 A JP 2005297134A JP 2007106811 A JP2007106811 A JP 2007106811A
Authority
JP
Japan
Prior art keywords
resin powder
parts
inorganic filler
powder composition
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005297134A
Other languages
Japanese (ja)
Other versions
JP4699165B2 (en
Inventor
Takeshi Fukamachi
武司 深町
Shinya Fujibayashi
慎也 藤林
Daichi Maruyama
大地 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Toyota Motor Corp
Original Assignee
Sanyo Chemical Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd, Toyota Motor Corp filed Critical Sanyo Chemical Industries Ltd
Priority to JP2005297134A priority Critical patent/JP4699165B2/en
Publication of JP2007106811A publication Critical patent/JP2007106811A/en
Application granted granted Critical
Publication of JP4699165B2 publication Critical patent/JP4699165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin powder composition for slush molding which can be molded into a sheet without encountering sheet break, sheet deformation, etc., when the molded sheet is released from the mold. <P>SOLUTION: The resin powder composition for slush molding is one essentially consisting of a thermoplastic resin powder (B) such as a thermoplastic polyurethane resin powder and an inorganic filler (A), wherein the inorganic filler (A) is contained within individual particles of the thermoplastic resin powder (B), and the inorganic filler (A) is contained in an amount of 5 to 50 wt.% based on the total weight of the thermoplastic resin powder (B) and the inorganic filler (A). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インスツルメントパネル、ドアトリム等の自動車内装部品の成形用素材として適する、熱可塑性樹脂粉末を主体とする、スラッシュ成形用の樹脂粉末組成物に関するものである。   The present invention relates to a resin powder composition for slush molding mainly composed of thermoplastic resin powder, which is suitable as a molding material for automobile interior parts such as instrument panels and door trims.

インスツルメントパネル、ドアトリム等の自動車内装部品の成形用素材として、スラッシュ成形用の熱可塑性樹脂粉末組成物が知られている(例えば、特許文献1及び2参照)。しかし、樹脂強度が充分ではなく、スラッシュ成形工程において金型表面に成形されたシートを金型から剥ぎ取る時に、成形シートの破れ、変形等が起こることがあった。
特開平5−279485号公報 特開2000−17033号公報
As a molding material for automobile interior parts such as instrument panels and door trims, a thermoplastic resin powder composition for slush molding is known (see, for example, Patent Documents 1 and 2). However, the resin strength is not sufficient, and when the sheet molded on the mold surface is peeled off from the mold in the slush molding process, the molded sheet may be broken or deformed.
JP-A-5-279485 JP 2000-17033 A

本発明の課題は、スラッシュ成形用の熱可塑性樹脂粉末組成物を使用してシートを成形する場合に、成形シートの金型脱型時に破れ、変形等が起こらないスラッシュ成形用樹脂粉末組成物を提供することである。   An object of the present invention is to provide a resin powder composition for slush molding that is not torn, deformed, etc. when the sheet is molded using the thermoplastic resin powder composition for slush molding. Is to provide.

本発明は、熱可塑性樹脂粉末(B)及び無機フィラー(A)を必須成分とし、無機フィラー(A)が熱可塑性樹脂粉末(B)の粉末粒子中に含有されてなり、熱可塑性樹脂粉末(B)及び無機フィラー(A)の合計重量に対して無機フィラー(A)を5〜50重量%含有することを特徴とするスラッシュ成形用樹脂粉末組成物、及び該樹脂粉末組成物からなる樹脂成形品である。   In the present invention, the thermoplastic resin powder (B) and the inorganic filler (A) are essential components, and the inorganic filler (A) is contained in the powder particles of the thermoplastic resin powder (B). B) and a resin powder composition for slush molding characterized by containing 5 to 50% by weight of the inorganic filler (A) with respect to the total weight of the inorganic filler (A), and resin molding comprising the resin powder composition It is a product.

本発明のスラッシュ成形用樹脂粉末組成物から成形されたシートは、引張強度、引裂強度に優れるため、金型脱型時に破れ、変形等が起こらない。   Since the sheet molded from the slush molding resin powder composition of the present invention is excellent in tensile strength and tear strength, it is not torn or deformed when the mold is removed.

本発明のスラッシュ成形用樹脂粉末組成物は、熱可塑性樹脂粉末(B)(以下、単に(B)ともいう。)及び無機フィラー(A)(以下、単に(A)ともいう。)を必須成分とし、熱可塑性樹脂粉末(B)及び無機フィラー(A)の合計重量に対して、無機フィラー(A)を5〜50重量%、好ましくは5.5〜30重量%、さらに好ましくは6.5〜20重量%含有する。(B)及び(A)の合計重量に対して(A)を5重量%未満しか含有しない場合は、(A)の補強効果が十分に発揮できず、金型脱型時に成形シートに破れ、変形等が起こる場合がある。(A)を50重量%を超えて含有する場合は、溶融性が悪くなるため、成形シートの強度が低下する。   The resin powder composition for slush molding of the present invention comprises the thermoplastic resin powder (B) (hereinafter also simply referred to as (B)) and the inorganic filler (A) (hereinafter also simply referred to as (A)) as essential components. And 5 to 50% by weight, preferably 5.5 to 30% by weight, more preferably 6.5% by weight of the inorganic filler (A) with respect to the total weight of the thermoplastic resin powder (B) and the inorganic filler (A). Contains -20% by weight. If the content of (A) is less than 5% by weight based on the total weight of (B) and (A), the reinforcing effect of (A) cannot be sufficiently exerted, and the molded sheet is torn during mold release, Deformation may occur. When (A) is contained exceeding 50% by weight, the meltability is deteriorated, so that the strength of the molded sheet is lowered.

無機フィラー(A)は、熱可塑性樹脂粉末(B)の粉末粒子中に含有された形態で、本発明のスラッシュ成形用樹脂粉末組成物に含有される。(A)は(B)の粉末粒子中に含有されることで、(A)の粒子のままであって(B)の粉末粒子中に含有されない場合に比べ、成形樹脂シート中により均一に分散することができる。このような態様をとることにより、本発明のスラッシュ成形用樹脂粉末組成物を成形して得られる成形樹脂シートは、引張強度及び引裂強度に優れるため、金型脱型時に破れ、変形等が起こらない。特に熱可塑性樹脂がポリウレタン樹脂である場合、ポリウレタン樹脂中に均一に分散した(A)が、ポリウレタン樹脂のハードセグメントの結晶化を促進して、引張強度及び引裂強度を向上させることが出来るため好ましい。   The inorganic filler (A) is contained in the powder particles of the thermoplastic resin powder (B) and is contained in the slush molding resin powder composition of the present invention. When (A) is contained in the powder particles of (B), it is more uniformly dispersed in the molded resin sheet as compared with the case where the particles of (A) are not contained in the powder particles of (B). can do. By taking such an embodiment, the molded resin sheet obtained by molding the slush molding resin powder composition of the present invention is excellent in tensile strength and tear strength, and therefore it is torn and deformed when the mold is removed. Absent. In particular, when the thermoplastic resin is a polyurethane resin, (A) uniformly dispersed in the polyurethane resin is preferable because it can promote crystallization of the hard segment of the polyurethane resin and improve the tensile strength and tear strength. .

無機フィラー(A)としては、例えば、タルク、カオリン、シリカ、酸化チタン、炭酸カルシウム、ベントナイト、マイカ、セリサイト、ガラスフレーク、ガラス繊維、黒鉛、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、硫酸バリウム、ホウ酸亜鉛、アルミナ、マグネシア、ウォラストナイト、ゾノトライト、ウィスカー(グラファイト、炭化ケイ素、金属等の)、金属粉末が挙げられる。これらのなかで、熱可塑性樹脂の結晶化促進の観点から、タルク、カオリン、シリカ、酸化チタン、炭酸カルシウムが好ましく、特にタルク、カオリンがさらに好ましい。   Examples of the inorganic filler (A) include talc, kaolin, silica, titanium oxide, calcium carbonate, bentonite, mica, sericite, glass flake, glass fiber, graphite, magnesium hydroxide, aluminum hydroxide, antimony trioxide, and sulfuric acid. Examples thereof include barium, zinc borate, alumina, magnesia, wollastonite, zonotlite, whiskers (such as graphite, silicon carbide, and metal) and metal powders. Among these, talc, kaolin, silica, titanium oxide, and calcium carbonate are preferable from the viewpoint of promoting crystallization of the thermoplastic resin, and talc and kaolin are more preferable.

無機フィラー(A)の体積平均粒径は、熱可塑性樹脂中への分散性の観点から好ましくは0.1〜30μm、さらに好ましくは1〜20μm、特に好ましくは5〜10μmである。   The volume average particle diameter of the inorganic filler (A) is preferably 0.1 to 30 μm, more preferably 1 to 20 μm, and particularly preferably 5 to 10 μm from the viewpoint of dispersibility in the thermoplastic resin.

無機フィラー(A)を含有する熱可塑性樹脂粉末(B)の粉末粒子の体積平均粒径は、好ましくは50〜400μm、さらに好ましくは100〜200μmである。   The volume average particle size of the powder particles of the thermoplastic resin powder (B) containing the inorganic filler (A) is preferably 50 to 400 μm, more preferably 100 to 200 μm.

無機フィラー(A)、及び、熱可塑性樹脂粉末(B)の粉末粒子の体積平均粒径は、レーザー回折/散乱法で行い、例えばマイクロトラック粒度分析計(日機装(株)製MKIISRA 7997−10)で測定することができる。   The volume average particle size of the powder particles of the inorganic filler (A) and the thermoplastic resin powder (B) is measured by a laser diffraction / scattering method, for example, a microtrack particle size analyzer (MKIIISRA 7997-10 manufactured by Nikkiso Co., Ltd.). Can be measured.

熱可塑性樹脂粉末(B)の粉末粒子中に含有される無機フィラー(A)の含有率は、以下に示す方法で測定することが出来る。すなわち、スラッシュ成形用樹脂粉末組成物約1g(Xg)を精秤し、300℃のホットプレートで黒煙が出なくなるまで加熱、炭化させた後、450℃の電気炉の中で2時間かけて灰化し、デシケータ中で冷却後、灰の重量(Yg)を秤量する。(B)及び(A)の合計重量に対する(A)の含有率は次式で計算される。
(A)の含有率=100×(Y/X)
The content rate of the inorganic filler (A) contained in the powder particles of the thermoplastic resin powder (B) can be measured by the following method. That is, about 1 g (Xg) of a resin powder composition for slush molding is precisely weighed, heated and carbonized on a 300 ° C. hot plate until no black smoke is generated, and then in an electric furnace at 450 ° C. over 2 hours. After ashing and cooling in a desiccator, the weight of ash (Yg) is weighed. The content of (A) with respect to the total weight of (B) and (A) is calculated by the following equation.
Content ratio of (A) = 100 × (Y / X)

また、熱可塑性樹脂粉末(B)の粉末粒子中に含有される無機フィラー(A)の体積平均粒径は以下に示す方法で測定することが出来る。すなわち、スラッシュ成形用樹脂粉末組成物20gに1000mlのジメチルフォルムアミドを加え、100℃で1時間加熱する。ジメチルフォルムアミド不溶分をろ別、乾燥し、上記の方法で体積平均粒径を測定する。   Moreover, the volume average particle diameter of the inorganic filler (A) contained in the powder particles of the thermoplastic resin powder (B) can be measured by the following method. That is, 1000 ml of dimethylformamide is added to 20 g of a resin powder composition for slush molding and heated at 100 ° C. for 1 hour. The dimethylformamide insoluble matter is filtered off and dried, and the volume average particle size is measured by the above method.

熱可塑性樹脂粉末(B)としては、スラッシュ成形用に使用可能な樹脂粉末であれば特に制限はない。好ましい例としては、(以下、熱可塑性を省略して記載する。)ポリウレタン樹脂粉末(B0)、塩化ビニル樹脂粉末、ポリオレフィン樹脂粉末、ビニル芳香族樹脂粉末、アクリレート樹脂粉末、共役ジエン樹脂粉末、およびこれらの2種以上の混合物が挙げられ、特に好ましいものはポリウレタン樹脂粉末(B0)である。   The thermoplastic resin powder (B) is not particularly limited as long as it is a resin powder that can be used for slush molding. Preferable examples include (hereinafter, described by omitting thermoplasticity) polyurethane resin powder (B0), vinyl chloride resin powder, polyolefin resin powder, vinyl aromatic resin powder, acrylate resin powder, conjugated diene resin powder, and The mixture of these 2 or more types is mentioned, A polyurethane resin powder (B0) is especially preferable.

ポリウレタン樹脂粉末(B0)におけるポリウレタン樹脂は、高分子ポリオール、ポリイソシアネート、必要に応じて低分子ジオール、低分子ジアミン等からなる樹脂である。
ポリウレタン樹脂粉末(B0)としては、例えば以下の製造方法で製造されたもの等が挙げられる。
(1)ウレタン結合およびウレア結合を有する樹脂であって、水および分散安定剤存在下で、イソシアネート基末端ウレタンプレポリマーとブロックされた鎖伸長剤(例えばケチミン化合物)とを反応させる方法で製造されるもの。具体的には例えば特開平8−120041号公報等に記載されたものを使用することができる。
(2)ウレタン結合およびウレア結合を有したウレタンプレポリマーを、該ウレタンプレポリマーが溶解しない有機溶剤および分散安定剤存在下で、鎖伸長剤(例えばジアミンおよび/またはグリコール)と反応させる方法で製造されるもの。具体的には例えば特開平4−202331号公報等に記載されたものを使用することができる。
(3)ジイソシアネート、高分子ポリオール、必要に応じて鎖伸長剤(低分子グリコール、低分子ジアミン)を反応させることで熱可塑性ポリウレタン樹脂の塊状物を得る。ついで粉末化(例えば冷凍粉砕、溶融状態下細孔を通し切断する方法)する方法で製造されるもの。
The polyurethane resin in the polyurethane resin powder (B0) is a resin composed of a high-molecular polyol, polyisocyanate, and a low-molecular diol, a low-molecular diamine, if necessary.
Examples of the polyurethane resin powder (B0) include those produced by the following production method.
(1) A resin having a urethane bond and a urea bond, which is produced by reacting an isocyanate group-terminated urethane prepolymer with a blocked chain extender (for example, a ketimine compound) in the presence of water and a dispersion stabilizer. Things. Specifically, for example, those described in JP-A-8-120041 can be used.
(2) Produced by a method in which a urethane prepolymer having a urethane bond and a urea bond is reacted with a chain extender (for example, diamine and / or glycol) in the presence of an organic solvent in which the urethane prepolymer does not dissolve and a dispersion stabilizer. What will be done. Specifically, for example, those described in JP-A-4-202331 can be used.
(3) A lump of thermoplastic polyurethane resin is obtained by reacting a diisocyanate, a polymer polyol, and, if necessary, a chain extender (low molecular glycol, low molecular diamine). Then, it is manufactured by a method of pulverization (for example, freeze pulverization, a method of cutting through pores in a molten state).

