JP2007103072A - Fuel cell system, component parts of fuel cell system, and piping of fuel cell system - Google Patents

Fuel cell system, component parts of fuel cell system, and piping of fuel cell system Download PDF

Info

Publication number
JP2007103072A
JP2007103072A JP2005288650A JP2005288650A JP2007103072A JP 2007103072 A JP2007103072 A JP 2007103072A JP 2005288650 A JP2005288650 A JP 2005288650A JP 2005288650 A JP2005288650 A JP 2005288650A JP 2007103072 A JP2007103072 A JP 2007103072A
Authority
JP
Japan
Prior art keywords
fuel cell
corrosion
cell system
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005288650A
Other languages
Japanese (ja)
Inventor
Tadashi Oshima
正 大島
Satoru Kosaka
悟 小坂
Kazuyuki Nakanishi
和之 中西
Takashi Izeki
崇 伊関
Hiroyuki Mori
広行 森
Masaki Kajino
正樹 梶野
Hideo Tachikawa
英男 太刀川
Hideo Hasegawa
英雄 長谷川
Taisuke Miyamoto
泰介 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2005288650A priority Critical patent/JP2007103072A/en
Publication of JP2007103072A publication Critical patent/JP2007103072A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system capable of enduring a long-period operation as well as component parts and a piping for the same. <P>SOLUTION: In the fuel cell system provided with a fuel cell obtaining electromotive force at least with the supply of fuel gas, a fuel supply means consisting of a supply piping for sending fuel gas at one end part to the fuel cell at the other end and one or more supply means component parts arranged on the supply piping, and a fuel exhaust means consisting of an exhaust piping for sending the fuel gas coming out of the fuel cell arranged at one end to the other end and one or more exhaust means component parts arranged on the exhaust piping, at least a part of the supply piping, supply means component parts, exhaust piping and exhaust means component parts consists of a base material 1 and a corrosion-resistant coating 2 fixed on the surface of the base material and made of amorphous carbon with an area ratio occupied by a plurality of defects A penetrating in a thickness direction of 10<SP>-2</SP>% or less, as well as of a corrosion-resistant member 3 with an electric resistivity of 10<SP>8</SP>Ω or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、長期間の運転に耐えられる燃料電池システム、ならびに、その構成部品および配管に関する。   The present invention relates to a fuel cell system that can withstand long-term operation, and its components and piping.

燃料の有する化学エネルギー(燃焼反応の自由エネルギー変化)を、直接、電気エネルギーに変換する装置として燃料電池が知られている。燃料電池は、負極に水素や炭化水素などの燃料ガス、正極に酸素や空気などの酸化剤ガス、を電池活物質として用い、反応により生成される水(生成水)などを逐次的に除去することにより、連続的に起電力が得られる。近年、燃料電池は、大規模発電プラントや電気自動車などの車両に搭載される車両用電源などの燃料電池システムに利用されつつある。   A fuel cell is known as a device that directly converts chemical energy (free energy change of combustion reaction) of fuel into electric energy. A fuel cell uses a fuel gas such as hydrogen or hydrocarbon as a negative electrode and an oxidant gas such as oxygen or air as a positive electrode as a battery active material, and sequentially removes water (product water) generated by the reaction. Thus, an electromotive force can be obtained continuously. In recent years, fuel cells are being used in fuel cell systems such as vehicle power supplies mounted on vehicles such as large-scale power plants and electric vehicles.

燃料電池システムでの発電により生成される水は酸性を示すことがあるため、燃料電池システムの構成部品である配管などの金属製の部分から金属イオンが僅かに溶出する(腐食現象)ことがある。溶出した金属イオンは、燃料電池システムの循環経路を通り燃料電池に流入し、燃料電池を構成する固体高分子電解質などに吸着され燃料電池の性能を低下させる。金属イオンの溶出が僅かな量であっても、長期間の使用により燃料電池が劣化して寿命が短くなることが懸念されるため、溶出を防止する対策が講じられている。たとえば、特許文献1では、イオン交換樹脂を使用して金属イオンを除去する方法が提案されている。   Since water generated by power generation in the fuel cell system may be acidic, metal ions may be slightly eluted from the metal parts such as pipes that are components of the fuel cell system (corrosion phenomenon). . The eluted metal ions flow into the fuel cell through the circulation path of the fuel cell system, and are adsorbed by the solid polymer electrolyte constituting the fuel cell, thereby reducing the performance of the fuel cell. Even if the elution of the metal ions is small, there is a concern that the fuel cell will deteriorate due to long-term use and the life thereof will be shortened. Therefore, measures to prevent elution are taken. For example, Patent Document 1 proposes a method of removing metal ions using an ion exchange resin.

また、燃料電池システムは、小型化してもエネルギーの変換効率が低下しないため、車両に搭載される。車両に搭載される場合には、軽量であることも望まれる。そのため、ステンレス鋼よりも軽量な軽金属を使用することが望ましいが、溶出する金属イオンの量が多くなるという問題がある。   The fuel cell system is mounted on a vehicle because the energy conversion efficiency does not decrease even if the fuel cell system is downsized. When mounted on a vehicle, it is also desired to be lightweight. Therefore, it is desirable to use a light metal that is lighter than stainless steel, but there is a problem that the amount of metal ions to be eluted increases.

ところで、非晶質炭素(ダイヤモンドライクカーボン)からなる被覆膜(非晶質炭素膜)は、摺動特性に優れるだけではなく、耐食性も高いことが知られている。ところが、成膜中の非晶質炭素膜に欠陥が生じたり、成膜後の非晶質炭素膜に割れや剥がれが発生したりすることにより、非晶質炭素のもつ各種特性が良好に発揮されないという問題がある。特に、非晶質炭素膜を耐食性被膜として用いる場合には、被膜の損傷が大きく影響する。   Incidentally, it is known that a coating film (amorphous carbon film) made of amorphous carbon (diamond-like carbon) not only has excellent sliding characteristics but also has high corrosion resistance. However, defects in the amorphous carbon film during film formation and cracks and peeling off in the amorphous carbon film after film formation cause the various characteristics of amorphous carbon to be exhibited well. There is a problem that it is not. In particular, when an amorphous carbon film is used as a corrosion-resistant film, damage to the film greatly affects.

上記問題点に対し、特許文献2には、基材と、基材の表面に形成された金属および/または金属炭化物を含有した非晶質炭素膜と、からなる耐食性を有する被覆部材が開示されている。また、特許文献3には、オーステナイト系金属からなりフッ化処理と浸炭処理を行うことにより表層部に形成された炭素拡散層をもつ基材と、炭素拡散層に積層された非晶質炭素膜と、からなる耐食性を有する金属製品が開示されている。   With respect to the above problems, Patent Document 2 discloses a coating member having corrosion resistance, which includes a base material and an amorphous carbon film containing a metal and / or metal carbide formed on the surface of the base material. ing. Patent Document 3 discloses a base material having a carbon diffusion layer made of an austenitic metal and formed in a surface layer portion by performing fluorination treatment and carburization treatment, and an amorphous carbon film laminated on the carbon diffusion layer. And a metal product having corrosion resistance is disclosed.

しかしながら、特許文献2および3では、非晶質炭素膜に含まれる金属や炭素拡散層の耐食性が低いと、所望の耐食性が得られないことが考えられる。また、成膜中に生じる非晶質炭素膜の欠陥は減少しないため、依然として、欠陥を起点にして腐食が進行する。さらには、基材と非晶質炭素膜との界面にまで腐食が進展して非晶質炭素膜が界面より剥離し、耐食性を保持できない。   However, in Patent Documents 2 and 3, it is conceivable that the desired corrosion resistance cannot be obtained if the corrosion resistance of the metal contained in the amorphous carbon film or the carbon diffusion layer is low. Further, since the defects of the amorphous carbon film generated during the film formation are not reduced, the corrosion still proceeds from the defect as a starting point. Furthermore, corrosion progresses to the interface between the base material and the amorphous carbon film, and the amorphous carbon film peels off from the interface, so that the corrosion resistance cannot be maintained.

他の方法として、耐食性の高い基材に非晶質炭素膜を被覆することにより非晶質炭素膜の欠陥からの腐食を低減し、耐食性を確保することも考えられる。しかし、使用できる基材の種類が限定され、基材に非晶質炭素ほどの耐食性がない場合には、耐食性部材としての性能に劣る。
特開2002−313404号公報 特開2003−231203号公報 特開2004−307894号公報
As another method, it is conceivable to reduce corrosion caused by defects in the amorphous carbon film by coating the substrate with high corrosion resistance with the amorphous carbon film to ensure the corrosion resistance. However, the types of base materials that can be used are limited, and when the base material does not have the same corrosion resistance as amorphous carbon, the performance as a corrosion-resistant member is inferior.
JP 2002-313404 A JP 2003-231203 A JP 2004-307894 A

本発明は、上記問題点に鑑み、非晶質炭素が本来もつ耐食性が十分に発揮される優れた耐食性部材を用いることにより金属イオンの溶出を防止し、長期間の運転に耐えられる燃料電池システム、ならびに、その構成部品および配管を提供することを目的とする。   In view of the above-described problems, the present invention prevents elution of metal ions by using an excellent corrosion-resistant member that sufficiently exhibits the inherent corrosion resistance of amorphous carbon, and can withstand long-term operation. And it aims at providing the component and piping.

本発明の燃料電池システムは、少なくとも、燃料ガスの供給を受けて起電力を得る燃料電池と、該燃料ガスを該燃料電池に送る供給配管と該供給配管上に配置される1以上の供給手段構成部品とからなる燃料供給手段と、該燃料電池から出る排出ガスを排出する排出配管と該排出配管上に配置される1以上の排出手段構成部品とからなる燃料排出手段と、を備える燃料電池システムにおいて、
前記供給配管、前記供給手段構成部品、前記排出配管および前記排出手段構成部品の少なくとも一部は、基材と、該基材の表面に固定され、厚さ方向に貫通する複数の欠陥の占める面積率が10-2%以下である非晶質炭素からなる耐食性被膜と、からなり、電気抵抗率が108 Ω・cm以上である耐食性部材からなることを特徴とする。
The fuel cell system of the present invention includes at least a fuel cell that receives an supply of fuel gas to obtain an electromotive force, a supply pipe that sends the fuel gas to the fuel cell, and one or more supply means disposed on the supply pipe A fuel cell comprising: a fuel supply means comprising component parts; a fuel discharge means comprising a discharge pipe for discharging exhaust gas from the fuel cell; and one or more discharge means component parts disposed on the discharge pipe. In the system,
At least a part of the supply pipe, the supply means component, the discharge pipe, and the discharge means component is a base material and an area occupied by a plurality of defects that are fixed to the surface of the base material and penetrate in the thickness direction. And a corrosion-resistant film made of amorphous carbon having a rate of 10 −2 % or less, and a corrosion-resistant member having an electrical resistivity of 10 8 Ω · cm or more.

また、本発明の燃料電池システムの構成部品は、燃料ガスを該燃料ガスの供給を受けて起電力を得る燃料電池に送る供給配管上、または、該燃料電池から出る排出ガスを排出する排出配管上、に配置される燃料電池システムの構成部品であって、
基材と、該基材の表面に固定され、厚さ方向に貫通する複数の欠陥の占める面積率が10-2%以下である非晶質炭素からなる耐食性被膜と、からなり、電気抵抗率が108 Ω・cm以上である耐食性部材からなることを特徴とする。
In addition, the fuel cell system component of the present invention includes a supply pipe for sending fuel gas to a fuel cell that receives the supply of the fuel gas and obtains an electromotive force, or a discharge pipe for discharging exhaust gas from the fuel cell. A component of a fuel cell system disposed on the top,
An electrical resistivity comprising: a base material; and a corrosion-resistant film made of amorphous carbon that is fixed to the surface of the base material and has an area ratio occupied by a plurality of defects penetrating in the thickness direction of 10 −2 % or less. Is made of a corrosion-resistant member having 10 8 Ω · cm or more.

