JP2007105360A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus Download PDF

Info

Publication number
JP2007105360A
JP2007105360A JP2005301492A JP2005301492A JP2007105360A JP 2007105360 A JP2007105360 A JP 2007105360A JP 2005301492 A JP2005301492 A JP 2005301492A JP 2005301492 A JP2005301492 A JP 2005301492A JP 2007105360 A JP2007105360 A JP 2007105360A
Authority
JP
Japan
Prior art keywords
transmission
reception
signal
memory
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005301492A
Other languages
Japanese (ja)
Other versions
JP4752443B2 (en
Inventor
Morio Nishigaki
森緒 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005301492A priority Critical patent/JP4752443B2/en
Publication of JP2007105360A publication Critical patent/JP2007105360A/en
Application granted granted Critical
Publication of JP4752443B2 publication Critical patent/JP4752443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a satisfactory picture by removing an influence of the movement of a patient between transmission and reception in an ultrasonic diagnostic apparatus performing synthetic aperture. <P>SOLUTION: Transmission and reception are performed three times at the center position of the same aperture. Based on received signals obtained by selecting the same vibrator at the first and second times, phase shifting due to the movement of the patient is calculated. When a received signal obtained by selecting a different vibrator at the third time and the received signal at the second time are added after phase correction, data of twice transmission and reception by the same aperture are used, so that precise phase correction is possible. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は配列振動子により送受信を行なう超音波診断装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus that performs transmission and reception using an array transducer.

合成開口走査を行う超音波映像装置が知られている。この超音波映像装置は例えば(非特許文献1)で知られており、以下、その動作原理について図7に示す概略ブロック図を参照しながら説明する。   An ultrasound imaging apparatus that performs synthetic aperture scanning is known. This ultrasonic imaging apparatus is known, for example, from (Non-Patent Document 1), and the operation principle will be described below with reference to a schematic block diagram shown in FIG.

図4において、超音波プローブ1は振動子T1〜T8で構成されている。振動子Tnは超音波パルスを発生し、被検体中で反射された超音波パルスはエコー超音波として振動子Tnで受信される。振動子Tnで受信された受信信号はマルチプレクサ(MUX)100を通過し増幅器102で増幅された後、A/D103でディジタルデータに変換されメモリ104に書き込まれる。振動子Tnからの受信信号のメモリ104への書き込みが終了すると、次にMUX100は振動子Tnとは異なる振動子Tn’を選択し、振動子Tnの場合と同様に受信信号をメモリ104に書き込む。以上のようにして振動子T1〜T8により得られた受信信号をメモリ104に書き込む。次に加算器105において、メモリ104に記憶された振動子T1からT8により得られた各受信信号に所定の時間差を与えて加算する。   In FIG. 4, the ultrasonic probe 1 includes transducers T1 to T8. The transducer Tn generates an ultrasonic pulse, and the ultrasonic pulse reflected in the subject is received by the transducer Tn as an echo ultrasonic wave. The received signal received by the transducer Tn passes through the multiplexer (MUX) 100, is amplified by the amplifier 102, is converted into digital data by the A / D 103, and is written in the memory 104. When the writing of the reception signal from the transducer Tn to the memory 104 is completed, the MUX 100 next selects a transducer Tn ′ different from the transducer Tn, and writes the reception signal to the memory 104 as in the case of the transducer Tn. . The reception signals obtained by the transducers T1 to T8 as described above are written in the memory 104. Next, in the adder 105, each reception signal obtained by the transducers T1 to T8 stored in the memory 104 is added with a predetermined time difference.

このようにしてT1〜T8までの振動子による送受信シーケンスを1つ1つ行ない、信号を統合することで、8つの振動子で同時に受信したのと同じ効果を得る。   In this way, the transmission / reception sequence by the transducers T1 to T8 is performed one by one and the signals are integrated, thereby obtaining the same effect as that received simultaneously by the eight transducers.

振動子T1〜T8による受信期間中に被検体が静止していると仮定すれば、超音波プローブ1に対して被検体中で収束、偏向等の受信指向性を与えることができる。以上のようにして加算器105で加算された受信信号は信号処理器106で検波等信号処理され表示部107に表示される。   If it is assumed that the subject is stationary during the reception period by the transducers T1 to T8, reception directivity such as convergence and deflection in the subject can be given to the ultrasonic probe 1. The received signal added by the adder 105 as described above is subjected to signal processing such as detection by the signal processor 106 and displayed on the display unit 107.

しかしながら、上記従来の合成開口部を有する超音波診断装置では振動子T1〜T8による受信期間中に被検体が運動した場合に正確な合成開口が行えないという問題があった。   However, the ultrasonic diagnostic apparatus having the conventional synthetic aperture has a problem that an accurate synthetic aperture cannot be performed when the subject moves during the reception period of the transducers T1 to T8.

図8を用いて被検体が運動した場合の改善方法について説明する。   An improvement method when the subject exercises will be described with reference to FIG.