塩化ビニル樹脂粉末としては、懸濁重合法又は塊状重合法によって製造した塩化ビニル単独重合体の樹脂粉末、塩化ビニルモノマーとエチレン酢酸ビニル等塩化ビニルモノマーを主成分とする共重合体の樹脂粉末が含まれる。   Examples of the vinyl chloride resin powder include a vinyl chloride homopolymer resin powder produced by a suspension polymerization method or a bulk polymerization method, and a copolymer resin powder mainly composed of a vinyl chloride monomer and a vinyl chloride monomer such as ethylene vinyl acetate. included.

ポリオレフィン樹脂粉末としては、一般的にオレフィン系熱可塑性エラストマーに属する物であればいかなるものも使用できる。さらには、エチレン−プロピレン−ジエン−ゴム(EPM、EPDM)とプロピレン系重合体を含むポリオレフィン等とを複合したオレフィン系熱可塑性エラストマーを挙げることができる。また、α−オレフィン共重合体よりなるオレフィン熱可塑性エラストマーの微粉末、α−オレフィン共重合体とプロピレン系樹脂から成るオレフィン熱可塑性エラストマーの微粉末も使用することができる。   Any polyolefin resin powder can be used as long as it generally belongs to an olefinic thermoplastic elastomer. Furthermore, an olefin-based thermoplastic elastomer in which an ethylene-propylene-diene-rubber (EPM, EPDM) and a polyolefin containing a propylene-based polymer are combined can be given. Also, fine powder of olefin thermoplastic elastomer made of α-olefin copolymer and fine powder of olefin thermoplastic elastomer made of α-olefin copolymer and propylene resin can be used.

ビニル芳香族系樹脂粉末としては、芳香族ビニル化合物単独重合体の樹脂粉末、芳香族ビニル化合物とビニル系モノマーの共重合体の樹脂粉末が含まれる。芳香族ビニル化合物としては、例えば、スチレン、t−ブチルスチレン、α−メチルスチレン、p−メチルスレン、ジビニルベンゼン、1,1−ジフェニルスチレン、ブロモスチレン、ビニルスチレン、ビニルキシレン、フルオロスチレン、エチルスチレンなどが挙げられ、特にスチレン、α−メチルスチレンが好ましい。   The vinyl aromatic resin powder includes a resin powder of an aromatic vinyl compound homopolymer and a resin powder of a copolymer of an aromatic vinyl compound and a vinyl monomer. Examples of the aromatic vinyl compound include styrene, t-butyl styrene, α-methyl styrene, p-methyl srene, divinyl benzene, 1,1-diphenyl styrene, bromo styrene, vinyl styrene, vinyl xylene, fluoro styrene, ethyl styrene, and the like. In particular, styrene and α-methylstyrene are preferable.

アクリレート系樹脂粉末としては、(メタ)アクリル酸エステル単独重合体の樹脂粉末、(メタ)アクリル酸エステルとビニル系モノマーの共重合体の樹脂粉末が含まれる。   Examples of the acrylate resin powder include a resin powder of a (meth) acrylic acid ester homopolymer and a resin powder of a copolymer of a (meth) acrylic acid ester and a vinyl monomer.

共役ジエン系樹脂粉末は、共役ジエン系共重合体中の共役ジエン系部分を水素添加または一部水素添加して得られる共重合体樹脂粉末であり、芳香族ビニル化合物−共役ジエン化合物ランダム共重合体、芳香族ビニル化合物−共役ジエン化合物ブロック共重合体の水素添加物、共役ジエン化合物ブロック共重合体の水素添加物等の樹脂の樹脂粉末が含まれる。   The conjugated diene resin powder is a copolymer resin powder obtained by hydrogenating or partially hydrogenating a conjugated diene part in a conjugated diene copolymer, and an aromatic vinyl compound-conjugated diene compound random copolymer. Resin resin powders such as coalescence, aromatic vinyl compound-conjugated diene compound block copolymer hydrogenated product, conjugated diene compound block copolymer hydrogenated product, and the like are included.

無機フィラー(A)を熱可塑性樹脂粉末(B)の粉末粒子中に含有させるためには、例えば、(1)(A)を加えて重合反応を行い(B)を製造する方法、(2)熱可塑性樹脂粒子と(A)とを加熱混練した後粉砕して粉末化する方法、等を採用すればよい。具体的には、例えば、(1)の方法について説明すれば、(B)がポリウレタン樹脂粉末の場合は、例えば高分子ポリオールやウレタンプレポリマー中に予め(A)を分散させておき、ポリウレタン樹脂粒子を製造する方法が挙げられる。塩化ビニル系樹脂粉末、ポリオレフィン系樹脂粉末、ビニル芳香族系樹脂粉末、アクリレート系樹脂粉末、共役ジエン系樹脂粉末の場合は、それぞれ、例えば、各モノマー中に予め(A)を分散させておき樹脂粒子を製造する方法が挙げられる。本発明においては、(A)が(B)の粉末粒子中に含有されているとは、例えば、少なくとも、無機フィラー(A)の一部が熱可塑性樹脂粉末(B)の粉末粒子中に埋まっている状態も含むものとする。   In order to contain the inorganic filler (A) in the powder particles of the thermoplastic resin powder (B), for example, (1) (A) is added and a polymerization reaction is performed to produce (B), (2) What is necessary is just to employ | adopt the method etc. which grind | pulverize and pulverize the thermoplastic resin particle and (A) after heat-kneading. Specifically, for example, the method (1) will be described. When (B) is a polyurethane resin powder, (A) is dispersed in advance in, for example, a polymer polyol or a urethane prepolymer, and the polyurethane resin is used. A method for producing particles may be mentioned. In the case of vinyl chloride resin powder, polyolefin resin powder, vinyl aromatic resin powder, acrylate resin powder, and conjugated diene resin powder, for example, (A) is dispersed in each monomer in advance. A method for producing particles may be mentioned. In the present invention, (A) is contained in the powder particles of (B), for example, at least a part of the inorganic filler (A) is embedded in the powder particles of the thermoplastic resin powder (B). It includes the state that is.

