JP2007103209A - Electrode for plasma reactor - Google Patents

Electrode for plasma reactor Download PDF

Info

Publication number
JP2007103209A
JP2007103209A JP2005292997A JP2005292997A JP2007103209A JP 2007103209 A JP2007103209 A JP 2007103209A JP 2005292997 A JP2005292997 A JP 2005292997A JP 2005292997 A JP2005292997 A JP 2005292997A JP 2007103209 A JP2007103209 A JP 2007103209A
Authority
JP
Japan
Prior art keywords
electrode
plasma
metal plate
plasma reactor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005292997A
Other languages
Japanese (ja)
Other versions
JP4980601B2 (en
Inventor
Kazuya Naito
一哉 内藤
Ingo Kin
允護 金
Takashi Ogawa
孝 小川
Ryohei Iwasaki
良平 岩崎
Isao Tan
功 丹
Mitsuhiro Wakuta
充啓 涌田
Hirohisa Tanaka
裕久 田中
Suiryo Yo
水良 姚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Daihatsu Motor Co Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Daihatsu Motor Co Ltd
Priority to JP2005292997A priority Critical patent/JP4980601B2/en
Priority to PCT/JP2006/320238 priority patent/WO2007043541A1/en
Priority to EP06811550A priority patent/EP1933606A1/en
Publication of JP2007103209A publication Critical patent/JP2007103209A/en
Application granted granted Critical
Publication of JP4980601B2 publication Critical patent/JP4980601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of electrode for a plasma reactor having grooves or fine holes on a surface of an electrode or a dielectric that even if an electric field is concentrated on the groove or the fine holes by voltage impressed on the electrode, since plasma discharge is generated at the grooves or fine holes two-dimensionally, namely, in a flat shape, it is difficult to generate the plasma discharge in a uniform state in a space where exhaust gas or the like passes through, namely, the space between electrodes, and plasma generating efficiency is low. <P>SOLUTION: The electrode is made of a metal plate, and a plurality of parts protruding from the surface of the electrode are formed at least on one surface thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、工場、プラント、内燃機関などから排出される排煙に含まれて環境に悪影響を与える成分を除去するための装置などに用いられるプラズマ反応器用電極に関するものである。   The present invention relates to an electrode for a plasma reactor used in an apparatus for removing components that are contained in flue gas discharged from factories, plants, internal combustion engines, and the like and that adversely affect the environment.

従来、例えば自動車のエンジン特にはディーゼルエンジンから排出される排気ガスに含まれるCO(一酸化炭素)、HC(炭化水素)、NOx(窒素酸化物)、及びPM(粒子状物質)の排出量を低減するために、触媒及びDPF(ディーゼルパティキュレートフィルタ)が用いられている。しかしながら、DPFの場合、PMを捕集することにより内部のPMが増加すると、排気ガスの流通が悪くなり、ディーゼルエンジンの排気抵抗が増加し、その結果、燃費と出力が低下することになる。   Conventionally, for example, the amount of CO (carbon monoxide), HC (hydrocarbon), NOx (nitrogen oxide), and PM (particulate matter) contained in exhaust gas discharged from an automobile engine, particularly a diesel engine, is reduced. In order to reduce, a catalyst and DPF (diesel particulate filter) are used. However, in the case of DPF, if the internal PM increases by collecting PM, the flow of exhaust gas deteriorates, the exhaust resistance of the diesel engine increases, and as a result, fuel consumption and output decrease.

このような状況に鑑みて、近年では捕集したPMを酸化させてガス化(CO2)にして除去することや、排気ガスを改質してPMなどの排出量を低減することが試みられている。このような試みの一つとして、触媒を含む排出ガス浄化装置において、プラズマ反応器を用いるものが知られている。例えば、特許文献1に記載のものにあっては、対向配置される二枚の電極と、その電極のいずれか一方に積層された誘電体とを備えて、電極及び誘電体の少なくとも一方の表面上に、溝又は細孔を所定の周期間隔により形成して、対向配置された電極間にプラズマを発生させ、そのプラズマに排気ガスを接触させることにより、排気ガス中のPMなどの排出量を低減するようにしている。 In view of such circumstances, in recent years, it has been attempted to oxidize collected PM to remove it as gasification (CO 2 ), or to reform exhaust gas to reduce the emission amount of PM or the like. ing. As one of such attempts, an exhaust gas purifying apparatus including a catalyst that uses a plasma reactor is known. For example, the one described in Patent Document 1 includes two electrodes arranged opposite to each other and a dielectric layer laminated on one of the electrodes, and at least one surface of the electrode and the dielectric material On top of this, grooves or pores are formed at a predetermined periodic interval, plasma is generated between the electrodes arranged opposite to each other, and exhaust gas is brought into contact with the plasma, thereby reducing the exhaust amount of PM or the like in the exhaust gas. I try to reduce it.