図8において探触子1は振動子T1〜T16により構成されている。スイッチ109〜112は4:1のスイッチであり送信回路108の駆動パルス信号をスイッチ109〜112で選択して4つの振動子に送り込む。例えばスイッチ109〜112がすべてaに接続されたとすると、振動子T1〜T4が選択される。この状態でスイッチ109がbに切り替わると振動子T2〜T5が選択される。このようにスイッチ109〜112を順次切り替えて開口位置を変えて送受信を繰り返すことにより2次元走査を行なう。   In FIG. 8, the probe 1 is composed of transducers T1 to T16. The switches 109 to 112 are 4: 1 switches, and the drive pulse signal of the transmission circuit 108 is selected by the switches 109 to 112 and sent to the four vibrators. For example, if the switches 109 to 112 are all connected to a, the transducers T1 to T4 are selected. In this state, when the switch 109 is switched to b, the vibrators T2 to T5 are selected. In this way, the switches 109 to 112 are sequentially switched to change the opening position and repeat transmission / reception to perform two-dimensional scanning.

選択された振動子から放射され、図示されない被検体内で反射された超音波は同じ振動子で電気信号に変換され、スイッチ109〜112を経てA/D変換器113〜116でディジタル信号に変換され、ビーム合成器117で遅延加算されたあと、開口合成部2を経て検波器121で検波され、ディジタルスキャンコンバータ(DSC)122で走査変換されて、表示部107に表示される。   Ultrasound radiated from the selected transducer and reflected in the subject (not shown) is converted to an electrical signal by the same transducer, and converted to a digital signal by the A / D converters 113 to 116 via the switches 109 to 112. After being delayed and added by the beam synthesizer 117, the signal is detected by the detector 121 through the aperture synthesizer 2, scan-converted by the digital scan converter (DSC) 122, and displayed on the display unit 107.

合成開口時の動作について図9を用いて説明する。   The operation at the time of the synthetic aperture will be described with reference to FIG.

図9は開口中心をT6とT7の間に位置されたときの送受信の例を示している。   FIG. 9 shows an example of transmission and reception when the opening center is located between T6 and T7.

この開口中心に対し、送受信シーケンスを2回行う。送信は1回目、2回目ともに振動子T5〜T8を用いて行なう。図8においてスイッチ109〜112はすべてbに接続されている。   A transmission / reception sequence is performed twice with respect to the center of the opening. Transmission is performed using the transducers T5 to T8 for the first time and the second time. In FIG. 8, the switches 109 to 112 are all connected to b.

1回目の受信には振動子T5〜T8を用いる(これを中の開口と呼ぶ)。スイッチ109〜112はすべてbに接続されたままである。2回目の送信の直後、スイッチ109,110をcに、スイッチ111,112をaに接続を変更する。これにより2回目の受信においては、振動子T3,T4、T9,T10を用いる(これを外の開口と呼ぶ)。   For the first reception, transducers T5 to T8 are used (this is called an inner opening). All the switches 109 to 112 remain connected to b. Immediately after the second transmission, the connections of switches 109 and 110 are changed to c, and switches 111 and 112 are changed to a. Thereby, in the second reception, the transducers T3, T4, T9, and T10 are used (this is called an outer opening).

このようにして、同じ開口中心に2回ずつの送受信を行ない、受信開口を中と外に切り替えることで、開口合成を実現する。   In this way, aperture synthesis is realized by performing transmission and reception twice at the same aperture center and switching the reception aperture between inside and outside.

図8において1回目の受信信号の遅延加算された信号は、開口加算部2のメモリ3に記憶され、2回目の受信の際にメモリ3から出力され2回目の受信信号の遅延加算信号と、加算器12において加算される。   In FIG. 8, the signal obtained by delay-adding the first received signal is stored in the memory 3 of the aperture adder 2 and output from the memory 3 at the time of the second reception, The adder 12 adds the values.

上記のようにこの方法においては、合成開口の送受信シーケンスが2回で行なわれるために、前記従来の第1の合成開口の例に比べ、被検体の運動の影響は少ない。
P.D.Corl, et al."A digital synthetic imaging system for NDE",Proc IEEE Ultrasonics Symp.,Sept. 1978
As described above, in this method, since the synthetic aperture transmission / reception sequence is performed twice, the influence of the movement of the subject is less than that of the conventional first synthetic aperture example.
PDCorl, et al. "A digital synthetic imaging system for NDE", Proc IEEE Ultrasonics Symp., Sept. 1978

しかしながら従来例の第2の方法においても被検体の運動速度が1回目の送受信と2回目の送受信で信号の位相が異なり打ち消しあい画像に影響が出る程度に大きい場合には運動の影響で画質が劣化するという問題がある。   However, even in the second method of the conventional example, when the movement speed of the subject is large enough to cause the signal phases to be different between the first transmission / reception and the second transmission / reception and cancel each other, the image quality is affected by the movement. There is a problem of deterioration.

本発明はこれらの問題を解決し、被検体の運動が速い場合においても良好な画質を提供することを目的とするものである。   An object of the present invention is to solve these problems and to provide a good image quality even when the movement of a subject is fast.