また、本発明のスラッシュ成形用樹脂粉末組成物には、必要に応じて、上記の成分以外に、本発明の目的を阻害しない範囲で、添加助剤(C)を添加することができる。添加助剤(C)としては、公知慣用の顔料、可塑剤、離型剤、有機充填剤、ブロッキング防止剤、分散剤、紫外線吸収剤(光安定剤)、酸化防止剤等が添加出来る。   In addition to the above components, an additive aid (C) can be added to the slush molding resin powder composition of the present invention as necessary, as long as the object of the present invention is not impaired. As the additive aid (C), known and commonly used pigments, plasticizers, mold release agents, organic fillers, antiblocking agents, dispersants, ultraviolet absorbers (light stabilizers), antioxidants and the like can be added.

本発明のスラッシュ成形用樹脂粉末組成物はスラッシュ成形法で各種樹脂成形品に成形することができる。スラッシュ成形法で成形するには、例えば、本発明の粉末組成物が入ったボックスと200〜280℃に加熱した金型を共に振動回転させ、パウダーを金型内で溶融流動させた後、冷却後、固化させ、表皮を製造する方法で好適に実施することができる。   The resin powder composition for slush molding of the present invention can be molded into various resin molded products by a slush molding method. For molding by the slush molding method, for example, a box containing the powder composition of the present invention and a mold heated to 200 to 280 ° C. are vibrated and rotated to melt and flow the powder in the mold, and then cooled. Then, it can solidify and can implement suitably by the method of manufacturing an epidermis.

本発明のスラッシュ成形用樹脂粉末組成物で成形された表皮厚さは、0.5〜1.5mmが好ましい。該表皮は自動車内装材、例えばインストルメントパネル、ドアトリム等の表皮に好適に使用される。   The skin thickness molded with the slush molding resin powder composition of the present invention is preferably 0.5 to 1.5 mm. The skin is suitably used for automobile interior materials such as instrument panels and door trims.

実施例
以下、製造例、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。以下において「部」は重量部、「%」は重量%を示す。
Examples Hereinafter, the present invention will be described in more detail with reference to production examples and examples, but the present invention is not limited thereto. In the following, “parts” represents parts by weight, and “%” represents% by weight.

製造例1
プレポリマー溶液1の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、数平均分子量(以下Mnと記す。)が1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)、体積平均粒径9.2μmのカオリン(87.5部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、テトラヒドロフラン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液1を得た。得られたプレポリマー溶液のNCO含量は、2.0%であった。
Production Example 1
Production of Prepolymer Solution 1 Polybutylene adipate (356 parts) with a number average molecular weight (hereinafter referred to as Mn) of 1000 and polyhexahexene with Mn of 900 are placed in a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube. Methylene isophthalate (237 parts) and kaolin (87.5 parts) having a volume average particle size of 9.2 μm were charged, purged with nitrogen, heated to 110 ° C. with stirring, uniformly stirred, and then cooled to 60 ° C. Subsequently, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), tetrahydrofuran (155 parts), stabilizer (2.5 parts) [manufactured by Ciba Specialty Chemicals Co., Ltd., Irganox 1010] And reacted at 85 ° C. for 6 hours to obtain a prepolymer solution 1. The NCO content of the obtained prepolymer solution was 2.0%.

製造例2
プレポリマー溶液2の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)、体積平均粒径9.2μmのカオリン(53.2部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、テトラヒドロフラン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液2を得た。得られたプレポリマー溶液のNCO含量は、2.1%であった
Production Example 2
Production of Prepolymer Solution 2 In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (356 parts) with Mn of 1000, polyhexamethylene isophthalate (237 parts) with Mn of 900, volume After charging kaolin (53.2 parts) with an average particle size of 9.2 μm and purging with nitrogen, the mixture was heated to 110 ° C. with stirring, uniformly stirred, and then cooled to 60 ° C. Subsequently, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), tetrahydrofuran (155 parts), stabilizer (2.5 parts) [manufactured by Ciba Specialty Chemicals Co., Ltd., Irganox 1010] Was added and reacted at 85 ° C. for 6 hours to obtain Prepolymer Solution 2. The NCO content of the resulting prepolymer solution was 2.1%

製造例3
プレポリマー溶液3の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)、体積平均粒径9.2μmのカオリン(439部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、テトラヒドロフラン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液3を得た。得られたプレポリマー溶液のNCO含量は、1.5%であった。
Production Example 3
Production of Prepolymer Solution 3 In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (356 parts) with Mn of 1000, polyhexamethylene isophthalate (237 parts) with Mn of 900, volume Kaolin (439 parts) having an average particle diameter of 9.2 μm was charged and purged with nitrogen, and then heated to 110 ° C. with stirring, uniformly stirred, and then cooled to 60 ° C. Subsequently, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), tetrahydrofuran (155 parts), stabilizer (2.5 parts) [manufactured by Ciba Specialty Chemicals Co., Ltd., Irganox 1010] Was added and reacted at 85 ° C. for 6 hours to obtain Prepolymer Solution 3. The NCO content of the obtained prepolymer solution was 1.5%.

製造例4
プレポリマー溶液4の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)、体積平均粒径8.0μmのタルク(87.5部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、メチルエチルケトン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液4を得た。得られたプレポリマー溶液のNCO含量は、2.0%であった。
Production Example 4
Production of Prepolymer Solution 4 In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (356 parts) with Mn of 1000, polyhexamethylene isophthalate (237 parts) with Mn of 900, volume After charging talc (87.5 parts) with an average particle size of 8.0 μm and purging with nitrogen, the mixture was heated to 110 ° C. with stirring, uniformly stirred, and then cooled to 60 ° C. Subsequently, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), methyl ethyl ketone (155 parts), stabilizer (2.5 parts) [manufactured by Ciba Specialty Chemicals, Inc., Irganox 1010] And reacted at 85 ° C. for 6 hours to obtain a prepolymer solution 4. The NCO content of the obtained prepolymer solution was 2.0%.

製造例5
プレポリマー溶液5の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、体積平均粒径9.2μmのカオリン(87.5部)、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、テトラヒドロフラン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液5を得た。得られたプレポリマー溶液のNCO含量は、2.0%であった。
Production Example 5
Production of prepolymer solution 5 A reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube was charged with polybutylene adipate (356 parts) with Mn of 1000 and polyhexamethylene isophthalate (237 parts) with Mn of 900. After substituting with nitrogen, the mixture was heated to 110 ° C. with stirring, stirred uniformly and then cooled to 60 ° C. Subsequently, kaolin (87.5 parts) having a volume average particle diameter of 9.2 μm, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), tetrahydrofuran (155 parts), stabilizer (2.5 parts) ) [Ciba Specialty Chemicals Co., Ltd., Irganox 1010] was added and reacted at 85 ° C. for 6 hours to obtain Prepolymer Solution 5. The NCO content of the obtained prepolymer solution was 2.0%.

