JP2007105877A - Device for simultaneously grinding both surfaces of discoid workpiece - Google Patents

Device for simultaneously grinding both surfaces of discoid workpiece Download PDF

Info

Publication number
JP2007105877A
JP2007105877A JP2007012695A JP2007012695A JP2007105877A JP 2007105877 A JP2007105877 A JP 2007105877A JP 2007012695 A JP2007012695 A JP 2007012695A JP 2007012695 A JP2007012695 A JP 2007012695A JP 2007105877 A JP2007105877 A JP 2007105877A
Authority
JP
Japan
Prior art keywords
workpiece
grinding
dynamic pressure
pressure nozzle
hydropad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007012695A
Other languages
Japanese (ja)
Other versions
JP4550841B2 (en
Inventor
Joachim Junge
ユンゲ ヨアヒム
Weiss Robert
ヴァイス ローベルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Publication of JP2007105877A publication Critical patent/JP2007105877A/en
Application granted granted Critical
Publication of JP4550841B2 publication Critical patent/JP4550841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • B24B41/061Work supports, e.g. adjustable steadies axially supporting turning workpieces, e.g. magnetically, pneumatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/08Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving liquid or pneumatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved hydro pad, and to obtain an improved work geometry after grinding by using the hydro pad in a double-disc grinding device. <P>SOLUTION: The device is provided with two almost circular grinding wheels, whose grinding surfaces are positioned so as to face each other in the axial direction. The two devices positioned so as to face each other support a discoid workpiece 1 with a hydrostatic way. In these devices, each surface facing to the workpiece of the hydrostatic type two bearing devices is not formed to be flat in the type having at least respective one hydrostatic bearing part and at least respective one hydrodynamic nozzle to measure the distance between the workpiece and the hydrostatic type bearing device, namely, the interval between the surface and the workpiece becomes minimum at the edge part facing to the grinding wheel of the hydrostatic type bearing device, and the interval increases as the distance to the grinding wheel becomes large. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、円板状ワークの同時両面研削のための装置であって、共線的に配置された2つのほぼ円形の研削車が設けられており、該研削車の研削面は、研削車の回転軸線に関して軸方向で互いに向かい合って位置しており、円板状ワークを静圧式に支承するための同様に互いに向かい合って位置する2つの装置が設けられており、これらの装置は、少なくともそれぞれ1つの静圧式の支承部と、ワークと静圧式(hydrostatisch)の支承装置との間の間隔を測定するための少なくともそれぞれ1つの動圧ノズルとを有している形式のものに関する。   The present invention is an apparatus for simultaneous double-side grinding of a disk-shaped workpiece, and is provided with two substantially circular grinding wheels arranged collinearly, and the grinding surface of the grinding wheel is a grinding wheel. Two devices are provided which are located opposite to each other in the axial direction with respect to the axis of rotation of the same and are located opposite each other in a similar manner for hydrostatically supporting the disc-like workpiece, It relates to a type having one hydrostatic bearing and at least one dynamic pressure nozzle for measuring the distance between the workpiece and the hydrostatisch bearing device.

円板状ワーク、例えば半導体ウェハまたは特別にシリコンウェハの両面を同時に研削するために使用される装置が先行技術により公知である。このような装置は通常、両面研削装置と呼ばれる。両面研削装置の広く知られたものは、英語で、double disk grindingまたは略してDDGと言われる方法である。   An apparatus used for simultaneously grinding both sides of a disk-shaped workpiece, for example a semiconductor wafer or in particular a silicon wafer, is known from the prior art. Such an apparatus is usually called a double-side grinding apparatus. A widely known double-side grinding apparatus is a method called double disk grinding or DDG for short in English.

先行技術のDDGマシンは、例えば特開2000−280155A号公報および特開2002−307303A号公報に記載されているように、互いに向かい合って位置する2つの研削砥石(研削車)を有しており、これらの回転軸線は共線的に配置されている。研削過程において、両研削砥石間に位置する円板状ワークは両面で同時に、その軸線を中心として回転する両研削砥石によって処理され、この間、ワークはリング状の保持・回転装置によって位置保持され、同時に固有の軸線を中心として回転する。研削過程中に、両研削砥石は軸方向で、ワークの所望の最終厚さに達するまで互いに接近される。   The prior art DDG machine has two grinding wheels (grinding wheels) positioned facing each other, as described in, for example, JP 2000-280155A and JP 2002-307303A, These rotational axes are arranged collinearly. In the grinding process, the disk-shaped workpiece located between the two grinding wheels is processed by both grinding wheels rotating around the axis at the same time on both sides. During this time, the workpiece is held in position by a ring-shaped holding and rotating device, At the same time, it rotates around its own axis. During the grinding process, both grinding wheels are approached in the axial direction until the desired final thickness of the workpiece is reached.

保持・回転装置は例えば、ワークの縁部を把持する摩擦車を有している。しかしながらこれは、ワークをリング状に取り囲む装置であっても良く、場合によってはワークの周囲に存在する刻み目、溝または切欠(英語ではnotch)に係合する。このような形式の装置は、通常「ノッチフィンガ(notch finger)」と言われる。ワークの全面を処理するためには、ワークは研削砥石に対して相対的に、研削砥石の研削する研削セグメントが、常にワーク中心を通って延びる円形軌道を描くように案内される。   The holding / rotating device has, for example, a friction wheel that holds the edge of the workpiece. However, this may be a device that surrounds the workpiece in a ring, and in some cases engages indents, grooves or notches (notch in English) that exist around the workpiece. This type of device is usually referred to as a “notch finger”. In order to process the entire surface of the workpiece, the workpiece is guided relative to the grinding wheel so that the grinding segment to be ground of the grinding wheel always draws a circular path extending through the center of the workpiece.

ワークはこの場合、通常、不動に位置固定されているのではなく、ワークの両側に設けられた静圧式の2つの支承装置(以下、「ハイドロパッド」と言う)によって軸方向で位置保持されている。このような形式の装置が、特開2002−280155A号公報に記載されている。この先行技術によれば、2つのハイドロパッドの、ワークに面した表面は平らに形成されていて互いに平行に向けられている。各ハイドロパッドは、静圧式の複数の支承部を有しており、これらの支承部の間に、静圧式の支承のために使用される媒体(以下、「流体支承媒体」と言う)と研削冷却媒体の導出のための溝が配置されている。   In this case, the workpiece is not normally fixed in position, but is held in the axial direction by two hydrostatic support devices (hereinafter referred to as “hydropads”) provided on both sides of the workpiece. Yes. An apparatus of this type is described in Japanese Patent Laid-Open No. 2002-280155A. According to this prior art, the workpiece-facing surfaces of the two hydropads are flat and oriented parallel to each other. Each hydropad has a plurality of hydrostatic bearings. Between these bearings, a medium used for hydrostatic bearings (hereinafter referred to as a “fluid bearing medium”) and grinding. A groove for leading out the cooling medium is arranged.

ハイドロパッドにはそれぞれ単数または複数の測定機構が組み込まれている。この測定機構は、研削過程中に、ハイドロパッドの表面とワーク表面との間の間隔を測定することができる。このような間隔の測定は、通常、動圧ノズルによってニューマチック式の動圧測定として行われる。動圧ノズルは、ガイド面を形成する、静圧式の支承部の縁部における単純な孔として形成される。ハイドロパッドとワークとの間の間隔を研削処理の場所のできるだけ近くで測定するために、動圧ノズルは通常、研削車に隣接するハイドロパッドの縁部の近傍に配置されている。   Each hydropad incorporates one or more measuring mechanisms. This measuring mechanism can measure the distance between the surface of the hydropad and the workpiece surface during the grinding process. Such an interval measurement is usually performed as a pneumatic dynamic pressure measurement by a dynamic pressure nozzle. The dynamic pressure nozzle is formed as a simple hole at the edge of the hydrostatic bearing that forms the guide surface. In order to measure the distance between the hydropad and the workpiece as close as possible to the location of the grinding process, the dynamic pressure nozzle is usually arranged in the vicinity of the edge of the hydropad adjacent to the grinding wheel.

このような間隔測定は、ハイドロパッドの間でワークをセンタリングするために行われる制御回路の一部である。この制御回路の作動部材は研削車対であって、この研削車対は、動圧測定の結果に応じて、固有の回転軸線に対して軸方向で摺動される。即ちこの場合、測定される動圧、ひいては、ワークとハイドロパッドとの間の間隔が、ワークの両側で同じになるように摺動される。   Such spacing measurements are part of a control circuit that is performed to center the workpiece between the hydropads. The operating member of the control circuit is a grinding wheel pair, and the grinding wheel pair is slid in the axial direction with respect to the specific rotation axis in accordance with the result of the dynamic pressure measurement. That is, in this case, sliding is performed so that the measured dynamic pressure, and hence the distance between the workpiece and the hydropad, is the same on both sides of the workpiece.

研削過程中に円板状ワークをこのように支承した場合、処理されたワークのジオメトリ、特に、ナノトポグラフィとして知られているジオメトリパラメータの悪化につながる次のような欠点が生じる。   When a disc-like workpiece is supported in this way during the grinding process, the following disadvantages result in deterioration of the geometry of the processed workpiece, in particular the geometry parameter known as nanotopography.

1.動圧測定が研削過程中に行われる。このことは、研削屑を含む流体支承媒体と研削冷却媒体とが動圧ノズルの領域に到り、動圧測定を乱す恐れがあることを意味する。結果としてワークは、研削過程中にハイドロパッドの間に正確に等距離には位置されない。   1. Dynamic pressure measurements are made during the grinding process. This means that the fluid bearing medium containing grinding debris and the grinding cooling medium may reach the region of the dynamic pressure nozzle and disturb the dynamic pressure measurement. As a result, the workpiece is not located exactly equidistant between the hydropads during the grinding process.

2.2つの研削車の研削特性が異なることにより、ワーク表面における圧縮歪みが異なる(英語ではsubsurface damage)。これによりワークが湾曲する。このような湾曲は一般的には回転対称的であることが特徴である。これによりさらに、ワークの部分領域が、ハイドロパッドの間の真ん中には位置していないことになる。静圧式の支承装置が、ワークのこの作用に反作用するので、ワークは両研削車に対して不均一に押し付けられ、相応に回転対称的な湾曲がワークに研削される。   2. Due to the different grinding characteristics of the two grinding wheels, the compressive strain on the workpiece surface differs (subsurface damage in English). As a result, the workpiece is curved. Such curvature is generally characterized by rotational symmetry. As a result, the partial area of the workpiece is not located in the middle between the hydropads. Since the hydrostatic bearing device counteracts this action of the workpiece, the workpiece is pressed non-uniformly against both grinding wheels and a corresponding rotationally symmetrical curve is ground on the workpiece.

そこで本発明の根底をなす課題は、改善されたハイドロパッドを提供し、両面研削装置でこのハイドロパッドを使用することにより、研削過程後に改善されたワークジオメトリを得ることである。   Thus, the problem underlying the present invention is to provide an improved hydropad and to obtain an improved work geometry after the grinding process by using this hydropad in a double-sided grinding machine.

この課題を解決するために本発明の構成では、静圧式の両支承装置の、ワークに面した各表面が平らに形成されておらず、即ち、表面とワークとの間の間隔が、静圧式の支承装置の、研削車に面した縁部で最小の値になり、この間隔は、研削車への距離が離れるほど増大するようにした。   In order to solve this problem, in the structure of the present invention, the surfaces facing the workpiece of the static pressure type both bearing devices are not formed flat, that is, the distance between the surface and the workpiece is static pressure type. The bearing device had a minimum value at the edge facing the grinding wheel, and this spacing increased as the distance to the grinding wheel increased.

本発明によれば、ハイドロパッドの、ワークに面した面が、ワークとハイドロパッドとの間の間隔が、通常、研削車の近傍に位置する動圧ノズルの場所で最小になるように形成されている。何故ならば測定間隔とともに外乱影響を受けやすくなるからである。また、静圧式の支承部におけるワークの位置に対するワーク湾曲の影響は、レバー作用に基づき、研削車から距離が離れるほど大きくなる。従って、ワークからハイドロパッドの間隔は本発明によれば、研削車もしくは、通常研削車の縁部の近傍に配置される動圧ノズルへの間隔が大きくなるほど大きくなっている。このことを保証するために、本発明によれば、ハイドロパッドの、ワークに面した表面が平坦ではないように形成されている。例えば、ハイドロパッドの表面は円錐状または凸状に形成されていて良い。この場合、有利には、ワークに最も近い点、即ち円錐の仮想先端は研削車の中心に位置している。ハイドロパッドの表面には段部が設けられていても良く、これによりハイドロパッドのワークからの距離は、研削車への間隔、もしくは通常研削車の縁部近傍に配置される動圧ノズルへの間隔が増大するにつれ増大するという要求が満たされている。ハイドロパッドの表面は有利には、ハイドロパッドと最終的に研削されたワークの表面との間の間隔が、研削車の近傍で、ひいては動圧ノズルの近傍で、約50〜200μmの範囲(特に有利には80〜120μmの範囲)にあって、ここから離れると、150〜250μmの範囲(特に有利には130〜170μmの範囲)にあるように形成されている。   According to the present invention, the surface of the hydropad facing the workpiece is formed so that the distance between the workpiece and the hydropad is usually the smallest at the location of the dynamic pressure nozzle located in the vicinity of the grinding wheel. ing. This is because it becomes more susceptible to disturbances with the measurement interval. Further, the influence of the workpiece curvature on the workpiece position in the static pressure type support portion increases based on the lever action as the distance from the grinding wheel increases. Therefore, according to the present invention, the distance between the workpiece and the hydropad increases as the distance to the dynamic pressure nozzle arranged near the edge of the grinding wheel or the normal grinding wheel increases. In order to ensure this, according to the present invention, the surface of the hydropad facing the workpiece is not flat. For example, the surface of the hydropad may be conical or convex. In this case, the point closest to the workpiece, i.e. the virtual tip of the cone, is advantageously located in the center of the grinding wheel. Steps may be provided on the surface of the hydropad, so that the distance of the hydropad from the workpiece can be adjusted to the distance to the grinding wheel or to the dynamic pressure nozzle that is usually located near the edge of the grinding wheel. The need to increase as the spacing increases is met. The surface of the hydropad advantageously has a spacing between the hydropad and the surface of the finally ground workpiece in the range of about 50 to 200 μm (especially in the vicinity of the grinding wheel and thus in the vicinity of the dynamic pressure nozzle) It is preferably in the range of 80 to 120 μm, and away from here, it is formed in the range of 150 to 250 μm (particularly preferably in the range of 130 to 170 μm).

さらに上記課題を解決するために本発明の構成では、各動圧ノズルの近傍に少なくとも1つの孔が設けられており、該孔を通って、流体および場合によっては研削屑が、動圧ノズルの周りから導出されるようにした。   Further, in order to solve the above-described problems, in the configuration of the present invention, at least one hole is provided in the vicinity of each dynamic pressure nozzle, and fluid and possibly grinding waste are passed through the hole. It was derived from the surroundings.

動圧ノズルは、研削過程中に流体支承媒体と、研削冷却媒体とワーク研削屑とから成る混合物による乱流にさらされる。このような乱流は、測定にとって著しい外乱ファクタである。このような問題を解決するために、この混合物は本発明によればできるだけ短い距離で、動圧ノズルの周りにおける臨界領域から導出される。この導出は、動圧孔に対して平行な動圧孔のすぐ近くに設けられた孔から直接行われる。この外乱流体は、この孔とハイドロパッドとを通って臨界的な領域から離れる。   The dynamic pressure nozzle is exposed to turbulence by a mixture of fluid bearing medium, grinding cooling medium and workpiece grinding debris during the grinding process. Such turbulence is a significant disturbance factor for the measurement. In order to solve such problems, this mixture is derived from the critical region around the dynamic pressure nozzle at as short a distance as possible according to the invention. This derivation is performed directly from a hole provided in the immediate vicinity of the dynamic pressure hole parallel to the dynamic pressure hole. This disturbance fluid leaves the critical region through the hole and the hydropad.

作用を改善するために、有利には、動圧ノズルの周りに複数の孔が設けられる。有利にはこれらの孔は、それぞれ隣接する孔に対して、かつ動圧ノズルに対して等距離に設けられている。   In order to improve the operation, a plurality of holes are advantageously provided around the dynamic pressure nozzle. These holes are preferably provided equidistant from each adjacent hole and to the dynamic pressure nozzle.

有利には、ハイドロパッドの本発明による構成(上記参照)は、動圧ノズルの周りから流体を導出するための複数の孔と、場合によってはリング状の溝とが組み合わされても良い。   Advantageously, the configuration according to the invention of the hydropad (see above) may be combined with a plurality of holes for extracting fluid from around the dynamic pressure nozzle and possibly a ring-shaped groove.

作用を改善する本発明の別の手段では、ハイドロパッドの、ワークに面した表面に設けられた孔が、動圧ノズルをリング状に取り囲む溝で終わっている。この構成も有利である。溝は有利には円形に形成されているが、別のジオメトリックな形状であっても良い。   According to another means of the present invention for improving the action, the hole provided in the surface of the hydropad facing the workpiece ends with a groove surrounding the dynamic pressure nozzle in a ring shape. This configuration is also advantageous. The grooves are preferably circular, but may have other geometric shapes.

さらに上記課題を解決するために本発明の構成では、静圧式の両支承装置の、ワークに面した各表面が、研削車に隣接する縁部に、縁部を起点とする溝を有していないようにした。   Further, in order to solve the above problems, in the configuration of the present invention, each surface of the hydrostatic bearing device facing the workpiece has a groove starting from the edge at the edge adjacent to the grinding wheel. I tried not to.

このような手段により、できるだけ僅かな研削冷却媒体が研削車の領域からハイドロパッドとワークとの間へと、ひいては動圧ノズルの周りの領域へと到る。測定を妨げる流体の量はこの手段により減じられ、従って測定の精度が改善される。   By such means, as little grinding cooling medium as possible reaches from the grinding wheel area to the area between the hydropad and the workpiece and thus to the area around the dynamic pressure nozzle. The amount of fluid that interferes with the measurement is reduced by this means, thus improving the accuracy of the measurement.

この手段を、本発明の構成のハイドロパッド(上記参照)と、動圧ノズルの周りから流体を導出するための孔と場合によっては環状の溝とに組み合わせると特に有利である。   It is particularly advantageous to combine this means with a hydropad (see above) of the construction according to the invention, a hole for extracting fluid from around the dynamic pressure nozzle and possibly an annular groove.

次に図面につき本発明の実施の形態を詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1および図2には概略的に円板状ワーク1が示されている。このワーク1は本発明による2つの円錐状のハイドロパッド2の間に支承されており、2つの共線的に配置された研削車3によって加工される。動圧ノズル4の位置は、ワーク中心の上方、即ち、ハイドロパッド2の縁部近くに位置している。動圧ノズル4によって、定置のハイドロパッド2とワーク表面との間の間隔が測定される。ワーク1とハイドロパッド2との間の間隔は、研削車3に面したハイドロパッド2の縁部で、ひいては、動圧ノズル4の場所の近くでも極めて小さく、研削車3への距離が離れるほどこの間隔は大きくなる。   1 and 2 schematically show a disk-shaped workpiece 1. The workpiece 1 is supported between two conical hydropads 2 according to the present invention and is processed by two collinearly arranged grinding wheels 3. The position of the dynamic pressure nozzle 4 is located above the workpiece center, that is, near the edge of the hydropad 2. The distance between the stationary hydropad 2 and the workpiece surface is measured by the dynamic pressure nozzle 4. The distance between the workpiece 1 and the hydro pad 2 is extremely small at the edge of the hydro pad 2 facing the grinding wheel 3 and, in the vicinity of the location of the dynamic pressure nozzle 4, so that the distance to the grinding wheel 3 increases. This interval increases.

図3および図4は、動圧ノズル4の有利な構成が示されている。動圧ノズル4を取り囲んで円形に、ハイドロパッド2に溝5が設けられている。この溝5では、動圧ノズル4からのニューマチック媒体と、液体封入支承媒体とが集められ、孔6を通ってハイドロパッド2から排出される。これによりこの孔と溝とには、ほぼ通常周囲の圧力に相当する圧力が存在する。このようにして動圧測定は、他の媒体からほぼ影響を受けることはない。   3 and 4 show an advantageous configuration of the dynamic pressure nozzle 4. A groove 5 is provided in the hydropad 2 so as to surround the dynamic pressure nozzle 4 in a circular shape. In this groove 5, the pneumatic medium from the dynamic pressure nozzle 4 and the liquid-filled support medium are collected and discharged from the hydropad 2 through the holes 6. As a result, a pressure corresponding to the normal pressure is present in the hole and the groove. In this way, the dynamic pressure measurement is almost unaffected by other media.

実施例
直径300mmの複数のシリコン単結晶から、従来のワイヤおさのこ盤(英語ではmulti wire saw, MWS)によって、厚さが1000μm以下の約10000の円板が裁断される。円板の半部は、次いで先行技術(比較例)のように、両面研削法で処理される。別の半部は本発明(実施例)のように両面研削法で処理される。この場合、一方のディスク面につきそれぞれ約50μmの材料が研削される。このために、市販の両面研削機(DDGマシン)、即ち日本の光洋機械工業株式会社のDXSG320が使用される。研削後にシリコンウェハはエッチングされポリッシングされる。ポリッシングされたシリコンウェハは、ナノマッパー(Nanomapper:ADE社)によってSQMMモードで測定される。THA4値が評価される。
Example From a plurality of silicon single crystals having a diameter of 300 mm, a disk having a thickness of about 10,000 μm or less and having a thickness of about 10,000 μm is cut by a conventional wire saw saw board (multiwire saw, MWS). The half of the disc is then processed by double-sided grinding as in the prior art (comparative example). The other half is processed by double-sided grinding as in the present invention (Example). In this case, about 50 μm of material is ground on each disk surface. For this purpose, a commercially available double-side grinding machine (DDG machine), that is, DXSG320 of Japan Koyo Machine Industry Co., Ltd. is used. After grinding, the silicon wafer is etched and polished. The polished silicon wafer is measured in the SQMM mode by a nanomapper (ADE). THA4 value is evaluated.

比較例
研削装置は、ワークに面した表面が平坦な従来技術の2つのハイドロパッドを備えている。ハイドロパッドはそれぞれ動圧ノズル4を、図1および図2に示した位置に有している。さらに、各ハイドロパッドは複数の溝を有しており、この溝は、研削車に面したハイドロパッドの縁部を起点としている。ナノトポグラフィの測定によれば、最終的にポリッシングされたシリコンウェハの平均値は、THA4パラメータのためには32.0nmであり、これは8.0nmの標準的な誤差を有している。
Comparative Example The grinding apparatus includes two conventional hydropads having a flat surface facing the workpiece. Each hydropad has a dynamic pressure nozzle 4 at the position shown in FIGS. Furthermore, each hydropad has a plurality of grooves, which start from the edge of the hydropad facing the grinding wheel. According to nanotopography measurements, the average value of the finally polished silicon wafer is 32.0 nm for the THA4 parameter, which has a standard error of 8.0 nm.

実施例
研削装置は、図1に示したようにワーク1に面した表面が円錐状に形成されている本発明の2つのハイドロパッド2を備えている。ハイドロパッドとワーク表面との間の間隔は、動圧ノズルにおいては、研削車3から最も離れた場所よりも約50μm小さい。ハイドロパッドはそれぞれ、図1および図2に示した位置で動圧ノズル4を有している。この場合、動圧ノズルには環状溝5と孔6とが設けられている。さらにハイドロパッドには、研削車に面したハイドロパッドの縁部を起点とする溝は設けられていない。ナノトポグラフィの測定によれば、最終的にポリッシングされたシリコンウェハの平均値は、THA4パラメータのためには26.5nmであり、これは4.3nmの標準的な誤差を有している。
Embodiment The grinding apparatus includes two hydropads 2 of the present invention in which the surface facing the workpiece 1 is formed in a conical shape as shown in FIG. The distance between the hydropad and the workpiece surface is about 50 μm smaller than the place farthest from the grinding wheel 3 in the dynamic pressure nozzle. Each hydropad has a dynamic pressure nozzle 4 at the position shown in FIGS. In this case, the dynamic pressure nozzle is provided with an annular groove 5 and a hole 6. Further, the hydropad is not provided with a groove starting from the edge of the hydropad facing the grinding wheel. According to nanotopography measurements, the average value of the final polished silicon wafer is 26.5 nm for the THA4 parameter, which has a standard error of 4.3 nm.

従ってハイドロパッドを本発明のように変更することにより、ナノトポグラフィに関して明らかに改善され、高いプロセス安定性が得られる。このようなプロセス安定性は標準的な誤差がより小さくなることに反映されている。種々様々な手段の正確な分析により、ハイドロパッドの形状の変更は主として平均値を小さくし、リング溝と孔を設けることにより不都合な流体を導出でき、縁部を起点とする溝を設けないことによりまず第一に標準的な誤差を小さくすることができる。   Thus, by modifying the hydropad as in the present invention, a clear improvement with respect to nanotopography and high process stability is obtained. Such process stability is reflected in the smaller standard error. By accurate analysis of various means, the hydropad shape change mainly reduces the average value, and by providing ring grooves and holes, inconvenient fluid can be derived, and no groove starting from the edge is provided First of all, the standard error can be reduced.

本発明による装置は、従来のDDG装置において、円板状ワーク、例えば半導体ウェハの研削、特にシリコンウェハの研削のために使用される。   The device according to the invention is used in a conventional DDG device for grinding disc-like workpieces, for example semiconductor wafers, in particular silicon wafers.

本発明による2つの円錐状のハイドロパッドの間に支承されていて、同線的に配置された2つの研削車によって処理される円板状ワークを概略的に示した図であって、ワークの軸線と研削車の軸線とを有した平面に沿って断面した図である。1 is a diagram schematically showing a disk-shaped workpiece supported between two conical hydropads according to the invention and processed by two grinding wheels arranged collinearly, It is the figure which cut along the plane which has an axis and the axis of a grinding wheel. 図1に示したハイドロパッドの1つと、対応する研削車とを示した平面図である。It is the top view which showed one of the hydropads shown in FIG. 1, and a corresponding grinding wheel. 動圧ノズルの有利な構成を示した平面図であって、動圧ノズルを取り囲む円形の溝がハイドロパッドに設けられている。FIG. 2 is a plan view showing an advantageous configuration of a dynamic pressure nozzle, in which a circular groove surrounding the dynamic pressure nozzle is provided in the hydropad. 図3に示した動圧ノズルの横断面図である。FIG. 4 is a transverse sectional view of the dynamic pressure nozzle shown in FIG. 3.

符号の説明Explanation of symbols

1 ワーク、 2 ハイドロパッド、 3 研削車、 4 動圧ノズル、 5 溝、 6 孔   1 Workpiece, 2 Hydropad, 3 Grinding wheel, 4 Dynamic pressure nozzle, 5 Groove, 6 hole

Claims (2)

円板状ワークの同時両面研削のための装置であって、共線的に配置された2つのほぼ円形の研削車が設けられており、該研削車の研削面は、研削車の回転軸線に関して軸方向で互いに向かい合って位置しており、円板状ワークを静圧式に支承するための同様に互いに向かい合って位置する2つの装置が設けられており、これらの装置は、少なくともそれぞれ1つの静圧式の支承部と、ワークと静圧式の支承装置との間の間隔を測定するための少なくともそれぞれ1つの動圧ノズルとを有している形式のものにおいて、
各動圧ノズルの近傍に少なくとも1つの孔が設けられており、該孔を通って、流体および場合によっては研削屑が、動圧ノズルの周りから導出されることを特徴とする、円板状ワークの同時両面研削のための装置。
An apparatus for simultaneous double-side grinding of a disk-shaped workpiece, comprising two substantially circular grinding wheels arranged collinearly, the grinding surface of the grinding wheel being related to the rotational axis of the grinding wheel Two devices are provided which are located opposite each other in the axial direction and are located opposite each other in a similar manner for hydrostatically supporting the disc-like workpiece, each of which is at least one hydrostatic type And a type having at least one dynamic pressure nozzle for measuring the distance between the workpiece and the hydrostatic support device,
A disk-shaped, characterized in that at least one hole is provided in the vicinity of each dynamic pressure nozzle, through which fluid and possibly grinding debris are led out from around the dynamic pressure nozzle Equipment for simultaneous double-side grinding of workpieces.
円板状ワークの静圧式の支承装置の表面に設けられた孔が、動圧ノズルを環状に取り囲む溝で終わっている、請求項1記載の装置。   2. The device according to claim 1, wherein the hole provided in the surface of the hydrostatic support device for the disk-like work ends with a groove surrounding the dynamic pressure nozzle in an annular shape.
JP2007012695A 2004-03-11 2007-01-23 Equipment for simultaneous double-side grinding of disk-shaped workpieces Active JP4550841B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004011996A DE102004011996B4 (en) 2004-03-11 2004-03-11 Device for simultaneous two-sided grinding of disc-shaped workpieces

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005067636A Division JP4012546B2 (en) 2004-03-11 2005-03-10 Equipment for simultaneous double-side grinding of disk-shaped workpieces

Publications (2)

Publication Number Publication Date
JP2007105877A true JP2007105877A (en) 2007-04-26
JP4550841B2 JP4550841B2 (en) 2010-09-22

Family

ID=34895248

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005067636A Active JP4012546B2 (en) 2004-03-11 2005-03-10 Equipment for simultaneous double-side grinding of disk-shaped workpieces
JP2007012695A Active JP4550841B2 (en) 2004-03-11 2007-01-23 Equipment for simultaneous double-side grinding of disk-shaped workpieces

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2005067636A Active JP4012546B2 (en) 2004-03-11 2005-03-10 Equipment for simultaneous double-side grinding of disk-shaped workpieces

Country Status (6)

Country Link
US (1) US6997779B2 (en)
JP (2) JP4012546B2 (en)
KR (1) KR100618105B1 (en)
CN (1) CN100364062C (en)
DE (1) DE102004011996B4 (en)
TW (1) TWI289095B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560461B1 (en) * 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
JP4752475B2 (en) * 2005-12-08 2011-08-17 信越半導体株式会社 Semiconductor wafer double-head grinding apparatus, hydrostatic pad and double-head grinding method using the same
US7930058B2 (en) 2006-01-30 2011-04-19 Memc Electronic Materials, Inc. Nanotopography control and optimization using feedback from warp data
US7601049B2 (en) * 2006-01-30 2009-10-13 Memc Electronic Materials, Inc. Double side wafer grinder and methods for assessing workpiece nanotopology
US7662023B2 (en) * 2006-01-30 2010-02-16 Memc Electronic Materials, Inc. Double side wafer grinder and methods for assessing workpiece nanotopology
JP5518338B2 (en) * 2006-01-30 2014-06-11 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Wafer double-sided grinder and method for evaluating nanotopology of workpieces
DE102007056627B4 (en) * 2007-03-19 2023-12-21 Lapmaster Wolters Gmbh Method for grinding several semiconductor wafers simultaneously
DE102007063770B3 (en) * 2007-10-17 2014-11-06 Siltronic Ag Simultaneous double side grinding of semiconductor wafers
DE102007049810B4 (en) 2007-10-17 2012-03-22 Siltronic Ag Simultaneous double side grinding of semiconductor wafers
JP4985451B2 (en) * 2008-02-14 2012-07-25 信越半導体株式会社 Double-head grinding apparatus for workpiece and double-head grinding method for workpiece
DE102008026782A1 (en) 2008-06-04 2009-07-09 Siltronic Ag Double sided grinding machine for simultaneous bilateral grinding of e.g. semiconductor wafer, has hydro-pad for hydrostatic storage of discoidal work-piece, where hydro-pad is made of titanium and not laminated
DE102009038942B4 (en) * 2008-10-22 2022-06-23 Peter Wolters Gmbh Device for machining flat workpieces on both sides and method for machining a plurality of semiconductor wafers simultaneously by removing material from both sides
JP5820329B2 (en) * 2012-04-24 2015-11-24 光洋機械工業株式会社 Double-head surface grinding method and double-head surface grinding machine
JP2014050929A (en) * 2012-09-07 2014-03-20 Komatsu Ntc Ltd Double head grinding device and grinding method
CN103433820B (en) * 2013-07-18 2015-10-21 温州华聚科技有限公司 The grinding equipment of high depth of parallelism workpiece and control method thereof
CN107234509A (en) * 2016-03-28 2017-10-10 沈阳海默数控机床有限公司 A kind of double-side grinding apparatus of thin plate circular-plate-shaped workpieces
DE102017215705A1 (en) 2017-09-06 2019-03-07 Siltronic Ag Apparatus and method for double-sided grinding of semiconductor wafers
EP3900876B1 (en) 2020-04-23 2024-05-01 Siltronic AG Method of grinding a semiconductor wafer
CN115070604B (en) * 2022-06-09 2023-09-29 西安奕斯伟材料科技股份有限公司 Double-sided polishing apparatus and double-sided polishing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06654U (en) * 1992-06-11 1994-01-11 株式会社三協精機製作所 Grinding machine
JP2001062718A (en) * 1999-08-20 2001-03-13 Super Silicon Kenkyusho:Kk Double head grinding device and grinding wheel position correcting method
JP2001088021A (en) * 1999-09-22 2001-04-03 Speedfam Co Ltd Polishing device with polishing termination point detecting mechanism
JP2002001652A (en) * 2000-06-22 2002-01-08 Nikon Corp Polishing pad and apparatus, and manufacturing device
JP2002018710A (en) * 2000-07-07 2002-01-22 Canon Inc Method and device for polishing substrate, and method and device for measurng film thickness
JP2002170800A (en) * 2000-12-01 2002-06-14 Nikon Corp Polishing apparatus, method for manufacturing semiconductor device using the same and semiconductor device manufactured by this method
JP2002307303A (en) * 2001-04-10 2002-10-23 Koyo Mach Ind Co Ltd Both face grinding method for thin plate disclike workpiece and device thereof
JP2002307272A (en) * 2001-04-16 2002-10-23 Riken Corp Double-end surface grinding method and device
JP2003019648A (en) * 2001-07-09 2003-01-21 Nippei Toyama Corp Double ended grinding machine
JP2003097935A (en) * 2001-09-20 2003-04-03 Nippei Toyama Corp Range detecting device and thickness detecting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558960A (en) * 1978-10-20 1980-05-02 Nisshin Kikai Seisakusho:Kk Regulating wheel head for centerless grinder
DE3041663A1 (en) * 1980-11-05 1982-06-09 Buderus Ag, 6330 Wetzlar METHOD AND MACHINE FOR INNER AND EXTERNAL ROUND GRINDING OF WORKPIECES
JPH09150356A (en) * 1995-11-28 1997-06-10 Nisshin Kogyo Kk Grinding wheel head for double head plane grinding machine
JP3138205B2 (en) * 1996-03-27 2001-02-26 株式会社不二越 High brittleness double-side grinding machine
JP3217731B2 (en) * 1997-04-18 2001-10-15 株式会社日平トヤマ Wafer processing method and double-sided surface grinder
JPH11198009A (en) 1998-01-13 1999-07-27 Koyo Mach Ind Co Ltd Double side grinding device and cross section measuring device for thin plate disk workpiece
JP3323435B2 (en) 1998-01-20 2002-09-09 光洋機械工業株式会社 Grinding method for double-sided grinding of thin workpiece
JP2000141214A (en) * 1998-11-13 2000-05-23 Okamoto Machine Tool Works Ltd Double side grinder of wafer
JP3951496B2 (en) * 1999-03-30 2007-08-01 光洋機械工業株式会社 Double-side grinding machine for thin disk-shaped workpieces
JP2002346921A (en) * 2001-05-21 2002-12-04 Naoetsu Electronics Co Ltd Work attaching/detaching device
JP2002346924A (en) * 2001-05-29 2002-12-04 Sumitomo Heavy Ind Ltd Work holder
DE102004005702A1 (en) * 2004-02-05 2005-09-01 Siltronic Ag Semiconductor wafer, apparatus and method for producing the semiconductor wafer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06654U (en) * 1992-06-11 1994-01-11 株式会社三協精機製作所 Grinding machine
JP2001062718A (en) * 1999-08-20 2001-03-13 Super Silicon Kenkyusho:Kk Double head grinding device and grinding wheel position correcting method
JP2001088021A (en) * 1999-09-22 2001-04-03 Speedfam Co Ltd Polishing device with polishing termination point detecting mechanism
JP2002001652A (en) * 2000-06-22 2002-01-08 Nikon Corp Polishing pad and apparatus, and manufacturing device
JP2002018710A (en) * 2000-07-07 2002-01-22 Canon Inc Method and device for polishing substrate, and method and device for measurng film thickness
JP2002170800A (en) * 2000-12-01 2002-06-14 Nikon Corp Polishing apparatus, method for manufacturing semiconductor device using the same and semiconductor device manufactured by this method
JP2002307303A (en) * 2001-04-10 2002-10-23 Koyo Mach Ind Co Ltd Both face grinding method for thin plate disclike workpiece and device thereof
JP2002307272A (en) * 2001-04-16 2002-10-23 Riken Corp Double-end surface grinding method and device
JP2003019648A (en) * 2001-07-09 2003-01-21 Nippei Toyama Corp Double ended grinding machine
JP2003097935A (en) * 2001-09-20 2003-04-03 Nippei Toyama Corp Range detecting device and thickness detecting device

Also Published As

Publication number Publication date
KR100618105B1 (en) 2006-08-29
KR20060043837A (en) 2006-05-15
CN1667799A (en) 2005-09-14
DE102004011996A1 (en) 2005-09-29
JP4012546B2 (en) 2007-11-21
TW200529976A (en) 2005-09-16
US20050202757A1 (en) 2005-09-15
CN100364062C (en) 2008-01-23
DE102004011996B4 (en) 2007-12-06
JP2005254449A (en) 2005-09-22
TWI289095B (en) 2007-11-01
US6997779B2 (en) 2006-02-14
JP4550841B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4012546B2 (en) Equipment for simultaneous double-side grinding of disk-shaped workpieces
JP6132621B2 (en) Method for slicing semiconductor single crystal ingot
KR100642879B1 (en) Method and device for simultaneously grinding double surfaces, and method and device for simultaneously lapping double surfaces
JP2008084976A (en) Grinding method of wafer
KR20120026460A (en) Method of polishing object to be polished and polishing pad
JP6000235B2 (en) Work cutting method and work holding jig
JP4620501B2 (en) Polishing pad
JP4752475B2 (en) Semiconductor wafer double-head grinding apparatus, hydrostatic pad and double-head grinding method using the same
JP5003015B2 (en) Substrate grinding method
JP2010052084A (en) Blade with hub
US20150105006A1 (en) Method to sustain minimum required aspect ratios of diamond grinding blades throughout service lifetime
JP5439217B2 (en) Ring-shaped holder for double-head grinding machine and double-head grinding machine
JP6708159B2 (en) Dicing machine
JP2021040097A (en) Cutting method of workpiece
JPH03184756A (en) Grinding method for wafer
KR101453683B1 (en) Apparatus and method of griding wafer edge
CN212095894U (en) Improved apparatus for disc grinding of semiconductor wafers
JP2010017820A (en) Blade with hub
JP5681418B2 (en) Processing method
JP2005159011A (en) Manufacturing method of grinding device, retainer ring and semiconductor device
JP2003191150A (en) Method for detecting unbalance of rotation blade and detection device
JP2007331034A (en) Workpiece carrier and double-side grinding machine
JP2009126006A (en) Cutting method for workpiece
Dobrescu et al. Improving the slicing process characteristic parameters
JP2003191149A (en) Method for detecting damage of rotation blade and detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4550841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250