本発明は、合成開口の複数の送受信の間における、被検体の運動による信号の差異をなくすことで、画質の優れた超音波診断装置を実現するものである。   The present invention realizes an ultrasonic diagnostic apparatus with excellent image quality by eliminating a signal difference due to movement of a subject between a plurality of transmissions and receptions of a synthetic aperture.

請求項1の発明においては、配列された複数の振動子と、前記振動子で受信した信号のうちビーム形成器に入力する信号を選択するスイッチと、前記スイッチにより選択された信号によりビーム形成を行なうビーム形成器とビーム形成器の出力を一時的に記憶するメモリと、前記メモリおよびビーム形成器の出力を加算する加算器から構成され、複数回の同じ開口を用いた被検体への送受信シーケンスを含む複数回の送受信シーケンスにより1つのビーム形成を行なう合成開口方式を用い、同じ開口を用いた複数の送受信シーケンスで得た信号から送受信シーケンス間の被検体の体動による位相のずれを検出する手段および、異なる開口における送受信シーケンスにおいて得た受信信号の位相をそろえる手段を備えることで、位相差を解消し画質の劣化を防止することができる。   According to the first aspect of the present invention, a plurality of arranged transducers, a switch for selecting a signal to be input to a beam former from signals received by the transducer, and beam formation by a signal selected by the switch. A beamformer to be performed, a memory for temporarily storing the output of the beamformer, and an adder for adding the outputs of the memory and the beamformer, and a plurality of transmission / reception sequences to the subject using the same aperture A synthetic aperture method in which one beam is formed by a plurality of transmission / reception sequences including a signal, and a phase shift due to body movement of the subject between the transmission / reception sequences is detected from signals obtained by the plurality of transmission / reception sequences using the same aperture Phase difference is eliminated by providing means and means for aligning the phases of received signals obtained in transmission and reception sequences at different apertures. It is possible to prevent the deterioration of quality.

請求項2の発明においては、2つの信号の位相差を検出する手段として信号の振幅がゼロを横切り正から負へ、あるいは負から正へ変わるタイミングを検出することにより簡便に位相差の補正を行なうことができる。   In the second aspect of the invention, as means for detecting the phase difference between the two signals, the phase difference can be easily corrected by detecting the timing at which the signal amplitude crosses zero and changes from positive to negative or from negative to positive. Can be done.

請求項3の発明においては、2つの信号の位相差を検出する手段として相関器を用いることで、簡便に精度良く位相差の補正を行なうことができる。   In the invention of claim 3, by using a correlator as means for detecting the phase difference between the two signals, the phase difference can be easily and accurately corrected.

請求項4の発明においては、位相のずれを検出するための同じ開口における送受信シーケンスを毎回行なわないことで、フレームレートの低下を抑えつつ、位相差の補正を行なうことができる。   According to the fourth aspect of the present invention, the transmission / reception sequence in the same opening for detecting the phase shift is not performed every time, so that the phase difference can be corrected while suppressing the decrease in the frame rate.

本発明の超音波診断装置によれば、合成開口を行なう場合において、各回の送受信による受信信号の位相を検出し揃えることで、被検体が動いた際に生ずる位相差による信号の打ち消し合いを防ぎ、画質の良好な画像を得ることができる。   According to the ultrasonic diagnostic apparatus of the present invention, when performing synthetic aperture, the phase of the received signal by each transmission / reception is detected and aligned to prevent signal cancellation due to the phase difference generated when the subject moves. An image with good image quality can be obtained.

以下、本発明の実施について、図1〜図6を用いて説明する。   Hereinafter, the implementation of the present invention will be described with reference to FIGS.

(実施の形態1)
図1は本発明の第1の実施の形態における合成開口方式を行なう超音波診断装置の概略ブロック図の一例である。以下、図1をもとに本発明の内容を説明する。
(Embodiment 1)
FIG. 1 is an example of a schematic block diagram of an ultrasonic diagnostic apparatus that performs the synthetic aperture method in the first embodiment of the present invention. The contents of the present invention will be described below with reference to FIG.

本発明においては、開口加算部2は、1回目および2回目の送受信による信号を記憶するメモリ3、4、ビーム合成器117の出力を用いるか、メモリ3、4に記憶させたデータを用いるかを選択するスイッチ5、6、1回目および2回目の送受信による受信信号における信号の振幅がゼロを横切り正から負へ、あるいは負から正へ変わるタイミングを検出するゼロクロス検出部6、7、2つのゼロクロス検出部の出力からどちらの信号にどれだけの遅延がかかったかを算出する遅延量算出器8、遅延量算出器8で算出した遅延量を一時的に記憶させるメモリ9、遅延量算出器8で算出した遅延量をもとに、各信号に遅延をかける遅延器10、11、遅延器10、11により遅延をかけた2つの信号を加算する加算器12から構成される。   In the present invention, whether the aperture addition unit 2 uses the outputs of the memories 3 and 4 and the beam combiner 117 that store signals from the first and second transmission / reception, or uses the data stored in the memories 3 and 4. Switches 5, 6 for selecting the zero cross detectors 6, 7, 2 for detecting the timing at which the amplitude of the signal received in the first and second transmission / reception signals changes from zero to positive or negative or from negative to positive A delay amount calculator 8 that calculates how much delay is applied to which signal from the output of the zero cross detector, a memory 9 that temporarily stores the delay amount calculated by the delay amount calculator 8, and a delay amount calculator 8 Based on the delay amount calculated in step 1, the delay units 10 and 11 that delay each signal and the adder 12 that adds the two signals delayed by the delay units 10 and 11 are configured.

以上のような構成により次のような動作を行なう。送受信は3回行ない、最初の2回は同じ開口で、最後の1回は別の開口で受信を行なう。   The following operation is performed with the above configuration. Transmission / reception is performed three times, and reception is performed with the same opening for the first two times and with another opening for the last one time.

まず1回目の送受信を行ない、受信信号をメモリ4に蓄積させる。次に2回目の送受信を行ない、受信信号を得るが、このときメモリ3に信号を記憶させる。同時にスイッチ5をaに接続しこの受信信号はゼロクロス検出器7により受信信号が正から負へ、あるいは負から正へ変化するタイミングを検出する。かつそれと同時にメモリ4から1回目の送受信による受信信号を読みだし、ゼロクロス検出器8により受信信号が正から負へ、あるいは負から正へ変化するタイミングを検出する。これら2つのゼロクロス検出器7、8により検出された情報は遅延量算出器9により、どちらがどれだけ進んでいるか(あるいは遅れているか)を算出し、遅延量メモリ10に記憶させる。   First, transmission / reception is performed for the first time, and the received signal is stored in the memory 4. Next, a second transmission / reception is performed to obtain a reception signal. At this time, the signal is stored in the memory 3. At the same time, the switch 5 is connected to a, and this received signal detects the timing at which the received signal changes from positive to negative or from negative to positive by the zero cross detector 7. At the same time, the received signal by the first transmission / reception is read from the memory 4 and the timing at which the received signal changes from positive to negative or from negative to positive is detected by the zero cross detector 8. The information detected by these two zero-cross detectors 7 and 8 is calculated by a delay amount calculator 9 which is advanced (or delayed) and stored in the delay amount memory 10.

3回目の送受信で得た信号はスイッチ6をaに切り替えメモリ4を経由せずに遅延器10に入力する。同時にスイッチ5をbに接続し、メモリ3に記憶された2回目の送受信シーケンスの信号を読み出して、遅延器9に入力される。   The signal obtained in the third transmission / reception is input to the delay unit 10 without switching to the memory 4 by switching the switch 6 to a. At the same time, the switch 5 is connected to b, and the signal of the second transmission / reception sequence stored in the memory 3 is read and input to the delay device 9.

遅延器11、13に入力された信号は遅延メモリ10の出力の制御により遅延され、被検体の動きによる位相のずれが補正され、加算器12により加算され1つの信号として出力される。このことで、被検体の運動により画質の劣化が起こるのをふせぐことができる。   The signals input to the delay units 11 and 13 are delayed by controlling the output of the delay memory 10, the phase shift due to the movement of the subject is corrected, added by the adder 12, and output as one signal. Thus, it is possible to prevent the image quality from being deteriorated due to the movement of the subject.

ゼロクロス検出器7、8の内部構成の例とその動作説明図を図2に示す。ゼロクロス検出器の内部は図2(a)に示すように比較器20とデータレート1つ分の信号遅延器21、NOTゲート22、ANDゲート23から構成される。比較器20の入力信号IN1がしきい値IN2(ここではゼロ)より大きくなると、出力OUTが0から1に変化する。遅延器21およびNOTゲート22、ANDゲート23により、出力信号を生成する。   An example of the internal configuration of the zero-cross detectors 7 and 8 and an operation explanatory diagram thereof are shown in FIG. As shown in FIG. 2A, the inside of the zero-cross detector is composed of a comparator 20, a signal delay device 21 for one data rate, a NOT gate 22, and an AND gate 23. When the input signal IN1 of the comparator 20 becomes larger than the threshold value IN2 (here, zero), the output OUT changes from 0 to 1. An output signal is generated by the delay device 21, the NOT gate 22, and the AND gate 23.

動作は図2(b)のようになり、出力信号は入力信号が負から正に切り替わった後、1クロック分だけ1となる。   The operation is as shown in FIG. 2B, and the output signal becomes 1 for one clock after the input signal is switched from negative to positive.

この動作を1回目の受信信号、2回目の受信信号について行ない、図2(c)の出力信号1と2を得る。   This operation is performed on the first received signal and the second received signal to obtain output signals 1 and 2 in FIG.

図示されたようなクロック信号を用い、遅延時間カウント信号が1になる時間をカウンタ(図示なし)でカウントすることで、遅延量を算出する。   Using a clock signal as shown in the figure, the amount of delay is calculated by counting the time when the delay time count signal becomes 1 with a counter (not shown).

この遅延量のデータを図1の遅延量メモリ10に記憶させ、遅延器11、13を制御し2つの信号のタイミングを合わせる。   The delay amount data is stored in the delay amount memory 10 of FIG. 1, and the delay units 11 and 13 are controlled to synchronize the timings of the two signals.

遅延器11、13は例えばFIFOメモリのようなものであり、入力信号を一定タイミングで書き込み、出力信号のタイミングを遅延量メモリ10の制御により遅延する。   The delay units 11 and 13 are, for example, FIFO memories, which write input signals at a constant timing and delay the timing of output signals by controlling the delay amount memory 10.

本実施の形態においては、同じ開口により得た受信信号を用いて被検体の動きによる位相のずれを計算している。この方法によれば、例えば、1回目で中側の、2回目で外側の開口を用いて得た受信信号から位相ずれを算出する方法では被検体内で反射した信号の振動子までの経路が異なることによる影響がなく、精度を向上させることができる。   In the present embodiment, the phase shift due to the movement of the subject is calculated using the received signals obtained from the same aperture. According to this method, for example, in the method of calculating the phase shift from the received signal obtained by using the opening on the middle side at the first time and the outer side at the second time, the path to the transducer of the signal reflected in the subject is There is no influence due to the difference, and the accuracy can be improved.

音響線を逐次変化させ2次元画像を得るための送受信シーケンスを図2および(表1)を用いて説明する。   A transmission / reception sequence for obtaining a two-dimensional image by sequentially changing acoustic lines will be described with reference to FIG. 2 and (Table 1).

Figure 2007105360
Figure 2007105360

音響線は図3のように配列振動子1に対し、a、b、c・・・というように少しずつ変化させ2次元画像を構成する。この原理に関しては公知の超音波診断装置と同様である。本実施の形態では、それぞれの音響線に対し、送受信シーケンスを3回ずつ行なう。表1には1回目から12回目までの送受信シーケンスがどのように行なわれるかを示している。1〜3回目には開口中心位置はaで送受信を行なう。受信開口は1、2回目が中、3回目は外である。位相検出には1、2回目の送受信シーケンスを、開口合成には2、3回目の送受信シーケンスを用いる。   As shown in FIG. 3, the acoustic lines are gradually changed with respect to the arrayed transducers 1 such as a, b, c... To form a two-dimensional image. This principle is the same as that of a known ultrasonic diagnostic apparatus. In this embodiment, the transmission / reception sequence is performed three times for each acoustic line. Table 1 shows how the transmission / reception sequence from the first time to the twelfth time is performed. In the first to third times, transmission / reception is performed with the opening center position being a. The reception aperture is the first and second times, and the third time is outside. The first and second transmission / reception sequences are used for phase detection, and the second and third transmission / reception sequences are used for aperture synthesis.

以下、4〜6回目、7〜9回目、10〜12回目でそれぞれ開口位置b、c、dについての開口合成を行なう。   Thereafter, the aperture synthesis is performed for the aperture positions b, c, and d at the 4th to 6th times, the 7th to 9th times, and the 10th to 12th times.

(表2)に本実施の形態における別の送受信シーケンスの例を示す。この例においては、送受位置がa、c、eの場合においてのみ被検体の動きを検出し、開口b、dにおいては位相変化の検出を行なわず、隣接した開口における位相変化のデータを流用する。例えば開口位置bでは開口位置aの位相変化のデータを流用する。これにより1枚の画像を得るための送受信シーケンスの回数を低減でき、高いフレームレートを得ることができる。   Table 2 shows another example of the transmission / reception sequence in this embodiment. In this example, the movement of the subject is detected only when the transmission / reception positions are a, c, and e, the phase change is not detected at the openings b and d, and the data on the phase change at the adjacent openings is used. . For example, the phase change data at the opening position a is used at the opening position b. Thereby, the number of transmission / reception sequences for obtaining one image can be reduced, and a high frame rate can be obtained.

Figure 2007105360
Figure 2007105360

(実施の形態2)
図4は本発明の第2の実施の形態における合成開口方式を行なう超音波診断装置の概略ブロック図の一例である。以下、図4をもとに本発明の内容を説明する。
(Embodiment 2)
FIG. 4 is an example of a schematic block diagram of an ultrasonic diagnostic apparatus that performs the synthetic aperture method according to the second embodiment of the present invention. The contents of the present invention will be described below with reference to FIG.

探触子1を用いて同じ開口位置において3回の送受信を行ない被検体の動き検出および中の開口と外の開口の合成を行なうところは第1の実施の形態と同様である。   Similar to the first embodiment, the probe 1 performs transmission / reception three times at the same opening position to detect the movement of the subject and synthesize the inner opening and the outer opening.

本実施の形態では、被検体の動きを相関器により検出する。   In the present embodiment, the movement of the subject is detected by a correlator.

まず1回目の送受信を行ない、受信信号をメモリ4に蓄積させる。次に2回目の送受信を行ない、受信信号を得るが、このときメモリ3に信号を記憶させる。同時にスイッチ5をaに接続しこの受信信号を相関器14に入力させる。かつそれと同時にメモリ4から1回目の送受信による受信信号を読みだし、相関器14に入力させる。相関器14はこれら2回分の受信信号の相関を取り、位相差を求め、位相メモリ15に記憶させる。   First, transmission / reception is performed for the first time, and the received signal is stored in the memory 4. Next, a second transmission / reception is performed to obtain a reception signal. At this time, the signal is stored in the memory 3. At the same time, the switch 5 is connected to a and this received signal is input to the correlator 14. At the same time, the received signal by the first transmission / reception is read from the memory 4 and input to the correlator 14. The correlator 14 correlates these two received signals, finds the phase difference, and stores it in the phase memory 15.

3回目の送受信で得た信号はスイッチ6をaに切り替えメモリ4を経由せずに加算器12に入力する。同時にスイッチ5をbに接続し、メモリ3に記憶された2回目の送受信シーケンスの信号を読み出して、移相器15に入力する。   The signal obtained by the third transmission / reception is input to the adder 12 without passing through the memory 4 by switching the switch 6 to a. At the same time, the switch 5 is connected to b, and the signal of the second transmission / reception sequence stored in the memory 3 is read and input to the phase shifter 15.

移相器15では、位相メモリ15のデータをもとに、被検体の動きによる位相のずれが補正され、3回目の受信信号と位相が同一となるように入力信号の位相を制御する。このことで、被検体の運動により画質の劣化が起こるのをふせぐことができる。   The phase shifter 15 corrects the phase shift due to the movement of the subject based on the data in the phase memory 15 and controls the phase of the input signal so that the phase is the same as that of the third received signal. Thus, it is possible to prevent the image quality from being deteriorated due to the movement of the subject.

本実施の形態における相関器の内部構成について図5を用いて説明する。相関器は直交検波器および相互相関器より構成される。   The internal configuration of the correlator in the present embodiment will be described with reference to FIG. The correlator is composed of a quadrature detector and a cross correlator.

図5(a)が直交検波器の構成である。乗算器24、25とローパスフィルタ26、27より構成されている。乗算器24、25には送信パルスの中心周波数とほぼ等しい周波数の参照信号が入力されており、乗算器24、25では参照信号の位相が90度異なる。   FIG. 5A shows the configuration of the quadrature detector. It comprises multipliers 24 and 25 and low-pass filters 26 and 27. A reference signal having a frequency substantially equal to the center frequency of the transmission pulse is input to the multipliers 24 and 25, and the phases of the reference signals differ by 90 degrees in the multipliers 24 and 25.

乗算器24、25で入力信号は参照信号を乗算され、ローパスフィルタ26、27において高調波成分が除去される。出力信号をI,Qとする。   The multipliers 24 and 25 multiply the input signal by the reference signal, and the low-pass filters 26 and 27 remove harmonic components. The output signals are I and Q.

1回目の送受信における深さnの直交検波出力I1nとQ1n、2回目の送受信における同じ深さの直交検波出力I2nとQ2nを図5(b)のように相関器28に入力する。   Orthogonal detection outputs I1n and Q1n of depth n in the first transmission / reception and quadrature detection outputs I2n and Q2n of the same depth in the second transmission / reception are input to the correlator 28 as shown in FIG. 5B.

相関器28は図5(c)に示したようなベクトル演算により、1回目と2回目の信号の位相差θnを計算し、出力する。   The correlator 28 calculates and outputs the phase difference θn between the first and second signals by vector calculation as shown in FIG.

本実施の形態における移相器の内部構成を図6に示す。移相器は位相を90度回転させるオールパスフィルタ29とゲイン可変アンプ30、31、加算器32から構成されている。   FIG. 6 shows an internal configuration of the phase shifter in the present embodiment. The phase shifter includes an all-pass filter 29 that rotates the phase by 90 degrees, variable gain amplifiers 30 and 31, and an adder 32.

オールパスフィルタ29で90度位相が異なる信号と原信号を、ゲイン可変アンプ30、31において適当な振幅比で加算する。ゲイン可変アンプ30、31のゲインは移相出力の振幅が入力に等しくなり、任意の位相回転が得られるように設定される。ゲイン範囲は−1〜1である。   The all-pass filter 29 adds a signal having a phase difference of 90 degrees and the original signal at an appropriate amplitude ratio in the variable gain amplifiers 30 and 31. The gains of the variable gain amplifiers 30 and 31 are set so that the amplitude of the phase shift output is equal to the input and an arbitrary phase rotation is obtained. The gain range is −1 to 1.

なお、実施の形態1と同様に本実施の形態においても全ての開口位置において位相検出を行なうことなく、隣接した開口位置での位相情報を流用して補正を行なうことができる。   As in the first embodiment, in the present embodiment, the phase information at adjacent opening positions can be used for correction without performing phase detection at all opening positions.