本発明の燃料電池システムの配管は、一端部にある燃料ガスを他端部に配設され該燃料ガスの供給を受けて起電力を得る燃料電池に送る、または、一端部に配設された該燃料電池から出る燃料ガスを他端部に送る、燃料電池システムの配管であって、
配管基材と、該配管基材の内面に固定され、厚さ方向に貫通する複数の欠陥の占める面積率が10-2%以下である非晶質炭素からなる耐食性被膜と、からなり、電気抵抗率が108 Ω・cm以上であることを特徴とする。
The piping of the fuel cell system of the present invention is arranged at one end to send the fuel gas at one end to the fuel cell that receives the supply of the fuel gas to obtain an electromotive force. A fuel cell system pipe for sending fuel gas exiting the fuel cell to the other end,
A pipe base material, and a corrosion-resistant film made of amorphous carbon that is fixed to the inner surface of the pipe base material and has a plurality of defects penetrating in the thickness direction and having an area ratio of 10 −2 % or less. The resistivity is 10 8 Ω · cm or more.

ここで、「電気抵抗率」とは、耐食性部材(配管)そのものの電気抵抗率であって、耐食性被膜の厚さ方向に電圧を印加したときの抵抗率である。   Here, the “electrical resistivity” is the electrical resistivity of the corrosion-resistant member (pipe) itself, and is the resistivity when a voltage is applied in the thickness direction of the corrosion-resistant coating.

本発明の燃料電池システム、ならびに、その構成部品および配管において、前記耐食性被膜は、それぞれの前記欠陥の面積が100μm2 以下であるのが好ましい。 In the fuel cell system of the present invention, and its components and piping, the corrosion-resistant coating film preferably has an area of each defect of 100 μm 2 or less.

また、前記耐食性被膜は、0.5〜100μmの膜厚であるのが望ましい。また、前記非晶質炭素は、炭素を主成分とし珪素を含む珪素含有非晶質炭素であるのが好ましく、さらには、珪素を0.1at%以上10at%以下含み、水素を35at%以上50at%以下含むのが望ましい。   Moreover, it is desirable that the corrosion-resistant film has a thickness of 0.5 to 100 μm. The amorphous carbon is preferably silicon-containing amorphous carbon containing carbon as a main component and containing silicon. Further, the amorphous carbon contains 0.1 at% to 10 at% of silicon and 35 at% to 50 at% of hydrogen. % Or less is desirable.

前記基材(配管基材)は、少なくとも表層部に導電性を有する導電性材料からなる、または、金属材料からなるのが好ましい。この際、前記金属材料は、軽金属、特に、アルミニウムを主成分とするアルミニウム系材料であるのが好ましい。   The base material (pipe base material) is preferably made of a conductive material having conductivity in at least the surface layer portion or a metal material. In this case, the metal material is preferably a light metal, particularly an aluminum-based material mainly composed of aluminum.

本発明では、燃料電池システムに、基材の表面に非晶質炭素からなる耐食性被膜が固定された耐食性部材を用いた構成部品(供給手段構成部品、排出手段構成部品)や配管(供給配管、排出配管)を用いることにより、耐食性が付与される。特に、耐食性被膜の厚さ方向に貫通する複数の欠陥の占める面積率(欠陥面積率)が10-2%以下であり、耐食性部材の電気抵抗率が108 Ω・cm以上であれば、非晶質炭素のもつ耐食性が良好に発揮されるため、耐食性に優れた燃料電池システムが構成される。また、非晶質炭素からなる耐食性被膜は、非晶質炭素が耐熱性に優れるため、上記耐食性部材は、運転中に高温となる燃料電池システムにも好適である。 In the present invention, the fuel cell system includes components (supply means component parts, discharge means component parts) and pipes (supply pipes, supply pipes, etc.) using a corrosion-resistant member in which a corrosion-resistant coating made of amorphous carbon is fixed on the surface of the substrate. Corrosion resistance is imparted by using the discharge pipe. In particular, if the area ratio (defect area ratio) occupied by a plurality of defects penetrating in the thickness direction of the corrosion-resistant film is 10 −2 % or less and the electrical resistivity of the corrosion-resistant member is 10 8 Ω · cm or more, Since the corrosion resistance of crystalline carbon is exhibited well, a fuel cell system having excellent corrosion resistance is configured. In addition, since the corrosion-resistant film made of amorphous carbon is excellent in heat resistance, the above-mentioned corrosion-resistant member is also suitable for a fuel cell system that becomes high temperature during operation.

さらに、耐食性被膜がもつ欠陥1つ1つの面積が100μm2 以下であれば、防食の点において、燃料電池システムとしての信頼性が高くなる。 Furthermore, if the area of each defect of the corrosion-resistant film is 100 μm 2 or less, the reliability as a fuel cell system is enhanced in terms of corrosion prevention.

また、耐食性被膜の膜厚が0.5〜100μmであれば、所望の欠陥面積率と電気抵抗率が得られるため、構成部品や配管は、優れた耐食性を示す。また、非晶質炭素の珪素量を0.1at%以上10at%以下水素量を35at%以上50at%以下とすることで、耐食性被膜を厚膜化(たとえば12μm以上)しても、被膜に発生するクラックが抑制されるため、所望の欠陥面積率や電気抵抗率をもつ耐食性部材が得られる。   Moreover, if the film thickness of a corrosion-resistant film is 0.5-100 micrometers, since a desired defect area rate and electrical resistivity are obtained, a component and piping show the outstanding corrosion resistance. In addition, when the silicon content of amorphous carbon is 0.1 at% or more and 10 at% or less, and the hydrogen content is 35 at% or more and 50 at% or less, even if the corrosion resistant film is thickened (for example, 12 μm or more), it occurs in the film. Therefore, a corrosion-resistant member having a desired defect area ratio and electrical resistivity can be obtained.

基材が軽金属からなれば、軽量な燃料電池システムが得られるが、特に、基材がアルミニウム系材料からなれば、非晶質炭素からなる耐食性被膜との密着性に優れるため、耐食性が良好に保持される。   If the substrate is made of a light metal, a lightweight fuel cell system can be obtained.In particular, if the substrate is made of an aluminum-based material, it has excellent adhesion with an anticorrosion coating made of amorphous carbon, so the corrosion resistance is good. Retained.

本発明の燃料電池システムの構成部品(すなわち、供給手段構成部品、排出手段構成部品に相当)は、前記供給配管または前記排出配管を開閉する弁体、前記燃料ガスから水分を分離する気液分離部、前記燃料ガスを循環させる水素ポンプ、さらには温度センサ等に好適に用いることができる。   The components of the fuel cell system of the present invention (that is, the supply device component and the discharge device component) include a valve body that opens and closes the supply pipe or the discharge pipe, and a gas-liquid separation that separates moisture from the fuel gas. Part, a hydrogen pump for circulating the fuel gas, and a temperature sensor.

以下に、本発明の燃料電池システム、ならびに、その構成部品および配管を実施するための最良の形態を説明する。   The best mode for carrying out the fuel cell system of the present invention and its components and piping will be described below.

図9は、本発明の燃料電池システムの主要部の構成を模式的に示した図である。本発明の燃料電池システム90は、主として、燃料電池91と、燃料電池に燃料ガスを供給する燃料供給手段92と、燃料電池を出た燃料ガスを排出する燃料排出手段93と、を備える。   FIG. 9 is a diagram schematically showing the configuration of the main part of the fuel cell system of the present invention. The fuel cell system 90 of the present invention mainly includes a fuel cell 91, a fuel supply means 92 that supplies fuel gas to the fuel cell, and a fuel discharge means 93 that discharges the fuel gas exiting the fuel cell.

燃料電池91は、通常、電解質を含浸したマトリックス層を挟持する一対の電極を有する。一方の電極(負極)に供給される燃料ガスと、他方の電極(正極)に接触する空気と、の化学反応により起電力が生じる。燃料電池91は、固体高分子型、リン酸型、溶融塩炭酸型、アルカリ型、等いずれの燃料電池を用いてもよい。特に、燃料電池91が固体高分子型であれば、金属イオンの溶出を防止することにより、金属イオンの固体高分子膜への吸着が低減され、燃料電池の性能の低下を良好に防止することができるため、好ましい。   The fuel cell 91 usually has a pair of electrodes that sandwich a matrix layer impregnated with an electrolyte. An electromotive force is generated by a chemical reaction between the fuel gas supplied to one electrode (negative electrode) and the air in contact with the other electrode (positive electrode). The fuel cell 91 may be any fuel cell such as a solid polymer type, a phosphoric acid type, a molten salt carbonate type, and an alkaline type. In particular, if the fuel cell 91 is a solid polymer type, by preventing the elution of metal ions, the adsorption of metal ions to the solid polymer film is reduced, and the deterioration of the performance of the fuel cell can be satisfactorily prevented. Is preferable.

燃料供給手段92は、主として、燃料ガスを燃料電池91に送る供給配管92dと、供給配管92d上に配置される1以上の供給手段構成部品92X,92Yと、からなる。また、燃料排出手段93は、主として、燃料電池91から出る排出ガスを排出する排出配管93dと、排出配管93d上に配置される1以上の排出手段構成部品93X〜93Zと、からなる。   The fuel supply means 92 mainly includes a supply pipe 92d for sending fuel gas to the fuel cell 91, and one or more supply means components 92X and 92Y disposed on the supply pipe 92d. The fuel discharge means 93 mainly includes a discharge pipe 93d for discharging exhaust gas from the fuel cell 91, and one or more discharge means components 93X to 93Z disposed on the discharge pipe 93d.

燃料供給手段92および燃料排出手段93は、燃料電池91を出た排出配管93dの排出ガス(燃料ガスを含む)の少なくとも一部を供給配管92dに送り、燃料電池システム90に燃料ガスを循環させる燃料循環手段95を有してもよい。通常、燃料循環手段95は、排出配管92dの一部から分岐した一端部から、供給配管93dの一部から分岐した他端部へ、燃料ガスを送る循環配管95dをもつ。また、燃料循環手段95は、構成部品として、循環配管95d上に配置される1以上の循環手段構成部品95Xおよび95Yを有してもよい。   The fuel supply means 92 and the fuel discharge means 93 send at least a part of the exhaust gas (including the fuel gas) of the discharge pipe 93 d exiting the fuel cell 91 to the supply pipe 92 d and circulate the fuel gas in the fuel cell system 90. A fuel circulation means 95 may be provided. Normally, the fuel circulation means 95 has a circulation pipe 95d for sending fuel gas from one end branched from a part of the discharge pipe 92d to the other end branched from a part of the supply pipe 93d. The fuel circulation means 95 may include one or more circulation means component parts 95X and 95Y disposed on the circulation pipe 95d as the component parts.

さらに、燃料電池91に空気や酸素などの酸化剤ガスを供給する酸化剤ガス供給手段(図示せず)を備えてもよい。酸化剤ガス供給手段は、主として、酸化剤ガスを燃料電池に送る送入配管と、送入配管上に配置される1以上の送入手段構成部品と、からなるのが好ましい。   Furthermore, an oxidant gas supply means (not shown) for supplying an oxidant gas such as air or oxygen to the fuel cell 91 may be provided. It is preferable that the oxidant gas supply means mainly comprises an infeed pipe for sending the oxidant gas to the fuel cell, and one or more infeed means components arranged on the infeed pipe.

上記の供給配管、排出配管、循環配管、送入配管などの燃料電池システムの配管や、供給手段構成部品、排出手段構成部品、循環手段構成部品、送入手段構成部品などの燃料電池システムの構成部品は、前述のように、生成水(酸性)と接触するため、金属イオンの溶出の原因となる可能性がある。したがって、何等かの防食対策が必要となっている。以下に構成部品の具体例を挙げる。   Fuel cell system configurations such as the above-mentioned supply piping, discharge piping, circulation piping, and delivery piping, and fuel cell system configurations such as supply means components, discharge means components, circulation means components, and delivery means components As described above, since the component comes into contact with the generated water (acidic), it may cause elution of metal ions. Therefore, some anti-corrosion measures are necessary. Specific examples of components are given below.

構成部品の少なくともひとつは、供給配管または排出配管を開閉する弁体であるのが望ましい。弁体としては、燃料電池に供給される燃料ガスの流路を開閉する開閉弁や、排出ガスから分離された生成水を外部に排出するためのドレン弁、配管内の逆流を防ぐ逆止弁、燃料電池システムからの排気を制御する排気弁などが挙げられる。   It is desirable that at least one of the components is a valve body that opens and closes a supply pipe or a discharge pipe. The valve body includes an open / close valve that opens and closes the flow path of the fuel gas supplied to the fuel cell, a drain valve that discharges the generated water separated from the exhaust gas to the outside, and a check valve that prevents backflow in the piping. And an exhaust valve for controlling the exhaust from the fuel cell system.

また、構成部品の少なくともひとつは、燃料電池を出た排出ガスから生成水を分離する気液分離部や、水素ガスを循環させる水素ポンプであるのが望ましい。また、構成部品の少なくともひとつは、燃料電池の運転を好適に制御するために燃料ガスや酸化剤ガスの温度を検知する温度センサであってもよい。   Moreover, it is desirable that at least one of the components is a gas-liquid separator that separates generated water from the exhaust gas exiting the fuel cell, or a hydrogen pump that circulates hydrogen gas. Further, at least one of the components may be a temperature sensor that detects the temperature of the fuel gas or the oxidant gas in order to suitably control the operation of the fuel cell.

そして、いずれの構成部品も、少なくとも、生成水と接触する部分が、耐食性部材からなればよい。   And any component should just consist of a corrosion-resistant member at least the part which contacts production | generation water.

上記の各構成部品は、図9において、配管92d、93d、95d上に配置される。具体的には、燃料タンク等に蓄圧された燃料ガス(ここでは水素ガスとする)は、供給配管92dの調圧弁92Xにより規定圧に調整され、開閉弁92Yを通過し、燃料電池91に供給される。燃料電池91で反応後の水分を含む水素ガスは、排出配管93dの開閉弁93Xを通過し、気液分離器93Yにより水素ガスと水とに分離される。分離された水は、ドレン弁93Y’から外部に排出される。水素ガスは、循環配管95dの水素ポンプ95Xにより供給配管92d側に汲み出され、燃料電池91へ再び供給される。水素ポンプ95Xの後方には、供給配管92dからの逆流を防止するための逆止弁95Yが配設される。循環されるガスは、空気からの窒素拡散により窒素濃度が高まるため、適宜、排気弁93Zを介して大気中に排出される。   Each component described above is arranged on the pipes 92d, 93d, and 95d in FIG. Specifically, the fuel gas (here, hydrogen gas) accumulated in the fuel tank or the like is adjusted to a specified pressure by the pressure regulating valve 92X of the supply pipe 92d, passes through the on-off valve 92Y, and is supplied to the fuel cell 91. Is done. Hydrogen gas containing moisture after reaction in the fuel cell 91 passes through the on-off valve 93X of the discharge pipe 93d, and is separated into hydrogen gas and water by the gas-liquid separator 93Y. The separated water is discharged to the outside from the drain valve 93Y '. The hydrogen gas is pumped out to the supply pipe 92d side by the hydrogen pump 95X of the circulation pipe 95d and supplied again to the fuel cell 91. A check valve 95Y for preventing a backflow from the supply pipe 92d is disposed behind the hydrogen pump 95X. Since the circulated gas has a nitrogen concentration increased by diffusion of nitrogen from the air, it is appropriately discharged into the atmosphere via the exhaust valve 93Z.

[耐食性部材]
耐食性部材は、主として、基材と、基材の表面に固定された非晶質炭素からなる耐食性被膜と、からなる。耐食性被膜は、少なくとも耐食性が必要とされる表面、つまり、生成水と接触する虞のある表面に固定されていればよい。具体的には、耐食性部材が上記配管であれば、配管基材の内面である。
[Corrosion resistant material]
The corrosion-resistant member mainly includes a base material and a corrosion-resistant film made of amorphous carbon fixed on the surface of the base material. The corrosion-resistant coating film only needs to be fixed to a surface that requires at least corrosion resistance, that is, a surface that may come into contact with generated water. Specifically, if the corrosion-resistant member is the above pipe, it is the inner surface of the pipe base material.

基材は、その形状や材質に特に限定はなく、非晶質炭素よりも耐食性に劣る基材であれば、非晶質炭素からなる耐食性被膜を形成することにより、基材に耐食性が良好に付与される。特に、耐食性被膜を後述の直流プラズマCVD法により成膜する場合には、基材は、金属材料からなる基材や、少なくとも表層部に導電性を有する導電性材料からなる基材であるのが好ましい。金属材料および導電性材料としては、アルミニウムを主成分とするアルミニウム系材料、鉄を主成分とする鉄系材料、銅を主成分とする銅系材料、等の金属や導電性樹脂などが挙げられ、全体が導電性材料からなる基材の他、絶縁体の表面に導電性のコーティングを施した基材であってもよい。なかでも、アルミニウム系材料は、非晶質炭素からなる耐食性被膜との密着性に優れる。そのため、耐食性被膜が剥がれた部分から発生する基材の腐食が防止できる。また、密着性の高い基材の表面には、欠陥の少ない耐食性被膜を形成しやすい。   There is no particular limitation on the shape and material of the base material, and if the base material is inferior in corrosion resistance to amorphous carbon, the base material has good corrosion resistance by forming a corrosion-resistant film made of amorphous carbon. Is granted. In particular, when the corrosion-resistant film is formed by a direct current plasma CVD method described later, the base material is a base material made of a metal material or a base material made of a conductive material having conductivity at least on the surface layer portion. preferable. Examples of the metal material and the conductive material include an aluminum-based material mainly composed of aluminum, an iron-based material mainly composed of iron, and a copper-based material mainly composed of copper, and metals and conductive resins. In addition to a substrate made entirely of a conductive material, a substrate having a conductive coating on the surface of an insulator may be used. Among these, the aluminum-based material is excellent in adhesion with a corrosion-resistant film made of amorphous carbon. Therefore, the corrosion of the base material generated from the portion where the corrosion-resistant film is peeled off can be prevented. Moreover, it is easy to form a corrosion-resistant film with few defects on the surface of a substrate with high adhesion.

特に、基材としてアルミニウム系材料などの軽金属を用いれば、燃料電池システムの軽量化に繋がり、燃料電池システムを車両に搭載する場合には有利である。   In particular, the use of a light metal such as an aluminum-based material as the base material leads to weight reduction of the fuel cell system, which is advantageous when the fuel cell system is mounted on a vehicle.

ところで、非晶質炭素からなる耐食性被膜の耐食性には、被膜に存在する欠陥が大きく影響する。欠陥には、大きく分けて2つの形状がある。ひとつは、耐食性被膜の厚さ方向に貫通している欠陥(欠陥A)である。このような形状の欠陥からは基材の表面が表出するため基材が腐食されやすく、また、欠陥Aを起点とした腐食が基材と耐食性被膜との界面にまで進展すると被膜が剥落する。そのため、欠陥Aは、耐食性部材の耐食性に対する影響が大きい。もうひとつは、耐食性被膜を貫通していない欠陥(欠陥B)である。欠陥が被膜を貫通していない状態であっても、欠陥部分の膜厚は他の部分と比べて薄くなっている。なお、図1は、耐食性部材を耐食性被膜の厚さ方向に切断した断面図であって、欠陥Aおよび欠陥Bの断面形状を模式的に示す。   By the way, the defects present in the coating greatly affect the corrosion resistance of the corrosion-resistant coating made of amorphous carbon. There are roughly two types of defects. One is a defect (defect A) penetrating in the thickness direction of the corrosion-resistant film. Since the surface of the base material is exposed from the defects having such a shape, the base material is easily corroded, and when corrosion starting from the defect A progresses to the interface between the base material and the corrosion-resistant coating, the coating is peeled off. . Therefore, the defect A has a great influence on the corrosion resistance of the corrosion resistant member. The other is a defect (defect B) that does not penetrate the corrosion resistant coating. Even if the defect does not penetrate the coating, the film thickness of the defective portion is thinner than the other portions. FIG. 1 is a cross-sectional view of the corrosion-resistant member cut in the thickness direction of the corrosion-resistant film, and schematically shows the cross-sectional shapes of the defect A and the defect B.

そこで、本発明に用いられる耐食性部材では、耐食性被膜の厚さ方向に貫通する複数の欠陥(欠陥A)の占める面積率(以下「欠陥面積率」と略記)を10-2%以下としている。耐食性被膜における欠陥面積率が10-2%以下であれば、欠陥から進行する基材の腐食が低減される。なお、欠陥面積率は、たとえば、後述の[実施例]の欄で詳説する電気化学的手法を用いて測定することができる。 Therefore, in the corrosion-resistant member used in the present invention, the area ratio (hereinafter referred to as “defect area ratio”) occupied by a plurality of defects (defect A) penetrating in the thickness direction of the corrosion-resistant film is set to 10 −2 % or less. If the defect area ratio in the corrosion-resistant coating is 10 −2 % or less, the corrosion of the base material proceeding from the defects is reduced. The defect area ratio can be measured, for example, by using an electrochemical method described in detail in the “Example” section described later.

また、非晶質炭素からなる耐食性被膜が形成されている基材に電圧を印加すると、耐食性被膜の欠陥面積率が高い場合には欠陥部分から電流がリークするため、耐食性部材の電気抵抗が低くなる。欠陥面積率が低い場合であっても、欠陥Bのように膜厚の薄い部分が存在すると、50V以上の印加電圧で膜厚の薄い部分が破壊され、電流がリークして電気抵抗が低下する。すなわち、耐食性被膜に欠陥Aや欠陥Bが多く存在すると、非晶質炭素の本来の電気抵抗率(1011〜1012Ω・cm程度)が表れない。そこで、本発明に用いられる耐食性部材では、その電気抵抗率を108 Ω・cm以上としている。耐食性部材の電気抵抗率が108 Ω・cm以上であれば、欠陥が少なく、非晶質炭素がもつ耐食性を良好に発揮することができるため、耐食性に優れる。なお、耐食性部材の電気抵抗率は、たとえば、後述の[実施例]の欄で詳説する方法により測定できる。 In addition, when a voltage is applied to a substrate on which a corrosion-resistant film made of amorphous carbon is formed, current leaks from the defective portion when the defect area ratio of the corrosion-resistant film is high, so the electrical resistance of the corrosion-resistant member is low. Become. Even if the defect area ratio is low, if there is a thin part such as defect B, the thin part is destroyed by an applied voltage of 50 V or more, current leaks and the electrical resistance decreases. . That is, when many defects A and B exist in the corrosion-resistant film, the original electrical resistivity (about 10 11 to 10 12 Ω · cm) of amorphous carbon does not appear. Therefore, the corrosion resistance member used in the present invention has an electrical resistivity of 10 8 Ω · cm or more. If the electrical resistivity of the corrosion-resistant member is 10 8 Ω · cm or more, the number of defects is small and the corrosion resistance of amorphous carbon can be satisfactorily exhibited, so that the corrosion resistance is excellent. In addition, the electrical resistivity of a corrosion-resistant member can be measured by the method explained in full detail in the below-mentioned [Example] column.

また、耐食性被膜は、それぞれの欠陥Aの面積が100μm2 以下であるのが好ましい。ひとつの欠陥Aの面積が大きい場合には、欠陥部分から基材が腐食されやすく、さらには、被膜と基材との界面での腐食が早く進行するため、被膜が剥離して耐食性が低下しやすい。個々の欠陥Aの面積が100μm2 以下であれば、欠陥部分からの腐食が低減されるため、さらに信頼性の高い耐食部材となる。なお、個々の欠陥Aの面積は、たとえば、[実施例]の欄で詳説するように、走査型電子顕微鏡(SEM)により、耐食性被膜の表面を観察して、その画像を解析することによって測定することができる。 Further, the corrosion-resistant film preferably has an area of each defect A of 100 μm 2 or less. When the area of one defect A is large, the base material is easily corroded from the defective portion, and furthermore, corrosion progresses quickly at the interface between the coating film and the base material. Cheap. If the area of each defect A is 100 μm 2 or less, the corrosion from the defective portion is reduced, so that the corrosion-resistant member is more reliable. The area of each defect A is measured by, for example, observing the surface of the corrosion-resistant film with a scanning electron microscope (SEM) and analyzing the image, as described in detail in the section of [Example]. can do.

耐食性被膜は、非晶質炭素の組成にもよるが、0.5〜100μmの膜厚であるのが望ましい。膜厚が0.5μm未満であると、膜厚が薄すぎるため、欠陥が厚さ方向に貫通する確率が上がるため、耐食性被膜の欠陥面積率が10-2%以下で、電気抵抗率が108 Ω・cm以上という特性が維持できない場合がある。また、100μmを超えると、被膜の内部応力や歪が増加し、被膜の破損や、基材からの剥離が促進されて特性が維持できない虞があるため望ましくない。 The corrosion-resistant film is preferably 0.5 to 100 μm in thickness although it depends on the composition of amorphous carbon. When the film thickness is less than 0.5 μm, since the film thickness is too thin, the probability of defects penetrating in the thickness direction increases, so that the defect area ratio of the corrosion-resistant film is 10 −2 % or less and the electric resistivity is 10 The characteristic of 8 Ω · cm or more may not be maintained. On the other hand, if the thickness exceeds 100 μm, the internal stress and strain of the coating increase, which may be undesirable because the coating may be broken or the release from the substrate may be promoted.

耐食性被膜は、非晶質炭素からなる被膜、すなわち非晶質炭素膜である。特に、炭素(C)を主成分とし珪素(Si)を含む非晶質炭素(珪素含有非晶質炭素)は、基材の表面に非晶質炭素膜として成膜された場合に、優れた密着性を示す。つまり、珪素含有非晶質炭素からなる耐食性被膜は、基材から剥離し難いため、耐食性が長期にわたって保持される。   The corrosion-resistant film is a film made of amorphous carbon, that is, an amorphous carbon film. In particular, amorphous carbon (silicon-containing amorphous carbon) containing carbon (C) as a main component and containing silicon (Si) is excellent when formed as an amorphous carbon film on the surface of a substrate. Shows adhesion. That is, since the corrosion-resistant film made of silicon-containing amorphous carbon is difficult to peel from the substrate, the corrosion resistance is maintained for a long time.

ここで、図7は、非晶質炭素のSi量に対する欠陥面積率を示すグラフである。グラフ中の番号は、[実施例]の欄に記載の耐食性部材No.に相当する。極端に膜厚の異なるNo.1,6,7,10を除くと、Si量が少ない程、欠陥面積率が低下する傾向にあることが図7よりわかる。これは、Si量が多いと被膜は硬質となり、被膜に内部応力や歪が増加し、被膜の破損や剥離が促進され、欠陥面積率が増加し易いためである。したがって、非晶質炭素のSi量は、10at%以下であるのが好ましく、さらに好ましくは7at%以下である。ところが、Si量が極端に少ないと、成膜条件によっては、非晶質炭素膜が粒状化して均一な膜が得られず、欠陥の発生に繋がる。そのため、非晶質炭素のSi量は、0.1at%以上であるのが好ましく、さらに好ましくは2at%以上である。   Here, FIG. 7 is a graph showing the defect area ratio with respect to the Si amount of amorphous carbon. The numbers in the graph indicate the corrosion-resistant member No. described in the column of [Example]. It corresponds to. No. with extremely different film thickness It can be seen from FIG. 7 that, except for 1, 6, 7, and 10, the defect area ratio tends to decrease as the Si amount decreases. This is because when the amount of Si is large, the coating becomes hard, and internal stress and strain increase in the coating, damage and peeling of the coating are promoted, and the defect area ratio is likely to increase. Therefore, the Si amount of amorphous carbon is preferably 10 at% or less, more preferably 7 at% or less. However, if the amount of Si is extremely small, the amorphous carbon film is granulated depending on the film forming conditions, and a uniform film cannot be obtained, leading to the generation of defects. Therefore, the Si amount of amorphous carbon is preferably 0.1 at% or more, and more preferably 2 at% or more.

また、図8は、非晶質炭素のH量に対する欠陥面積率を示すグラフである。グラフ中の番号は、[実施例]の欄に記載の耐食性部材No.に相当する。極端に膜厚の異なるNo.1,6,7,10を除くと、H量が多い程、欠陥面積率が低下する傾向にあることが図8よりわかる。これは、H量が多いと、被膜が軟質となり内部応力や歪が緩和されることにより、被膜の剥離や損傷が低減されるためである。したがって、非晶質炭素のH量は、35at%以上が好ましく、さらに好ましくは40at%以上である。ところが、Hを50at%を超えて含む非晶質炭素の合成は困難であり、欠陥が多く形成される。そのため、非晶質炭素のH量は、好ましくは50at%以下、さらに好ましくは45at%以下であり、欠陥の少ない被膜が得られる。   FIG. 8 is a graph showing the defect area ratio with respect to the H content of amorphous carbon. The numbers in the graph indicate the corrosion-resistant member No. described in the column of [Example]. It corresponds to. No. with extremely different film thickness It can be seen from FIG. 8 that the defect area ratio tends to decrease as the amount of H increases except for 1, 6, 7, and 10. This is because when the amount of H is large, the coating becomes soft and internal stress and strain are alleviated, thereby reducing peeling and damage of the coating. Therefore, the H content of amorphous carbon is preferably 35 at% or more, more preferably 40 at% or more. However, it is difficult to synthesize amorphous carbon containing H exceeding 50 at%, and many defects are formed. Therefore, the amount of H of amorphous carbon is preferably 50 at% or less, more preferably 45 at% or less, and a film with few defects can be obtained.

一般に、非晶質炭素からなる耐食性被膜は高硬度であるため、被膜を厚く形成すると、内部応力や歪によりクラックが発生し、さらには、クラックからの腐食や被膜の剥落が生じ、欠陥面積率の上昇を促す。また、被膜を厚く成膜するには長い時間を要する。そのため、耐食性被膜の膜厚は、好ましくは0.5μm以上18μm未満、より好ましくは0.5μm以上16μm未満、さらに好ましくは6μm以上12μm未満である。その一方で、保護膜としての機能や耐久性を保つためには、ある程度の厚さが必要である。Siを0.1at%以上10at%以下含み、かつ、Hを35at%以上50at%以下含む非晶質炭素からなる耐食性被膜であれば、膜厚を12μm以上、16μm以上さらには18μm以上としても、内部応力や歪みが緩和され、被膜に発生するクラックを低減することができる。さらに好ましくは、Siを2at%以上7at%以下、Hを40at%以上45at%以下である。なお、膜厚が18μm未満、16μm未満さらには12μm未満である耐食性被膜であっても、SiやHを上記の範囲で含む非晶質炭素からなる耐食性被膜であれば、さらに耐食性に優れる。   In general, a corrosion-resistant film made of amorphous carbon has a high hardness, so when the film is formed thick, cracks occur due to internal stress and strain, and further, corrosion from the cracks and peeling of the film occur, resulting in a defect area ratio. Urge the rise. Moreover, it takes a long time to form a thick film. Therefore, the film thickness of the corrosion resistant coating is preferably 0.5 μm or more and less than 18 μm, more preferably 0.5 μm or more and less than 16 μm, and further preferably 6 μm or more and less than 12 μm. On the other hand, in order to maintain the function and durability as a protective film, a certain thickness is required. If the corrosion-resistant film is made of amorphous carbon containing Si at 0.1 at% or more and 10 at% or less and H at 35 at% or more and 50 at% or less, even if the film thickness is 12 μm or more, 16 μm or more, further 18 μm or more, Internal stress and strain are alleviated and cracks generated in the coating can be reduced. More preferably, Si is 2 at% or more and 7 at% or less, and H is 40 at% or more and 45 at% or less. Note that even a corrosion-resistant film having a film thickness of less than 18 μm, less than 16 μm, or less than 12 μm is further excellent in corrosion resistance if it is a corrosion-resistant film made of amorphous carbon containing Si or H in the above range.

そして、耐食性被膜(非晶質炭素膜)の成膜方法に特に限定はないが、プラズマCVD法などの一般的なCVD(Chemical Vapor Deposition )法で成膜されるのが望ましく、なかでも、直流プラズマCVD法により成膜されるのが望ましい。直流プラズマCVD法は、成膜炉内に配置されかつマイナス極に結線された基材保持具に、基材が互いに対向する状態で複数の基材を配置すると共に、隣接する2個の基材の負グローが互いに重なるように、処理ガス圧力およびプラズマ電源を操作して行うと、欠陥の少ない緻密な非晶質炭素膜が得られる。プラス極とマイナス極の二つの電極の間に電力を加えることによって、グロー放電が生じる。このグロー放電を利用して、電極間に導入した処理ガスを活性化して、マイナス電位側の電極(基材)に非晶質炭素膜を堆積させる。図2に直流プラズマCVD法に用いられる成膜装置の一例を示す。   The method for forming the corrosion-resistant film (amorphous carbon film) is not particularly limited, but is preferably formed by a general CVD (Chemical Vapor Deposition) method such as a plasma CVD method. It is desirable to form the film by plasma CVD. In the direct current plasma CVD method, a plurality of base materials are arranged in a state where the base materials face each other on a base material holder arranged in a film forming furnace and connected to the negative electrode, and two adjacent base materials When the processing gas pressure and the plasma power source are operated so that the negative glows overlap each other, a dense amorphous carbon film with few defects can be obtained. Glow discharge is generated by applying electric power between the two electrodes, the positive electrode and the negative electrode. Using this glow discharge, the processing gas introduced between the electrodes is activated to deposit an amorphous carbon film on the negative potential side electrode (base material). FIG. 2 shows an example of a film forming apparatus used in the DC plasma CVD method.

図2の成膜装置は、円筒状でステンレス製のチャンバー11を成膜炉として用い、排気通路12によりチャンバー11と連通する排気系13を有する。排気系13は、油回転ポンプ、メカニカルブースターポンプ、油拡散ポンプ等からなり、排気通路12に配した排気調整バルブ15を開閉することによりチャンバー11内の処理圧力を調整できる。チャンバー11内には、プラズマ電源16のマイナス極に通電された陰極20とガス供給手段30が配設される。   The film forming apparatus in FIG. 2 uses a cylindrical, stainless steel chamber 11 as a film forming furnace, and has an exhaust system 13 that communicates with the chamber 11 through an exhaust passage 12. The exhaust system 13 includes an oil rotary pump, a mechanical booster pump, an oil diffusion pump, and the like. The processing pressure in the chamber 11 can be adjusted by opening and closing an exhaust adjustment valve 15 disposed in the exhaust passage 12. In the chamber 11, a cathode 20 and a gas supply means 30 that are energized to the negative electrode of the plasma power source 16 are disposed.

陰極20は、プラズマ電源16のマイナス極に連結された支持台21と、非晶質炭素膜が表面に成膜される基材1と、からなる。支持台21は、ステンレス鋼製の円板状で、円筒状のチャンバー11と同軸的に、チャンバー11の底部に固定される。基材1は、支持台21の表面に等間隔で互いに平行となるように形成された溝部に嵌め込むことにより、基材1を厚さ方向に平行かつ積層状態となるように並列配置して固定される。   The cathode 20 includes a support base 21 connected to the negative electrode of the plasma power source 16 and a base material 1 on which an amorphous carbon film is formed. The support base 21 is a stainless steel disk and is fixed to the bottom of the chamber 11 coaxially with the cylindrical chamber 11. The base material 1 is arranged in parallel so as to be parallel to the thickness direction and in a laminated state by being fitted into grooves formed so as to be parallel to each other at equal intervals on the surface of the support base 21. Fixed.

図2の成膜装置は、ガス供給手段30を有する。ガス供給手段30は、原料ガスと希釈ガスとの混合ガスを任意の流量比でチャンバー11に供給する。混合ガスは、マスフローコントローラ(MFC)33により流量を調整後、ガス供給バルブ34を経てガス供給管35によりチャンバー11の内部に供給される。そして、ガス供給管35には、その長さ方向に等間隔で複数の孔が開けられている。ガス供給管35は、チャンバー11の中心部に位置するように設置され、支持台21に保持された基材1に均一に混合ガスが供給される。   The film forming apparatus in FIG. 2 has a gas supply means 30. The gas supply means 30 supplies a mixed gas of source gas and dilution gas to the chamber 11 at an arbitrary flow rate ratio. The mixed gas is adjusted in flow rate by a mass flow controller (MFC) 33 and then supplied into the chamber 11 through a gas supply valve 34 and a gas supply pipe 35. The gas supply pipe 35 has a plurality of holes at equal intervals in the length direction. The gas supply pipe 35 is installed so as to be positioned at the center of the chamber 11, and the mixed gas is uniformly supplied to the substrate 1 held on the support base 21.

プラズマ電源16のプラス極は、チャンバー11およびアースに結線され、チャンバー11の壁面を接地電極(陽極)する。   The positive electrode of the plasma power source 16 is connected to the chamber 11 and the ground, and the wall surface of the chamber 11 is a ground electrode (anode).

プラズマCVD法では、導電性をもつ導電性材料からなる基材であれば、基材の種類に特に限定はない。導電性材料は、電気抵抗率が106 Ω・cm以下であるのが望ましい。たとえば、基材がアルミニウム系材料であれば、電気抵抗率は2×10-6〜6×10-6Ω・cmである。また、基材の形状にも特に限定はないため、各種部材に成膜が可能である。 In the plasma CVD method, the type of the substrate is not particularly limited as long as it is a substrate made of a conductive material having conductivity. The conductive material desirably has an electrical resistivity of 10 6 Ω · cm or less. For example, if the base material is an aluminum-based material, the electrical resistivity is 2 × 10 −6 to 6 × 10 −6 Ω · cm. Moreover, since there is no limitation in particular also in the shape of a base material, film-forming on various members is possible.

基材は、成膜炉内に配置されかつマイナス極に結線された基材保持具に固定される。この際、基材の配置は、複数の基材が互いに対向する状態で配置されれば限定はなく、対向する面間に負グローの重なりが良好に形成されやすくなる。特に、基材が板状であれば、たとえば図2のように、複数の基材は基材保持部材に厚さ方向に平行かつ積層状態で配置されるのが望ましい。   The base material is fixed to a base material holder disposed in the film forming furnace and connected to the negative electrode. At this time, the arrangement of the substrates is not limited as long as the plurality of substrates are arranged in a state of facing each other, and the negative glow overlap is easily formed favorably between the opposed surfaces. In particular, if the substrate is plate-shaped, for example, as shown in FIG. 2, it is desirable that the plurality of substrates be arranged on the substrate holding member in parallel with the thickness direction and in a stacked state.

また、基材は、マイナス極に結線された基材保持具に、基材の少なくとも一部が接触するようにして固定される。基材保持具は、導電性材料からなれば、その形状に特に限定はない。そのため、基材保持具は、基材を載置できる平板状のほか、基材の少なくとも一部を固定できる固定具を有する形状でもよい。   The base material is fixed so that at least a part of the base material is in contact with the base material holder connected to the negative electrode. If a base material holder consists of an electroconductive material, there will be no limitation in the shape in particular. Therefore, the base material holder may have a shape having a fixture that can fix at least a part of the base material in addition to a flat plate shape on which the base material can be placed.

互いに対向する状態で配置された基材は、複数の基材のうち隣接する2個の基材の負グロー(24)が互いに重なるように、処理ガス圧力およびプラズマ電源を操作することにより、シース(25)の幅を調整して成膜処理が行われるとよい。なお、「シース」とは、陰極(基材)を覆うプラズマの「さや」であり、陰極表面から負グローまでの発光の弱い領域を指す。負グローの重なり部分(26)では、低電圧で高電流密度の放電が発生する。低電圧で高電流密度の放電においては、イオン衝撃が小さくなるため、成膜中の非晶質炭素膜の損傷が少なくなる。したがって、欠陥の少ない耐食性被膜を成膜できる。   The substrates arranged in a state of facing each other are sheathed by operating the processing gas pressure and the plasma power source so that the negative glows (24) of two adjacent substrates among the plurality of substrates overlap each other. The film forming process may be performed by adjusting the width of (25). The “sheath” is a “sheath” of plasma covering the cathode (base material) and refers to a region where light emission is weak from the cathode surface to the negative glow. In the negative glow overlapping portion (26), a low voltage and high current density discharge occurs. In a discharge at a low voltage and a high current density, ion bombardment is reduced, so that damage to the amorphous carbon film during film formation is reduced. Therefore, a corrosion-resistant film with few defects can be formed.

また、シース幅が、隣接する2個の基材の対向面間の間隔の4分の1以上、さらには2分の1以上で隣接する2個の基材の対向面間の間隔以下とすれば、シースは基材の外面に沿って均一にグロー放電でき、かつ、隣接する負グローが重なり合うため、良好な成膜が可能となる。具体的には、複数の基材は、隣接する2個の基材の対向面間の間隔を2〜60mmの範囲で配置するとよい。間隔が2mm以下であると、シースの重なりが強くなり、成膜条件によっては、グロー放電が局所的に強くなったり不安定になったりすることがある。また、60mm以上では、負グローの重なる部分が減少する、または、重ならない場合があるため、成膜条件によっては適さない場合がある。そして、上記シース幅となるように、処理ガス圧力の範囲を調節する。処理ガス圧は、13〜1330Paが好ましい。   In addition, the sheath width is not less than one quarter of the interval between the opposing surfaces of two adjacent substrates, and more than one-half, and is not more than the interval between the opposing surfaces of two adjacent substrates. For example, the sheath can perform uniform glow discharge along the outer surface of the base material, and adjacent negative glows overlap each other, so that favorable film formation is possible. Specifically, the plurality of base materials may be arranged in a range of 2 to 60 mm in the interval between the opposing surfaces of two adjacent base materials. When the distance is 2 mm or less, the overlap of the sheaths becomes strong, and the glow discharge may become locally strong or unstable depending on the film forming conditions. On the other hand, if the thickness is 60 mm or more, the overlapping portion of the negative glow may be reduced or may not be overlapped. Then, the range of the processing gas pressure is adjusted so that the sheath width is obtained. The processing gas pressure is preferably 13 to 1330 Pa.

成膜温度は、500℃以下が望ましい。なお、成膜温度とは、成膜中の基材の表面の温度である。成膜温度が500℃を超えると、イオン衝撃が大きくなり、成膜中の非晶質炭素膜への損傷が増加するので望ましくない。また、成膜温度が低いと、微小なアークが生じやすく、安定なグロー放電が困難となるので望ましくない。したがって、欠陥の少ない耐食性被膜を成膜するには、250〜400℃であるのが望ましい。   The film forming temperature is desirably 500 ° C. or lower. The film formation temperature is the temperature of the surface of the substrate during film formation. When the film formation temperature exceeds 500 ° C., ion bombardment increases, and damage to the amorphous carbon film during film formation increases, which is not desirable. Further, when the film forming temperature is low, a minute arc is likely to be generated, and stable glow discharge becomes difficult. Therefore, in order to form a corrosion-resistant film with few defects, it is desirable that the temperature is 250 to 400 ° C.

また、処理ガスは、炭化水素ガスからなる、または、炭化水素ガスと、水素および希ガスのうちのいずれか一種以上を含む希釈ガスと、の混合ガスを用いるのがよい。そして、珪素を含む非晶質炭素膜を得たい場合には、炭化水素ガスならびに少なくとも珪素を含む有機金属含有ガスおよびハロゲン化合物のうちのいずれか1種以上を含む原料ガスからなる、または、その原料ガスと、水素および希ガスのうちのいずれか一種以上を含む希釈ガスと、の混合ガスからなる処理ガスを用いるのが望ましい。   Further, the processing gas is preferably composed of a hydrocarbon gas or a mixed gas of a hydrocarbon gas and a diluent gas containing at least one of hydrogen and a rare gas. When it is desired to obtain an amorphous carbon film containing silicon, it is composed of a source gas containing at least one of a hydrocarbon gas and an organic metal-containing gas containing at least silicon and a halogen compound. It is desirable to use a processing gas composed of a mixed gas of a source gas and a dilution gas containing at least one of hydrogen and a rare gas.

この際、炭化水素ガスは、メタン、エチレン、アセチレン、ヘキサン、ベンゼンおよびその他の(Cm n )の炭化水素ガスであるのが望ましい。また、有機金属含有ガスは、テトラメチルシラン(Si(CH3 4 :TMS)およびシランであるのが望ましい。また、ハロゲン化合物は、四塩化シリコンであるのが望ましい。希釈ガスは、原子量がArよりも軽いもの、具体的にはH,He,Ne等であるのが望ましい。原子量がArよりも軽い希釈ガスを用いると、膜が受けるイオン衝撃が小さくなるため、成膜中の膜の損傷が低減され、欠陥の少ない非晶質炭素膜を成膜できる。したがって、希釈ガスは、水素ガスのみや、水素とヘリウムを主体とする混合ガスなどが望ましい。 At this time, the hydrocarbon gas is preferably methane, ethylene, acetylene, hexane, benzene and other (C m H n ) hydrocarbon gases. The organic metal-containing gas is preferably tetramethylsilane (Si (CH 3 ) 4 : TMS) and silane. The halogen compound is preferably silicon tetrachloride. The dilution gas is preferably one having an atomic weight lighter than Ar, specifically, H, He, Ne or the like. When a diluting gas whose atomic weight is lighter than Ar is used, ion bombardment received by the film is reduced, so that damage to the film during film formation is reduced, and an amorphous carbon film with few defects can be formed. Therefore, the diluent gas is preferably only hydrogen gas or a mixed gas mainly composed of hydrogen and helium.

なお、非晶質炭素の組成は、処理ガスの種類や混合比または流量比のみならず、成膜温度、対向面間の間隔、成膜中の真空度などの他の成膜条件によっても変化する。成膜条件は、得られる非晶質炭素の組成が所望の組成となるように、適宜選択すればよい。   The composition of amorphous carbon varies depending not only on the type of gas used, the mixing ratio, or the flow ratio, but also on other deposition conditions such as deposition temperature, spacing between opposing surfaces, and the degree of vacuum during deposition. To do. The film forming conditions may be appropriately selected so that the composition of the obtained amorphous carbon becomes a desired composition.

なお、本発明の燃料電池システムの構成部品は、燃料ガスを燃料ガスの供給を受けて起電力を得る燃料電池91に送る供給配管92d上、または、燃料電池91から出る排出ガスを排出する排出配管93d上、に配置される燃料電池システムの構成部品であって、上述した本発明の燃料電池システムの供給手段構成部品92X,92Yおよび排出手段構成部品93X〜93Zに相当する。すなわち、本発明の燃料電池システムの構成部品は、上記燃料循環手段95の循環手段構成部品95Xであってもよいし、上記酸化剤ガス供給手段(図示せず)の各構成部であってもよい。   The components of the fuel cell system according to the present invention are configured to discharge the exhaust gas discharged from the fuel cell 91 on the supply pipe 92d that sends the fuel gas to the fuel cell 91 that receives the supply of the fuel gas and obtains an electromotive force. It is a component of the fuel cell system arranged on the pipe 93d, and corresponds to the above-described supply means components 92X and 92Y and discharge means components 93X to 93Z of the fuel cell system of the present invention. That is, the component of the fuel cell system of the present invention may be the circulation means component 95X of the fuel circulation means 95 or each component of the oxidant gas supply means (not shown). Good.

また、本発明の燃料電池システムの配管は、一端部にある燃料ガスを他端部に配設され燃料ガスの供給を受けて起電力を得る燃料電池91に送る、または、一端部に配設された燃料電池91から出る燃料ガスを他端部に送る、燃料電池システムの配管であって、上述した本発明の燃料電池システムの供給配管92dおよび排出配管93dに相当する。すなわち、本発明の燃料電池システムの配管は、上記燃料循環手段95の循環配管95dであってもよいし、上記酸化剤ガス供給手段(図示せず)に用いられる配管に耐食性が要求される場合には、酸化剤ガス供給手段に用いられる配管であってもよい。   The piping of the fuel cell system according to the present invention is arranged such that the fuel gas at one end is sent to the fuel cell 91 which is provided at the other end and receives the supply of fuel gas to obtain an electromotive force, or is arranged at one end. A fuel cell system pipe that sends the fuel gas exiting the fuel cell 91 to the other end, and corresponds to the above-described supply pipe 92d and discharge pipe 93d of the fuel cell system of the present invention. That is, the pipe of the fuel cell system of the present invention may be the circulation pipe 95d of the fuel circulation means 95, or the pipe used for the oxidant gas supply means (not shown) is required to have corrosion resistance. Alternatively, a pipe used for the oxidant gas supply means may be used.

以上、本発明の燃料電池システム、ならびに、その構成部品および配管の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の燃料電池システム、ならびに、その構成部品および配管の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the fuel cell system of this invention, its component, and piping was described, this invention is not limited to the said embodiment. The fuel cell system of the present invention, and its constituent parts and piping can be implemented in various forms with modifications, improvements, etc. that can be made by those skilled in the art without departing from the gist of the component.

以下に、本発明の燃料電池システム、ならびに、その構成部品および配管の実施例を比較例とともに、表1および図2〜図6を用いて説明する。   Hereinafter, examples of the fuel cell system of the present invention, and its components and piping will be described together with comparative examples with reference to Table 1 and FIGS.

[実施例1]
図2の成膜装置を作動させて、基材1の表面に、非晶質炭素からなる耐食性被膜を成膜した。本実施例では、基材1として、アルミニウム合金(A2017:電気抵抗率3.4×10-6Ω・cm)製の平板状基材(22mm×39mm×3mm)を4枚用いた。なお、隣接する2個の基材1は、対向面間の間隔Dが、それぞれ10mmとなるように配置した。
[Example 1]
The film forming apparatus of FIG. 2 was operated to form a corrosion-resistant film made of amorphous carbon on the surface of the substrate 1. In this example, four flat substrates (22 mm × 39 mm × 3 mm) made of aluminum alloy (A2017: electrical resistivity 3.4 × 10 −6 Ω · cm) were used as the substrate 1. In addition, the two adjacent base materials 1 were arrange | positioned so that the space | interval D between opposing surfaces might be 10 mm, respectively.

次に、成膜手順を説明する。まず、排気系13によりチャンバー11内を到達真空度が1×10-2Paまで排気した。つぎに、ガス供給バルブ34を開け、水素ガス(希釈ガス)の流量をMFC33で調整し、チャンバー11内に供給した。その後、排気調整バルブ15の開度を調整し、チャンバー11内の処理ガス圧を400Paとした。 Next, a film forming procedure will be described. First, the exhaust system 13 evacuated the chamber 11 to a final vacuum of 1 × 10 −2 Pa. Next, the gas supply valve 34 was opened, and the flow rate of hydrogen gas (dilution gas) was adjusted by the MFC 33 and supplied into the chamber 11. Thereafter, the opening degree of the exhaust adjustment valve 15 was adjusted, and the processing gas pressure in the chamber 11 was set to 400 Pa.

そして、プラズマ電源16により陰極20に電圧を印加し、陰極20の周辺にグロー放電(24,25)を発生させた。次に、放電電力を50Wに調整して、負グローの重なり合い26を形成した。このグロー放電により、基材1を300℃とした。なお、基材の温度の測定には、放射温度計を用いた。その後、原料ガスであるメタンとTMSを供給し、各ガスの流量が、ヘキサン:10sccm、TMS:0.5sccm、水素ガス:200sccmとした。こうして、300℃から成膜を開始し、0.5時間成膜することによりNo.1の耐食性部材を得た。   A voltage was applied to the cathode 20 by the plasma power source 16 to generate glow discharge (24, 25) around the cathode 20. Next, the discharge power was adjusted to 50 W to form a negative glow overlap 26. The base material 1 was set to 300 ° C. by this glow discharge. In addition, the radiation thermometer was used for the measurement of the temperature of a base material. Thereafter, methane and TMS as source gases were supplied, and the flow rates of the respective gases were hexane: 10 sccm, TMS: 0.5 sccm, and hydrogen gas: 200 sccm. In this way, film formation was started at 300 ° C., and film formation was performed for 0.5 hour to obtain No. 1. 1 corrosion-resistant member was obtained.

[実施例2]
各ガスの流量を、ヘキサン:20sccm、TMS:5sccm、水素ガス:100sccmとした他は、実施例1と同様の手順で1時間成膜し、No.2の耐食性部材を得た。
[Example 2]
A film was formed for 1 hour in the same procedure as in Example 1 except that the flow rate of each gas was hexane: 20 sccm, TMS: 5 sccm, and hydrogen gas: 100 sccm. 2 corrosion-resistant members were obtained.

[実施例3]
各ガスの流量を、ヘキサン:20sccm、TMS:2sccm、水素ガス:100sccmとした他は、実施例1と同様の手順で3時間成膜し、No.3の耐食性部材を得た。
[Example 3]
A film was formed for 3 hours in the same procedure as in Example 1 except that the flow rate of each gas was hexane: 20 sccm, TMS: 2 sccm, and hydrogen gas: 100 sccm. 3 corrosion-resistant members were obtained.

[実施例4]
各ガスの流量を、ヘキサン:20sccm、TMS:2sccm、水素ガス:100sccmとした他は、実施例1と同様の手順で6時間成膜し、No.4の耐食性部材を得た。
[Example 4]
A film was formed for 6 hours in the same procedure as in Example 1 except that the flow rate of each gas was hexane: 20 sccm, TMS: 2 sccm, and hydrogen gas: 100 sccm. 4 corrosion-resistant members were obtained.

[実施例5]
各ガスの流量を、ヘキサン:20sccm、TMS:10sccm、水素ガス:100sccmとした他は、実施例1と同様の手順で4時間成膜し、No.5の耐食性部材を得た。
[Example 5]
A film was formed for 4 hours in the same procedure as in Example 1 except that the flow rate of each gas was hexane: 20 sccm, TMS: 10 sccm, and hydrogen gas: 100 sccm. 5 corrosion-resistant members were obtained.

[実施例6]
各ガスの流量を、ベンゼン:20sccm、TMS:2sccm、水素ガス:100sccmとした他は、実施例1と同様の手順で5時間成膜し、No.6の耐食性部材を得た。
[Example 6]
A film was formed for 5 hours in the same procedure as in Example 1 except that the flow rate of each gas was benzene: 20 sccm, TMS: 2 sccm, and hydrogen gas: 100 sccm. 6 corrosion-resistant members were obtained.

[比較例1]
各ガスの流量を、メタン:10sccm、水素ガス:200sccmとした他は、実施例1と同様の手順で0.5時間成膜し、No.7の耐食性部材を得た。
[Comparative Example 1]
Except that the flow rate of each gas was methane: 10 sccm and hydrogen gas: 200 sccm, a film was formed for 0.5 hours in the same procedure as in Example 1, 7 corrosion-resistant members were obtained.

[比較例2]
各ガスの流量を、メタン:50sccm、TMS:5sccm、水素ガス:100sccmとした他は、実施例1と同様の手順で3時間成膜し、No.8の耐食性部材を得た。
[Comparative Example 2]
A film was formed for 3 hours in the same procedure as in Example 1 except that the flow rate of each gas was methane: 50 sccm, TMS: 5 sccm, and hydrogen gas: 100 sccm. 8 corrosion-resistant members were obtained.

[比較例3]
各ガスの流量を、メタン:50sccm、TMS:5sccm、水素ガス:60sccmとした他は、実施例1と同様の手順で6時間成膜し、No.9の耐食性部材を得た。
[Comparative Example 3]
A film was formed for 6 hours in the same procedure as in Example 1 except that the flow rate of each gas was methane: 50 sccm, TMS: 5 sccm, and hydrogen gas: 60 sccm. Nine corrosion-resistant members were obtained.

[比較例4]
各ガスの流量を、ベンゼン:20sccm、TMS:2sccm、水素ガス:100sccmとした他は、実施例1と同様の手順で8時間成膜し、No.10の耐食性部材を得た。
[Comparative Example 4]
Except that the flow rate of each gas was benzene: 20 sccm, TMS: 2 sccm, and hydrogen gas: 100 sccm, the film was formed for 8 hours in the same procedure as in Example 1, Ten corrosion-resistant members were obtained.

[評価]
[Si量およびH量の測定]
No.1〜10の各耐食性部材に対して、耐食性被膜の珪素(Si)および水素(H)の含有量を測定した。Si量はEPMA(electron probe microanalyser)、H量は弾性反跳粒子検出法(ERDA)により測定した。測定結果を表1に示す。
[Evaluation]
[Measurement of Si content and H content]
No. For each of the corrosion resistant members 1 to 10, the contents of silicon (Si) and hydrogen (H) in the corrosion resistant coating were measured. The Si amount was measured by EPMA (electron probe microanalyser), and the H amount was measured by elastic recoil detection method (ERDA). The measurement results are shown in Table 1.

[欠陥面積率の測定]
No.1〜10の各耐食性部材について、電気化学的試験により、耐食性被膜の欠陥面積率を測定した。電気化学的試験に用いた装置の概略図を図3に示す。この装置は、白金板を用いた対極81と、飽和カロメル電極(SCE)を用いた照合電極82と、耐食性部材3からなる試料電極83と、試験溶液Lを保持する電解漕80と、定電位電解装置(ポテンショスタット)85と、からなる。試料電極83には、基材にリード線を接続後、1cm2 の測定面(被膜側)を残して絶縁性のテープ84で被覆したものを用いた。また、電解漕80には、試験溶液Lとして0.5mol/LのH2 SO4 水溶液20mlを満たした。試験溶液Lは、測定中、スターラー86により攪拌した。対極81および照合電極82と共に試料電極83を試料溶液Lに挿入し、室温にて自然腐食電位の測定を開始した。なお、以上の自然腐食電位の測定は、「JIS G 0580」に記載の方法に準拠した測定方法である。そして、ターフェル外挿法により、腐食電流(icorr)を求めた。腐食電流を下記の数式に用いて、1cm2 当たりの耐食性被膜に占める欠陥Aの欠陥面積率を算出した。
[Measurement of defect area ratio]
No. About each 1-10 corrosion-resistant member, the defect area rate of the corrosion-resistant film was measured by the electrochemical test. A schematic diagram of the apparatus used for the electrochemical test is shown in FIG. This apparatus includes a counter electrode 81 using a platinum plate, a reference electrode 82 using a saturated calomel electrode (SCE), a sample electrode 83 made of a corrosion-resistant member 3, an electrolytic bath 80 for holding a test solution L, and a constant potential. And an electrolysis device (potentiostat) 85. As the sample electrode 83, an electrode covered with an insulating tape 84 was used after a lead wire was connected to the substrate, leaving a 1 cm 2 measurement surface (coating side). The electrolytic bath 80 was filled with 20 ml of a 0.5 mol / L H 2 SO 4 aqueous solution as the test solution L. The test solution L was stirred by a stirrer 86 during the measurement. The sample electrode 83 was inserted into the sample solution L together with the counter electrode 81 and the reference electrode 82, and the measurement of the natural corrosion potential was started at room temperature. The above-described measurement of natural corrosion potential is a measurement method based on the method described in “JIS G 0580”. The corrosion current (i corr ) was determined by Tafel extrapolation. Using the corrosion current in the following mathematical formula, the defect area ratio of the defect A in the corrosion-resistant film per 1 cm 2 was calculated.

Figure 2007103072
Figure 2007103072

ここで、icorr(Al)は基材のみの腐食電流、icorr(DLC/Al)は耐食性部材の腐食電流である。各部材の欠陥面積率を表1に示す。 Here, i corr (Al) is the corrosion current of the base material only, and i corr (DLC / Al) is the corrosion current of the corrosion-resistant member. Table 1 shows the defect area ratio of each member.

[電気抵抗率の測定]
No.1〜10の各耐食性部材について、電気抵抗率を調べた。耐食性被膜の厚さ方向に直流電圧を印加することによりリーク電流を検出し、各部材の電気抵抗率を算出した。図4は、測定装置の概略図である。耐食性被膜2の表面には、導電ペーストを用いてφ6mmの電極Eを作成した。この電極Eより直流電圧を印加し、カーブトレーサTによりリーク電流を検出した。なお、各耐食性部材は、基材の両面に耐食性被膜が成膜されるため、片側面を研磨することにより耐食性被膜を除去して測定を行った。測定結果を表1に示す。
[Measurement of electrical resistivity]
No. The electrical resistivity was investigated about each corrosion-resistant member of 1-10. A leak current was detected by applying a DC voltage in the thickness direction of the corrosion-resistant coating, and the electrical resistivity of each member was calculated. FIG. 4 is a schematic diagram of the measuring apparatus. On the surface of the corrosion-resistant coating 2, an electrode E having a diameter of 6 mm was prepared using a conductive paste. A DC voltage was applied from the electrode E, and a leak current was detected by the curve tracer T. Each corrosion-resistant member was measured by removing the corrosion-resistant film by polishing one side surface because a corrosion-resistant film was formed on both surfaces of the substrate. The measurement results are shown in Table 1.

[最大欠陥サイズの測定]
各部材の耐食性被膜について、欠陥Aの最大欠陥サイズを測定した。最大欠陥サイズの測定には、耐食性被膜の表面に対して垂直方向から観察したSEM像を用いた。被膜表面の複数箇所を観察し、得られたSEM像を画像解析することにより、欠陥Aの面積を求めた。各試料において、最も大きかった欠陥Aの面積を表1に示す。
[Measurement of maximum defect size]
The maximum defect size of defect A was measured for the corrosion-resistant film of each member. For measurement of the maximum defect size, an SEM image observed from the direction perpendicular to the surface of the corrosion-resistant coating was used. The area of the defect A was calculated | required by observing several places on the surface of a film, and image-analyzing the obtained SEM image. Table 1 shows the area of the largest defect A in each sample.

なお、図5は、No.5の表面を観察したSEM写真である。SEMによる観察で、欠陥Aは白色部分、欠陥Bは灰色部分である。また、被膜が剥離して基材が露出した部分も白色となる。したがって、欠陥サイズは、白色部分の面積であって、図1ではaで示される範囲に相当する。   Note that FIG. 5 is an SEM photograph in which the surface of 5 is observed. As observed by SEM, the defect A is a white portion and the defect B is a gray portion. Further, the portion where the coating is peeled and the base material is exposed also becomes white. Therefore, the defect size is the area of the white portion and corresponds to the range indicated by a in FIG.

Figure 2007103072
Figure 2007103072

[腐食速度の測定]
本発明の燃料電池システムでは、特に酸性の生成水に対する耐食性が求められる。そこで、酸性水溶液を用いて、No.1〜10および基材(被膜なし)について、電気化学的試験により腐食速度を測定した。
[Measurement of corrosion rate]
In the fuel cell system of the present invention, particularly, corrosion resistance against acidic product water is required. Therefore, using an acidic aqueous solution, For 1-10 and the substrate (no coating), the corrosion rate was measured by an electrochemical test.

腐食速度の測定には、試料電極83の測定面を2.25cm2 とし、ポテンショスタット85を腐食計(北斗電工製HK−103)に変更し、電解漕80を80℃の水槽に浸して試験溶液Lを80℃とした他は、上記の欠陥面積率の測定と同様の装置を用いた。なお、以上の腐食速度の測定は、「JIS G 0580」に記載の方法に準拠した測定方法である。測定結果を図6に示す。図6は、各試料の試験時間(0〜100時間)に対する腐食速度を表すグラフである。グラフの縦軸は腐食速度を示しており、値が大きいほど腐食の進行度合いが大きい。 For measuring the corrosion rate, the measurement surface of the sample electrode 83 is set to 2.25 cm 2 , the potentiostat 85 is changed to a corrosion meter (HK-103 manufactured by Hokuto Denko), and the electrolytic bath 80 is immersed in a water bath at 80 ° C. An apparatus similar to the above measurement of the defect area ratio was used except that the solution L was set to 80 ° C. In addition, the measurement of the above corrosion rate is a measuring method based on the method as described in “JIS G 0580”. The measurement results are shown in FIG. FIG. 6 is a graph showing the corrosion rate with respect to the test time (0 to 100 hours) of each sample. The vertical axis of the graph indicates the corrosion rate, and the greater the value, the greater the degree of corrosion progression.

腐食速度の測定結果より、耐食性部材の電気抵抗率が108 Ω・cm以上、かつ、耐食性被膜の欠陥面積率が10-2%以下であるNo.1〜No.6の耐食性部材は、腐食速度の測定結果(図6)から耐食性に優れていることが分かった。また、最大欠陥サイズが100μm2 以下であったNo.3とNo.5の耐食性部材は、最大欠陥サイズが大きいNo.6の耐食性部材に比べ、腐食の進行が抑制された。特に、耐食性被膜が比較的薄く、非晶質炭素の組成が好適な範囲内にあるNo.3およびNo.4は、長時間にわたって高い耐食性が保持された。 From the measurement results of the corrosion rate, the corrosion resistance member has an electrical resistivity of 10 8 Ω · cm or more and the corrosion resistance film has a defect area ratio of 10 −2 % or less. 1-No. It was found that the corrosion resistant member 6 was excellent in corrosion resistance from the measurement result of the corrosion rate (FIG. 6). In addition, No. whose maximum defect size was 100 μm 2 or less. 3 and no. The corrosion-resistant member No. 5 has a large maximum defect size. Compared with the corrosion-resistant member of 6, the progress of corrosion was suppressed. In particular, No. 1 in which the corrosion-resistant film is relatively thin and the composition of amorphous carbon is within the preferred range. 3 and no. No. 4 maintained high corrosion resistance for a long time.

また、膜厚が厚くなると、被膜の内部応力や歪が増加し、被膜の破損や剥離が生じやすくなるが、100μm以下の膜厚であれば、非晶質炭素に含まれるSi量およびH量を適切な値とすることにより、耐食性に優れた部材を得ることができた。具体的には、No.4とNo.8は、ともに膜厚が12μmであるが、Siを7at%、Hを43at%含む非晶質炭素からなる耐食性被膜を有するNo.4の耐食性部材は、優れた耐食性を示した。   Further, as the film thickness increases, the internal stress and strain of the film increase, and the film is easily damaged and peeled off. However, if the film thickness is 100 μm or less, the amount of Si and H contained in amorphous carbon By setting the value to an appropriate value, a member excellent in corrosion resistance could be obtained. Specifically, no. 4 and no. No. 8 has a film thickness of 12 μm, but No. 8 having a corrosion-resistant film made of amorphous carbon containing 7 at% Si and 43 at% H. The corrosion resistant member 4 exhibited excellent corrosion resistance.

耐食性部材の断面図であって、耐食性被膜の厚さ方向に貫通している欠陥(欠陥A)および耐食性被膜を貫通していない欠陥(欠陥B)断面形状を示す模式図である。It is sectional drawing of a corrosion-resistant member, Comprising: It is a schematic diagram which shows the defect (defect A) which has penetrated in the thickness direction of the corrosion-resistant film, and the defect (defect B) which has not penetrated the corrosion-resistant film. 耐食性被膜の成膜装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the film-forming apparatus of a corrosion resistant film. 電気化学的試験に用いる装置の概略図である。It is the schematic of the apparatus used for an electrochemical test. 電気抵抗率を測定する装置の概略図である。It is the schematic of the apparatus which measures an electrical resistivity. No.5の耐食性部材の耐食性被膜表面を、被膜に対して垂直方向から観察したSEM写真である。No. 5 is an SEM photograph of the corrosion resistant coating surface of No. 5 corrosion resistant member observed from a direction perpendicular to the coating. No.1〜10の各耐食性部材の電気化学的試験の結果を示すグラフであって、試験時間に対する腐食速度を示す。No. It is a graph which shows the result of the electrochemical test of each corrosion-resistant member of 1-10, Comprising: The corrosion rate with respect to test time is shown. 非晶質炭素のSi量に対する耐食性被膜欠陥面積率を示すグラフである。It is a graph which shows the corrosion-resistant film defect area rate with respect to Si amount of amorphous carbon. 非晶質炭素のH量に対する耐食性被膜欠陥面積率を示すグラフである。It is a graph which shows the corrosion-resistant film defect area rate with respect to H amount of amorphous carbon. 本発明の燃料電池システムの主要部の構成を模式的に示した図である。It is the figure which showed typically the structure of the principal part of the fuel cell system of this invention.

符号の説明Explanation of symbols

1:基材 2:耐食性被膜 3:耐食性部材
90:燃料電池システム
91:燃料電池
92:燃料供給手段
92d:供給配管 92X:調圧弁 92Y:開閉弁
93:燃料排出手段
93d:排出配管
93X:開閉弁 93Y:気液分離器 93Y’:ドレン弁 93Z:排気弁
95:燃料循環手段
95d:循環配管 95X:水素ポンプ 95Y:逆止弁
1: Substrate 2: Corrosion resistant coating 3: Corrosion resistant member 90: Fuel cell system 91: Fuel cell 92: Fuel supply means 92d: Supply pipe 92X: Pressure regulating valve 92Y: Open / close valve 93: Fuel discharge means 93d: Discharge pipe 93X: Open / close Valve 93Y: Gas-liquid separator 93Y ': Drain valve 93Z: Exhaust valve 95: Fuel circulation means 95d: Circulation piping 95X: Hydrogen pump 95Y: Check valve

Claims (15)

少なくとも、燃料ガスの供給を受けて起電力を得る燃料電池と、該燃料ガスを該燃料電池に送る供給配管と該供給配管上に配置される1以上の供給手段構成部品とからなる燃料供給手段と、該燃料電池から出る排出ガスを排出する排出配管と該排出配管上に配置される1以上の排出手段構成部品とからなる燃料排出手段と、を備える燃料電池システムにおいて、
前記供給配管、前記供給手段構成部品、前記排出配管および前記排出手段構成部品の少なくとも一部は、基材と、該基材の表面に固定され、厚さ方向に貫通する複数の欠陥の占める面積率が10-2%以下である非晶質炭素からなる耐食性被膜と、からなり、電気抵抗率が108 Ω・cm以上である耐食性部材からなることを特徴とする燃料電池システム。
A fuel supply means comprising at least a fuel cell that receives an supply of fuel gas to obtain an electromotive force, a supply pipe for sending the fuel gas to the fuel cell, and one or more supply means components disposed on the supply pipe A fuel discharge system comprising: a discharge pipe for discharging exhaust gas from the fuel cell; and one or more discharge means components disposed on the discharge pipe.
At least a part of the supply pipe, the supply means component, the discharge pipe, and the discharge means component is a base material and an area occupied by a plurality of defects that are fixed to the surface of the base material and penetrate in the thickness direction. A fuel cell system comprising: a corrosion-resistant film made of amorphous carbon having a rate of 10 −2 % or less; and a corrosion-resistant member having an electrical resistivity of 10 8 Ω · cm or more.
前記耐食性被膜は、それぞれの前記欠陥の面積が100μm2 以下である請求項1記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein the corrosion-resistant film has an area of each of the defects of 100 μm 2 or less. 前記耐食性被膜は、0.5〜100μmの膜厚である請求項1または2記載の燃料電池システム。   The fuel cell system according to claim 1 or 2, wherein the corrosion-resistant film has a thickness of 0.5 to 100 µm. 前記非晶質炭素は、炭素を主成分とし珪素を含む珪素含有非晶質炭素である請求項1または2記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the amorphous carbon is silicon-containing amorphous carbon containing carbon as a main component and containing silicon. 前記珪素含有非晶質炭素は、珪素を0.1at%以上10at%以下含み、水素を35at%以上50at%以下含む請求項4記載の燃料電池システム。   5. The fuel cell system according to claim 4, wherein the silicon-containing amorphous carbon contains silicon at 0.1 at% to 10 at% and hydrogen at 35 at% to 50 at%. 前記基材は、少なくとも表層部に導電性を有する導電性材料からなる請求項1または2記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the base material is made of a conductive material having conductivity at least on a surface layer portion. 前記基材は、金属材料からなる請求項1または2記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the base material is made of a metal material. 前記金属材料は、軽金属である請求項7記載の燃料電池システム。   The fuel cell system according to claim 7, wherein the metal material is a light metal. 前記軽金属は、アルミニウムを主成分とするアルミニウム系材料である請求項8記載の燃料電池システム。   The fuel cell system according to claim 8, wherein the light metal is an aluminum-based material containing aluminum as a main component. 前記供給手段構成部品および前記排出手段構成部品の少なくともひとつは、前記供給配管または前記排出配管を開閉する弁体である請求項1または2記載の燃料電池システム。   3. The fuel cell system according to claim 1, wherein at least one of the supply unit component and the discharge unit component is a valve body that opens and closes the supply pipe or the discharge pipe. 前記排出手段構成部品の少なくともひとつは、前記燃料電池を出た前記燃料ガスから水分を分離する気液分離部である請求項1または2記載の燃料電池システム。   3. The fuel cell system according to claim 1, wherein at least one of the discharge means components is a gas-liquid separation unit that separates moisture from the fuel gas exiting the fuel cell. 前記供給手段構成部品および前記排出手段構成部品の少なくともひとつは、前記燃料ガスを循環させる水素ポンプである請求項1または2記載の燃料電池システム。   The fuel cell system according to claim 1 or 2, wherein at least one of the supply means component and the discharge means component is a hydrogen pump for circulating the fuel gas. 前記供給手段構成部品および前記排出手段構成部品の少なくともひとつは、温度センサである請求項1または2記載の燃料電池システム。   The fuel cell system according to claim 1 or 2, wherein at least one of the supply means component and the discharge means component is a temperature sensor. 燃料ガスを該燃料ガスの供給を受けて起電力を得る燃料電池に送る供給配管上、または、該燃料電池から出る排出ガスを排出する排出配管上、に配置される燃料電池システムの構成部品であって、
基材と、該基材の表面に固定され、厚さ方向に貫通する複数の欠陥の占める面積率が10-2%以下である非晶質炭素からなる耐食性被膜と、からなり、電気抵抗率が108 Ω・cm以上である耐食性部材からなることを特徴とする燃料電池システムの構成部品。
A component of a fuel cell system arranged on a supply pipe that sends fuel gas to a fuel cell that receives the supply of the fuel gas and obtains an electromotive force, or on a discharge pipe that discharges exhaust gas that exits the fuel cell. There,
An electrical resistivity comprising: a base material; and a corrosion-resistant film made of amorphous carbon that is fixed to the surface of the base material and has an area ratio occupied by a plurality of defects penetrating in the thickness direction of 10 −2 % or less. A component of a fuel cell system, characterized in that it is made of a corrosion-resistant member having 10 8 Ω · cm or more.
一端部にある燃料ガスを他端部に配設され該燃料ガスの供給を受けて起電力を得る燃料電池に送る、または、一端部に配設された該燃料電池から出る燃料ガスを他端部に送る、燃料電池システムの配管であって、
配管基材と、該配管基材の内面に固定され、厚さ方向に貫通する複数の欠陥の占める面積率が10-2%以下である非晶質炭素からなる耐食性被膜と、からなり、電気抵抗率が108 Ω・cm以上であることを特徴とする燃料電池システムの配管。
The fuel gas at one end is sent to a fuel cell that is arranged at the other end and receives the supply of the fuel gas to obtain an electromotive force, or the fuel gas that exits from the fuel cell arranged at one end is sent to the other end To the fuel cell system piping,
A pipe base material, and a corrosion-resistant film made of amorphous carbon, which is fixed to the inner surface of the pipe base material and has a plurality of defects penetrating in the thickness direction and having an area ratio of 10 −2 % or less. A fuel cell system pipe having a resistivity of 10 8 Ω · cm or more.
JP2005288650A 2005-09-30 2005-09-30 Fuel cell system, component parts of fuel cell system, and piping of fuel cell system Pending JP2007103072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288650A JP2007103072A (en) 2005-09-30 2005-09-30 Fuel cell system, component parts of fuel cell system, and piping of fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288650A JP2007103072A (en) 2005-09-30 2005-09-30 Fuel cell system, component parts of fuel cell system, and piping of fuel cell system

Publications (1)

Publication Number Publication Date
JP2007103072A true JP2007103072A (en) 2007-04-19

Family

ID=38029827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288650A Pending JP2007103072A (en) 2005-09-30 2005-09-30 Fuel cell system, component parts of fuel cell system, and piping of fuel cell system

Country Status (1)

Country Link
JP (1) JP2007103072A (en)

Similar Documents

Publication Publication Date Title
US8586262B2 (en) Titanium-based material, method of manufacturing titanium-based material, and fuel cell separator
US11588168B2 (en) Separator for fuel cell or current collecting member for fuel cell, and solid polymer electrolyte fuel cell
Dong et al. Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC
JP5342462B2 (en) Manufacturing method of fuel cell separator
EP2817430A1 (en) Coating with conductive and corrosion resistance characteristics
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
EP3483967B1 (en) Metal sheet for separators of polymer electrolyte fuel cells
US20100015499A1 (en) Metallic bipolar plate for fuel cell and method for forming surface layer thereof
WO2006013430A1 (en) Diamond electrodes
CN114231925A (en) Fuel cell metal bipolar plate composite coating and preparation method thereof
Li et al. Controlling the compactness and sp2 clusters to reduce interfacial damage of amorphous carbon/316L bipolar plates in PEMFCs
CN100575554C (en) Anticorodal aluminum conductive material and manufacture method thereof
JP2007100135A (en) Corrosion-resistant member
JP2007103072A (en) Fuel cell system, component parts of fuel cell system, and piping of fuel cell system
JP6229771B2 (en) Fuel cell separator or fuel cell current collector
EP3252856B1 (en) Stainless steel sheet for separator of polymer electrolyte fuel cell
US20080206564A1 (en) Granular diamond and diamond electrode using the same
Wu et al. Microstructure and property of multilayer TiN/TiCN nanocrystalline coating used for metal bipolar plate
KR101372645B1 (en) Metal separator for fuel cell and method of manufacturing the same
Rashtchi et al. Nanostructured multilayer Cr/CrN coatings on 316L stainless steel for proton exchange membrane fuel cell bipolar plates
JP2024530524A (en) Parts coated with a carbon-based layer
JP2007073231A (en) Separator for fuel cell, fuel cell stack, fuel cell vehicle, and method of manufacturing separator for fuel cell
홍원혁 Nitriding and carburizing treatment of stainless steel using inductively coupled plasma for PEMFC bipolar plate
JP2018109203A (en) Formation method of conductive carbon film, production method of conductive carbon film-coated member, and production method of separator for fuel cell
Rashtchi et al. Evaluation of Novel Combined Plasma Nitriding/Physical Vapor-Deposited Cr/Crn Nanoscale Multilayer Coatings for the Application of Bipolar Plates in Proton Exchange Membrane Fuel Cells