また、特許文献2のものにあっては、プラズマ発生電極において、対向配置されるうちの少なくとも一方が、板状のセラミック誘電体と、セラミック誘電体内に配設される導電膜とを有してなり、導電膜はその膜厚方向に所定の間隔を隔てた状態で配置される複数からなり、導電膜の少なくとも一枚に、膜厚方向に貫通した複数の貫通孔が形成されているものである。
特開2005−138098号公報 特開2005−203362号公報
Moreover, in the thing of patent document 2, in a plasma generation electrode, at least one of the opposing arrangement | positioning has a plate-shaped ceramic dielectric material and the electrically conductive film arrange | positioned in a ceramic dielectric material. The conductive film is composed of a plurality arranged with a predetermined interval in the film thickness direction, and a plurality of through holes penetrating in the film thickness direction are formed in at least one of the conductive films. is there.
JP 2005-138098 A JP 2005-203362 A

ところで、上記の構成のものでは、溝、細孔、貫通孔を有するものの、基本的には平板な形状の電極であるために、電極間(導電膜間)にプラズマを効率よく発生させる構造とはならない。すなわち、特許文献1のものでは、溝又は細孔が電極又は誘電体の表面に形成してあるものの、電極に印加した電圧により溝又は細孔の部分で電界が集中しても、プラズマ放電は溝又は細孔において二次元的つまり平面的に発生するものである。このため、排気ガスなどが通る空間つまり電極間のプラズマ放電は均等な状態にはなりがたく、効率よくプラズマを発生させ得るものではない。   By the way, in the thing of said structure, although it has a groove | channel, a fine hole, and a through-hole, since it is a flat electrode fundamentally, it has the structure which generate | occur | produces a plasma efficiently between electrodes (between electrically conductive films). Must not. That is, in Patent Document 1, although the grooves or pores are formed on the surface of the electrode or the dielectric, the plasma discharge does not occur even if the electric field is concentrated in the groove or pore due to the voltage applied to the electrodes. It occurs two-dimensionally or planarly in the groove or pore. For this reason, the plasma discharge between the space through which the exhaust gas passes, that is, between the electrodes is unlikely to be uniform, and the plasma cannot be generated efficiently.

同様に、特許文献2のものでは、貫通孔を有する導電膜がセラミック誘電体内に設けられるが、プラズマは貫通孔内において二次元的に発生する傾向にあり、必ずしも導電膜間に効率よくプラズマが発生するものではなかった。   Similarly, in Patent Document 2, a conductive film having a through hole is provided in the ceramic dielectric, but plasma tends to be generated two-dimensionally in the through hole, and the plasma is not necessarily efficiently generated between the conductive films. It did not occur.

そこで本発明は、このような不具合を解消することを目的としている。   Therefore, the present invention aims to eliminate such problems.

すなわち、本発明のプラズマ反応器用電極は、金属板からなり、少なくともその一方の表面に、表面から突出して電位の集中する部位を複数形成してなることを特徴とする。   That is, the electrode for a plasma reactor according to the present invention is made of a metal plate, and is characterized in that a plurality of portions projecting from the surface and concentration of potential are formed on at least one surface thereof.

このような構成によれば、電圧が印加された際に、複数の部位において電位が集中することになる。電位が集中することにより、それぞれの部位においてプラズマ放電効率を高くすることが可能になる。このことは、プラズマ反応器において、対向配置される電極間の空間ほぼ全域においてほぼ均等にプラズマを発生させることを可能にするものである。   According to such a configuration, when a voltage is applied, the potential concentrates at a plurality of parts. By concentrating the potential, it becomes possible to increase the plasma discharge efficiency in each part. This makes it possible to generate plasma almost uniformly in almost the entire space between the electrodes arranged opposite to each other in the plasma reactor.

本発明における電位の集中する部位としては、尖った形状を含む部位であればその形状自体は特に限定されるものではなく、具体的には、縦方向及び横方向に交互に連続して形成される凸部と凹部との縦方向における凸部と凹部との境界に形成された切断面であるものが挙げられる。この場合に、凸部と凹部とは、その断面形状がほぼ半円形のものや、等辺三角形のものなどが挙げられ、全体としては波状の断面形状となるものである。このような波状の断面形状は例えば、金属板をプレス加工することにより得られるので、生産効率を高くすることが可能になる。また、このような凸部と凹部とを有する構成のものにあっては、縦方向が、処理する気体の流れる方向に一致するものが好ましい。このような構成であれば、プラズマ反応器において、処理する気体がプラズマに接触する時間を長くすることが可能になる。   In the present invention, the portion where the potential is concentrated is not particularly limited as long as it includes a pointed shape, and specifically, the portion is continuously formed alternately in the vertical direction and the horizontal direction. What is the cut surface formed in the boundary of the convex part and recessed part in the vertical direction of a convex part and a recessed part to be mentioned. In this case, the convex part and the concave part may have a substantially semicircular cross-sectional shape, an equilateral triangular shape, or the like, and have a wavy cross-sectional shape as a whole. Such a wave-like cross-sectional shape can be obtained by, for example, pressing a metal plate, so that the production efficiency can be increased. Moreover, in the thing which has a structure which has such a convex part and a recessed part, the vertical direction corresponds with the direction through which the gas to process flows. With such a configuration, it is possible to lengthen the time during which the gas to be processed contacts the plasma in the plasma reactor.

プラズマ反応器の使用時において、プラズマ放電をほぼ均一にするとともに、その初期放電効率を高くするためには、一方の表面に誘電体を備えてなるものが好ましい。   In order to make the plasma discharge substantially uniform and increase the initial discharge efficiency when using the plasma reactor, it is preferable to provide a dielectric on one surface.

本発明は、以上説明したような構成であり、電圧が印加された際に、複数の部位において電位が集中することにより、それぞれの部位においてプラズマ放電効率を高くすることができる。したがって、使用時にあっては、これらの部位により効率よくプラズマが発生するので、電極表面のほぼ全域にわたってほぼ均等にプラズマが存在する空間を形成することができる。   The present invention is configured as described above, and when a voltage is applied, the potential concentrates at a plurality of sites, so that the plasma discharge efficiency can be increased at each site. Accordingly, during use, plasma is efficiently generated by these portions, so that it is possible to form a space where the plasma exists almost uniformly over the entire area of the electrode surface.

以下、本発明の一実施形態を、図1〜3を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

この第一の実施形態のプラズマ反応器用電極(以下、電極と称する)100は、断面形状をほぼ波形状にしてなる金属板1とその一方の表面に設けられる板状の誘電体2とからなるものである。電極100の素材となる金属板1は、例えばニッケル、銅、鉄、ステンレス、タングステンなどの金属のものが挙げられる。この金属板1の厚みは例えば、200×10−6m(メートル)で、上述したほぼ波形状を維持するに十分な強度を得られるものであれば、この値に限定されるものではない。 An electrode for plasma reactor (hereinafter referred to as an electrode) 100 according to the first embodiment includes a metal plate 1 having a substantially corrugated cross-sectional shape and a plate-like dielectric 2 provided on one surface thereof. Is. Examples of the metal plate 1 that is a material of the electrode 100 include metals such as nickel, copper, iron, stainless steel, and tungsten. The thickness of the metal plate 1 is, for example, 200 × 10 −6 m (meters), and the thickness is not limited to this value as long as sufficient strength can be obtained to maintain the above-described wave shape.