本発明にかかる超音波診断装置は合成開口を行なう場合において、各回の送受信による受信信号の位相を検出し揃えることで、被検体が動いた際に生ずる位相差による信号の打ち消し合いを防ぎ、画質の良好な画像を得ることが可能となるので超音波診断装置等として有用である。   The ultrasonic diagnostic apparatus according to the present invention, when performing synthetic aperture, prevents signal cancellation due to a phase difference that occurs when the subject moves by detecting and aligning the phase of the received signal by each transmission and reception. This is useful as an ultrasonic diagnostic apparatus and the like.

本発明の第1の実施の形態における合成開口を行う超音波診断装置の概略ブロック図1 is a schematic block diagram of an ultrasonic diagnostic apparatus that performs a synthetic aperture according to a first embodiment of the present invention. 本発明の第1の実施の形態における送受信シーケンスの説明図Explanatory drawing of the transmission / reception sequence in the 1st Embodiment of this invention 本発明の第1の実施の形態におけるゼロクロス検出および遅延の説明図Explanatory drawing of zero cross detection and delay in the first embodiment of the present invention 本発明の第2の実施の形態における合成開口を行なう超音波診断装置の概略ブロック図Schematic block diagram of an ultrasonic diagnostic apparatus for performing synthetic aperture in the second embodiment of the present invention 本発明の第2の実施の形態における相関器による位相検出の説明図Explanatory drawing of the phase detection by the correlator in the 2nd Embodiment of this invention 本発明の第2の実施の形態における移相の説明図Explanatory drawing of the phase shift in the 2nd Embodiment of this invention 本発明の第1の従来例における合成開口を行なう超音波診断装置の概略ブロック図1 is a schematic block diagram of an ultrasonic diagnostic apparatus for performing synthetic aperture in the first conventional example of the present invention. 従来の超音波診断装置の概略ブロック図Schematic block diagram of a conventional ultrasonic diagnostic apparatus 従来の超音波診断装置の別の概略ブロック図Another schematic block diagram of a conventional ultrasonic diagnostic apparatus

符号の説明Explanation of symbols

1 探触子
T1〜T16 振動子
2 開口合成部
3,4 メモリ
5,6 スイッチ
7,8 ゼロクロス検出器
9 遅延量算出器
10 遅延量メモリ
11,13 遅延器
12 加算器
14 相関器
15 位相メモリ
16 移相器
20 比較器
21 信号遅延器
22 NOT
23 AND
24,25 乗算器
26,27 ローパスフィルタ
28 相関器
29 オールパスフィルタ
30,31 ゲイン可変アンプ
32 加算器
100 マルチプレクサ(MUX)
101,108 送信回路
102 増幅器
103,113〜116 A/D変換器
104 メモリ
105 加算器
106 信号処理器
107 表示部
109〜112 スイッチ
117 ビーム形成器
121 検波器
122 ディジタルスキャンコンバータ(DSC)
DESCRIPTION OF SYMBOLS 1 Probe T1-T16 Vibrator 2 Aperture synthetic | combination part 3, 4 Memory 5, 6 Switch 7, 8 Zero cross detector
DESCRIPTION OF SYMBOLS 9 Delay amount calculator 10 Delay amount memory 11, 13 Delay device 12 Adder 14 Correlator 15 Phase memory 16 Phase shifter 20 Comparator 21 Signal delay device 22 NOT
23 AND
24, 25 Multiplier 26, 27 Low pass filter 28 Correlator 29 All pass filter 30, 31 Variable gain amplifier 32 Adder 100 Multiplexer (MUX)
DESCRIPTION OF SYMBOLS 101,108 Transmission circuit 102 Amplifier 103,113-116 A / D converter 104 Memory 105 Adder 106 Signal processor 107 Display part 109-112 Switch 117 Beam former 121 Detector 122 Digital scan converter (DSC)

Claims (4)

配列された複数の振動子と、前記振動子で受信した信号のうちビーム形成器に入力する信号を選択するスイッチと、前記スイッチにより選択された信号によりビーム形成を行なうビーム形成器とビーム形成器の出力を一時的に記憶するメモリと、前記メモリおよびビーム形成器の出力を加算する加算器から構成され、複数回の同じ開口を用いた被検体への送受信シーケンスを含む複数回の送受信シーケンスにより1つのビーム形成を行なう合成開口方式を用い、同じ開口を用いた複数の送受信シーケンスで得た信号から送受信シーケンス間の被検体の体動による位相のずれを検出する手段および、異なる開口における送受信シーケンスにおいて得た受信信号の位相をそろえる手段を備えたことを特徴とする超音波診断装置。 A plurality of transducers arranged; a switch for selecting a signal to be input to a beam former from signals received by the transducer; and a beam former and a beam former for performing beam formation by a signal selected by the switch A memory for temporarily storing the output of the memory and an adder for adding the outputs of the memory and the beam former, and a plurality of transmission / reception sequences including a transmission / reception sequence to the subject using a plurality of times the same aperture Means for detecting a phase shift due to body movement of a subject between transmission / reception sequences from signals obtained by a plurality of transmission / reception sequences using the same aperture using a single aperture forming method, and transmission / reception sequences at different apertures An ultrasonic diagnostic apparatus comprising means for aligning the phases of the received signals obtained in step 1. 前記位相を検出する手段がゼロクロス検出器であることを特徴とする請求項1記載の超音波診断装置。 2. The ultrasonic diagnostic apparatus according to claim 1, wherein the means for detecting the phase is a zero cross detector. 前記位相を検出する手段が相関器であることを特徴とする請求項1記載の超音波診断装置。 2. The ultrasonic diagnostic apparatus according to claim 1, wherein the means for detecting the phase is a correlator. 位相のずれを検出するための同じ開口における送受信シーケンスを毎回行なわないことを特徴とする請求項2ないし3記載の超音波診断装置。 4. The ultrasonic diagnostic apparatus according to claim 2, wherein a transmission / reception sequence in the same opening for detecting a phase shift is not performed every time.
JP2005301492A 2005-10-17 2005-10-17 Ultrasonic diagnostic equipment Expired - Fee Related JP4752443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301492A JP4752443B2 (en) 2005-10-17 2005-10-17 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301492A JP4752443B2 (en) 2005-10-17 2005-10-17 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2007105360A true JP2007105360A (en) 2007-04-26
JP4752443B2 JP4752443B2 (en) 2011-08-17

Family

ID=38031673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301492A Expired - Fee Related JP4752443B2 (en) 2005-10-17 2005-10-17 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP4752443B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101164A (en) * 2007-10-25 2009-05-14 Medison Co Ltd Method of removing side lobe influences
KR100911879B1 (en) 2007-12-03 2009-08-11 서강대학교기술지주 주식회사 Ultrasound Synthetic Aperture Beamformer and Ultrasound image apparatus using the beamformer
JP2014183922A (en) * 2013-03-22 2014-10-02 Fujifilm Corp Ultrasonic diagnostic apparatus, and signal processing method and program in ultrasonic diagnostic apparatus
JP2016127876A (en) * 2015-01-09 2016-07-14 コニカミノルタ株式会社 Ultrasonic signal processing device and ultrasonic diagnostic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010178A (en) * 2001-07-03 2003-01-14 Toshiba Corp Ultrasonograph
JP2004261229A (en) * 2003-02-18 2004-09-24 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010178A (en) * 2001-07-03 2003-01-14 Toshiba Corp Ultrasonograph
JP2004261229A (en) * 2003-02-18 2004-09-24 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101164A (en) * 2007-10-25 2009-05-14 Medison Co Ltd Method of removing side lobe influences
KR100911879B1 (en) 2007-12-03 2009-08-11 서강대학교기술지주 주식회사 Ultrasound Synthetic Aperture Beamformer and Ultrasound image apparatus using the beamformer
JP2014183922A (en) * 2013-03-22 2014-10-02 Fujifilm Corp Ultrasonic diagnostic apparatus, and signal processing method and program in ultrasonic diagnostic apparatus
JP2016127876A (en) * 2015-01-09 2016-07-14 コニカミノルタ株式会社 Ultrasonic signal processing device and ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JP4752443B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4039643B2 (en) Ultrasonic beam forming device
JP3645938B2 (en) Beam shaper and method of generating beam shaper signals
US7508737B1 (en) Ultrasound receive beamformer
US8241218B2 (en) Ultrasonic diagnostic apparatus
JP2776986B2 (en) Partial beamforming
EP0642036B1 (en) Ultrasonic diagnostic equipment
WO1995031135A1 (en) Method and device for multichannel digital reception and ultrasonic diagnostic device
JPS61191345A (en) Ultrasonic diagnostic apparatus
JP4752443B2 (en) Ultrasonic diagnostic equipment
US6856577B1 (en) Method and apparatus for forming a reception beam
JPH06254092A (en) Ultrasonic signal processor
JP2004261229A (en) Ultrasonic diagnostic equipment
JPH06105841A (en) Ultrasonic diagnostic apparatus
JP5513976B2 (en) Ultrasonic diagnostic equipment
US11129595B2 (en) Ultrasonic diagnostic apparatus, interpolation processing unit, and interpolation processing method
JP2008167876A (en) Ultrasonic diagnostic apparatus
JP2008178470A (en) Ultrasonic diagnostic equipment
JP6863817B2 (en) Ultrasound imaging device
JP3276503B2 (en) Ultrasound diagnostic equipment
JP3600994B2 (en) Ultrasound diagnostic equipment
KR101510678B1 (en) Method for Forming Harmonic Image, Ultrasound Medical Apparatus Therefor
RU180351U1 (en) ADAPTIVE DIAGRAM-FORMING DEVICE FOR OBTAINING ULTRASONIC IMAGES
JP2000300564A (en) Ultrasonic diagnostic instrument
JP2006320633A (en) Ultrasonic diagnostic apparatus
JPH05184567A (en) Ultrasonic diagnostic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4752443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees