JP2007105633A - Exhaust-gas cleaning catalyst - Google Patents

Exhaust-gas cleaning catalyst Download PDF

Info

Publication number
JP2007105633A
JP2007105633A JP2005299249A JP2005299249A JP2007105633A JP 2007105633 A JP2007105633 A JP 2007105633A JP 2005299249 A JP2005299249 A JP 2005299249A JP 2005299249 A JP2005299249 A JP 2005299249A JP 2007105633 A JP2007105633 A JP 2007105633A
Authority
JP
Japan
Prior art keywords
particles
oxide
lnox
rare earth
pdo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005299249A
Other languages
Japanese (ja)
Inventor
Hideaki Morisaka
英昭 森坂
Hironori Wakamatsu
広憲 若松
Masaki Nakamura
雅紀 中村
Katsuo Suga
克雄 菅
Hideyuki Honda
英幸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005299249A priority Critical patent/JP2007105633A/en
Publication of JP2007105633A publication Critical patent/JP2007105633A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust-gas cleaning catalyst having the excellent durability under a high temperature environment. <P>SOLUTION: The exhaust-gas cleaning catalyst has a carrier 2 formed from an oxide, many number of PdO particles 3 of an average particle diameter of ≥1 nm and ≤50 nm, supported by the carrier 2, and many number of LnOx (rare-earth oxide) particles 4 of the average particle diameter of ≥1 nm and ≤50 nm, which contact with PdO particles 3 while being supported by the carrier 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車用エンジンに代表される内燃機関から排出される炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などを含む排ガスを浄化する排ガス浄化触媒に関する。   The present invention relates to an exhaust gas purification catalyst that purifies exhaust gas containing hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and the like discharged from an internal combustion engine represented by an automobile engine.

自動車に代表される内燃機関から排出される排ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害なガスが含まれており、排ガス中に含まれる三成分の有害なガスを同時に浄化できる三元触媒が使用されている。三元触媒は、多孔質体である担体(例えば、アルミナ(γ−Al2O3))に貴金属粒子(例えば、Pt、Rh、Pd)を担持したものを、さらに基材(コージェライト製のハニカム等)上にコーティングして形成される。 The exhaust gas emitted from internal combustion engines such as automobiles contains harmful gases such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). Three-way catalysts that can simultaneously purify the three-component harmful gases are used. The three-way catalyst is a porous material (for example, alumina (γ-Al 2 O 3 )) on which noble metal particles (for example, Pt, Rh, Pd) are supported, and a base material (made of cordierite). Formed on a honeycomb or the like).

三元触媒などの触媒の活性は、担体に担持された貴金属粒子の表面積にほぼ比例するため、担体に微粒の貴金属粒子を均一に分散させて、貴金属粒子の表面積を大きくすることにより触媒の活性を高めている。しかし、貴金属粒子は微粒になりすぎると、その表面エネルギの増大に伴い凝集し易くなり、触媒の活性が低下する恐れを有していた。貴金属粒子の凝集が生じる要因として、このように貴金属粒子自身が移動して凝集することの他にも、担体の収縮に伴って貴金属粒子の凝集が生じるものもある。   Since the activity of a catalyst such as a three-way catalyst is approximately proportional to the surface area of the noble metal particles supported on the support, the activity of the catalyst can be increased by uniformly dispersing fine noble metal particles on the support and increasing the surface area of the noble metal particles. Is increasing. However, if the noble metal particles are too fine, they are likely to aggregate with an increase in surface energy, which may reduce the activity of the catalyst. In addition to the movement and aggregation of the noble metal particles themselves, there are other factors that cause the aggregation of the noble metal particles as the carrier contracts.

近年、ガソリンエンジンの高出力化、高速走行の増加などを背景に、自動車から排気される排ガスが高温となる傾向があり、また、エンジンスタート時の排ガスの浄化温度までの昇温を速やかに行うために、触媒は、エンジン直下に配置されるため、三元触媒などの排ガス浄化触媒は、高温環境下に晒される傾向を有していた。このため、貴金属粒子の移動と担体の収縮とに伴い、貴金属粒子が凝集し易い傾向を有していた。   In recent years, the exhaust gas exhausted from automobiles tends to become hot against the background of higher output of gasoline engines and increased high-speed driving, etc., and the temperature is quickly raised to the exhaust gas purification temperature when the engine is started. Therefore, since the catalyst is disposed directly under the engine, the exhaust gas purification catalyst such as a three-way catalyst has a tendency to be exposed to a high temperature environment. For this reason, the noble metal particles tend to agglomerate with the movement of the noble metal particles and the contraction of the carrier.

そこで、高温環境下での耐熱性を向上させた排ガス浄化触媒の開発が進められている。貴金属として、例えば、Pt、Rh、Pdが使用されているが、特に、Pdは、低温での炭化水素(HC)の酸化に優れているものの、耐熱性に劣ることが判明している。   Therefore, development of an exhaust gas purifying catalyst having improved heat resistance under a high temperature environment is underway. For example, Pt, Rh, and Pd are used as noble metals. In particular, Pd has been found to be inferior in heat resistance, although it is excellent in oxidizing hydrocarbons (HC) at low temperatures.

