JP2007099580A - Method of and apparatus for producing oxide single crystal - Google Patents

Method of and apparatus for producing oxide single crystal Download PDF

Info

Publication number
JP2007099580A
JP2007099580A JP2005294081A JP2005294081A JP2007099580A JP 2007099580 A JP2007099580 A JP 2007099580A JP 2005294081 A JP2005294081 A JP 2005294081A JP 2005294081 A JP2005294081 A JP 2005294081A JP 2007099580 A JP2007099580 A JP 2007099580A
Authority
JP
Japan
Prior art keywords
crucible
crystal
raw material
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005294081A
Other languages
Japanese (ja)
Other versions
JP4579122B2 (en
Inventor
Masahiro Sasaura
正弘 笹浦
Hiroki Koda
拡樹 香田
Kazuo Fujiura
和夫 藤浦
Yasunori Furukawa
保典 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Oxide Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Oxide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Oxide Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005294081A priority Critical patent/JP4579122B2/en
Publication of JP2007099580A publication Critical patent/JP2007099580A/en
Application granted granted Critical
Publication of JP4579122B2 publication Critical patent/JP4579122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To grow a high quality crystal with good yield by topically controlling the temperature distribution of a raw material solution. <P>SOLUTION: In a crystal production apparatus, a seed crystal is disposed in a crucible 1 held in a furnace 10, and a raw material filled in the crucible 1 is heated to be melted. Crystal growth is carried out by slowly cooling the melted raw material from the lower portion of the crucible 1 toward its upper portion. In this case, the apparatus is provided with an exothermic body 6 for adjusting the temperature in the furnace 10 to that suitable for crystal growth, a cooling plate 7 disposed in contact with the bottom of the crucible 1, and a cooling tube 8 which is thermally bonded to the cooling plate 7 and cools it by making a heat transfer medium to flow. Thus, the temperature gradient of the melted raw material in the crucible 1 is controlled by controlling the flow of the heat transfer medium. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化物単結晶の製造方法および結晶製造装置に関し、より詳細には、垂直ブリッジマン法、垂直温度勾配凝固法において、原料溶液の温度分布を局所的に制御することにより、高品質結晶を歩留まりよく成長させるための酸化物単結晶の製造方法および結晶製造装置に関する。   The present invention relates to a method for manufacturing an oxide single crystal and a crystal manufacturing apparatus. More specifically, in the vertical Bridgman method and the vertical temperature gradient solidification method, the temperature distribution of a raw material solution is locally controlled to thereby achieve high quality. The present invention relates to an oxide single crystal manufacturing method and a crystal manufacturing apparatus for growing a crystal with high yield.

従来、酸化物結晶材料の作製方法として、成長容器内の融液を種結晶から徐々に固化させる水平ブリッジマン法、成長容器を垂直に設置して温度勾配を与え、 低温度側に移動させて結晶を固化する垂直ブリッジマン法、成長容器を垂直に固定して温度勾配を変化させて結晶を固化する垂直温度勾配凝固法などが知られている(例えば、特許文献1参照)。   Conventionally, the oxide crystal material is produced by a horizontal Bridgman method in which the melt in the growth vessel is gradually solidified from the seed crystal, and the growth vessel is placed vertically to give a temperature gradient and moved to the lower temperature side. A vertical Bridgman method for solidifying crystals and a vertical temperature gradient solidification method for solidifying crystals by changing the temperature gradient by fixing the growth vessel vertically are known (for example, see Patent Document 1).

図1を参照して、従来の垂直ブリッジマン法による結晶材料の作製方法について説明する。るつぼ1内に種子結晶4と原料2を配置する。発熱体6により原料2を加熱溶解させて原料溶液2とする。発熱体6の加熱量を調整して、結晶作製炉内を一定の温度勾配曲線5に保持する。るつぼ1を一定速度で低温度側へ移動させることにより、原料溶液2を冷却すると、結晶の成長温度に達した結晶3は、種子結晶4と同じ結晶方位を有する結晶に成長し、増径部成長過程と定径部成長過程とを経て成長結晶3となる。   With reference to FIG. 1, a method for producing a crystal material by a conventional vertical Bridgman method will be described. A seed crystal 4 and a raw material 2 are placed in a crucible 1. The raw material 2 is heated and dissolved by the heating element 6 to obtain the raw material solution 2. The heating amount of the heating element 6 is adjusted to keep the inside of the crystal production furnace at a constant temperature gradient curve 5. When the raw material solution 2 is cooled by moving the crucible 1 to the low temperature side at a constant speed, the crystal 3 that has reached the crystal growth temperature grows into a crystal having the same crystal orientation as the seed crystal 4, and the enlarged portion The grown crystal 3 is obtained through the growth process and the constant diameter portion growth process.

このとき、成長結晶3は、種子結晶4を核として順次成長するから、種子結晶4の結晶方位を継承し、種子結晶4の結晶方位と同じ結晶方位を有する成長結晶3として成長させることができる。成長結晶3の品質は、成長初期の結晶品質の影響が大きく、初期品質は、種子付け過程における種子結晶4と原料溶液2との固液界面の状態に左右される。従来の方法では、種子付け過程における温度勾配は、原材溶解のための発熱体4の温度制御と、るつぼ1の位置制御により決定されていた。特に、原料溶液と成長結晶との間の固液界面近傍の温度分布を局所的に制御することは行われていなかった。   At this time, since the growth crystal 3 grows sequentially with the seed crystal 4 as a nucleus, it can inherit the crystal orientation of the seed crystal 4 and grow as the growth crystal 3 having the same crystal orientation as the crystal orientation of the seed crystal 4. . The quality of the grown crystal 3 is greatly influenced by the crystal quality at the initial stage of growth, and the initial quality depends on the state of the solid-liquid interface between the seed crystal 4 and the raw material solution 2 in the seeding process. In the conventional method, the temperature gradient in the seeding process is determined by the temperature control of the heating element 4 for melting the raw material and the position control of the crucible 1. In particular, local control of the temperature distribution near the solid-liquid interface between the raw material solution and the grown crystal has not been performed.

特開昭59−107996号公報JP 59-107996 A 特開昭61−101486号公報JP 61-101486 A 特開2000−63193号公報JP 2000-63193 A 特開2000−72586号公報JP 2000-72586 A 特開昭53−28085号公報JP 53-28085 A

しかしながら、従来の結晶材料の作製方法では、種子付け過程および増径部成長過程と定径部成長過程における成長速度の制御に、炉内の急峻な温度勾配が必要である。急峻な温度勾配を得るために、複数個の発熱体と保温材を収納する大きな炉体構造が必要であった。また、結晶成長を進行させるためには、るつぼを上下に移動させる機構または発熱体を上下に移動させる機構が必要であり、結晶製造装置の構造が複雑で大型化となり、装置価格が高額になるという問題があった。さらに、1回の結晶製造工程からるつぼ1個分の結晶成長しか行うことができず、成長結晶の価格はおのずと高価になってしまうという問題があった。   However, in the conventional method for producing a crystal material, a steep temperature gradient in the furnace is necessary for controlling the growth rate in the seeding process, the diameter-increasing part growth process, and the constant-diameter part growth process. In order to obtain a steep temperature gradient, a large furnace body structure that accommodates a plurality of heating elements and a heat insulating material is necessary. In addition, in order to advance crystal growth, a mechanism for moving the crucible up and down or a mechanism for moving the heating element up and down is necessary, and the structure of the crystal manufacturing apparatus is complicated and large, and the apparatus price is high. There was a problem. Furthermore, only one crucible crystal can be grown from a single crystal manufacturing process, and the price of the grown crystal is naturally high.

垂直ブリッジマン法や垂直温度勾配凝固法と異なる引き上げ法においては、1本の配管によって、るつぼの底部に冷媒を供給し、るつぼの一部の温度制御を行うことが知られている。例えば、特許文献2の単結晶の製造方法は、るつぼの下部に設けた筒状のヒータにより、選択的に加熱制御を行う。しかしながら、この方法は、原料融液の対流制御が目的であり、るつぼの底における結晶核の発生と成長には何ら寄与しない。また、特許文献3の引き上げ法は、原料融液の径方向に温度勾配を形成することが目的であり、るつぼの底における結晶核の発生と成長には何ら寄与しない。   In the pulling method different from the vertical Bridgman method and the vertical temperature gradient solidification method, it is known that the refrigerant is supplied to the bottom of the crucible and the temperature of a part of the crucible is controlled by a single pipe. For example, in the method for producing a single crystal of Patent Document 2, heating control is selectively performed by a cylindrical heater provided at the lower part of a crucible. However, this method is intended to control the convection of the raw material melt and does not contribute to the generation and growth of crystal nuclei at the bottom of the crucible. The pulling method of Patent Document 3 is intended to form a temperature gradient in the radial direction of the raw material melt, and does not contribute to the generation and growth of crystal nuclei at the bottom of the crucible.

さらに、特許文献4の引き上げ法は、融液の温度変動抑制が目的であり、特許文献5の引き上げ法は、原料融液に混入した異物の析出が目的であり、それぞれるつぼの底における結晶核の発生と成長には何ら寄与しない。   Further, the pulling method of Patent Document 4 is intended to suppress the temperature fluctuation of the melt, and the pulling method of Patent Document 5 is intended to precipitate foreign substances mixed in the raw material melt, and each has a crystal nucleus at the bottom of the crucible. Does not contribute to the generation and growth of

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、原料溶液の温度分布を局所的に制御することにより、高品質結晶を歩留まりよく成長させるための酸化物単結晶の製造方法および結晶製造装置を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to locally control the temperature distribution of the raw material solution so as to grow a high-quality crystal with a high yield. The object is to provide a crystal manufacturing method and a crystal manufacturing apparatus.

本発明は、このような目的を達成するために、請求項1に記載の発明は、炉内に保持されたるつぼ内に種子結晶を配置し、前記るつぼ内に充填された原料を加熱溶解し、前記るつぼの下方より上方に向かって、原料溶液を徐冷することにより結晶成長させる酸化物単結晶の製造方法において、前記炉内の温度を結晶成長に適した温度に調整する第1工程と、前記るつぼの底面を冷却することにより、前記原料溶液と成長結晶との間の固液界面近傍の温度勾配を制御する第2工程とを備えることを特徴とする。   In order to achieve such an object, the invention according to claim 1 is characterized in that seed crystals are placed in a crucible held in a furnace, and the raw material charged in the crucible is heated and dissolved. A first step of adjusting the temperature in the furnace to a temperature suitable for crystal growth in a method for producing an oxide single crystal in which a raw material solution is gradually cooled upward from below the crucible; And a second step of controlling the temperature gradient in the vicinity of the solid-liquid interface between the raw material solution and the grown crystal by cooling the bottom surface of the crucible.

請求項2に記載の発明は、請求項1に記載の前記第2工程は、前記るつぼの底部に接して配置された冷却板と熱的に結合された冷却管に熱媒体を流すことにより前記冷却板を冷却し、前記熱媒体の流量を制御して、前記温度勾配を制御することを特徴とする。   According to a second aspect of the present invention, in the second step of the first aspect, the heat medium is caused to flow through a cooling pipe thermally coupled to a cooling plate disposed in contact with the bottom of the crucible. The cooling plate is cooled, the flow rate of the heat medium is controlled, and the temperature gradient is controlled.

請求項3に記載の方法は、請求項1または2に記載の前記結晶の主成分は、周期率表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含むことを特徴とする。   The method according to claim 3 is characterized in that the main component of the crystal according to claim 1 or 2 is composed of periodic group Ia group and Va group, wherein group Ia is potassium, group Va is niobium, It contains at least one of tantalum.

請求項4に記載の発明は、請求項1、2または3に記載の前記結晶の主成分は、周期率表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含み、添加不純物として周期率表Ia、IIa族の1または複数種を含むことを特徴とする。   According to a fourth aspect of the present invention, the main component of the crystal according to the first, second, or third aspect is composed of a periodic table Ia group and Va group, the Ia group is potassium, and the Va group is It contains at least one of niobium and tantalum, and includes one or a plurality of kinds of periodic table Ia and IIa as added impurities.

請求項5に記載の発明は、炉内に保持されたるつぼ内に種子結晶を配置し、前記るつぼ内に充填された原料を加熱溶解し、前記るつぼの下方より上方に向かって、原料溶液を徐冷することにより結晶成長させる結晶製造装置において、前記炉内の温度を結晶成長に適した温度に調整する発熱体と、前記るつぼの底部に接して配置された冷却板と、該冷却板と熱的に結合され、熱媒体を流すことにより前記冷却板を冷却する冷却管と、前記熱媒体の流量を制御して、前記るつぼ内の前記原料溶液の温度勾配を制御する手段とを備えたことを特徴とする。   In the invention according to claim 5, the seed crystal is arranged in a crucible held in a furnace, the raw material filled in the crucible is heated and dissolved, and the raw material solution is moved upward from below the crucible. In the crystal manufacturing apparatus for crystal growth by slow cooling, a heating element for adjusting the temperature in the furnace to a temperature suitable for crystal growth, a cooling plate disposed in contact with the bottom of the crucible, and the cooling plate A cooling pipe that is thermally coupled and cools the cooling plate by flowing a heating medium; and a means for controlling a temperature gradient of the raw material solution in the crucible by controlling a flow rate of the heating medium. It is characterized by that.

請求項6に記載の発明は、請求項5に記載の結晶製造装置において、前記るつぼの底面に接して配置され、前記冷却板と熱的に結合されたヒートシンクをさらに備えたことを特徴とする。   The invention according to claim 6 is the crystal manufacturing apparatus according to claim 5, further comprising a heat sink disposed in contact with the bottom surface of the crucible and thermally coupled to the cooling plate. .

請求項7に記載の発明は、請求項5または6に記載の結晶製造装置において、前記るつぼの底部の側壁に設置され、前記るつぼの一部を局所的に加熱することにより、前記原料溶液の温度勾配を制御するヒータをさらに備えたことを特徴とする。   The invention according to claim 7 is the crystal manufacturing apparatus according to claim 5 or 6, which is installed on a side wall of the bottom of the crucible, and locally heats a part of the crucible, thereby A heater for controlling the temperature gradient is further provided.

以上説明したように、本発明によれば、るつぼの底部に接して配置された冷却板と、冷却板と熱的に結合され、熱媒体を流すことにより冷却板を冷却する冷却管とを備え、熱媒体の流量を制御して、るつぼ内の原料溶液の温度勾配を制御することにより、高品質結晶を歩留まりよく成長させることが可能となる。   As described above, according to the present invention, the cooling plate disposed in contact with the bottom of the crucible and the cooling pipe that is thermally coupled to the cooling plate and cools the cooling plate by flowing a heat medium are provided. By controlling the flow rate of the heat medium and controlling the temperature gradient of the raw material solution in the crucible, it is possible to grow high quality crystals with high yield.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。
図2に、本発明の一実施形態にかかる結晶製造装置の冷却セッタを示す。冷却セッタ7は、板状の冷却板であり、ジルコニアなどの耐熱性、高熱伝導性、機械的強度を併せ持った材料を使用する。冷却セッタ7の上面には、るつぼ保持環9を介して、るつぼ1を載置する。冷却セッタ7の下面には、適当な間隔をおいて冷却パイプ8を配管する。冷却パイプ8に流す水、ガス、冷媒材料等の熱媒体の流量制御を行うことにより、るつぼ1内の原料溶液を結晶成長に適した温度勾配に制御する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 shows a cooling setter of a crystal manufacturing apparatus according to an embodiment of the present invention. The cooling setter 7 is a plate-like cooling plate and uses a material having both heat resistance, high thermal conductivity, and mechanical strength such as zirconia. The crucible 1 is placed on the upper surface of the cooling setter 7 via the crucible holding ring 9. A cooling pipe 8 is provided on the lower surface of the cooling setter 7 at an appropriate interval. By controlling the flow rate of the heat medium such as water, gas, refrigerant material, etc. flowing through the cooling pipe 8, the raw material solution in the crucible 1 is controlled to a temperature gradient suitable for crystal growth.

原料溶液の温度勾配が、適正な温度勾配より大きい場合には、熱媒体の流量を増加させて温度勾配を小さくさせる。また、原料溶液の温度勾配が、適正な温度勾配より小さい場合には、熱媒体の流量を減少させて温度勾配を大きくする。熱媒体の温度は、室温を基本とするが、必要に応じて冷却器等の温度制御装置を介して温度制御することもできる。温度制御装置により、熱媒体の総流量を減少させることもできる。さらなる温度勾配が必要な場合には、冷却パイプを密に配管し、熱媒体の流量制御、温度制御と組み合わせて温度勾配制御を行うこともできる。   When the temperature gradient of the raw material solution is larger than the appropriate temperature gradient, the flow rate of the heat medium is increased to reduce the temperature gradient. Further, when the temperature gradient of the raw material solution is smaller than the appropriate temperature gradient, the flow rate of the heat medium is decreased to increase the temperature gradient. The temperature of the heat medium is basically room temperature, but the temperature can be controlled via a temperature control device such as a cooler if necessary. The total flow rate of the heat medium can also be reduced by the temperature control device. When a further temperature gradient is required, the cooling pipe can be densely arranged and the temperature gradient control can be performed in combination with the flow rate control and temperature control of the heat medium.

図3(a)に、本発明の一実施形態を箱型マッフル炉に適用した例を示す。温度分布の均一性の良い箱型マッフル炉10と冷却セッタ7とを組み合わせる。図3(b)には、箱型マッフル炉10の中心縦方向の炉内温度分布を示す。図3(b)のAは、冷却セッタなしの場合の温度分布であり、すなわち、発熱体6により、炉内の温度を結晶成長に適した温度に調整した状態である。   FIG. 3A shows an example in which one embodiment of the present invention is applied to a box-type muffle furnace. A box-type muffle furnace 10 and a cooling setter 7 having a uniform temperature distribution are combined. FIG. 3B shows the furnace temperature distribution in the center longitudinal direction of the box-type muffle furnace 10. A in FIG. 3B is a temperature distribution when there is no cooling setter, that is, a state in which the temperature inside the furnace is adjusted to a temperature suitable for crystal growth by the heating element 6.

図3(b)のBは、冷却セッタを設置して温度制御を行った場合の温度分布である。不図示の制御手段により、冷却パイプ8に流す熱媒体の流量を調整することにより、るつぼ1の底部に大きな温度勾配を形成する。Bを参照すれば、原料溶液と成長結晶との間の固液界面近傍の温度勾配を制御できることがわかる。このような構造によれば、箱型マッフル炉10の大きさの制限内であれば、るつぼの形状、るつぼの数量に制約がなく、大形るつぼ或いは複数のるつぼを用いて同時に結晶製造を行うことができる。   B in FIG. 3B is a temperature distribution when temperature control is performed by installing a cooling setter. A large temperature gradient is formed at the bottom of the crucible 1 by adjusting the flow rate of the heat medium flowing through the cooling pipe 8 by control means (not shown). Referring to B, it can be seen that the temperature gradient near the solid-liquid interface between the raw material solution and the grown crystal can be controlled. According to such a structure, as long as the size of the box-type muffle furnace 10 is within the limit, there are no restrictions on the shape of the crucible and the number of crucibles, and crystal production is simultaneously performed using a large crucible or a plurality of crucibles. be able to.

図4に、複数の系統の冷却パイプを均一に配管した冷却セッタを示す。冷却パイプ18は1系統のみではなく、複数の系統を配管しても良い。各冷却パイプ18a,18bに流す熱媒体の流量を独立に制御することにより、目的の結晶成長に適した温度勾配制御を行うことができる。また、複数のるつぼ11a,11bを使用する場合、るつぼ11a,11b毎に異なる温度勾配を実現して、異種結晶を同時に成長させることもできる。   FIG. 4 shows a cooling setter in which cooling pipes of a plurality of systems are uniformly provided. The cooling pipe 18 may be provided with not only one system but a plurality of systems. By independently controlling the flow rate of the heat medium flowing through the cooling pipes 18a and 18b, temperature gradient control suitable for the target crystal growth can be performed. When a plurality of crucibles 11a and 11b are used, different temperature gradients can be realized for the crucibles 11a and 11b, and different types of crystals can be grown simultaneously.

また、図5に示すように、複数の系統の冷却パイプ18c,18d,18eを不均一に配管することもできる。冷却セッタ7の必要な箇所を、目的とする温度勾配制御に応じて、配管の方法を変えることもできる。   Moreover, as shown in FIG. 5, the cooling pipes 18c, 18d, and 18e of a plurality of systems can be non-uniformly piped. It is also possible to change the piping method for the necessary portions of the cooling setter 7 according to the target temperature gradient control.

図6に、冷却セッタとヒートシンクとを組み合わせた結晶製造装置を示す。るつぼ保持環の代わりに、るつぼの底部の形状に合わせたヒートシンク29を用いる。ヒートシンク29によって、るつぼ21と冷却セッタ27との密着性が向上し、温度応答性を高めることができる。また、1つの冷却セッタ27に複数個のるつぼを載置する場合には、個々のるつぼの温度勾配を制御する際に、温度制御が容易になる。   FIG. 6 shows a crystal manufacturing apparatus in which a cooling setter and a heat sink are combined. Instead of the crucible holding ring, a heat sink 29 adapted to the shape of the bottom of the crucible is used. The heat sink 29 improves the adhesion between the crucible 21 and the cooling setter 27 and can improve the temperature responsiveness. Further, when a plurality of crucibles are placed on one cooling setter 27, temperature control becomes easy when controlling the temperature gradient of each crucible.

冷却セッタ27を介して、るつぼ21の底部を冷却した場合に、るつぼ21の側壁も同時に冷却され、原料溶液22のるつぼ径方向に不要な温度分布が生ずる場合がある。このような温度分布を抑制するために、るつぼ21の下部の側壁に付加ヒータ26を設置する。図7に、付加ヒータを組み合わせた結晶製造装置を示す。付加ヒータ26により、るつぼ21の外壁を加熱することにより、るつぼ径方向の温度分布を結晶成長に適した分布とすることができる。   When the bottom of the crucible 21 is cooled via the cooling setter 27, the side wall of the crucible 21 is also cooled at the same time, and unnecessary temperature distribution may occur in the crucible radial direction of the raw material solution 22. In order to suppress such a temperature distribution, an additional heater 26 is installed on the lower side wall of the crucible 21. FIG. 7 shows a crystal manufacturing apparatus in which an additional heater is combined. By heating the outer wall of the crucible 21 with the additional heater 26, the temperature distribution in the crucible radial direction can be made suitable for crystal growth.

以下、本発明の実施例を具体的に説明する。なお、本実施例は一つの例示であって、本発明の精神を逸脱しない範囲で種々の変更または改良を行いうることは言うまでもない。   Examples of the present invention will be specifically described below. In addition, this Example is an illustration, Comprising: It cannot be overemphasized that various changes or improvement can be performed in the range which does not deviate from the mind of this invention.

図8に、実施例1にかかる結晶製造装置を示す。本実施例は、垂直温度勾配凝固法を適用し、KTaNb1-x(0≦x≦1)結晶材料を作製する。2個の2インチ径るつぼ31a、31bのそれぞれに、<100>方位のKTaNb1-x(0≦x≦1)種子結晶34を配置する。KTaNb1-xの素原料であるKCOとTaとNbとを所望の組成比となるように秤量し、るつぼ31a、31bに各1kgを充填する。ただし、KTaNb1-x(0≦x≦1)種子結晶34の組成を、KTax’Nb1-x’とした時、組成x′は成長させるKTaNbx1-xの組成xに対して大きく、溶解温度が高い組成を選択する。るつぼ31aのKTaNb1-x(0≦x≦1)の組成xは、るつぼ31bの組成xよりも5%だけ大きくする。 FIG. 8 shows a crystal manufacturing apparatus according to the first embodiment. In this embodiment, a vertical temperature gradient solidification method is applied to produce a KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) crystal material. A <100> -oriented KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) seed crystal 34 is disposed in each of two 2-inch diameter crucibles 31a and 31b. K 2 CO 3 , Ta 2 O 5, and Nb 2 O 5 , which are raw materials of KTa x Nb 1-x O 3 , are weighed so as to have a desired composition ratio, and 1 kg each is filled in the crucibles 31 a and 31 b. . However, when the composition of the KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) seed crystal 34 is KTa x ′ Nb 1-x ′ O 3 , the composition x ′ is KTa x Nb x1-x to be grown. A composition that is large with respect to the composition x of O 3 and has a high dissolution temperature is selected. The composition x of KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) of the crucible 31a is made 5% larger than the composition x of the crucible 31b.

2インチ径るつぼ31a、31bは、炉内寸法が300×300×300mmのマッフル炉40内に設置された220×220×7mmのジルコニア製の冷却セッタ37上に等間隔で設置する。冷却パイプ38は、白金製とし、るつぼ31a、31bそれぞれに二系統を配管する。冷却パイプ38aの配管密度は、冷却パイプ38bの配管密度よりも、約2倍大きくして、るつぼ31aの冷却効果をるつぼ31bより大きくする。これは、るつぼ31aの原料溶液の方がTa過剰組成であり、凝固温度がるつぼ31bの原料溶液より約22℃程度高いためである。冷却パイプ38の冷媒は、空気を用いて、3リットル/分の流量で流入させ、大気中に放出する。   The 2-inch diameter crucibles 31a and 31b are installed at equal intervals on a 220 × 220 × 7 mm zirconia cooling setter 37 installed in a muffle furnace 40 having a furnace size of 300 × 300 × 300 mm. The cooling pipe 38 is made of platinum, and two systems are provided in each of the crucibles 31a and 31b. The piping density of the cooling pipe 38a is about twice as large as the piping density of the cooling pipe 38b so that the cooling effect of the crucible 31a is greater than that of the crucible 31b. This is because the raw material solution of the crucible 31a has a Ta excess composition and the solidification temperature is about 22 ° C. higher than the raw material solution of the crucible 31b. The refrigerant in the cooling pipe 38 is made to flow at a flow rate of 3 liters / minute using air and is released into the atmosphere.

原料が十分に溶解する1400℃に昇温し、5時間保持してK(Ta,Nb)O原料溶液32を実現する。その後、発熱体36の発熱量を結晶成長に適した1350℃近傍に調整する。るつぼ31aの方がるつぼ31bよりも約20℃程度低くなるように、るつぼ底部に設置した熱電対35で温度を測定しながら、冷却パイプ38の冷媒の空気の排気温度を測定して、空気流量を微調整し、種子付け工程を行う。結晶の成長界面が1mm/日の速度で移動するように、発熱体36の温度を約0.5℃/時で徐々に下げることにより結晶成長を行う。 The temperature is raised to 1400 ° C. at which the raw material is sufficiently dissolved, and is maintained for 5 hours to realize the K (Ta, Nb) O 3 raw material solution 32. Thereafter, the heating value of the heating element 36 is adjusted to around 1350 ° C. suitable for crystal growth. While measuring the temperature with a thermocouple 35 installed at the bottom of the crucible so that the crucible 31a is about 20 ° C. lower than the crucible 31b, the exhaust air temperature of the refrigerant in the cooling pipe 38 is measured to determine the air flow rate. Finely adjust the seeding process. Crystal growth is performed by gradually lowering the temperature of the heating element 36 at about 0.5 ° C./hour so that the crystal growth interface moves at a rate of 1 mm / day.

KTaNb1-x(0≦x≦1)の原料溶液32は、KTax'Nb1-x'種子結晶34を出発点として、温度の低いるつぼ下部から徐々に結晶化し、KTaNb1-x(0≦x≦1)の成長結晶33が成長する。結晶成長終了後、発熱体36の発熱量を調整することにより、12時間かけて室温まで徐冷する。 The raw material solution 32 of KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) gradually crystallizes from the lower temperature crucible starting from the KTa x ′ Nb 1-x ′ O 3 seed crystal 34, A grown crystal 33 of KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) grows. After the crystal growth is completed, the heating element 36 is gradually cooled to room temperature over 12 hours by adjusting the heating value of the heating element 36.

るつぼ31a、31bから作製したK(Ta,Nb)Oの成長結晶33を取り出すと、双方の成長結晶共に四回対称の{100}面ファセット面が表出した<100>方位の単結晶を得ることができる。ファセット面は、定径部開始点付近で表出してから、全て結晶が成長し、溶媒のみとなった成長結晶底部に至るまで、収縮し消失することがない。双方の成長結晶には、クラックや欠陥が存在せず、高品質結晶を歩留まりよく育成することができる。 When the grown crystal 33 of K (Ta, Nb) O 3 produced from the crucibles 31a and 31b is taken out, a single crystal with a <100> orientation in which a {100} facet plane that is four-fold symmetric appears in both grown crystals. Obtainable. The facet plane does not shrink and disappear until it is exposed in the vicinity of the starting point of the constant diameter portion until all the crystals grow and reach the bottom of the grown crystal that becomes only the solvent. Both grown crystals are free from cracks and defects, and high quality crystals can be grown with good yield.

図9に、実施例2にかかる結晶製造装置を示す。本実施例は、垂直温度勾配凝固法に適用し、KTaNb1-x(0≦x≦1)結晶材料を作製する。3インチ径るつぼ41、2インチ径るつぼ51のそれぞれに、<100>方位のKTaNb1-x(0≦x≦1)種子結晶44を配置する。KTaNb1-xの素原料であるKCOとTaとNbとを、x=0.8の組成比となるように秤量し、2インチ径るつぼ51に1kgを充填し、3インチ径るつぼ41に1.7kgを充填する。ただし、KTaNb1-x(0≦x≦1)種子結晶の組成をKTax'Nb1-x'とした時、組成x′は成長させるKTaNb1-xの組成xに対して大きく、溶解温度が高い組成を選択する。 FIG. 9 shows a crystal manufacturing apparatus according to the second embodiment. This embodiment is applied to the vertical temperature gradient solidification method to produce a KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) crystal material. A <100> orientation KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) seed crystal 44 is disposed in each of the 3 inch crucible 41 and the 2 inch crucible 51. K 2 CO 3 , Ta 2 O 5 and Nb 2 O 5 which are raw materials of KTa x Nb 1-x O 3 are weighed so as to have a composition ratio of x = 0.8, and a 2-inch diameter crucible 51 1 kg is charged, and 3 kg crucible 41 is filled with 1.7 kg. However, when the composition of the seed crystal of KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) is KTa x ′ Nb 1-x ′ O 3 , the composition x ′ is KTa x Nb 1-x O 3 to be grown. A composition having a high melting temperature and a high melting temperature is selected.

3インチ径るつぼ41と2インチ径るつぼ51とは、炉内寸法が300×300×300mmのマッフル炉50内に設置された220×220×7mmのジルコニア製の冷却セッタ47上に等間隔で設置する。冷却パイプ48は、白金製とし、るつぼ41,51の底面全体をカバーするように配管する。冷却パイプ48の冷媒は、沸点を高くする添加剤を混入した冷却水を用いて、2リットル/分の流量で流入させ、冷却装置を介して循環させる。   The 3-inch diameter crucible 41 and the 2-inch diameter crucible 51 are installed at equal intervals on a 220 × 220 × 7 mm zirconia cooling setter 47 installed in a muffle furnace 50 having an in-furnace size of 300 × 300 × 300 mm. To do. The cooling pipe 48 is made of platinum and piped so as to cover the entire bottom surface of the crucibles 41 and 51. The coolant in the cooling pipe 48 is made to flow at a flow rate of 2 liters / minute using cooling water mixed with an additive that raises the boiling point, and is circulated through the cooling device.

原料が十分に溶解する1400℃に昇温し、5時間保持してK(Ta,Nb)O原料溶液42を実現する。その後、発熱体46の発熱量を結晶成長に適した1370℃近傍に調整する。るつぼ底部に設置した熱電対45で温度を測定しながら、冷却パイプ48の冷媒の冷却水の出口温度を測定して、流量を微調整し、種子付け工程を行う。結晶の成長界面が1mm/日の速度で移動するように、発熱体46の温度を約0.5℃/時で徐々に下げることにより結晶成長を行う。 The temperature is raised to 1400 ° C. at which the raw material is sufficiently dissolved and held for 5 hours to realize the K (Ta, Nb) O 3 raw material solution 42. Thereafter, the heating value of the heating element 46 is adjusted to around 1370 ° C. suitable for crystal growth. While measuring the temperature with the thermocouple 45 installed at the bottom of the crucible, the outlet temperature of the cooling water of the cooling pipe 48 is measured, the flow rate is finely adjusted, and the seeding step is performed. Crystal growth is performed by gradually lowering the temperature of the heating element 46 at about 0.5 ° C./hour so that the crystal growth interface moves at a rate of 1 mm / day.

KTaNb1-x(0≦x≦1)の原料溶液42は、KTax'Nb1-x'種子結晶44を出発点として、温度の低いるつぼ下部から徐々に結晶化し、KTaNb1-x(0≦x≦1)の成長結晶43が成長する。結晶成長終了後、発熱体46の発熱量を調整することにより、12時間かけて室温まで徐冷する。 The raw material solution 42 of KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) is gradually crystallized from the lower temperature crucible starting from the KTa x ′ Nb 1-x ′ O 3 seed crystal 44, A growth crystal 43 of KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) grows. After the crystal growth is completed, the heating element 46 is gradually cooled to room temperature over 12 hours by adjusting the heating value of the heating element 46.

3インチ径るつぼ41と2インチ径るつぼ51とから作製したK(Ta,Nb)Oの成長結晶43を取り出すと、双方の成長結晶共に四回対称の{100}面ファセット面が表出した<100>方位の単結晶を得ることができる。ファセット面は、定径部開始点付近で表出してから、全て結晶が成長し、溶媒のみとなった成長結晶底部に至るまで、収縮し消失することがない。双方の成長結晶には、クラックや欠陥が存在せず、高品質結晶を歩留まりよく育成することができる。 When the grown crystal 43 of K (Ta, Nb) O 3 produced from the 3 inch diameter crucible 41 and the 2 inch diameter crucible 51 was taken out, a four-fold symmetric {100} facet surface was revealed for both grown crystals. A <100> -oriented single crystal can be obtained. The facet plane does not shrink and disappear until it is exposed in the vicinity of the starting point of the constant diameter portion until all the crystals grow and reach the bottom of the grown crystal that becomes only the solvent. Both grown crystals are free from cracks and defects, and high quality crystals can be grown with good yield.

本実施形態では、垂直ブリッジマン法について説明したが、垂直温度勾配凝固法のみならず、水平ブリッジマン法、水平温度勾配凝固法にも適用することができる。   Although the vertical Bridgman method has been described in the present embodiment, the present invention can be applied not only to the vertical temperature gradient solidification method but also to the horizontal Bridgman method and the horizontal temperature gradient solidification method.

また、結晶の主成分は、周期率表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含み、添加不純物として周期率表Ia、IIa族の1または複数種を含むこともできる。   The main component of the crystal is composed of a periodic table Ia group and a Va group, the Ia group is potassium, the Va group contains at least one of niobium and tantalum, and the periodic table Ia, One or more of Group IIa can also be included.

従来の垂直ブリッジマン法による結晶材料の作製方法について説明するための図であるIt is a figure for demonstrating the preparation methods of the crystal material by the conventional vertical Bridgman method 本発明の一実施形態にかかる結晶製造装置の冷却セッタを示す図である。It is a figure which shows the cooling setter of the crystal manufacturing apparatus concerning one Embodiment of this invention. 本発明の一実施形態を箱型マッフル炉に適用した例を示す図である。It is a figure which shows the example which applied one Embodiment of this invention to the box-type muffle furnace. 複数の系統の冷却パイプを均一に配管した冷却セッタを示す図である。It is a figure which shows the cooling setter which wired the cooling pipe of several systems uniformly. 複数の系統の冷却パイプを不均一に配管した冷却セッタを示す図である。It is a figure which shows the cooling setter which piped the cooling pipe of several systems unevenly. 冷却セッタとヒートシンクとを組み合わせた結晶製造装置を示す図である。It is a figure which shows the crystal manufacturing apparatus which combined the cooling setter and the heat sink. 冷却セッタとヒートシンクと付加ヒータとを組み合わせた結晶製造装置を示す図である。It is a figure which shows the crystal manufacturing apparatus which combined the cooling setter, the heat sink, and the additional heater. 実施例1にかかる結晶製造装置を示す図である。1 is a diagram showing a crystal manufacturing apparatus according to Example 1. FIG. 実施例2にかかる結晶製造装置を示す図である。6 is a diagram showing a crystal manufacturing apparatus according to Example 2. FIG.

符号の説明Explanation of symbols

1,11,21,31,41,51 るつぼ
2,22,32,42 原料溶液
3,23,33,43 成長結晶
4,24,34,44 種子結晶
5 炉内温度分布
6,36,46 発熱体
7,27,37,47 冷却セッタ
8,18,28,38,48 冷却パイプ
9,19 るつぼ保持環
10,40,50 マッフル炉
26 付加ヒータ
29,39,49 ヒートシンク
30 断熱材
35,45 熱電対
1,11,21,31,41,51 Crucible 2,22,32,42 Raw material solution 3,23,33,43 Growing crystal 4,24,34,44 Seed crystal 5 Furnace temperature distribution 6,36,46 Heat generation Body 7, 27, 37, 47 Cooling setter 8, 18, 28, 38, 48 Cooling pipe 9, 19 Crucible retaining ring 10, 40, 50 Muffle furnace 26 Additional heater 29, 39, 49 Heat sink 30 Heat insulating material 35, 45 Thermoelectric versus

Claims (7)

炉内に保持されたるつぼ内に種子結晶を配置し、前記るつぼ内に充填された原料を加熱溶解し、前記るつぼの下方より上方に向かって、原料溶液を徐冷することにより結晶成長させる酸化物単結晶の製造方法において、
前記炉内の温度を結晶成長に適した温度に調整する第1工程と、
前記るつぼの底面を冷却することにより、前記原料溶液と成長結晶との間の固液界面近傍の温度勾配を制御する第2工程と
を備えることを特徴とする酸化物単結晶の製造方法。
Oxidation in which seed crystals are placed in a crucible held in a furnace, the raw material filled in the crucible is heated and dissolved, and the raw material solution is gradually cooled upward from below the crucible to grow crystals. In a method for producing a single crystal,
A first step of adjusting the temperature in the furnace to a temperature suitable for crystal growth;
And a second step of controlling a temperature gradient in the vicinity of the solid-liquid interface between the raw material solution and the grown crystal by cooling the bottom surface of the crucible.
前記第2工程は、前記るつぼの底部に接して配置された冷却板と熱的に結合された冷却管に熱媒体を流すことにより前記冷却板を冷却し、前記熱媒体の流量を制御して、前記温度勾配を制御することを特徴とする請求項1に記載の酸化物単結晶の製造方法。   In the second step, the cooling plate is cooled by flowing a heating medium through a cooling pipe thermally coupled to the cooling plate disposed in contact with the bottom of the crucible, and the flow rate of the heating medium is controlled. The method for producing an oxide single crystal according to claim 1, wherein the temperature gradient is controlled. 前記結晶の主成分は、周期率表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含むことを特徴とする請求項1または2に記載の酸化物単結晶の製造方法。   The main component of the crystal is composed of groups Ia and Va in the periodic table, wherein group Ia is potassium, and group Va includes at least one of niobium and tantalum. The manufacturing method of the oxide single crystal of description. 前記結晶の主成分は、周期率表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含み、添加不純物として周期率表Ia、IIa族の1または複数種を含むことを特徴とする請求項1、2または3に記載の酸化物単結晶の製造方法。   The main component of the crystal is composed of a periodic table Ia group and a Va group, the Ia group is potassium, the Va group contains at least one of niobium and tantalum, and the periodic table Ia, IIa is added as an additive impurity. 4. The method for producing an oxide single crystal according to claim 1, wherein the oxide single crystal includes one or more kinds of groups. 炉内に保持されたるつぼ内に種子結晶を配置し、前記るつぼ内に充填された原料を加熱溶解し、前記るつぼの下方より上方に向かって、原料溶液を徐冷することにより結晶成長させる結晶製造装置において、
前記炉内の温度を結晶成長に適した温度に調整する発熱体と、
前記るつぼの底部に接して配置された冷却板と、
該冷却板と熱的に結合され、熱媒体を流すことにより前記冷却板を冷却する冷却管と、
前記熱媒体の流量を制御して、前記るつぼ内の前記原料溶液の温度勾配を制御する手段と
を備えたことを特徴とする結晶製造装置。
A crystal in which a seed crystal is arranged in a crucible held in a furnace, a raw material filled in the crucible is heated and melted, and a raw material solution is gradually cooled upward from below the crucible to grow crystals. In manufacturing equipment,
A heating element for adjusting the temperature in the furnace to a temperature suitable for crystal growth;
A cooling plate disposed in contact with the bottom of the crucible;
A cooling pipe that is thermally coupled to the cooling plate and cools the cooling plate by flowing a heat medium;
And a means for controlling the temperature gradient of the raw material solution in the crucible by controlling the flow rate of the heat medium.
前記るつぼの底面に接して配置され、前記冷却板と熱的に結合されたヒートシンクをさらに備えたことを特徴とする請求項5に記載の結晶製造装置。   The crystal manufacturing apparatus according to claim 5, further comprising a heat sink disposed in contact with a bottom surface of the crucible and thermally coupled to the cooling plate. 前記るつぼの底部の側壁に設置され、前記るつぼの一部を局所的に加熱することにより、前記原料溶液の温度勾配を制御するヒータをさらに備えたことを特徴とする請求項5または6に記載の結晶製造装置。
The heater according to claim 5 or 6, further comprising a heater that is installed on a side wall of the bottom of the crucible and controls a temperature gradient of the raw material solution by locally heating a part of the crucible. Crystal manufacturing equipment.
JP2005294081A 2005-10-06 2005-10-06 Method for producing oxide single crystal and apparatus for producing the same Expired - Fee Related JP4579122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294081A JP4579122B2 (en) 2005-10-06 2005-10-06 Method for producing oxide single crystal and apparatus for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294081A JP4579122B2 (en) 2005-10-06 2005-10-06 Method for producing oxide single crystal and apparatus for producing the same

Publications (2)

Publication Number Publication Date
JP2007099580A true JP2007099580A (en) 2007-04-19
JP4579122B2 JP4579122B2 (en) 2010-11-10

Family

ID=38026871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294081A Expired - Fee Related JP4579122B2 (en) 2005-10-06 2005-10-06 Method for producing oxide single crystal and apparatus for producing the same

Country Status (1)

Country Link
JP (1) JP4579122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196724B1 (en) 2010-12-31 2012-11-07 주식회사수성기술 Cooling plate for polycrystline silicon ingot producing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107996A (en) * 1982-12-06 1984-06-22 Natl Inst For Res In Inorg Mater Single crystal growing up method of solid solution composition of inorganic compound oxide
JPH05139878A (en) * 1991-11-18 1993-06-08 Sumitomo Electric Ind Ltd Single crystal growing unit and growing method
JP2004299988A (en) * 2003-03-31 2004-10-28 Kyocera Kinseki Corp Growing equipment of lithium tetraborate single crystal
WO2006054610A1 (en) * 2004-11-16 2006-05-26 Nippon Telegraph And Telephone Corporation Apparatus for crystal production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107996A (en) * 1982-12-06 1984-06-22 Natl Inst For Res In Inorg Mater Single crystal growing up method of solid solution composition of inorganic compound oxide
JPH05139878A (en) * 1991-11-18 1993-06-08 Sumitomo Electric Ind Ltd Single crystal growing unit and growing method
JP2004299988A (en) * 2003-03-31 2004-10-28 Kyocera Kinseki Corp Growing equipment of lithium tetraborate single crystal
WO2006054610A1 (en) * 2004-11-16 2006-05-26 Nippon Telegraph And Telephone Corporation Apparatus for crystal production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196724B1 (en) 2010-12-31 2012-11-07 주식회사수성기술 Cooling plate for polycrystline silicon ingot producing apparatus

Also Published As

Publication number Publication date
JP4579122B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
KR100850786B1 (en) Apparatus for producing crystals
JP6558394B2 (en) Method and apparatus for producing SiC single crystal
JP5434801B2 (en) Method for producing SiC single crystal
JP6231622B2 (en) Crystal production method
JP4810346B2 (en) Method for producing sapphire single crystal
JP2008508187A (en) Method for growing a single crystal from a melt
WO2008050524A1 (en) Apparatus for producing single crystal and method for producing single crystal
EP1757716B1 (en) Method and apparatus for preparing crystal
JP6053018B2 (en) Crystal growth method
KR100573525B1 (en) A apparatus for growing single crystal
CN104651938A (en) Method for producing SiC single crystal
JP4579122B2 (en) Method for producing oxide single crystal and apparatus for producing the same
RU2005137297A (en) Cd1-xZnxTE, WHERE 0≤x≤1
JP2007099579A (en) Crystal production method and its apparatus
JPH1179880A (en) Production apparatus for fluorite of large diameter and its production
JP4270034B2 (en) Method for producing SiC single crystal
JP4537305B2 (en) Crystal manufacturing method
RU2633899C2 (en) Method for cd1-xznxte single crystals growing, where 0≤x≤1, for inoculation at high pressure of inert gas
RU1228526C (en) Method and apparatus for growing monocrystals of complex oxides from melt
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JP2005089204A (en) Apparatus and method for producing crystal
JP2005330160A (en) Apparatus and method for manufacturing crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees