JP2007098442A - Laser joint quality inspecting device - Google Patents

Laser joint quality inspecting device Download PDF

Info

Publication number
JP2007098442A
JP2007098442A JP2005292648A JP2005292648A JP2007098442A JP 2007098442 A JP2007098442 A JP 2007098442A JP 2005292648 A JP2005292648 A JP 2005292648A JP 2005292648 A JP2005292648 A JP 2005292648A JP 2007098442 A JP2007098442 A JP 2007098442A
Authority
JP
Japan
Prior art keywords
light
intensity
joint
plasma
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005292648A
Other languages
Japanese (ja)
Inventor
Masaru Ochiai
大 落合
Hideo Nakamura
秀生 中村
Yasutaka Takeuchi
康恭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005292648A priority Critical patent/JP2007098442A/en
Publication of JP2007098442A publication Critical patent/JP2007098442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser joint quality inspecting device where the erroneous judgement of joint quality is suppressed, and quality discrimination can be correctly performed. <P>SOLUTION: The laser joint quality inspecting device 1 for inspecting the quality of the joint by laser irradiation between a weldment 3 and the object 2 to be welded comprises: a reflected light intensity calculating means where reflected light from the joint is detected, and the time-integrated intensity of the reflected light is calculated; a plasma light intensity calculating means where plasma light from the joint is detected, and the time-integrated intensity of the plasma light is calculated; an infrared light intensity calculating means where infrared light from the joint is detected, and the time-integrated intensity of the infrared light is calculated; and a calculating apparatus 16 as a joint quality discriminating means where discriminatory analysis is performed using the time-integrated intensities of the reflected light, plasma light and infrared light as variables, and the quality discrimination of the weld quality in the joint from which each time-integrated intensity is detected is performed based on the result of the discriminatory analysis. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、接合物と被接合物とをレーザ照射により接合する際の、接合物と被接合物との接合部の接合品質を検査するレーザ接合品質検査装置に関する。   The present invention relates to a laser bonding quality inspection apparatus that inspects the bonding quality of a bonded portion between a bonded object and a bonded object when the bonded object and the bonded object are bonded by laser irradiation.

接合物と被接合物とをレーザ照射により接合して、その接合状態等といった接合部品質の確認を行う場合、例えば、接合部の表面にレーザを照射して、照射したレーザの反射光に基づいて接合部品質を確認することが行われる。
具体的には、例えば、特許文献1に示すように、判定装置にて、受光した接合部からの反射光の強度を測定し、測定した強度と予め設けたしきい値とを比較して接合状態の良否を判定することが行われる。
また、図18に示すように、測定した反射光の強度が、予め設定された下限値から上限値の範囲内に入っているか否かで接合状態の良否判定が行われる。
特開平5−335735号公報
When joining a joined object and an object to be joined by laser irradiation and confirming the quality of the joined part such as the joining state, the surface of the joined part is irradiated with a laser, for example, based on the reflected light of the irradiated laser. The joint quality is checked.
Specifically, for example, as shown in Patent Document 1, the determination device measures the intensity of the reflected light from the received joint, compares the measured intensity with a predetermined threshold value, and joins them. It is determined whether the state is good or bad.
Moreover, as shown in FIG. 18, the quality determination of a joining state is performed by whether the measured reflected light intensity is in the range of a preset lower limit value to an upper limit value.
JP-A-5-335735

前述のように、測定した反射光の強度が所定の範囲内に入っているか否かで接合状態の良否判定を行った場合、図19に示すように、反射光の検出値にノイズが乗ったときに、ノイズピークが設定された上限値を超えてしまい、本来であればOK品となるものがNG品として誤判定されてしまうことがある。
特に、連続的な溶接を行っているときにノイズが乗った場合とは異なり、微少時間(数十msecオーダー)で行われるスポット的な溶接を行っているときにノイズが乗った場合は、ノイズピークが全体のレーザ照射時間に対して無視できるものではなく、誤判定の原因となってしまう。
そこで、本発明においては、接合品質の誤判定を抑制し、良否判定を正確に行うことができるレーザ接合品質検査装置を提供するものである。
As described above, when it is determined whether or not the joining state is good depending on whether or not the intensity of the measured reflected light is within a predetermined range, noise is added to the detected value of the reflected light as shown in FIG. Sometimes, the noise peak exceeds the set upper limit, and an original product that is an OK product may be erroneously determined as an NG product.
In particular, unlike when noise is applied during continuous welding, when noise is applied during spot welding performed in a minute time (several tens of msec order), The peak is not negligible with respect to the entire laser irradiation time, and causes erroneous determination.
Therefore, the present invention provides a laser bonding quality inspection apparatus that can suppress erroneous determination of bonding quality and can accurately perform quality determination.

上記課題を解決するレーザ接合品質検査装置は、以下の特徴を有する。
即ち、請求項1記載の如く、レーザ接合品質検査装置は、接合物と被接合物とをレーザ照射により接合する際の、接合物と被接合物との接合部の接合品質を検査するレーザ接合品質検査装置であって、前記接合部に照射したレーザの反射光を検出して、該反射光の時間積分強度を演算する反射光強度演算手段と、前記接合部に生成するプラズマのプラズマ光を検出して、該プラズマ光の時間積分強度を演算するプラズマ光強度演算手段と、
前記接合部から放射される赤外光を検出して、該赤外光の時間積分強度を演算する赤外光強度演算手段と、演算された反射光の時間積分強度、プラズマ光の時間積分強度、および赤外光の時間積分強度をそれぞれ変数として用いて判別分析を行い、前記各時間積分強度を検出した接合部の接合品質の良否判定を、前記判別分析の結果に基づいて行う、接合品質判定手段とを有する。
これにより、反射光の時間積分強度、プラズマ光の時間積分強度、および赤外光の時間積分強度といった、異なる3種類の時間積分強度を、それぞれ変数として用いて判別分析を行うことができ、該反射光、プラズマ光、および赤外光の時間積分強度を検出した接合部の接合品質の良否判定を誤判定なく正確に行うことができて、信頼性の高いレーザ接合品質検査装置を構成することが可能となる。
The laser bonding quality inspection apparatus that solves the above problems has the following characteristics.
That is, as described in claim 1, the laser bonding quality inspection apparatus performs laser bonding for inspecting the bonding quality of the bonded portion between the bonded object and the bonded object when the bonded object and the bonded object are bonded by laser irradiation. A quality inspection device for detecting reflected light of a laser irradiated on the joint and calculating a reflected light intensity calculating means for calculating a time integral intensity of the reflected light; and plasma light of plasma generated at the joint Plasma light intensity calculating means for detecting and calculating the time integrated intensity of the plasma light;
Infrared light intensity calculating means for detecting the infrared light emitted from the joint and calculating the time integrated intensity of the infrared light, the calculated time integrated intensity of the reflected light, and the time integrated intensity of the plasma light Discriminant analysis using each of the time integral intensities of infrared light as a variable, and determining whether or not the joint quality of each joint where the time integral intensities are detected is determined based on the result of the discriminant analysis. Determination means.
Thereby, discriminant analysis can be performed using three different types of time integrated intensities such as the time integrated intensity of reflected light, the time integrated intensity of plasma light, and the time integrated intensity of infrared light as variables, A highly reliable laser bonding quality inspection apparatus can be constructed that can accurately perform the quality determination of the bonding quality of the bonded portion that detects the time integrated intensity of reflected light, plasma light, and infrared light without erroneous determination. Is possible.

また、請求項2記載の如く、前記プラズマ光強度演算手段は、レーザが照射された前記接合部からの戻り光を分光して取り出した第1分光からプラズマ光を検出して、該プラズマ光の時間積分強度を演算し、前記赤外光強度演算手段は、第1分光を取り出した後の戻り光をさらに分光して取り出した第2分光から赤外光を検出して、該赤外光の時間積分強度を演算し、前記反射光強度演算手段は、第2分光を取り出した後に残った戻り光から反射光を検出して、該反射光の時間積分強度を演算する。
これにより、最も強度が弱いプラズマ光成分を、最初に分光した第1分光から取り出し、最も強度が強い反射光成分を、第1分光および第2分光を取り出した後の残りの戻り光から取り出すこととなるので、反射光のみならず、最も強度が弱いプラズマ光や、次に強度が弱い赤外光をも確実に検出することが可能となる。
According to a second aspect of the present invention, the plasma light intensity calculation means detects the plasma light from the first spectrum obtained by spectrally extracting the return light from the joint irradiated with the laser, and detects the plasma light. A time integrated intensity is calculated, and the infrared light intensity calculating means further detects the infrared light from the second spectrum obtained by further separating the return light after the first spectrum is extracted, and The time integrated intensity is calculated, and the reflected light intensity calculating means detects the reflected light from the return light remaining after taking out the second spectrum, and calculates the time integrated intensity of the reflected light.
As a result, the plasma light component having the weakest intensity is extracted from the first spectrum obtained by the first spectroscopy, and the reflected light component having the strongest intensity is extracted from the remaining return light after the first spectrum and the second spectrum are extracted. Therefore, not only the reflected light but also the plasma light with the lowest intensity and the infrared light with the next lowest intensity can be reliably detected.

本発明によれば、接合物と被接合物とをレーザ照射により接合した接合部の接合品質の良否判定を、誤判定なく正確に行うことができて、信頼性の高いレーザ接合品質検査装置を構成することが可能となる。   According to the present invention, it is possible to accurately determine the quality of a bonded portion of a bonded portion obtained by bonding a bonded object and an object to be bonded by laser irradiation without erroneous determination, and to provide a highly reliable laser bonding quality inspection apparatus. It can be configured.

次に、本発明を実施するための形態を、添付の図面を用いて説明する。   Next, modes for carrying out the present invention will be described with reference to the accompanying drawings.

図1に示すように、本発明にかかるレーザ接合品質検査装置1は、被接合物である被溶接物3と接合される、接合物である溶接物2にレーザ光を照射する照射ノズル11と、該照射ノズル11の上部から水平方向に延出する導光路12と、該導光路12に導かれたプラズマ光を検出するプラズマ光センサ13と、前記導光路12に導かれた赤外光を検出する温度センサ14と、前記導光路12に導かれた反射光を検出する反射光センサ15とを備えている。   As shown in FIG. 1, a laser joining quality inspection device 1 according to the present invention includes an irradiation nozzle 11 that irradiates a welded product 2 that is a joined product, which is joined to a workpiece 3 that is a joined product, and a laser beam. , A light guide 12 extending in the horizontal direction from the top of the irradiation nozzle 11, a plasma light sensor 13 for detecting plasma light guided to the light guide 12, and infrared light guided to the light guide 12. A temperature sensor 14 for detection and a reflected light sensor 15 for detecting reflected light guided to the light guide path 12 are provided.

また、照射ノズル11内には、ハーフミラーにて構成される折り返しレンズ21が設けられており、該折り返しレンズ21により、レーザが照射された溶接物2と被溶接物3との接合部からの戻り光5を、前記導光路12へ案内している。
前記導光路12内には、第1分光レンズ22および第2分光レンズ23が設けられており、導光路12へ案内された戻り光5は、まず第1分光レンズ22にて分光され、さらに第2分光レンズ23にて分光される。
In addition, a folding lens 21 composed of a half mirror is provided in the irradiation nozzle 11, and the folding lens 21 allows the laser beam to be emitted from the joint between the welded material 2 and the workpiece 3. The return light 5 is guided to the light guide path 12.
A first spectroscopic lens 22 and a second spectroscopic lens 23 are provided in the light guide path 12, and the return light 5 guided to the light guide path 12 is first spectrally separated by the first spectroscopic lens 22. The light is split by the two spectroscopic lens 23.

戻り光5を第1分光レンズ22にて分光して、取り出した第1分光5aは、前記プラズマ光センサ13にて検出され、第2分光レンズ23にて分光して取り出した第2分光5bは、前記温度センサ14にて検出され、第2分光レンズ23にて分光して第2分光5bが取り出された後の残り光5cは、前記反射光センサ15にて検出される。   The return light 5 is split by the first spectroscopic lens 22 and the extracted first spectroscope 5 a is detected by the plasma light sensor 13, and the second spectroscopic 5 b that is spectroscopically extracted by the second spectroscopic lens 23 is The remaining light 5 c detected by the temperature sensor 14 and separated by the second spectroscopic lens 23 and extracted from the second spectroscopic 5 b is detected by the reflected light sensor 15.

プラズマ光センサ13には、プラズマ光のみが通過可能なプラズマ光フィルタ13aが付設されており、該プラズマ光センサ13においては、第1分光5aのうちプラズマ光フィルタ13aを通過したプラズマ光成分のみが検出される。
また、温度センサ14には、赤外光のみが通過可能な赤外光フィルタ14aが付設されており、該温度センサ14においては、第2分光5bのうち赤外光フィルタ14aを通過した赤外光成分のみが検出される。
さらに、反射光センサ15には、反射光のみが通過可能な反射光フィルタ15aが付設されており、該反射光センサ15においては、残り光5cのうち反射光フィルタ15aを通過した反射光成分のみが検出される。
The plasma light sensor 13 is provided with a plasma light filter 13a through which only plasma light can pass. In the plasma light sensor 13, only the plasma light component that has passed through the plasma light filter 13a in the first spectrum 5a. Detected.
Further, the temperature sensor 14 is provided with an infrared light filter 14a through which only infrared light can pass. In the temperature sensor 14, the infrared light that has passed through the infrared light filter 14a in the second spectrum 5b. Only the light component is detected.
Further, the reflected light sensor 15 is provided with a reflected light filter 15a through which only reflected light can pass. In the reflected light sensor 15, only the reflected light component that has passed through the reflected light filter 15a out of the remaining light 5c. Is detected.

図2に示すように、戻り光5に含まれるプラズマ光成分、赤外光成分、および反射光成分は、それぞれ検出される波長帯が異なるため、前記プラズマ光フィルタ13a、赤外光フィルタ14a、および反射光フィルタ15aを用いることで、前記各成分を個別に検出することが可能となっている。   As shown in FIG. 2, the plasma light component, the infrared light component, and the reflected light component included in the return light 5 are detected in different wavelength bands, so that the plasma light filter 13a, the infrared light filter 14a, And by using the reflected light filter 15a, it is possible to detect each of the components individually.

プラズマ光センサ13にて検出されたプラズマ光成分、温度センサ14にて検出された赤外光成分、および反射光センサ15にて検出された反射光成分は、それぞれ演算装置16へ入力されて演算処理され、接合部の良否判断が行われる。   The plasma light component detected by the plasma light sensor 13, the infrared light component detected by the temperature sensor 14, and the reflected light component detected by the reflected light sensor 15 are respectively input to the calculation device 16 and calculated. It is processed and the quality determination of a junction part is performed.

ここで、プラズマ光成分は、戻り光5を分光して取り出した第1分光5aから検出し、
赤外光成分は、第1分光5aを取り出した後の戻り光5をさらに分光して取り出した第2分光5bから検出し、反射光成分は、第2分光5bを取り出した後の残り光5cから検出しているが、これは以下の理由による。
Here, the plasma light component is detected from the first light spectrum 5a obtained by spectrally separating the return light 5, and
The infrared light component is detected from the second light 5b obtained by further separating the return light 5 after the first light 5a is extracted, and the reflected light component is the remaining light 5c after the second light 5b is extracted. This is detected from the following reason.

つまり、戻り光5に含まれる各成分は光の強度が互いに異なり、プラズマ光<赤外光<反射光、の順に強度が強くなっている。
一方、図3に示すように、各成分を取り出すために分光すると、分光するにつれて戻り光5が減衰し、該戻り光5の強度が弱くなる。
従って、最も強度が弱いプラズマ光成分を、最初に分光した第1分光5aから取り出し、最も強度が強い反射光成分を、第1分光5aおよび第2分光5bを取り出した後の残り光5cから取り出して、強度が弱いプラズマ光を確実に検出するようにしている。
That is, the components included in the return light 5 have different light intensities, and the intensities increase in the order of plasma light <infrared light <reflected light.
On the other hand, as shown in FIG. 3, when the light is split for extracting each component, the return light 5 is attenuated as the light is split, and the intensity of the return light 5 is weakened.
Accordingly, the plasma light component having the weakest intensity is extracted from the first light spectrum 5a that is first spectrally separated, and the reflected light component having the strongest intensity is extracted from the remaining light 5c after the first light spectrum 5a and the second light spectrum 5b are extracted. Thus, plasma light having a low intensity is reliably detected.

また、図4に示すようなパルス形状のレーザ光が照射ノズル11から照射された場合、プラズマ光センサ13にて検出されたプラズマ光の波形は、例えば図5に示すような形状となり、温度センサ14にて検出された赤外光の波形は、例えば図6に示すような形状となり、反射光センサ15にて検出された反射光の波形は、例えば図7に示すような形状となる。   4 is irradiated from the irradiation nozzle 11, the waveform of the plasma light detected by the plasma light sensor 13 has a shape as shown in FIG. 5, for example, and the temperature sensor The waveform of the infrared light detected at 14 has a shape as shown in FIG. 6, for example, and the waveform of the reflected light detected at the reflected light sensor 15 has a shape as shown in FIG.

そして、前記演算装置16においては、前述のように検出されたプラズマ光成分、赤外光成分、および反射光成分の強度値をそれぞれ積分し、積分して得られたプラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度に基づいて接合部の良否判断を行うようにしている。
なお、例えば、反射光の時間積分強度は、図7における斜線部の面積にて表わされる。
Then, in the arithmetic unit 16, the intensity values of the plasma light component, the infrared light component, and the reflected light component detected as described above are integrated, and the time integrated intensity of the plasma light obtained by integration, The quality of the joint is determined based on the time integrated intensity of infrared light and the time integrated intensity of reflected light.
For example, the time integrated intensity of the reflected light is represented by the area of the hatched portion in FIG.

また、本例においては、記接合部に照射したレーザの戻り光5から反射光を検出して、該反射光の時間積分強度を演算する反射光強度演算手段は、反射光センサ15および演算装置16にて構成され、該戻り光5からプラズマ光を検出して、該プラズマ光の時間積分強度を演算するプラズマ光強度演算手段は、プラズマ光センサ13および演算装置16にて構成され、前記戻り光5から放射される赤外光を検出して、該赤外光の時間積分強度を演算する赤外光強度演算手段は、赤外光センサ14および演算装置16にて構成されている。   In this example, the reflected light intensity calculating means for detecting the reflected light from the return light 5 of the laser irradiated on the joint and calculating the time integral intensity of the reflected light includes the reflected light sensor 15 and the calculation device. The plasma light intensity calculation means for detecting the plasma light from the return light 5 and calculating the time integrated intensity of the plasma light is constituted by the plasma light sensor 13 and the calculation device 16, and the return light The infrared light intensity calculating means for detecting the infrared light emitted from the light 5 and calculating the time integrated intensity of the infrared light is composed of an infrared light sensor 14 and a calculation device 16.

このように、溶接物3と被溶接物2との接合部の良否判断に、各光の時間積分強度の値を用いることにより、各光の波形にノイズ成分がスポット的に乗った場合でも、そのノイズ成分が接合部の良否判断に影響を与えることは殆どなくなる。
つまり、図8に示すように、例えばノイズが乗っていない反射光の検出波形(図8における左の図)と、ノイズが乗った反射光の検出波形(図8における右の図)とを比較した場合、時間積分強度を表わす斜線部の面積は殆ど変わらないため、時間積分強度値に基づいて接合部の良否判断を行っても、ノイズによる影響を殆ど受けることがない。
Thus, by using the value of the time integral intensity of each light to determine the quality of the joint between the welded article 3 and the workpiece 2, even when a noise component is spotted on the waveform of each light, The noise component hardly affects the quality of the joint.
That is, as shown in FIG. 8, for example, a detection waveform of reflected light without noise (left diagram in FIG. 8) is compared with a detection waveform of reflected light with noise (right diagram in FIG. 8). In this case, since the area of the hatched portion indicating the time integrated intensity hardly changes, even if the quality of the joint is determined based on the time integrated intensity value, it is hardly affected by noise.

演算装置16による、時間積分強度に基づく接合部の良否判断は、具体的には判別分析により行われる。
判別分析とは、いくつかの変数に基づいて、各データがどの群に所属するかを判定することを目的とするものであり、一般的に用いられている手法である。
本発明では、この判別分析を用いて接合部の良否判断を行うものであり、プラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度をそれぞれ変数として、いくつかの検出データを取得し、取得した各検出データが、良品の群と不良品の群との2群のうち、何れの群に属するかの判定を行うものである。
The judgment of quality of the joint based on the time integrated intensity by the arithmetic device 16 is specifically performed by discriminant analysis.
Discriminant analysis is a method commonly used for the purpose of determining which group each data belongs to based on several variables.
In the present invention, this discriminant analysis is used to determine the quality of the joint, and the time integral intensity of the plasma light, the time integral intensity of the infrared light, and the time integral intensity of the reflected light are each used as variables. This detection data is acquired, and it is determined which of the two groups of the non-defective product group and the defective product group each of the acquired detection data belongs to.

判別分析を行う手順としては、まず、プラズマ光、赤外光、および反射光の時間積分強度の検出データを、それぞれ取得する。
検出データ取得後、各群の前記検出データの分散が等しいか否かといった、等分散性の検定を行う。
次に判別関数を求める。この場合、前述の等分散性の検定により、分散性が等しいと判定された場合は、線形判別により判別関数を求め、分散性が等しくないと判定された場合は、2群2次判別により判別関数を求める。
As a procedure for performing discriminant analysis, first, detection data of time integrated intensities of plasma light, infrared light, and reflected light are respectively acquired.
After obtaining the detection data, an equidispersity test is performed, such as whether or not the variances of the detection data of each group are equal.
Next, a discriminant function is obtained. In this case, when it is determined that the dispersibility is equal by the above-described equidispersity test, a discriminant function is obtained by linear discrimination, and when it is determined that the dispersibility is not equal, the discrimination is performed by second group quadratic discrimination. Find a function.

そして、求めた判別関数により、2つの群(良品の群と不良品の群)の境界を決定する。また、各群の分散をマハラノビスの汎距離を用いて数値化し、数値化した各群の分散、および前記境界をグラフ上に表わす。
図9に、グラフ上に表わされた分散および境界Bを示す。
図9に示したグラフ上では、境界Bの右側に位置している検出データを良品と判別し、境界Bの左側に位置している検出データを不良品と判別する。
Then, a boundary between two groups (a non-defective product group and a defective product group) is determined by the obtained discriminant function. In addition, the variance of each group is digitized using Mahalanobis's general distance, and the variance of each group and the boundary are expressed on a graph.
FIG. 9 shows the variance and the boundary B represented on the graph.
On the graph shown in FIG. 9, the detection data positioned on the right side of the boundary B is determined as a non-defective product, and the detection data positioned on the left side of the boundary B is determined as a defective product.

この場合、実際に接合部が良品状態にある検出データは、全て境界Bの右側に位置しているとともに、実際に接合部が不良品状態にある検出データは、全て境界Bの左側に位置しており、誤判定なく正確な良否判定が行われていることがわかる。   In this case, all the detection data in which the joint portion is actually in a non-defective state is located on the right side of the boundary B, and all the detection data in which the joint portion is actually in a defective state is located on the left side of the boundary B. It can be seen that an accurate pass / fail judgment is made without erroneous judgment.

このように、プラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度といった3種類のデータを変数として用いて判別分析を行うことで、誤判定のない正確な良否判定を行うことが可能となっている。   In this way, by performing discriminant analysis using three types of data such as the time integrated intensity of plasma light, the time integrated intensity of infrared light, and the time integrated intensity of reflected light as variables, it is possible to perform accurate pass / fail without erroneous determination. Judgment is possible.

これに対し、図10に示すように、プラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度のうち、何れか1種類のみを用いて判別分析を行った場合には(図10にはプラズマ光のみを用いた場合を示している)、境界Bの右側に良品だけでなく不良品が多く混入しているとともに、境界Bの左側に不良品だけでなく良品が多く混入しており、多くの誤判定が存在していて、正確な良否判定を行うことができない。   On the other hand, as shown in FIG. 10, when discriminant analysis is performed using only one of the time integrated intensity of plasma light, the time integrated intensity of infrared light, and the time integrated intensity of reflected light. (FIG. 10 shows the case where only plasma light is used), not only non-defective products but also defective products are mixed on the right side of the boundary B and not only defective products but also non-defective products on the left side of the boundary B. Are mixed, and there are many misjudgments, and accurate pass / fail judgments cannot be made.

また、図11に示すように、プラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度のうち、何れか2種類を用いて判別分析を行った場合には(図11にはプラズマ光および反射光を用いた場合を示している)、図10に示した1種類の検出データのみを用いた場合に比べると誤判定の頻度は少ないが、まだ境界Bの右側に良品だけでなく不良品が混入しているとともに、境界Bの左側に不良品だけでなく良品が混入しており、誤判定が存在していて正確な良否判定を行っているとはいえない。   In addition, as shown in FIG. 11, when the discriminant analysis is performed using any two of the time integrated intensity of plasma light, the time integrated intensity of infrared light, and the time integrated intensity of reflected light ( FIG. 11 shows the case where plasma light and reflected light are used), but the frequency of misjudgment is low compared to the case where only one type of detection data shown in FIG. In addition to non-defective products, not only non-defective products but also non-defective products are mixed on the left side of the boundary B, and there is a misjudgment and it cannot be said that an accurate pass / fail judgment is made. .

以上の如く、接合品質判定手段となる演算装置16にて、反射光の時間積分強度、プラズマ光の時間積分強度、および赤外光の時間積分強度といった、異なる3種類の時間積分強度を、それぞれ変数として用いて判別分析を行うことで、該反射光、プラズマ光、および赤外光の時間積分強度を検出した接合部の接合品質の良否判定を、誤判定なく正確に行うことができ、信頼性の高いレーザ接合品質検査装置を構成することが可能となる。   As described above, in the arithmetic device 16 serving as the bonding quality determination means, three different types of time integrated intensities such as the time integrated intensity of reflected light, the time integrated intensity of plasma light, and the time integrated intensity of infrared light are respectively determined. By using discriminant analysis as a variable, it is possible to accurately determine the quality of the bonded portion of the joint that has detected the time integrated intensity of the reflected light, plasma light, and infrared light without erroneous determination, and to reliably It is possible to configure a highly reliable laser bonding quality inspection apparatus.

なお、判別分析に用いる変数の種類は、本例のような3種類に限るものではなく、もっと多くの種類の変数を用いることもできる。例えば、図4に示したレーザ出力を4種類目の変数として加えて判別分析を行うことも可能である。
このように、変数の種類を増加させて判別分析を行うことで、良否判定の正確さをさらに向上させることができる。
Note that the types of variables used for discriminant analysis are not limited to the three types as in this example, and more types of variables can be used. For example, it is possible to perform discriminant analysis by adding the laser output shown in FIG. 4 as a fourth variable.
Thus, by performing discriminant analysis by increasing the types of variables, the accuracy of the pass / fail judgment can be further improved.

また、本例のように、照射ノズル11に導光路12や第1・第2分光レンズ23を設けた構成では、3種類の光出力を検出することが容易であるが、図12に示すように、導光路12を設けずに照射ノズル11のみで光出力を検出しようとすると、そのままでは複数種類の光出力を検出することが困難となる。
しかし、照射ノズル11を次のように加工することで、導光路12を設けなくとも複数種類の光出力を検出することが可能となる。
In addition, in the configuration in which the light guide path 12 and the first and second spectroscopic lenses 23 are provided in the irradiation nozzle 11 as in this example, it is easy to detect three types of light outputs, but as shown in FIG. In addition, if the light output is to be detected only by the irradiation nozzle 11 without providing the light guide path 12, it is difficult to detect a plurality of types of light outputs as they are.
However, by processing the irradiation nozzle 11 as follows, a plurality of types of light outputs can be detected without providing the light guide path 12.

まず、図13に示すように、照射ノズル11の先端部11aにおける一部を、光を透過する部材にて構成した光透過部11b・11bに構成することで、接合部からの戻り光5を、この光透過部11b・11bから外部へ取り出して検出することができる。これにより、複数種類の光出力を検出することが可能となる。
光透過部11bは、例えばPMMA等の透明樹脂部材にて構成することができ、先端部11aの複数箇所に形成することができる。
First, as shown in FIG. 13, by constructing a part of the tip 11a of the irradiation nozzle 11 into light transmitting parts 11b and 11b made of a light transmitting member, the return light 5 from the joint part is obtained. The light transmission parts 11b and 11b can be taken out and detected. Thereby, a plurality of types of light outputs can be detected.
The light transmission part 11b can be comprised by transparent resin members, such as PMMA, for example, and can be formed in the multiple places of the front-end | tip part 11a.

また、図14に示すように、照射ノズル11の先端部11aにおいて、側壁の一部を切り欠いて、先端部11aの断面形状が略「C」字状となるような切り欠き部11cを形成することで、その切り欠き部11cから、接合部からの戻り光5を外部へ取り出すことが可能となる。これにより、複数種類の光出力を検出することが可能となる。   Further, as shown in FIG. 14, in the tip end portion 11 a of the irradiation nozzle 11, a part of the side wall is cut out to form a cutout portion 11 c in which the cross-sectional shape of the tip end portion 11 a is substantially “C” shape. By doing so, it becomes possible to extract the return light 5 from the joint portion to the outside from the notch portion 11c. Thereby, a plurality of types of light outputs can be detected.

また、図15に示すように、照射ノズル11の先端部11aにおいて、側壁に開口部11d・11dを開口して、該開口部11d・11dから、接合部からの戻り光5を外部へ取り出すようにすることもできる。これにより、複数種類の光出力を検出することが可能となる。開口部11dは、先端部11aの複数箇所に形成することが可能である。   Further, as shown in FIG. 15, at the tip 11a of the irradiation nozzle 11, openings 11d and 11d are opened on the side walls, and the return light 5 from the joint is taken out from the openings 11d and 11d. It can also be. Thereby, a plurality of types of light outputs can be detected. The opening 11d can be formed at a plurality of locations on the tip 11a.

また、図16に示すように、照射ノズル11の先端部11aの内部に、光出力を検出するための検出センサ19を埋め込んでおくことで、接合部からの戻り光5から複数種類の光出力を検出することが可能となる。検出センサ19は、先端部11aの複数箇所に埋め込んでおくことが可能である。   Also, as shown in FIG. 16, a detection sensor 19 for detecting the light output is embedded in the tip end portion 11 a of the irradiation nozzle 11, so that a plurality of types of light outputs can be obtained from the return light 5 from the joint portion. Can be detected. The detection sensor 19 can be embedded in a plurality of locations of the tip portion 11a.

また、前述のように、本レーザ接合品質検査装置1では、検出されたプラズマ光成分、赤外光成分、および反射光成分の強度値から、それぞれプラズマ光、赤外光、および反射光の時間積分強度を求め、これらの時間積分強度に基づいて接合部の良否判断を行うことで誤判定の発生を抑制しているが、次のように構成することでも誤判定を抑制することができる。
例えば、図17に示すように、検出した反射光強度値に乗っているノイズピークを、フィルタを用いてカットし、ノイズピークをカットした後に接合品質の判定を行うようにすることで、誤判定が生じることを抑えることができる。
Further, as described above, in the laser bonding quality inspection apparatus 1, the time of plasma light, infrared light, and reflected light is determined from the detected intensity values of the plasma light component, infrared light component, and reflected light component, respectively. The occurrence of erroneous determination is suppressed by obtaining the integrated intensity and determining the quality of the joint based on these time integrated intensity. However, the erroneous determination can also be suppressed by configuring as follows.
For example, as shown in FIG. 17, the noise peak on the detected reflected light intensity value is cut using a filter, and the determination of the joint quality is performed after the noise peak is cut, thereby making an erroneous determination. Can be prevented from occurring.

本発明にかかるレーザ接合品質検査装置を示す概略図である。It is the schematic which shows the laser joining quality inspection apparatus concerning this invention. プラズマ光、赤外光、および反射光の発光ピークを示す図である。It is a figure which shows the emission peak of plasma light, infrared light, and reflected light. 接合部からの戻り光が分光により減衰していく様子を示す図である。It is a figure which shows a mode that the return light from a junction part attenuate | damps by spectroscopy. レーザ出力のパルス形状を示す図である。It is a figure which shows the pulse shape of a laser output. 検出したプラズマ光強度の波形を示す図である。It is a figure which shows the waveform of the detected plasma light intensity. 検出した赤外光強度の波形を示す図である。It is a figure which shows the waveform of the detected infrared light intensity. 検出した反射光強度の波形を示す図である。It is a figure which shows the waveform of the detected reflected light intensity. ノイズが乗っていない状態の反射光の時間積分強度と、ノイズが乗った状態の反射光の時間積分強度とを比較した図である。It is the figure which compared the time integral intensity | strength of the reflected light in the state where noise has not carried, and the time integral intensity | strength of the reflected light in the state where noise was carried. プラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度の3種類を用いて判別分析を行った場合の判別結果を示す図である。It is a figure which shows the discrimination | determination result at the time of discriminant analysis using three types, the time integral intensity of plasma light, the time integral intensity of infrared light, and the time integral intensity of reflected light. プラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度のうち、何れか1種類のみを用いて判別分析を行った場合の判別結果を示す図である。It is a figure which shows the discrimination | determination result at the time of performing discriminant analysis using only any one among the time integration intensity of plasma light, the time integration intensity of infrared light, and the time integration intensity of reflected light. プラズマ光の時間積分強度、赤外光の時間積分強度、および反射光の時間積分強度のうち、何れか2種類を用いて判別分析を行った場合の判別結果を示す図である。It is a figure which shows the discrimination | determination result when discriminant analysis is performed using any 2 types among the time integral intensity of plasma light, the time integral intensity of infrared light, and the time integral intensity of reflected light. 照射ノズルのみで光出力を検出しようとした場合に、そのままでは複数種類の光出力を検出することが困難である状況を示す図である。When it is going to detect light output only with an irradiation nozzle, it is a figure which shows the situation where it is difficult to detect multiple types of light output as it is. 先端部の一部を、光を透過する部材にて構成した照射ノズルを示す図である。It is a figure which shows the irradiation nozzle which comprised a part of front-end | tip part with the member which permeate | transmits light. 先端部の側壁の一部を切り欠いた照射ノズルを示す図である。It is a figure which shows the irradiation nozzle which notched a part of side wall of the front-end | tip part. 先端部の側壁に開口部を開口した照射ノズルを示す図である。It is a figure which shows the irradiation nozzle which opened the opening part in the side wall of a front-end | tip part. 先端部の内部に、光出力を検出するための検出センサを埋め込んだ照射ノズルを示す図である。It is a figure which shows the irradiation nozzle which embedded the detection sensor for detecting a light output inside the front-end | tip part. 検出した反射光強度値に乗っているノイズピークを、フィルタを用いてカットする様子を示す図である。It is a figure which shows a mode that the noise peak on the detected reflected light intensity value is cut using a filter. 従来の接合部の良否判定方法を示す図である。It is a figure which shows the quality determination method of the conventional junction part. 従来の接合部の良否判定方法において、反射光の検出値にノイズが乗ったときに誤判定が生じてしまう様子を示す図である。It is a figure which shows a mode that a misjudgment arises in the conventional quality determination method of a junction part, when noise gets on the detected value of reflected light.

符号の説明Explanation of symbols

1 レーザ接合品質検査装置
2 被溶接物
3 溶接物
5 戻り光
5a 第1分光
5b 第2分光
5c 残り光
11 照射ノズル
12 導光路
13 プラズマ光センサ
14 赤外光センサ
15 反射光センサ
16 演算装置
22 第1分光レンズ
23 第2分光レンズ
DESCRIPTION OF SYMBOLS 1 Laser joining quality inspection apparatus 2 To-be-welded object 3 Welded object 5 Return light 5a 1st light beam 5b 2nd light beam 5c Remaining light 11 Irradiation nozzle 12 Light guide path 13 Plasma light sensor 14 Infrared light sensor 15 Reflected light sensor 16 Calculation apparatus 22 First spectroscopic lens 23 Second spectroscopic lens

Claims (2)

接合物と被接合物とをレーザ照射により接合する際の、接合物と被接合物との接合部の接合品質を検査するレーザ接合品質検査装置であって、
前記接合部に照射したレーザの反射光を検出して、該反射光の時間積分強度を演算する反射光強度演算手段と、
前記接合部に生成するプラズマのプラズマ光を検出して、該プラズマ光の時間積分強度を演算するプラズマ光強度演算手段と、
前記接合部から放射される赤外光を検出して、該赤外光の時間積分強度を演算する赤外光強度演算手段と、
演算された反射光の時間積分強度、プラズマ光の時間積分強度、および赤外光の時間積分強度をそれぞれ変数として用いて判別分析を行い、前記各時間積分強度を検出した接合部の接合品質の良否判定を、前記判別分析の結果に基づいて行う、接合品質判定手段とを有する、
ことを特徴とするレーザ接合品質検査装置。
A laser bonding quality inspection device that inspects the bonding quality of a bonded portion between a bonded object and a bonded object when bonding the bonded object and the bonded object by laser irradiation,
Reflected light intensity calculating means for detecting the reflected light of the laser irradiated to the joint and calculating the time integrated intensity of the reflected light;
Plasma light intensity calculating means for detecting plasma light of plasma generated at the joint and calculating time integrated intensity of the plasma light;
Infrared light intensity calculating means for detecting the infrared light emitted from the joint and calculating the time integrated intensity of the infrared light;
Discriminant analysis was performed using the calculated time integral intensity of reflected light, time integral intensity of plasma light, and time integral intensity of infrared light as variables, and the joint quality of the joint where each time integral intensity was detected was detected. Having a bonding quality determination means for performing pass / fail determination based on the result of the discriminant analysis;
Laser bonding quality inspection apparatus characterized by the above.
前記プラズマ光強度演算手段は、レーザが照射された前記接合部からの戻り光を分光して取り出した第1分光からプラズマ光を検出して、該プラズマ光の時間積分強度を演算し、
前記赤外光強度演算手段は、第1分光を取り出した後の戻り光をさらに分光して取り出した第2分光から赤外光を検出して、該赤外光の時間積分強度を演算し、
前記反射光強度演算手段は、第2分光を取り出した後に残った戻り光から反射光を検出して、該反射光の時間積分強度を演算する、
ことを特徴とする請求項1に記載のレーザ接合品質検査装置。
The plasma light intensity calculating means detects the plasma light from the first spectrum obtained by spectrally separating the return light from the joint irradiated with the laser, and calculates the time integrated intensity of the plasma light,
The infrared light intensity calculation means detects infrared light from the second spectrum obtained by further separating the return light after taking out the first spectrum, and calculates the time integrated intensity of the infrared light,
The reflected light intensity calculating means detects the reflected light from the return light remaining after taking out the second spectrum, and calculates the time integrated intensity of the reflected light;
The laser bonding quality inspection apparatus according to claim 1.
JP2005292648A 2005-10-05 2005-10-05 Laser joint quality inspecting device Pending JP2007098442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292648A JP2007098442A (en) 2005-10-05 2005-10-05 Laser joint quality inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292648A JP2007098442A (en) 2005-10-05 2005-10-05 Laser joint quality inspecting device

Publications (1)

Publication Number Publication Date
JP2007098442A true JP2007098442A (en) 2007-04-19

Family

ID=38025894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292648A Pending JP2007098442A (en) 2005-10-05 2005-10-05 Laser joint quality inspecting device

Country Status (1)

Country Link
JP (1) JP2007098442A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162417A1 (en) * 2010-06-24 2011-12-29 有限会社西原電子 Defective electrode detecting device
WO2013171848A1 (en) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 Welding method, welding device, and battery manufacturing method
WO2014170735A1 (en) * 2013-04-15 2014-10-23 Toyota Jidosha Kabushiki Kaisha Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
JP2015182092A (en) * 2014-03-20 2015-10-22 トヨタ自動車株式会社 laser welding inspection apparatus and laser welding inspection method
CN105073330A (en) * 2013-03-29 2015-11-18 丰田自动车株式会社 Welding portion inspection device and inspection method therefor
JP2018202421A (en) * 2017-05-30 2018-12-27 株式会社アマダホールディングス Laser processing head and laser beam machine
JP2019207932A (en) * 2018-05-29 2019-12-05 ファナック株式会社 Laser oscillator
WO2021182122A1 (en) * 2020-03-09 2021-09-16 株式会社アマダ Laser welding monitoring device and laser welding monitoring method
US11975410B2 (en) 2019-10-09 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Laser welding quality inspection method and laser welding quality inspection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337662A (en) * 1992-06-04 1993-12-21 Miyachi Technos Kk Method and device for determining welding quality
JP2000225481A (en) * 1999-02-04 2000-08-15 Sumitomo Heavy Ind Ltd Measuring unit for laser beam welding state
JP2000334587A (en) * 1999-05-25 2000-12-05 Sumitomo Heavy Ind Ltd Device for detecting welding state of laser beam welding
JP2002239761A (en) * 2001-02-09 2002-08-28 Sanyo Mach Works Ltd Method and device for monitoring laser beam welding
JP2002346776A (en) * 2001-05-29 2002-12-04 Denso Corp Method and device for deciding quality of laser welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337662A (en) * 1992-06-04 1993-12-21 Miyachi Technos Kk Method and device for determining welding quality
JP2000225481A (en) * 1999-02-04 2000-08-15 Sumitomo Heavy Ind Ltd Measuring unit for laser beam welding state
JP2000334587A (en) * 1999-05-25 2000-12-05 Sumitomo Heavy Ind Ltd Device for detecting welding state of laser beam welding
JP2002239761A (en) * 2001-02-09 2002-08-28 Sanyo Mach Works Ltd Method and device for monitoring laser beam welding
JP2002346776A (en) * 2001-05-29 2002-12-04 Denso Corp Method and device for deciding quality of laser welding

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162417A1 (en) * 2010-06-24 2011-12-29 有限会社西原電子 Defective electrode detecting device
JP2012006036A (en) * 2010-06-24 2012-01-12 Nishihara Denshi:Kk Defective electrode detecting device
KR101670155B1 (en) * 2012-05-15 2016-10-27 도요타지도샤가부시키가이샤 Welding method, welding device, and battery manufacturing method
WO2013171848A1 (en) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 Welding method, welding device, and battery manufacturing method
KR20150003913A (en) * 2012-05-15 2015-01-09 도요타지도샤가부시키가이샤 Welding method, welding device, and battery manufacturing method
EP2851154A4 (en) * 2012-05-15 2015-12-23 Toyota Motor Co Ltd Welding method, welding device, and battery manufacturing method
CN105073330A (en) * 2013-03-29 2015-11-18 丰田自动车株式会社 Welding portion inspection device and inspection method therefor
US9527166B2 (en) 2013-04-15 2016-12-27 Toyota Jidosha Kabushiki Kaisha Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
CN105142848A (en) * 2013-04-15 2015-12-09 丰田自动车株式会社 Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
JP2014205182A (en) * 2013-04-15 2014-10-30 トヨタ自動車株式会社 Inspection device for welding part and inspection method thereof
WO2014170735A1 (en) * 2013-04-15 2014-10-23 Toyota Jidosha Kabushiki Kaisha Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
RU2635586C2 (en) * 2013-04-15 2017-11-14 Тойота Дзидося Кабусики Кайся Welding section control device and method of its control with selecting area for evaporation glowing and thermal emission selection
JP2015182092A (en) * 2014-03-20 2015-10-22 トヨタ自動車株式会社 laser welding inspection apparatus and laser welding inspection method
US9623513B2 (en) 2014-03-20 2017-04-18 Toyota Jidosha Kabushiki Kaisha Laser welding inspection apparatus and laser welding inspection method
JP2018202421A (en) * 2017-05-30 2018-12-27 株式会社アマダホールディングス Laser processing head and laser beam machine
JP2019207932A (en) * 2018-05-29 2019-12-05 ファナック株式会社 Laser oscillator
US11975410B2 (en) 2019-10-09 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Laser welding quality inspection method and laser welding quality inspection apparatus
WO2021182122A1 (en) * 2020-03-09 2021-09-16 株式会社アマダ Laser welding monitoring device and laser welding monitoring method
JP2021137867A (en) * 2020-03-09 2021-09-16 株式会社アマダ Laser beam welding monitoring device and laser beam welding monitoring method
JP7353221B2 (en) 2020-03-09 2023-09-29 株式会社アマダ Laser welding monitoring device and laser welding monitoring method

Similar Documents

Publication Publication Date Title
JP2007098442A (en) Laser joint quality inspecting device
EP2986411B1 (en) Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
EP2978555B1 (en) Welding portion inspection method and inspection device therefor
US20230073549A1 (en) Method for analysing a weld during laser welding of workpieces
JP5671873B2 (en) Laser welding monitoring device
CN101267910A (en) Method for controlling the quality of laser-welding processes, control system and program product therefor
US20240261907A1 (en) Laser welding quality inspection method and laser welding quality inspection apparatus
EP2530454A1 (en) Analysis device
JP4599559B2 (en) Plastic surface diagnostic method and plastic surface diagnostic device
KR101400649B1 (en) Blooded egg detection method using vis/nir transmitted light
ITRM20100461A1 (en) METHOD OF IDENTIFICATION OF DEFECTIVENESS IN THE LASER WELDING PROCESS CONTINUES OF METAL PARTS
CN114502313A (en) Laser processing system for carrying out a processing operation on a workpiece by means of a laser beam and method for monitoring a processing operation on a workpiece by means of a laser beam
EP1371443B1 (en) A system and method for monitoring laser welds and giving an indication of the quality of welding
CN106018405B (en) Laser welding penetration online test method
JP6535461B2 (en) Material analysis sensor and material analysis device
CN114450120A (en) Laser processing monitoring method and laser processing monitoring device
CN117999473A (en) Method and system for analyzing laser machining processes based on spectrograms
JP2010094693A (en) Laser machining apparatus and laser machining method
JP2000061672A (en) Laser welding state detecting method
JP2019136745A (en) Monitoring device of laser processing unit
JP2008185462A (en) Method and apparatus for judging quality of screw
Ghasempoor et al. Automatic detection of lack of fusion defects in CO 2 laser gear welding
EP1361015A1 (en) System and method for monitoring laser welds, particularly in tailored blanks
JP2017056464A (en) Laser welding device
JP2003170282A (en) Method and apparatus for monitoring welding portion in laser beam welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615