そこで、一般式ABO3で表されるペロブスカイト型構造の複合酸化物から担体を形成し、この複合酸化物に貴金属(Pd)を含浸担持させて、耐熱性を向上させた排ガス浄化触媒が開示されている(特許文献1参照)。また、ペロブスカイト型構造の複合酸化物の組成にPdを含めて担体を構成し、耐熱性を向上させた排ガス浄化触媒も知られている。
特開2005−66559号公報
Thus, an exhaust gas purification catalyst is disclosed in which a support is formed from a composite oxide having a perovskite structure represented by the general formula ABO 3 , and this composite oxide is impregnated and supported with a noble metal (Pd) to improve heat resistance. (See Patent Document 1). There is also known an exhaust gas purifying catalyst in which a support including Pd is included in the composition of a composite oxide having a perovskite structure to improve heat resistance.
JP 2005-66559 A

しかしながら、上述した排ガス浄化触媒においても、実際に排ガスを浄化すると耐熱性が不十分であり、熱に伴う貴金属粒子の粒成長が生じて貴金属粒子の表面積が低下し、この結果、触媒の活性が低下する恐れを有していた。   However, even in the above-described exhaust gas purification catalyst, when the exhaust gas is actually purified, the heat resistance is insufficient, the grain growth of the noble metal particles accompanying heat occurs, the surface area of the noble metal particles is reduced, and as a result, the activity of the catalyst is reduced. Had the risk of falling.

このような現象が生じる原因として、800℃以上の高温度域においてはPdOの分解によってPdがメタル化して、急速にPd粒子が凝集してしまい、Pd粒子の表面積の低下に伴いPdの活性が低下することが挙げられる。   As a cause of such a phenomenon, Pd is metalized by decomposition of PdO in a high temperature range of 800 ° C. or higher, Pd particles are rapidly aggregated, and the activity of Pd is reduced as the surface area of Pd particles is reduced. It may be reduced.

また、Pd粒子の凝集は、特に還元雰囲気下において生じ易いが、870℃以上の高温度域になると、排ガス浄化触媒が晒される酸化雰囲気あるいは還元雰囲気によらず、Pdのメタル化が起こり、Pd粒子の凝集が生じ易くなる恐れがあるからである。   Aggregation of Pd particles is likely to occur particularly in a reducing atmosphere. However, in a high temperature range of 870 ° C. or higher, Pd metalation occurs regardless of the oxidizing atmosphere or reducing atmosphere to which the exhaust gas purification catalyst is exposed. This is because the particles are likely to aggregate.

本発明は、上記課題を解決するためになされたものであり、すなわち、本発明の排ガス浄化触媒は、酸化物から形成される担体と、担体に担持された、平均粒径1nm以上50nm以下の多数の酸化パラジウム(PdO)粒子と、酸化パラジウム(PdO)粒子と接触して担体に担持された、平均粒径1nm以上50nm以下の多数の希土類酸化物(LnOx)粒子と、を有することを要旨とする。   The present invention has been made to solve the above-described problems. That is, the exhaust gas purifying catalyst of the present invention has a carrier formed of an oxide and an average particle size of 1 nm to 50 nm carried on the carrier. It has a large number of palladium oxide (PdO) particles and a large number of rare earth oxide (LnOx) particles having an average particle diameter of 1 nm or more and 50 nm or less that are supported on the support in contact with the palladium oxide (PdO) particles. And

本発明の排ガス浄化触媒によれば、PdOの分解によりPdが析出される温度を高温度域とすることにより、高温耐久後のPd粒子の粒成長が抑制されて、触媒の活性低下を防ぐことができる。   According to the exhaust gas purification catalyst of the present invention, the temperature at which Pd is precipitated by decomposition of PdO is set to a high temperature range, so that the growth of Pd particles after high-temperature durability is suppressed and the catalyst activity is prevented from decreasing. Can do.

以下、添付図面を参照し、本発明の実施の形態に係る排ガス浄化触媒を説明する。   Hereinafter, an exhaust gas purification catalyst according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の実施の形態に係る排ガス浄化触媒の断面図を図1に示す。排ガス浄化触媒1は、酸化物から形成される担体2に、平均粒径1nm以上50nm以下の酸化パラジウム(PdO)粒子3と、平均粒径1nm以上50nm以下の希土類酸化物(LnOx)粒子4と、がそれぞれ多数担持されており、酸化パラジウム(PdO)粒子3と希土類酸化物(LnOx)粒子4とは互いに接触して配置される。なお、ここでは図示しないが、担体2に助触媒粒子を担持させても良い。   FIG. 1 shows a cross-sectional view of an exhaust gas purification catalyst according to an embodiment of the present invention. The exhaust gas purifying catalyst 1 includes a carrier 2 formed of an oxide, palladium oxide (PdO) particles 3 having an average particle size of 1 nm to 50 nm, and rare earth oxide (LnOx) particles 4 having an average particle size of 1 nm to 50 nm. , And palladium oxide (PdO) particles 3 and rare earth oxide (LnOx) particles 4 are arranged in contact with each other. Although not shown here, promoter particles may be supported on the carrier 2.

貴金属としてPdを用いた触媒の場合には、PdOからPdへと脱酸素によるメタル化が起こり、これに起因してPd粒子が凝集し、Pd粒子の表面積の低下に伴い触媒の活性が低下してしまう。このため、担体上に、PdO粒子とLnOx粒子(Lnは希土類元素である)とを共存させることにより、PdOからPdの析出温度を高温側にシフトさせることが可能である。従って、本発明において、PdO粒子と酸化パラジウム(PdO)粒子3及び希土類酸化物(LnOx)粒子4のそれぞれの平均粒径を1nm以上50nm以下と規定することにより、Pdの析出温度をさらに高温側とすることができ、三元触媒の使用温度域におけるPdメタル化を抑制し、触媒活性の高い排ガス浄化触媒を得ることができる。   In the case of a catalyst using Pd as a noble metal, metalization by deoxygenation occurs from PdO to Pd, resulting in the aggregation of Pd particles, and the activity of the catalyst decreases as the surface area of Pd particles decreases. End up. For this reason, by allowing PdO particles and LnOx particles (Ln is a rare earth element) to coexist on the support, it is possible to shift the precipitation temperature of Pd from PdO to the high temperature side. Therefore, in the present invention, by defining the average particle size of each of the PdO particles, the palladium oxide (PdO) particles 3 and the rare earth oxide (LnOx) particles 4 to 1 nm to 50 nm, the Pd precipitation temperature is further increased. The Pd metalation in the operating temperature range of the three-way catalyst can be suppressed, and an exhaust gas purification catalyst having high catalytic activity can be obtained.

さらに、上述した酸化パラジウム粒子3の平均粒径と、希土類酸化物粒子4の平均粒径とは、1nm以上20nm以下とすることが好ましい。   Furthermore, the average particle diameter of the palladium oxide particles 3 and the average particle diameter of the rare earth oxide particles 4 are preferably 1 nm or more and 20 nm or less.

また、上記排ガス浄化触媒1において、希土類酸化物粒子4は、La、Nd、Sm、Eu、Gd、Dy、Ce及びPrの中から選択される少なくとも一種の元素を含む酸化物から形成されることが好ましい。   In the exhaust gas purification catalyst 1, the rare earth oxide particles 4 are formed of an oxide containing at least one element selected from La, Nd, Sm, Eu, Gd, Dy, Ce, and Pr. Is preferred.

担体2は、Al2O3、ZrO2、SiO2、TiO2及びCeO2の中から選択される少なくとも一種の酸化物又は二種以上の複合酸化物から形成されることが好ましい。 The support 2 is preferably formed of at least one oxide selected from Al 2 O 3 , ZrO 2 , SiO 2 , TiO 2, and CeO 2 or a composite oxide of two or more.

助触媒粒子は、Mn、Fe、Co及びNiの中から選択される一種の元素、又は、二種以上の複合物(合金、混合粒)から形成することが好ましい。製造する触媒の機能、用途に応じて、任意に選択すると良い。   The promoter particles are preferably formed from one element selected from Mn, Fe, Co, and Ni, or two or more composites (alloys, mixed grains). It may be arbitrarily selected according to the function and application of the catalyst to be produced.

また、上記排ガス浄化触媒1において、担体2に担持される酸化パラジウム(PdO)粒子3と希土類酸化物粒子(LnOx)4とは、以下に示すモル比とすることが好ましい。   Further, in the exhaust gas purification catalyst 1, the palladium oxide (PdO) particles 3 and the rare earth oxide particles (LnOx) 4 supported on the carrier 2 are preferably in the molar ratio shown below.

具体的には、酸化パラジウム(PdO)と前記希土類酸化物(LnOx)とのモル比が1:1であるか、又はこのモル比よりもLnOxの割合が高いことが好ましく、また、モル比が1:2であるか、又はこのモル比よりもLnOxの割合が高いことが好ましい。さらに、酸化パラジウム(PdO)と希土類酸化物(LnOx)とのモル比は1:4であるか、又はこのモル比よりもLnOxの割合が高いことが好ましく、また、このモル比は、1:10であるか、又はこのモル比よりもLnOxの割合が高いことがより好ましい。このように希土類酸化物(LnOx)の存在する割合をより高くすることにより、PdOからPdの析出温度を高温度域にシフトさせることが可能となる。特に、酸化パラジウム(PdO)と希土類酸化物(LnOx)とのモル比を1:10とし、希土類酸化物のモル比をより高くして触媒を形成して調べると、XRDの回折ピークではPd、PdOが検出されず、担体にPdとPdOとが高分散の状態として担持された触媒とすることができる。この結果、触媒の活性サイトが多くなり、触媒の活性低下を防ぐことができる。   Specifically, it is preferable that the molar ratio of palladium oxide (PdO) to the rare earth oxide (LnOx) is 1: 1, or the ratio of LnOx is higher than this molar ratio, and the molar ratio is It is preferable that the ratio is 1: 2, or the ratio of LnOx is higher than this molar ratio. Furthermore, the molar ratio of palladium oxide (PdO) to rare earth oxide (LnOx) is preferably 1: 4, or the ratio of LnOx is higher than this molar ratio. More preferably, it is 10 or the ratio of LnOx is higher than this molar ratio. As described above, by increasing the ratio of the rare earth oxide (LnOx), the deposition temperature of Pd from PdO can be shifted to a high temperature range. In particular, when the molar ratio of palladium oxide (PdO) and rare earth oxide (LnOx) is 1:10 and the molar ratio of the rare earth oxide is increased to form a catalyst, the XRD diffraction peak shows Pd, A catalyst in which PdO is not detected and Pd and PdO are supported in a highly dispersed state on a support can be obtained. As a result, the number of active sites of the catalyst increases, and a decrease in the activity of the catalyst can be prevented.

なお、図1に示す構成の排ガス浄化触媒1に限定されるものではなく、図2に示す排ガス浄化触媒6の構成としても良い。図1及び図2に示す触媒と同一箇所に関しては、同一符号を用いてその説明を省略する。排ガス浄化触媒6は、担体2に、パラジウムと希土類酸化物との複合化合物から形成される複合粒子7を担持して形成されたものである。ここでは、図1に示した酸化パラジウム(PdO)粒子3と希土類酸化物(LnOx)粒子4とが複合化して形成された複合粒子7としたが、完全に複合化したものに限らず、酸化パラジウム(PdO)粒子3と希土類酸化物(LnOx)粒子4とが接触した一部に、パラジウムと希土類元素との複合化合物が形成されたものであっても良い。なお、このパラジウムと希土類元素とを含む複合化合物LnxPdyOzの(x、y、zは任意)を満たす組成式とすることが好ましい。例えば、複合酸化物LnxPdyOzとして、Ln2PdO4、Ln2Pd2O5、Ln4PdO7などを挙げることができる。この場合においても、複合粒子7は触媒活性種として機能するため、触媒の高活性化を図るために、複合粒子7の平均粒径は、1nm以上50nm以下とすることが好ましく、さらに複合粒子7の平均粒径は1nm以上20nm以下とすることが好ましい。このようにPdOとLnOxとの混合物、あるいは両者の複合酸化物は、担体と比較して微粒子であるため、担体上に複合粒子を分散させて担持することにより、触媒の活性を高めることができる。 In addition, it is not limited to the exhaust gas purification catalyst 1 of the structure shown in FIG. 1, It is good also as a structure of the exhaust gas purification catalyst 6 shown in FIG. About the same location as the catalyst shown in FIG.1 and FIG.2, the description is abbreviate | omitted using the same code | symbol. The exhaust gas purification catalyst 6 is formed by supporting composite particles 7 formed of a composite compound of palladium and rare earth oxide on a carrier 2. Here, the composite particles 7 formed by combining the palladium oxide (PdO) particles 3 and the rare earth oxide (LnOx) particles 4 shown in FIG. 1 are used. A composite compound of palladium and a rare earth element may be formed in a part where the palladium (PdO) particle 3 and the rare earth oxide (LnOx) particle 4 are in contact with each other. In addition, it is preferable to set it as the composition formula which satisfy | fills (x, y, z are arbitrary) of the complex compound LnxPdyOz containing this palladium and rare earth elements. For example, examples of the composite oxide LnxPdyOz include Ln 2 PdO 4 , Ln 2 Pd 2 O 5 , and Ln 4 PdO 7 . Even in this case, since the composite particles 7 function as catalytically active species, the average particle size of the composite particles 7 is preferably 1 nm or more and 50 nm or less in order to increase the catalyst activity. The average particle size is preferably 1 nm or more and 20 nm or less. As described above, since the mixture of PdO and LnOx or the composite oxide of both is finer than the support, the activity of the catalyst can be enhanced by dispersing and supporting the composite particles on the support. .

さらに、前述した本発明の実施の形態に係る排ガス浄化触媒1、6は、前述した触媒を含む触媒スラリとして、触媒スラリを耐火性の無機基材(例えば、コーディエライト製のハニカム)上にコーティングして、触媒層を有する排ガス浄化触媒として実際に使用されることが好ましい。これにより自動車に代表される内燃機関から排出される排ガスを浄化する排ガス浄化触媒として使用することが可能となる。   Further, the above-described exhaust gas purification catalysts 1 and 6 according to the embodiment of the present invention are prepared as a catalyst slurry containing the above-described catalyst on a refractory inorganic base material (for example, a cordierite honeycomb). It is preferably used as an exhaust gas purification catalyst having a catalyst layer by coating. As a result, it can be used as an exhaust gas purification catalyst for purifying exhaust gas discharged from an internal combustion engine represented by an automobile.

以下、さらに実施例を用いて具体的に説明する。なお、本発明の実施の形態に係る排ガス浄化触媒は、例示した実施例に限定されないことはもちろんである。   Hereinafter, further specific description will be made using examples. Of course, the exhaust gas purifying catalyst according to the embodiment of the present invention is not limited to the illustrated examples.

実施例1
水500g中に、Nd(NO33・6H2O 6.181gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 47.8gと、を投入し、1時間攪拌して水溶液とした。この水溶液を150℃の恒温槽中に入れて一昼夜放置した後、水溶液中の水分を蒸発させて乾燥粉末とした。得られた乾燥粉末を400℃で1時間焼成して、Al2O3から形成される担体にPdO粒子とNd2O3粒子とが担持された触媒を得た。
Example 1
Into 500 g of water, 6.181 g of Nd (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%), and 47.8 g of γ-Al 2 O 3 were added and stirred for 1 hour. To obtain an aqueous solution. This aqueous solution was placed in a constant temperature bath at 150 ° C. and left for a whole day and night, and then the water in the aqueous solution was evaporated to obtain a dry powder. The obtained dry powder was calcined at 400 ° C. for 1 hour to obtain a catalyst in which PdO particles and Nd 2 O 3 particles were supported on a support formed from Al 2 O 3 .

実施例2
水500g中に、Nd(NO33・6H2O 12.361gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 43.53gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とNd2O3粒子とが担持された触媒を得た。
Example 2
In 500 g of water, 12.361 g of Nd (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 43.53 g of γ-Al 2 O 3 were added and stirred for 1 hour. To obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Nd 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

実施例3
水500g中に、Nd(NO33・6H2O 24.722gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 38.79gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とNd2O3粒子とが担持された触媒を得た。
Example 3
In 500 g of water, 24.722 g of Nd (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 38.79 g of γ-Al 2 O 3 were added and stirred for 1 hour. To obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Nd 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

実施例4
水500g中に、Nd(NO33・6H2O 61.806gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 24.55gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とNd2O3粒子とが担持された触媒を得た。
Example 4
In 500 g of water, 61.806 g of Nd (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 24.55 g of γ-Al 2 O 3 were added and stirred for 1 hour. To obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Nd 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

実施例5
水500g中に、Sm(NO33・6H2O 6.267gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 45.82gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とSm2O3粒子とが担持された触媒を得た。
Example 5
Into 500 g of water, add 6.267 g of Sm (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 45.82 g of γ-Al 2 O 3 and stir for 1 hour To obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Sm 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

実施例6
水500g中に、Sm(NO33・6H2O 12.534gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 43.36gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とSm2O3粒子とが担持された触媒を得た。
Example 6
In 500 g of water, add 12.534 g of Sm (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 43.36 g of γ-Al 2 O 3 and stir for 1 hour To obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Sm 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

実施例7
水500g中に、Sm(NO33・6H2O 25.068gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 37.94gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とSm2O3粒子とが担持された触媒を得た。
Example 7
In 500 g of water, 25.068 g of Sm (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 37.94 g of γ-Al 2 O 3 were added and stirred for 1 hour. To obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Sm 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

実施例8
水500g中に、Sm(NO33・6H2O 62.669gと、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 23.19gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とSm2O3粒子とが担持された触媒を得た。
Example 8
In 500 g of water, 62.669 g of Sm (NO 3 ) 3 · 6H 2 O, 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 23.19 g of γ-Al 2 O 3 were added and stirred for 1 hour. To obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Sm 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

比較例1
水500g中に、硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 48.27gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子が担持された触媒を得た。
Comparative Example 1
In 500 g of water, 7.22 g of a Pd nitrate solution (Pd: 20.764 wt%) and 48.27 g of γ-Al 2 O 3 were added and stirred for 1 hour to obtain an aqueous solution. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst having PdO particles supported on a carrier formed from Al 2 O 3 .

比較例2
水500g中に、酸化ネオジム粉末(平均粒径7μm)23.722g硝酸Pd溶液(Pd:20.764wt%)7.22gと、γ-Al2O3 24.55gと、を投入し、1時間攪拌して水溶液とした。この水溶液を実施例1と同様の方法を用いて、乾燥、焼成し、Al2O3から形成される担体にPdO粒子とNd2O3粒子とが担持された触媒を得た。
Comparative Example 2
In 500 g of water, 23.722 g of neodymium oxide powder (average particle size 7 μm) 7.22 g of Pd nitrate solution (Pd: 20.764 wt%) and 24.55 g of γ-Al 2 O 3 were added and stirred for 1 hour to obtain an aqueous solution. It was. This aqueous solution was dried and calcined in the same manner as in Example 1 to obtain a catalyst in which PdO particles and Nd 2 O 3 particles were supported on a carrier formed from Al 2 O 3 .

上記の実施例1〜実施例8及び比較例1、比較例2から得られた各触媒を900℃で3時間焼成した。   Each catalyst obtained from Examples 1 to 8 and Comparative Examples 1 and 2 was calcined at 900 ° C. for 3 hours.

得られた焼成後の触媒を用いて、貴金属分散度、PdO粒子及び希土類酸化物粒子(LnOx)粒子の平均粒径を測定した。   Using the obtained catalyst after calcination, the degree of precious metal dispersion, the average particle diameter of PdO particles and rare earth oxide particles (LnOx) were measured.

貴金属分散度は、金属分散度測定装置(日本ベル株式会社製、BEL-METAL-3)を用いて、以下の手順に従って測定した。試料は、He100%ガス気流中にて、10℃/minで400℃まで昇温した後、さらに、400℃、O2100%ガス気流中にて、15分間酸化処理を行った。そして、He100%ガスにて5分間パージし、400℃、H240%/Heバランスガス気流中にて15分間還元処理を行った。次に、He100%ガス気流中にて50℃まで降温した。その後、CO10%/Heバランスガスをパルス的に流入させて、単位CO吸着量を求めた。 The precious metal dispersity was measured according to the following procedure using a metal dispersity measuring device (BEL-METAL-3 manufactured by Nippon Bell Co., Ltd.). The sample was heated to 400 ° C. at 10 ° C./min in a He 100% gas stream, and further oxidized for 15 minutes at 400 ° C. in an O 2 100% gas stream. Then, purging was performed with He100% gas for 5 minutes, and reduction treatment was performed at 400 ° C. in a H 2 40% / He balance gas stream for 15 minutes. Next, the temperature was lowered to 50 ° C. in a He100% gas stream. Thereafter, CO 10% / He balance gas was introduced in a pulse manner to determine the unit CO adsorption amount.

PdO粒子及び希土類酸化物粒子(LnOx)粒子の平均粒径は、まず、触媒をTEM観察する。TEM(透過型電子顕微鏡)は、HF-2000(日立製作所(株)社製)を使用し、加速電圧を200kVとし、切削条件を常温とした。具体的には、触媒粉末をエポキシ樹脂にて包理処理し、エポキシ樹脂が硬化した後、ウルトラミクロトームにより超薄切片を作成した。その切片を用いて、TEM観察により各種結晶粒の分散状態を調べた。得られた映像の中で、コントラスト(影)の部分に焦点を充て、金属種を限定し、その金属の粒径を測定し、測定値の平均値を算出し、PdO粒子及び希土類酸化物(LnOx)粒子の平均粒径とした。   The average particle size of the PdO particles and rare earth oxide particles (LnOx) particles is first observed by TEM observation of the catalyst. The TEM (transmission electron microscope) used was HF-2000 (manufactured by Hitachi, Ltd.), the acceleration voltage was 200 kV, and the cutting conditions were room temperature. Specifically, the catalyst powder was embedded with an epoxy resin, and after the epoxy resin was cured, an ultrathin section was prepared with an ultramicrotome. Using the slices, the dispersion state of various crystal grains was examined by TEM observation. In the obtained image, focus on the contrast (shadow) part, limit the metal species, measure the particle size of the metal, calculate the average value of the measured values, and calculate the PdO particles and rare earth oxide ( LnOx) The average particle size of the particles.

上記測定方法から得られた測定結果を表1に示した。

Figure 2007105633
The measurement results obtained from the above measurement method are shown in Table 1.
Figure 2007105633

表1に示す結果から、酸化パラジウム(PdO)粒子の平均粒径と、希土類酸化物(LnOx)粒子の平均粒径をそれぞれ1nm以上50nm以下の範囲内とした各実施例は、比較例に比べて貴金属分散度の値が高くなっていることが判明した。これに対して、比較例1は、希土類酸化物粒子が担持されておらず、また、比較例2では、酸化パラジウム(PdO)粒子と希土類酸化物(LnOx)粒子との平均粒径が50nmを超えているため、貴金属分散度が低い値となっていた。各実施例の中でも、実施例4及び8は、酸化パラジウム(PdO)粒子と希土類酸化物(LnOx)粒子とのモル比を1:10として、希土類酸化物(LnOx)粒子が存在する割合を高めたため、特に、貴金属分散度が高い値となっていた。このように貴金属分散度を高めることにより、高温環境下における触媒の活性低下を抑制できることが判明した。   From the results shown in Table 1, each example in which the average particle diameter of the palladium oxide (PdO) particles and the average particle diameter of the rare earth oxide (LnOx) particles are within the range of 1 nm to 50 nm is compared with the comparative example. As a result, it was found that the value of the precious metal dispersion was high. On the other hand, in Comparative Example 1, rare earth oxide particles are not supported, and in Comparative Example 2, the average particle diameter of palladium oxide (PdO) particles and rare earth oxide (LnOx) particles is 50 nm. Since it exceeded, the precious-metal dispersion degree was a low value. Among the examples, Examples 4 and 8 increase the ratio of the presence of rare earth oxide (LnOx) particles by setting the molar ratio of palladium oxide (PdO) particles to rare earth oxide (LnOx) particles to 1:10. Therefore, in particular, the precious metal dispersion has a high value. Thus, it has been found that by increasing the degree of precious metal dispersion, it is possible to suppress a decrease in the activity of the catalyst in a high temperature environment.

本発明の実施の形態に係る排ガス浄化触媒の拡大断面図である。1 is an enlarged cross-sectional view of an exhaust gas purification catalyst according to an embodiment of the present invention. 本発明における他の実施の形態に係る排ガス浄化触媒の拡大断面図である。It is an expanded sectional view of the exhaust gas purification catalyst which concerns on other embodiment in this invention.

符号の説明Explanation of symbols

1…排ガス浄化触媒,
2…担体,
3…酸化パラジウム(PdO)粒子,
4…希土類酸化物(LnOx)粒子,
6…排ガス浄化触媒,
7…複合粒子,
1 ... Exhaust gas purification catalyst,
2 ... carrier,
3 ... Palladium oxide (PdO) particles,
4 ... Rare earth oxide (LnOx) particles,
6 ... Exhaust gas purification catalyst,
7 ... Composite particles,

Claims (10)

酸化物から形成される担体と、
前記担体に担持された、平均粒径1nm以上50nm以下の多数の酸化パラジウム(PdO)粒子と、
前記酸化パラジウム(PdO)粒子と接触して前記担体に担持された、平均粒径11nm以上50nm以下の多数の希土類酸化物(LnOx)粒子と、
を有することを特徴とする排ガス浄化触媒。
A support formed from an oxide;
A large number of palladium oxide (PdO) particles having an average particle diameter of 1 nm to 50 nm supported on the carrier;
A number of rare earth oxide (LnOx) particles having an average particle size of 11 nm to 50 nm supported on the carrier in contact with the palladium oxide (PdO) particles;
An exhaust gas purifying catalyst characterized by comprising:
前記酸化パラジウム粒子及び前記希土類酸化物(LnOx)粒子のそれぞれの平均粒径は、1nm以上20nm以下であることを特徴とする請求項1記載の排ガス浄化触媒。   2. The exhaust gas purification catalyst according to claim 1, wherein an average particle diameter of each of the palladium oxide particles and the rare earth oxide (LnOx) particles is 1 nm or more and 20 nm or less. 前記希土類酸化物(LnOx)粒子は、La、Nd、Sm、Eu、Gd、Dy、Ce及びPrの中から選択される少なくとも一種の元素を含む酸化物から形成されることを特徴とする請求項1又は2記載の排ガス浄化触媒。   The rare earth oxide (LnOx) particles are formed of an oxide containing at least one element selected from La, Nd, Sm, Eu, Gd, Dy, Ce, and Pr. The exhaust gas purification catalyst according to 1 or 2. 前記酸化パラジウム(PdO)と前記希土類酸化物(LnOx)とのモル比が1:1であるか、又はこのモル比よりも希土類酸化物(LnOx)の割合が高いことを特徴とする請求項1乃至3のいずれか1項に記載の排ガス浄化触媒。   The molar ratio of the palladium oxide (PdO) to the rare earth oxide (LnOx) is 1: 1, or the ratio of the rare earth oxide (LnOx) is higher than the molar ratio. 4. The exhaust gas purification catalyst according to any one of items 1 to 3. 前記酸化パラジウム(PdO)と前記希土類酸化物(LnOx)とのモル比が1:2であるか、又はこのモル比よりも希土類酸化物(LnOx)の割合が高いことを特徴とする請求項1乃至4のいずれか1項に記載の排ガス浄化触媒。   The molar ratio of the palladium oxide (PdO) and the rare earth oxide (LnOx) is 1: 2, or the ratio of the rare earth oxide (LnOx) is higher than the molar ratio. 5. The exhaust gas purifying catalyst according to any one of items 1 to 4. 前記酸化パラジウム(PdO)と前記希土類酸化物(LnOx)とのモル比は1:4であるか、又はこのモル比よりも希土類酸化物(LnOx)の割合が高いことを特徴とする請求項1乃至5のいずれか1項に記載の排ガス浄化触媒。   The molar ratio between the palladium oxide (PdO) and the rare earth oxide (LnOx) is 1: 4, or the ratio of the rare earth oxide (LnOx) is higher than the molar ratio. The exhaust gas purifying catalyst according to any one of 1 to 5. 前記酸化パラジウム(PdO)と前記希土類酸化物(LnOx)とのモル比は1:10であるか、又はこのモル比よりも希土類酸化物(LnOx)の割合が高いことを特徴とする請求項1乃至6のいずれか1項に記載の排ガス浄化触媒。   The molar ratio of the palladium oxide (PdO) to the rare earth oxide (LnOx) is 1:10, or the ratio of the rare earth oxide (LnOx) is higher than the molar ratio. The exhaust gas purification catalyst according to any one of 1 to 6. 前記酸化パラジウム(PdO)粒子と前記希土類酸化物(LnOx)粒子とは、両者が接触した箇所の少なくとも一部に、パラジウムと希土類元素とを含む複合酸化物を形成していることを特徴とする請求項1乃至7のいずれか1項に記載の排ガス浄化触媒。   The palladium oxide (PdO) particles and the rare earth oxide (LnOx) particles are characterized in that a composite oxide containing palladium and a rare earth element is formed in at least a part of a contact point between them. The exhaust gas purification catalyst according to any one of claims 1 to 7. 前記担体は、Al2O3、ZrO2、SiO2、TiO2及びCeO2の中から選択される少なくとも一種の酸化物又は二種以上の複合酸化物から形成されることを特徴とする請求項1乃至8のいずれか1項に記載の排ガス浄化触媒。 The support is formed of at least one oxide selected from Al 2 O 3 , ZrO 2 , SiO 2 , TiO 2, and CeO 2 , or two or more composite oxides. The exhaust gas purifying catalyst according to any one of 1 to 8. 請求項1乃至9のいずれか1項に記載の触媒を含む触媒層を有することを特徴とする排ガス浄化触媒。   An exhaust gas purification catalyst comprising a catalyst layer containing the catalyst according to any one of claims 1 to 9.
JP2005299249A 2005-10-13 2005-10-13 Exhaust-gas cleaning catalyst Pending JP2007105633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299249A JP2007105633A (en) 2005-10-13 2005-10-13 Exhaust-gas cleaning catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299249A JP2007105633A (en) 2005-10-13 2005-10-13 Exhaust-gas cleaning catalyst

Publications (1)

Publication Number Publication Date
JP2007105633A true JP2007105633A (en) 2007-04-26

Family

ID=38031907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299249A Pending JP2007105633A (en) 2005-10-13 2005-10-13 Exhaust-gas cleaning catalyst

Country Status (1)

Country Link
JP (1) JP2007105633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159568A1 (en) * 2014-04-17 2015-10-22 三井金属鉱業株式会社 Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
WO2018074526A1 (en) 2016-10-19 2018-04-26 ユミコア日本触媒株式会社 Exhaust gas purifying catalyst and method for purifying exhaust gas
US11969712B2 (en) 2022-03-22 2024-04-30 Toyota Jidosha Kabushiki Kaisha Catalyst for purification of exhaust gas and production method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159568A1 (en) * 2014-04-17 2015-10-22 三井金属鉱業株式会社 Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
WO2015159403A1 (en) * 2014-04-17 2015-10-22 三井金属鉱業株式会社 Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
JP5925956B2 (en) * 2014-04-17 2016-05-25 三井金属鉱業株式会社 Exhaust gas purification catalyst composition and exhaust gas purification catalyst
US9993805B2 (en) 2014-04-17 2018-06-12 Mitsui Mining & Smelting Co., Ltd. Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
WO2018074526A1 (en) 2016-10-19 2018-04-26 ユミコア日本触媒株式会社 Exhaust gas purifying catalyst and method for purifying exhaust gas
CN109937088A (en) * 2016-10-19 2019-06-25 优美科催化剂日本有限公司 Exhaust gas purification catalyst and exhaust gas purifying method
EP3530351A4 (en) * 2016-10-19 2019-10-23 Umicore Shokubai Japan Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
US10653999B2 (en) 2016-10-19 2020-05-19 Umicore Shokubai Japan Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
EP3799947A1 (en) 2016-10-19 2021-04-07 Umicore Shokubai Japan Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
CN109937088B (en) * 2016-10-19 2022-04-29 优美科催化剂日本有限公司 Catalyst for exhaust gas purification and method for exhaust gas purification
US11969712B2 (en) 2022-03-22 2024-04-30 Toyota Jidosha Kabushiki Kaisha Catalyst for purification of exhaust gas and production method thereof

Similar Documents

Publication Publication Date Title
JP6471098B2 (en) Exhaust gas purification catalyst
KR101797923B1 (en) Exhaust gas purifying catalyst
JP2006043654A (en) Exhaust gas purifying catalyst and production method therefor
JP6567168B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus using the same
JP4730709B2 (en) NOx storage reduction catalyst
JP2012016685A (en) Exhaust gas purifying catalyst, and method for producing same
JP5869498B2 (en) NOx removal catalyst composition and NOx removal method
WO2017073527A1 (en) Exhaust gas purifying catalyst and method for producing same, and exhaust gas purification device using same
JP4831753B2 (en) Exhaust gas purification catalyst
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
JP6715351B2 (en) Delafossite-type oxide for exhaust gas purification catalyst and exhaust gas purification catalyst using the same
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JP5794908B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP2005254047A (en) Exhaust emission control catalyst, metal oxide particle, and production method thereof
JP2007105633A (en) Exhaust-gas cleaning catalyst
JP3722060B2 (en) Catalyst body, method for producing catalyst body, and exhaust gas purification catalyst using the catalyst body
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP6770265B2 (en) Exhaust gas purification catalyst
WO2018088201A1 (en) Exhaust gas purifying three-way catalyst, method for manufacturing same, and exhaust gas purifying catalyst converter
JP2006320863A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP2017180453A (en) Exhaust emission control device and its process of manufacture
JP2017177095A (en) Exhaust gas purification catalyst, method for producing the same and exhaust gas purification apparatus using the same
JP6769862B2 (en) Three-way catalyst for exhaust gas purification, its manufacturing method, and catalyst converter for exhaust gas purification
JP2017185438A (en) Catalyst for purifying exhaust gas
JP2016155049A (en) Exhaust gas purification three-way catalyst