比較製造例1
プレポリマー溶液6の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)、体積平均粒径9.2μmのカオリン(28部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、テトラヒドロフラン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液6を得た。得られたプレポリマー溶液のNCO含量は、2.2%であった。
Comparative production example 1
Production of prepolymer solution 6 In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (356 parts) with Mn of 1000, polyhexamethylene isophthalate (237 parts) with Mn of 900, volume Kaolin (28 parts) having an average particle size of 9.2 μm was charged and purged with nitrogen, then heated to 110 ° C. with stirring, uniformly stirred, and then cooled to 60 ° C. Subsequently, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), tetrahydrofuran (155 parts), stabilizer (2.5 parts) [manufactured by Ciba Specialty Chemicals Co., Ltd., Irganox 1010] And reacted at 85 ° C. for 6 hours to obtain a prepolymer solution 6. The obtained prepolymer solution had an NCO content of 2.2%.

比較製造例2
プレポリマー溶液7の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)、体積平均粒径9.2μmのカオリン(1481部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、テトラヒドロフラン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液7を得た。得られたプレポリマー溶液のNCO含量は、0.9%であった。
Comparative production example 2
Production of prepolymer solution 7 In a reaction vessel equipped with a thermometer, a stirrer and a nitrogen blowing tube, polybutylene adipate (356 parts) with Mn of 1000, polyhexamethylene isophthalate (237 parts) with Mn of 900, volume Kaolin (1481 parts) having an average particle diameter of 9.2 μm was charged and purged with nitrogen, and then heated to 110 ° C. with stirring, uniformly stirred, and then cooled to 60 ° C. Subsequently, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), tetrahydrofuran (155 parts), stabilizer (2.5 parts) [manufactured by Ciba Specialty Chemicals Co., Ltd., Irganox 1010] And reacted at 85 ° C. for 6 hours to obtain a prepolymer solution 7. The NCO content of the obtained prepolymer solution was 0.9%.

比較製造例3
プレポリマー溶液8の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが1000のポリブチレンアジペート(356部)、Mnが900のポリヘキサメチレンイソフタレート(237部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して均一攪拌後、60℃まで冷却した。続いて、1−オクタノール(9.5部)、ヘキサメチレンジイソシアネート(151部)、テトラヒドロフラン(155部)、安定剤(2.5部)[チバスペシャリティーケミカルズ(株)社製、イルガノックス1010]を投入し、85℃で6時間反応させプレポリマー溶液8を得た。得られたプレポリマー溶液のNCO含量は、2.2%であった。
Comparative production example 3
Preparation of prepolymer solution 8 A reaction vessel equipped with a thermometer, a stirrer, and a nitrogen blowing tube was charged with polybutylene adipate (356 parts) with Mn of 1000 and polyhexamethylene isophthalate (237 parts) with Mn of 900. After substituting with nitrogen, the mixture was heated to 110 ° C. with stirring, stirred uniformly and then cooled to 60 ° C. Subsequently, 1-octanol (9.5 parts), hexamethylene diisocyanate (151 parts), tetrahydrofuran (155 parts), stabilizer (2.5 parts) [manufactured by Ciba Specialty Chemicals Co., Ltd., Irganox 1010] And reacted at 85 ° C. for 6 hours to obtain a prepolymer solution 8. The obtained prepolymer solution had an NCO content of 2.2%.

製造例6
ジアミンのメチルエチルケトン(以下、MEKと記す。)ケチミン化物の製造
ヘキサメチレンジアミン(116部)、過剰のMEK(288部、ジアミンに対して4倍モル量)、n−ヘキサン(29部)を80℃で24時間還流させながら生成水を系外に除去した。その後減圧にて未反応のMEK、n−ヘキサンを除去してMEKケチミン化物を得た。
Production Example 6
Production of ketimine product of methyl ethyl ketone (hereinafter referred to as MEK) of diamine Hexamethylene diamine (116 parts), excess MEK (288 parts, 4 times molar amount with respect to diamine), n-hexane (29 parts) at 80 ° C. The product water was removed out of the system while refluxing for 24 hours. Thereafter, unreacted MEK and n-hexane were removed under reduced pressure to obtain a MEK ketiminate.

熱可塑性ポリウレタン系樹脂粉末の製造
製造例7
反応容器に、製造例1で得たプレポリマー溶液1(100部)と製造例6で得たMEKケチミン化合物(5.6部)を投入し、そこに分散剤(三洋化成工業(株)製サンスパールPS−8(25重量部)を溶解した水溶液340重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂粉末(P−1)を製造した。(P−1)のMnは2.5万、体積平均粒径は151μmであった。
Production production example 7 of thermoplastic polyurethane resin powder
The prepolymer solution 1 obtained in Production Example 1 (100 parts) and the MEK ketimine compound obtained in Production Example 6 (5.6 parts) are charged into a reaction vessel, and a dispersant (manufactured by Sanyo Chemical Industries, Ltd.) is added thereto. 340 parts by weight of an aqueous solution in which Sunspear PS-8 (25 parts by weight) was dissolved was added and mixed for 1 minute at a rotation speed of 9000 rpm using an ultradisperser manufactured by Yamato Scientific Co., Ltd. The mixture was mixed with a thermometer and a stirrer. The reaction vessel was transferred to a reaction vessel equipped with a nitrogen blowing tube, purged with nitrogen, and allowed to react with stirring for 10 hours at 50 ° C. After completion of the reaction, filtration and drying were performed to obtain a thermoplastic polyurethane resin powder (P-1 (P-1) had a Mn of 25,000 and a volume average particle size of 151 μm.

製造例8
反応容器に、製造例2で得たプレポリマー溶液2(96.6部)と製造例6で得たMEKケチミン化合物(5.6部)を投入し、そこに分散剤(三洋化成工業(株)製サンスパールPS−8(25重量部)を溶解した水溶液340重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂粉末(P−2)を製造した。(P−2)のMnは2.5万、体積平均粒径は150μmであった。
Production Example 8
The prepolymer solution 2 (96.6 parts) obtained in Production Example 2 and the MEK ketimine compound (5.6 parts) obtained in Production Example 6 were introduced into a reaction vessel, and a dispersant (Sanyo Chemical Industries Co., Ltd.) was added thereto. ) 340 parts by weight of an aqueous solution in which Sunspear PS-8 (25 parts by weight) was dissolved, and mixed for 1 minute at a rotational speed of 9000 rpm using an ultradisperser manufactured by Yamato Scientific Co., Ltd. The mixture was transferred to a reaction vessel equipped with a stirrer and a nitrogen blowing tube, purged with nitrogen, and allowed to react with stirring for 10 hours at 50 ° C. After completion of the reaction, filtration and drying were performed to obtain a thermoplastic polyurethane resin powder (P 2) Mn of (P-2) was 25,000, and the volume average particle diameter was 150 μm.

製造例9
反応容器に、製造例3で得たプレポリマー溶液3(135.2部)と製造例6で得たMEKケチミン化合物(5.6部)を投入し、そこに分散剤(三洋化成工業(株)製サンスパールPS−8(25重量部)を溶解した水溶液340重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂粉末(P−3)を製造した。(P−3)のMnは2.7万、体積平均粒径は147μmであった。
Production Example 9
The prepolymer solution 3 (135.2 parts) obtained in Production Example 3 and the MEK ketimine compound (5.6 parts) obtained in Production Example 6 were introduced into a reaction vessel, and a dispersant (Sanyo Chemical Industries Co., Ltd.) was added thereto. ) 340 parts by weight of an aqueous solution in which Sunspear PS-8 (25 parts by weight) was dissolved, and mixed for 1 minute at a rotational speed of 9000 rpm using an ultradisperser manufactured by Yamato Scientific Co., Ltd. The mixture was transferred to a reaction vessel equipped with a stirrer and a nitrogen blowing tube, purged with nitrogen, and allowed to react with stirring for 10 hours at 50 ° C. After completion of the reaction, filtration and drying were performed to obtain a thermoplastic polyurethane resin powder (P (P-3) had an Mn of 27,000 and a volume average particle size of 147 μm.

製造例10、11
製造例4、5で得たプレポリマー溶液4、5について、製造例7と同様な操作を行い、熱可塑性ポリウレタン樹脂粉末(P−4)、(P−5)を製造した。(P−4)のMnは2.5万、体積平均粒径は151μm、(P−5)のMnは2.5万、体積平均粒径は150μmであった。
Production Examples 10 and 11
The prepolymer solutions 4 and 5 obtained in Production Examples 4 and 5 were subjected to the same operation as in Production Example 7 to produce thermoplastic polyurethane resin powders (P-4) and (P-5). Mn of (P-4) was 25,000, volume average particle diameter was 151 μm, Mn of (P-5) was 25,000, and volume average particle diameter was 150 μm.

比較製造例4
反応容器に、比較製造例1で得たプレポリマー溶液6(94部)と製造例6で得たMEKケチミン化合物(5.6部)を投入し、そこに分散剤(三洋化成工業(株)製サンスパールPS−8(25重量部)を溶解した水溶液340重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂粉末(P−6’)を製造した。(P−6’)のMnは2.6万、体積平均粒径は152μmであった。
Comparative production example 4
The prepolymer solution 6 (94 parts) obtained in Comparative Production Example 1 and the MEK ketimine compound (5.6 parts) obtained in Production Example 6 were introduced into a reaction vessel, and a dispersant (Sanyo Chemical Industries, Ltd.) was added thereto. 340 parts by weight of an aqueous solution prepared by dissolving Sunspear PS-8 (25 parts by weight) was added and mixed for 1 minute at a rotation speed of 9000 rpm using an ultradisperser manufactured by Yamato Scientific Co., Ltd. The mixture was thermometered and stirred. The mixture was transferred to a reaction vessel equipped with a machine and a nitrogen blowing tube, purged with nitrogen, and allowed to react with stirring for 10 hours at 50 ° C. After completion of the reaction, filtration and drying were performed to obtain thermoplastic polyurethane resin powder (P- 6 ′) was produced, the Mn of (P-6 ′) was 26,000, and the volume average particle size was 152 μm.

比較製造例5
反応容器に、比較製造例2で得たプレポリマー溶液7(239.6部)と製造例6で得たMEKケチミン化合物(5.6部)を投入し、そこに分散剤(三洋化成工業(株)製サンスパールPS−8(25重量部)を溶解した水溶液340重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂粉末(P−7’)を製造した。(P−7’)のMnは2.4万、体積平均粒径は152μmであった。
Comparative Production Example 5
A prepolymer solution 7 (239.6 parts) obtained in Comparative Production Example 2 and a MEK ketimine compound (5.6 parts) obtained in Production Example 6 were introduced into a reaction vessel, and a dispersant (Sanyo Chemical Industries ( 340 parts by weight of an aqueous solution in which Sunspearl PS-8 (25 parts by weight) manufactured by Co., Ltd. was dissolved was added, and mixed for 1 minute at a rotation speed of 9000 rpm using an ultradisperser manufactured by Yamato Scientific Co., Ltd. This mixture was a thermometer. Then, the mixture was transferred to a reaction vessel equipped with a stirrer and a nitrogen blowing tube, purged with nitrogen, and allowed to react with stirring for 10 hours at 50 ° C. After completion of the reaction, filtration and drying were performed to obtain a thermoplastic polyurethane resin powder ( P-7 ′) was produced, Mn of (P-7 ′) was 24,000, and the volume average particle size was 152 μm.

比較製造例6
反応容器に、比較製造例3で得たプレポリマー溶液8(91.2部)と製造例6で得たMEKケチミン化合物(5.6部)を投入し、そこに分散剤(三洋化成工業(株)製サンスパールPS−8(25重量部)を溶解した水溶液340重量部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、熱可塑性ポリウレタン樹脂粉末(P−8’)を製造した。(P−8’)のMnは2.6万、体積平均粒径は151μmであった。
Comparative Production Example 6
A prepolymer solution 8 (91.2 parts) obtained in Comparative Production Example 3 and a MEK ketimine compound (5.6 parts) obtained in Production Example 6 were introduced into a reaction vessel, and a dispersant (Sanyo Chemical Industries ( 340 parts by weight of an aqueous solution in which Sunspearl PS-8 (25 parts by weight) manufactured by Co., Ltd. was dissolved was added and mixed for 1 minute at a rotation speed of 9000 rpm using an ultradisperser manufactured by Yamato Scientific Co., Ltd. The thermometer The mixture was transferred to a reaction vessel equipped with a stirrer and a nitrogen blowing tube, purged with nitrogen, and allowed to react with stirring for 10 hours at 50 ° C. After completion of the reaction, filtration and drying were performed to obtain a thermoplastic polyurethane resin powder ( P-8 ′) was produced, the Mn of (P-8 ′) was 26,000, and the volume average particle size was 151 μm.

実施例1
100Lのナウタミキサー内に熱可塑性ポリウレタン樹脂粉末(P−1)100部、ポリエチレングリコールジ安息香酸エステル[三洋化成工業(株)社製;サンフィックスEB300]20部を投入し70℃で3時間混合した。次いで離型剤として変性ジメチルポリシロキサン[信越化学工業(株)製;KF96]0.1部を投入し1時間混合した後室温まで冷却した。次いで、ブロッキング防止剤としてシリカ微粉末サイロブロックS200(グレースデヴィソン化学製)を0.3部投入混合しスラッシュ成形用樹脂粉末組成物(S−1)を得た。カオリンの(S−1)の重量に対する含有率は8.3%であった。(S−1)の粉末粒子の体積平均粒径は152μmであった。
Example 1
In a 100 L Nauta mixer, 100 parts of thermoplastic polyurethane resin powder (P-1) and 20 parts of polyethylene glycol dibenzoate [manufactured by Sanyo Chemical Industries, Ltd .; Sunfix EB300] are added and mixed at 70 ° C. for 3 hours. did. Next, 0.1 part of modified dimethylpolysiloxane [manufactured by Shin-Etsu Chemical Co., Ltd .; KF96] was added as a release agent, mixed for 1 hour, and then cooled to room temperature. Subsequently, 0.3 part of silica fine powder silo block S200 (made by Grace Devison Chemical) was added and mixed as an antiblocking agent to obtain a resin powder composition for slush molding (S-1). The content of kaolin relative to the weight of (S-1) was 8.3%. The volume average particle diameter of the powder particles of (S-1) was 152 μm.

実施例2〜5
実施例1において、熱可塑性ポリウレタン樹脂粉末(P−1)の代わりに(P−2)〜(P−5)を使用し、他は同様にして、スラッシュ成形用樹脂粉末組成物(S−2)〜(S−5)を得た。カオリンの(S−2)、(S−3)、(S−5)の重量に対する含有率は各5.3%、30%、8.3%であった。また、タルクの(S−4)の重量に対する含有率は8.3%であった。(S−2)〜(S−5)の粉末粒子の体積平均粒径は各151μm、148μm、152μm、151μmであった。
Examples 2-5
In Example 1, (P-2) to (P-5) were used in place of the thermoplastic polyurethane resin powder (P-1), and the others were similarly performed. ) To (S-5) were obtained. The contents of kaolin with respect to the weights of (S-2), (S-3), and (S-5) were 5.3%, 30%, and 8.3%, respectively. Moreover, the content rate with respect to the weight of (S-4) of a talc was 8.3%. The volume average particle diameters of the powder particles of (S-2) to (S-5) were 151 μm, 148 μm, 152 μm, and 151 μm, respectively.

比較例1、2
実施例1において、熱可塑性ポリウレタン樹脂粉末(P−1)の代わりに(P−6’)、(P−7’)を使用し、他は同様にして、スラッシュ成形用樹脂粉末組成物(S−6’)、(S−7’)を得た。カオリンの(S−6’)、(S−7’)の重量に対する含有率は各、2.9%、54%であった。(S−6’)、(S−7’)の粉末粒子の体積平均粒径は各153μm、153μmであった。
Comparative Examples 1 and 2
In Example 1, instead of the thermoplastic polyurethane resin powder (P-1), (P-6 ′) and (P-7 ′) were used, and the rest was made in the same manner, and the resin powder composition for slush molding (S -6 ′) and (S-7 ′). The contents of kaolin relative to the weight of (S-6 ′) and (S-7 ′) were 2.9% and 54%, respectively. The volume average particle diameters of the powder particles of (S-6 ′) and (S-7 ′) were 153 μm and 153 μm, respectively.

比較例3
100Lのナウタミキサー内に熱可塑性ポリウレタン樹脂粉末(P−8’)90.2部、ポリエチレングリコールジ安息香酸エステル[三洋化成工業(株)社製;サンフィックスEB300]19部を投入し70℃で3時間混合した。次いで変性ジメチルポリシロキサン[信越化学工業(株)製;KF96]0.1部、体積平均粒径9.2μmのカオリン(9.8部)を投入し1時間混合した後室温まで冷却した。次いで、シリカ微粉末サイロブロックS200(グレースデヴィソン化学製)を0.3部投入混合しスラッシュ成形用樹脂粉末組成物(S−8’)を得た。カオリンの(S−8’)の重量に対する含有率は8.2%であった。(S−8’)の粉末粒子の体積平均粒径は152μmであった。
Comparative Example 3
In a 100 L Nauta mixer, 90.2 parts of thermoplastic polyurethane resin powder (P-8 ′) and 19 parts of polyethylene glycol dibenzoate [manufactured by Sanyo Chemical Industries, Ltd .; Sunfix EB300] were added at 70 ° C. Mixed for 3 hours. Next, 0.1 part of modified dimethylpolysiloxane [manufactured by Shin-Etsu Chemical Co., Ltd .; KF96] and kaolin (9.8 parts) having a volume average particle size of 9.2 μm were added, mixed for 1 hour, and then cooled to room temperature. Next, 0.3 parts of silica fine powder silo block S200 (produced by Grace Devison Chemical) was added and mixed to obtain a resin powder composition for slush molding (S-8 ′). The content of kaolin relative to the weight of (S-8 ′) was 8.2%. The volume average particle diameter of the powder particles of (S-8 ′) was 152 μm.

実施例1〜5のスラッシュ成形用樹脂粉末組成物(S−1)〜(S−5)、及び比較例1〜3のスラッシュ成形用樹脂粉末組成物(S−6’)〜(S−8’)を使用して、下記に示す方法でシートを作成した。該シートの引張強度、引裂強度を測定し、結果を表1に示した。   Slush molding resin powder compositions (S-1) to (S-5) of Examples 1 to 5 and Slush molding resin powder compositions (S-6 ′) to (S-8) of Comparative Examples 1 to 3. ') Was used to create a sheet as shown below. The tensile strength and tear strength of the sheet were measured, and the results are shown in Table 1.

<成形シートの作成方法>
270℃に加熱した金型にスラッシュ成形用樹脂粉末組成物を10秒間接触させ、熱溶融後未溶融の粉末を除去し、室温中で1分間放置した後、水冷して成形シートを作成した。
<Method for creating molded sheet>
The resin powder composition for slush molding was brought into contact with a mold heated to 270 ° C. for 10 seconds. After heat melting, unmelted powder was removed, left at room temperature for 1 minute, and then cooled with water to prepare a molded sheet.

<評価方法>
上記の方法で作成した成形シートは、作成後、30分以内に下記の方法で引張強度及び引裂強度を測定した。
・引張強度はJIS K6251−2004に準拠して測定した。
・引裂強度はJIS K6252−2004に準拠して測定した。
ただし、試験片の状態調節については、JIS K6250−2004に準拠せずに、成形シート作成後、30分以内に測定を行った。
成形シート作成後、30分以内に測定した引張強度及び引裂強度は、成形シートの金型脱型時に起こる破れ、変形等と相関が認められるものである。
<Evaluation method>
The molded sheet prepared by the above method was measured for tensile strength and tear strength by the following method within 30 minutes after preparation.
-Tensile strength was measured according to JIS K6251-2004.
-Tear strength was measured according to JIS K6252-2004.
However, regarding the condition adjustment of the test piece, measurement was performed within 30 minutes after the formation of the molded sheet without conforming to JIS K6250-2004.
The tensile strength and tear strength measured within 30 minutes after creation of the molded sheet are correlated with tearing, deformation, etc. that occur when the molded sheet is removed from the mold.

Figure 2007106811
Figure 2007106811

実施例1〜5から判るように、本発明の構成を有する樹脂粉末は引張強度、引裂強度ともに、優れており、無機フィラーの含有量が過少(比較例1)であるか過大(比較例2)である場合と比較すると、その性能の顕著性は明白である。また、無機フィラーが樹脂粉末に含有されていない構成の比較例3は、たとえ無機フィラーの含量が本発明の樹脂粉末の範囲内であっても、引張強度、引裂強度ともに、本願発明の樹脂粉末に比べて高々半分以下の性能しかなく、この点でも本願発明の樹脂粉末の性能の顕著性は明白である。   As can be seen from Examples 1 to 5, the resin powder having the constitution of the present invention is excellent in both tensile strength and tear strength, and the content of the inorganic filler is too small (Comparative Example 1) or too large (Comparative Example 2). ), The remarkable performance is obvious. Further, in Comparative Example 3 in which the inorganic filler is not contained in the resin powder, the tensile strength and the tear strength are both the resin powder of the present invention even if the content of the inorganic filler is within the range of the resin powder of the present invention. The performance of the resin powder of the present invention is obvious from this point as well.

本発明のスラッシュ成形用樹脂粉末組成物から成形される表皮は、自動車内装材、例えばインストルメントパネル、ドアトリム等の表皮として好適に使用される。
The skin formed from the resin powder composition for slush molding of the present invention is suitably used as a skin for automobile interior materials such as instrument panels and door trims.

Claims (6)

熱可塑性樹脂粉末(B)及び無機フィラー(A)を必須成分とし、無機フィラー(A)が熱可塑性樹脂粉末(B)の粉末粒子中に含有されてなり、熱可塑性樹脂粉末(B)及び無機フィラー(A)の合計重量に対して無機フィラー(A)を5〜50重量%含有することを特徴とするスラッシュ成形用樹脂粉末組成物。 The thermoplastic resin powder (B) and the inorganic filler (A) are essential components, and the inorganic filler (A) is contained in the powder particles of the thermoplastic resin powder (B), and the thermoplastic resin powder (B) and inorganic A resin powder composition for slush molding, comprising 5 to 50% by weight of the inorganic filler (A) based on the total weight of the filler (A). 無機フィラー(A)が、タルク、カオリン、シリカ、酸化チタン及び炭酸カルシウムからなる群より選ばれる少なくとも1種の無機フィラーである請求項1に記載の樹脂粉末組成物。 The resin powder composition according to claim 1, wherein the inorganic filler (A) is at least one inorganic filler selected from the group consisting of talc, kaolin, silica, titanium oxide, and calcium carbonate. 無機フィラー(A)の体積平均粒径が0.1〜30μmである請求項1又は2に記載の樹脂粉末組成物。 The resin powder composition according to claim 1 or 2, wherein the inorganic filler (A) has a volume average particle size of 0.1 to 30 µm. 熱可塑性樹脂粉末(B)が熱可塑性ポリウレタン樹脂粉末(B0)である請求項1〜3のいずれか1項に記載の樹脂粉末組成物。 The resin powder composition according to any one of claims 1 to 3, wherein the thermoplastic resin powder (B) is a thermoplastic polyurethane resin powder (B0). 請求項1〜4のいずれか1項に記載の樹脂粉末組成物からなる樹脂成形品。 The resin molded product which consists of a resin powder composition of any one of Claims 1-4. 自動車内装材である請求項5に記載の樹脂成形品。

The resin molded product according to claim 5, which is an automobile interior material.

JP2005297134A 2005-10-12 2005-10-12 Slush molding resin powder composition and molded product Active JP4699165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297134A JP4699165B2 (en) 2005-10-12 2005-10-12 Slush molding resin powder composition and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297134A JP4699165B2 (en) 2005-10-12 2005-10-12 Slush molding resin powder composition and molded product

Publications (2)

Publication Number Publication Date
JP2007106811A true JP2007106811A (en) 2007-04-26
JP4699165B2 JP4699165B2 (en) 2011-06-08

Family

ID=38032936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297134A Active JP4699165B2 (en) 2005-10-12 2005-10-12 Slush molding resin powder composition and molded product

Country Status (1)

Country Link
JP (1) JP4699165B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207161A (en) * 2011-03-30 2012-10-25 Sanyo Chem Ind Ltd Resin powder for molding and molded article
JP2013517344A (en) * 2010-01-19 2013-05-16 アルケマ フランス Thermoplastic powder composition and three-dimensional object obtained by sintering this composition
KR101295234B1 (en) 2012-10-23 2013-08-12 주식회사 벤트윈 Manufacturing method of functional sheet using polyurethane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255755A (en) * 1991-02-08 1992-09-10 Sanyo Chem Ind Ltd Thermoplastic urethane resin powder composition
JP2000063571A (en) * 1998-08-26 2000-02-29 Nakata Coating:Kk Thermoplastic elastomer composition, powder comprising the same and skin material obtained by slash molding of the same
JP2001011301A (en) * 1999-07-01 2001-01-16 Nippon Polyurethane Ind Co Ltd Powder composition of thermoplastic polyurethane resin, its forming method and skin using the same
JP2001115009A (en) * 1999-10-20 2001-04-24 Dainippon Ink & Chem Inc Thermoplastic polyurethane resin composition for powder molding and molding material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255755A (en) * 1991-02-08 1992-09-10 Sanyo Chem Ind Ltd Thermoplastic urethane resin powder composition
JP2000063571A (en) * 1998-08-26 2000-02-29 Nakata Coating:Kk Thermoplastic elastomer composition, powder comprising the same and skin material obtained by slash molding of the same
JP2001011301A (en) * 1999-07-01 2001-01-16 Nippon Polyurethane Ind Co Ltd Powder composition of thermoplastic polyurethane resin, its forming method and skin using the same
JP2001115009A (en) * 1999-10-20 2001-04-24 Dainippon Ink & Chem Inc Thermoplastic polyurethane resin composition for powder molding and molding material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517344A (en) * 2010-01-19 2013-05-16 アルケマ フランス Thermoplastic powder composition and three-dimensional object obtained by sintering this composition
JP2012207161A (en) * 2011-03-30 2012-10-25 Sanyo Chem Ind Ltd Resin powder for molding and molded article
KR101295234B1 (en) 2012-10-23 2013-08-12 주식회사 벤트윈 Manufacturing method of functional sheet using polyurethane

Also Published As

Publication number Publication date
JP4699165B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US7652106B2 (en) Resin composition containing poly-3-hydroxybutyrate polymer, and method for producing the same
JP4916007B2 (en) Slush molding resin powder composition and molded product
EP1847560A1 (en) Process for producing spherical polymer powder and spherical powder comprising (meth)acrylic block copolymer
WO2005073270A1 (en) Thermoplastic elastomer composition and molded article
JP4699165B2 (en) Slush molding resin powder composition and molded product
JP4649840B2 (en) Resin composition, method for producing the resin composition, and injection-molded body
JP2006137853A (en) Resin composition
JP4562198B2 (en) Slush molding resin powder composition and molded product
JP4287048B2 (en) Hot melt elastomer composition
JP2003516453A (en) Free flowing powder
JP2006225563A (en) Powder for surface skin molding for automobile interiors and surface skin for automobile interiors
JP4806925B2 (en) Resin composition
JPH0374249B2 (en)
JP4805213B2 (en) Slush molding resin powder composition and molded product
JP3909322B2 (en) Slush molding resin powder composition and molded product
JPWO2010098027A1 (en) Thermoplastic polyurethane resin
JP2005232231A (en) Resin composition and method for producing resin composition
JP2010209361A (en) Resin composition, method for producing the resin composition and injection molded body
JP5409244B2 (en) Resin powder composition for slush molding
JP2010121002A (en) Resin powder composition for slush molding and molded article
JP2002088210A (en) Thermoplastic elastomer resin composition and molded article therefrom
JP2011079269A (en) Resin molding for automobile interior trim material
JP2006274079A (en) Slush molding powder composition
JPH08120073A (en) Copolyester-amide and its production
JP2022027578A (en) Thermoplastic resin composition, production method therefor, and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4699165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250