金属板1は、その横方向に、凸部3と凹部4とを交互に連続して備えている。又、金属板1は、縦方向においても、凸部3と凹部4とを交互に連続して備えている。ここで、縦方向(図2において矢印5により示す方向)とは、この電極100がプラズマ反応器に取り付けられた場合に、処理する気体、例えば自動車のエンジンの場合には排気ガスが流れる方向を指すものである。これに対して、横方向(図2において矢印6により示す方向)とは、この縦方向にほぼ直交する方向を指すものである。   The metal plate 1 includes convex portions 3 and concave portions 4 alternately and continuously in the lateral direction. Moreover, the metal plate 1 is provided with the convex part 3 and the recessed part 4 alternately continuously also in the vertical direction. Here, the vertical direction (the direction indicated by the arrow 5 in FIG. 2) refers to the direction in which the gas to be processed, for example, in the case of an automobile engine, the exhaust gas flows when the electrode 100 is attached to the plasma reactor. It is what you point to. On the other hand, the horizontal direction (the direction indicated by the arrow 6 in FIG. 2) indicates a direction substantially orthogonal to the vertical direction.

金属板1の縦方向において、凸部3と凸部4との間に凹部4が交互に連続することにより、金属板1の縦方向の端面7と同様に、凸部3と凹部4との境界に縦方向に向いて露出する切断面8が複数つまり多数形成されている。電極100に電圧を印加した場合に生じる電位が集中する部位であるこの切断面8は例えば、縦方向に連続する凸部3を所定の間隔で凹ませる場合に、凸部3が切断されることによって形成されるものであってよい。なお、この第一の実施形態にあっては、横方向において部分的に凸部3と凹部4とが交互に連続し、部分的に凸部3及び凹部4が連続する形状であるが、本発明にあってはこのような形状をも含むもので、図示しないが、同じ長さの凸部3と凹部4とが横方向において交互に連続する構造を含むことは言うまでもない。   In the longitudinal direction of the metal plate 1, the concave portions 4 are alternately arranged between the convex portions 3 and the convex portions 4, so that the convex portions 3 and the concave portions 4 are formed in the same manner as the longitudinal end face 7 of the metal plate 1. A plurality of cut surfaces 8 that are exposed in the vertical direction at the boundary, that is, a large number of cut surfaces 8 are formed. The cut surface 8, which is a portion where potentials generated when voltage is applied to the electrode 100, is cut when the convex portions 3 that are continuous in the vertical direction are recessed at a predetermined interval. It may be formed by. In the first embodiment, the convex portion 3 and the concave portion 4 are partially continuous in the lateral direction, and the convex portion 3 and the concave portion 4 are partially continuous. The invention includes such a shape, and although not shown, it is needless to say that the invention includes a structure in which convex portions 3 and concave portions 4 having the same length are alternately continued in the lateral direction.

このような金属板1は例えば、凹凸を有する二つの回転体の間に金属板材料を圧しながら通すことにより製作することが可能である。したがって、所定幅の金属板材料を連続的に加工することで、容易に同一形状の金属板1を製作することが可能で、製造コストを低減することを可能にしている。しかも、この第一の実施形態のもののように、板厚の薄い金属板材料を使用することにより、電極100を軽量化することができる。   Such a metal plate 1 can be manufactured by, for example, passing a metal plate material while pressing between two rotators having irregularities. Therefore, the metal plate 1 having the same shape can be easily manufactured by continuously processing the metal plate material having a predetermined width, and the manufacturing cost can be reduced. In addition, the electrode 100 can be reduced in weight by using a thin metal plate material as in the first embodiment.

誘電体2は、平板形状をしており、金属板1の一方の面に取り付けてられる。誘電体2は、プラズマ反応器における電極配置を、誘電体2を備える電極100とその誘電体2を挟むようにして配置される金属板1のみからなる電極200とで実現する場合に、所定の電圧を電極100及び電極200に印加した場合にプラズマが発生するのに十分な距離に等しい厚みに設定するものである。   The dielectric 2 has a flat plate shape and is attached to one surface of the metal plate 1. The dielectric 2 has a predetermined voltage when the electrode arrangement in the plasma reactor is realized by the electrode 100 including the dielectric 2 and the electrode 200 including only the metal plate 1 disposed so as to sandwich the dielectric 2. When applied to the electrode 100 and the electrode 200, the thickness is set equal to a distance sufficient to generate plasma.

このような構成において、プラズマ反応器に電極100及び電極200が取り付けられる場合には、電極100の誘電体2を電極200で挟んで、プラズマ反応器における1セットの電極部が形成される。この場合に、それぞれの電極100、200の金属板1は同じ大きさで同じ形状であり、電極100の凸部3に対応して電極200の凸部3が位置するように、それぞれを対向配置するものである。この結果、電極100の金属板1と電極200の金属板1との距離は、金属板1の全領域において等しいものとなる。   In such a configuration, when the electrode 100 and the electrode 200 are attached to the plasma reactor, the dielectric 2 of the electrode 100 is sandwiched between the electrodes 200 to form one set of electrode portions in the plasma reactor. In this case, the metal plates 1 of the electrodes 100 and 200 have the same size and the same shape, and are disposed so that the convex portions 3 of the electrodes 200 are positioned corresponding to the convex portions 3 of the electrodes 100. To do. As a result, the distance between the metal plate 1 of the electrode 100 and the metal plate 1 of the electrode 200 is equal in the entire region of the metal plate 1.

電極100及び電極200には複数の切断面8が縦方向において露出している。このような切断面8を形成することにより、その切断面8が、金属板1の縦方向において凸部3と凹部4との境界から突出した状態になっている。この切断面8には、電極100、200に電圧が印加された際に、電位が集中することになる。この電位の集中は、切断面8を形成している縁部において顕著に現れる。そのため、電位が集中した切断面8からの電子放出が、凸部3や凹部4の表面に比較して活発になり、放電開始電圧を低電圧化すること及び低消費電力化することに寄与するものである。したがって、低い放電開始電圧にもかかわらず、電極100及び電極200の間に全体にほぼ均等な状態で高いプラズマ光強度のプラズマを発生させることができ、効率よく処理する気体に含まれるPMを低減することができるものである。図4にプラズマ発光の状態を示す。   A plurality of cut surfaces 8 are exposed in the vertical direction on the electrode 100 and the electrode 200. By forming such a cut surface 8, the cut surface 8 protrudes from the boundary between the convex portion 3 and the concave portion 4 in the longitudinal direction of the metal plate 1. When a voltage is applied to the electrodes 100 and 200, the potential concentrates on the cut surface 8. This concentration of potential appears remarkably at the edge forming the cut surface 8. Therefore, the electron emission from the cut surface 8 where the potential is concentrated becomes more active than the surface of the convex portion 3 and the concave portion 4, and contributes to lowering the discharge start voltage and lowering power consumption. Is. Therefore, despite the low discharge start voltage, high plasma light intensity plasma can be generated in a substantially uniform state between the electrode 100 and the electrode 200, and the PM contained in the gas to be processed efficiently can be reduced. Is something that can be done. FIG. 4 shows the state of plasma emission.

この第一の実施形態の電極100、200にあっては、処理する気体が縦方向に流れるものであるので、プラズマ反応器において発生したプラズマに接触している時間を長くすることができる。しかも、縦方向に貫通している凸部3と凹部4とが処理する気体の流路になるため、流路抵抗を小さくすることができ、処理能力を高くすることができる。   In the electrodes 100 and 200 according to the first embodiment, since the gas to be processed flows in the vertical direction, the time of contact with the plasma generated in the plasma reactor can be lengthened. And since the convex part 3 and the recessed part 4 which penetrated to the vertical direction become the flow path of the gas to process, flow path resistance can be made small and processing capacity can be made high.

なお、上述の第一の実施形態にあっては、金属板1の横方向における断面形状を半円形のほぼ波形としたが、サイン波形状や放物線形状、さらには等辺三角形状、多角形形状などであってもよい。これらの形状は、加工の容易性に押して選択するものであってよい。   In the first embodiment described above, the cross-sectional shape in the lateral direction of the metal plate 1 is a semicircular substantially waveform, but a sine wave shape, a parabolic shape, an equilateral triangular shape, a polygonal shape, etc. It may be. These shapes may be selected by pushing for ease of processing.

また、以上に説明した第一の実施形態では、誘電体2が金属板1の一方の表面側に備えるものを説明したが、プラズマ反応器において、複数の電極を積層する構成では、金属板の両方の表面に誘電体2を備えるものであってもよい。   In the first embodiment described above, the dielectric 2 is provided on one surface side of the metal plate 1. In the plasma reactor, in the configuration in which a plurality of electrodes are stacked, the metal plate The dielectric 2 may be provided on both surfaces.

次に、第二の実施形態について、図5により説明する。   Next, a second embodiment will be described with reference to FIG.

この第二の実施形態にあっては、金属板301は、平らな金属板材料の一方の表面から突出するように、切り起こしにより電位の集中する部位を複数形成したものである。すなわち、金属板301は、切り起こしにより形成された三角錐形状からなる突出部310を、所定の距離離してつまり所定のピッチで縦方向と横方向とに設けてある。なお、この第二の実施形態における縦方向及び横方向についても、上述の実施形態と同じである。   In this second embodiment, the metal plate 301 is formed by forming a plurality of portions where potentials are concentrated by cutting and raising so as to protrude from one surface of a flat metal plate material. In other words, the metal plate 301 is provided with protrusions 310 formed of a triangular pyramid shape formed by cutting and raising at a predetermined distance in the vertical direction and the horizontal direction at a predetermined pitch. The vertical direction and the horizontal direction in the second embodiment are the same as those in the above-described embodiment.

突出部310は、その三角錐形状の底面が貫通孔になっており、その貫通孔を覆うようにして側面312が形成されている。二枚の側面312は、縦方向の前側で離れており、縦方向の後側で連結している。これによって、突出部310の縦方向の前側には三角形状の開口313が形成されており、その開口313の周囲に金属板材料の板厚にほぼ等しい切断面314が形成される。この実施形態においては、突出部310は、縦方向において、前列のものと重なり合わないように、前列の突出部310の間の中間の位置に来るように配置されるものである。つまり、三角形状の網目のそれぞれの頂点を中心にして、各突出部310が配置されるものである。   The protruding portion 310 has a triangular pyramid-shaped bottom surface as a through hole, and a side surface 312 is formed so as to cover the through hole. The two side surfaces 312 are separated on the front side in the vertical direction and connected on the rear side in the vertical direction. As a result, a triangular opening 313 is formed on the front side in the vertical direction of the protrusion 310, and a cut surface 314 that is substantially equal to the thickness of the metal plate material is formed around the opening 313. In this embodiment, the protrusions 310 are arranged so as to be at intermediate positions between the protrusions 310 in the front row so as not to overlap with those in the front row in the vertical direction. That is, each protrusion 310 is arranged centering on each vertex of the triangular mesh.

この突出部310においては、それぞれの側面312により形成される後側の嶺部315、及び開口313の上に位置する頂部316が、尖った形状になるので、切断面314を形成する縁部を含めて、電界の集中が顕著となるものである。   In the protruding portion 310, the rear flange portion 315 formed by the respective side surfaces 312 and the top portion 316 located on the opening 313 have a pointed shape, so that the edge portion that forms the cut surface 314 is formed. In addition, the concentration of the electric field becomes remarkable.

このような構成の金属板310にあっても、切断面314が多数突出して配置されるので、上述の実施形態と同様の効果を発揮するものである。   Even in the metal plate 310 having such a configuration, a large number of the cut surfaces 314 are arranged so as to exhibit the same effects as those of the above-described embodiment.

なお、突出部310は、必ずしも所定のピッチで設ける必要はなく、無作為に又は任意にそれぞれを配置するものであってもよい。また、突出部310は、切り起こしの加工をする場合、同じ高さのものの製造が容易であるが、必ずしも同じ高さでなくともよく、明確な切断面314を、さらには尖った頂部316を備えておればよい。   Note that the protruding portions 310 are not necessarily provided at a predetermined pitch, and may be arranged randomly or arbitrarily. Further, when the protrusion 310 is cut and raised, it is easy to manufacture the same height. However, the protrusion 310 does not necessarily have the same height, and has a clear cut surface 314 and a sharp top 316. It only has to be prepared.

加えて、上述のそれぞれの実施形態では、平板形状の誘電体2を説明したが、誘電体は金属板1、301にコーティング(塗布)することによって設けるものであってもよい。誘電体は、金属板1、301の少なくとも一方の表面(第二の実施形態のものにあっては、突出部310が設けてある側の表面)にコーティングするものであればよい。又、金属板1、301全体を誘電体により被覆するようにコーティングするものであってもよい。このようにコーティングにより誘電体を金属板1、301に設けるものにおいて、切断面にも誘電体をコーティングするものであってよい。   In addition, in each of the embodiments described above, the flat plate-shaped dielectric 2 has been described. However, the dielectric may be provided by coating (applying) the metal plates 1 and 301. The dielectric may be any material that coats at least one surface of the metal plates 1 and 301 (the surface on the side where the protrusion 310 is provided in the second embodiment). Further, the metal plates 1 and 301 may be coated so as to be covered with a dielectric. In this way, in the case where the dielectric is provided on the metal plates 1 and 301 by coating, the cut surface may be coated with the dielectric.

その他、各部の具体的構成についても上記それぞれの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明の活用例として、自動車の排気ガス浄化装置、プラントなど煙を出す施設における排煙処理装置など、PMを含んだ排煙を排出するものに対して設置される処理装置のプラズマ反応器が挙げられる。又、燃料電池において使用する水素を生成するための改質装置などに用いることができる。   As an example of use of the present invention, there is a plasma reactor of a processing apparatus installed for an exhaust gas purifying apparatus of an automobile, a flue gas processing apparatus in a facility that emits smoke such as a plant, etc. Can be mentioned. Further, it can be used in a reformer for producing hydrogen used in a fuel cell.

本発明の第一の実施形態の平面図及び正面図。The top view and front view of 1st embodiment of this invention. 同実施形態の拡大した部分を示す斜視図。The perspective view which shows the enlarged part of the embodiment. 同実施形態の電極をプラズマ反応器に使用する際の組み合わせを示す正面図。The front view which shows the combination at the time of using the electrode of the embodiment for a plasma reactor. 同実施形態におけるプラズマ発光の状態を示す写真。The photograph which shows the state of the plasma light emission in the same embodiment. 本発明の第二の実施形態の図2相当図。FIG. 2 is an equivalent view of the second embodiment of the present invention.

符号の説明Explanation of symbols

1…金属板
2…誘電体
3…凸部
4…凹部
8…切断面
100…プラズマ反応器用電極
200…プラズマ反応器用電極
DESCRIPTION OF SYMBOLS 1 ... Metal plate 2 ... Dielectric 3 ... Convex part 4 ... Concave part 8 ... Cut surface 100 ... Electrode for plasma reactors 200 ... Electrode for plasma reactors

Claims (4)

金属板からなり、少なくともその一方の表面に、表面から突出して電位の集中する部位を複数形成してなるプラズマ反応器用電極。   An electrode for a plasma reactor, which is made of a metal plate and has a plurality of portions that protrude from the surface and concentrate electric potential on at least one surface thereof. 電位の集中する部位が、縦方向及び横方向に交互に連続して形成される凸部と凹部との縦方向における凸部と凹部との境界に形成された切断面である請求項1記載のプラズマ反応器用電極。   The portion where the potential concentrates is a cut surface formed at the boundary between the convex portion and the concave portion in the vertical direction between the convex portion and the concave portion formed alternately and continuously in the vertical direction and the horizontal direction. Electrode for plasma reactor. 縦方向が、処理する気体の流れる方向に一致する請求項2記載のプラズマ反応器用電極。   The electrode for a plasma reactor according to claim 2, wherein the longitudinal direction coincides with the flow direction of the gas to be treated. 金属板が、一方の表面に誘電体を備えてなる請求項1、2又は3記載のプラズマ反応器用電極。   The electrode for a plasma reactor according to claim 1, 2 or 3, wherein the metal plate comprises a dielectric on one surface.
JP2005292997A 2005-10-05 2005-10-05 Electrode for plasma reactor Expired - Fee Related JP4980601B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005292997A JP4980601B2 (en) 2005-10-05 2005-10-05 Electrode for plasma reactor
PCT/JP2006/320238 WO2007043541A1 (en) 2005-10-05 2006-10-04 Electrode for plasma reactor
EP06811550A EP1933606A1 (en) 2005-10-05 2006-10-04 Electrode for plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292997A JP4980601B2 (en) 2005-10-05 2005-10-05 Electrode for plasma reactor

Publications (2)

Publication Number Publication Date
JP2007103209A true JP2007103209A (en) 2007-04-19
JP4980601B2 JP4980601B2 (en) 2012-07-18

Family

ID=37942776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292997A Expired - Fee Related JP4980601B2 (en) 2005-10-05 2005-10-05 Electrode for plasma reactor

Country Status (3)

Country Link
EP (1) EP1933606A1 (en)
JP (1) JP4980601B2 (en)
WO (1) WO2007043541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540936A (en) * 2010-09-15 2013-11-07 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Apparatus for generating an electric field in an exhaust gas system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107717A (en) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 Plasma reactor and plasma electrode plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361028A (en) * 2001-06-12 2002-12-17 Daikin Ind Ltd Plasma reactor and air cleaner
JP2005138098A (en) * 2003-10-14 2005-06-02 Nissan Motor Co Ltd Reaction controlling apparatus, reforming method, and reforming system
JP2005203362A (en) * 2003-12-19 2005-07-28 Ngk Insulators Ltd Plasma generation electrode and plasma reactor
JP2005268129A (en) * 2004-03-19 2005-09-29 Research Institute Of Innovative Technology For The Earth Plasma reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361028A (en) * 2001-06-12 2002-12-17 Daikin Ind Ltd Plasma reactor and air cleaner
JP2005138098A (en) * 2003-10-14 2005-06-02 Nissan Motor Co Ltd Reaction controlling apparatus, reforming method, and reforming system
JP2005203362A (en) * 2003-12-19 2005-07-28 Ngk Insulators Ltd Plasma generation electrode and plasma reactor
JP2005268129A (en) * 2004-03-19 2005-09-29 Research Institute Of Innovative Technology For The Earth Plasma reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540936A (en) * 2010-09-15 2013-11-07 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Apparatus for generating an electric field in an exhaust gas system

Also Published As

Publication number Publication date
WO2007043541A1 (en) 2007-04-19
EP1933606A1 (en) 2008-06-18
JP4980601B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CN1300888C (en) Corrugated current collector for direct internal reforming fuel cells
US8182658B2 (en) Electrochemical device and exhaust gas purification apparatus
CA2402183A1 (en) Electrode catalyst for fuel cell and process for producing the same
JP2005510828A5 (en)
JP5839766B2 (en) Plasma reactor
JP2015048773A (en) Gas reformer, exhaust emission control system, and air cleaner
WO2017090677A1 (en) Plasma reactor
EP3389345B1 (en) Plasma reactor and plasma electrode plate
JP4980601B2 (en) Electrode for plasma reactor
WO2011062060A1 (en) Gas decomposition apparatus
EP3318735B1 (en) Plasma generating electrode, electrode panel, and plasma reactor
JP2011011106A (en) Plasma reactor
JP2018003605A (en) Plasma reactor
JP5401438B2 (en) Flat type solid electrolyte fuel cell
JP2008198469A (en) Electrode for plasma generation
TWI603781B (en) A device that produces electrocatalyst plasma
JP5288342B2 (en) Electrode for plasma reactor
JP2004249283A (en) Integrated circular cell structure of ceramic catalyst carrier for automobile
TW200642149A (en) Electrode catalyst for fuel cell and process for producing the same
JP2018003604A (en) Plasma reactor
JP2010065271A (en) Feed conductor, water electrolysis stack equipped with the feed conductor, and water electrolysis device equipped with the water electrolysis stack
JPWO2007139019A1 (en) Electrode for plasma reactor
EP4329022A1 (en) Separator plate assembly for fuel cell capable of forming variable flow path pattern
JP2006331688A (en) Fuel cell
KR20230158774A (en) Electrolysis cell including corrugated electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4980601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees