JP2007098300A - Evaluation method of purification efficacy of contaminated soil - Google Patents

Evaluation method of purification efficacy of contaminated soil Download PDF

Info

Publication number
JP2007098300A
JP2007098300A JP2005292293A JP2005292293A JP2007098300A JP 2007098300 A JP2007098300 A JP 2007098300A JP 2005292293 A JP2005292293 A JP 2005292293A JP 2005292293 A JP2005292293 A JP 2005292293A JP 2007098300 A JP2007098300 A JP 2007098300A
Authority
JP
Japan
Prior art keywords
ground
current
electrodes
specific resistance
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005292293A
Other languages
Japanese (ja)
Inventor
Noboru Nakada
暢 中田
Kozo Toida
幸三 樋田
Minoru Nakajima
実 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005292293A priority Critical patent/JP2007098300A/en
Publication of JP2007098300A publication Critical patent/JP2007098300A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of the purification efficacy of contaminated soil which evaluates the permeable properties of a ground and which is useful in design of the in-situ soil purification method (position, number, distribution and the like of injection holes, pumping apertures). <P>SOLUTION: The evaluation method of the purification efficacy of contaminated soil is characterized by having a pair of current electrodes electrically connected with a current supply apparatus and a plurality of potentiometric electric electrodes electrically connected with a voltage measurement apparatus, installing a pair of the current electrodes and a plurality of the potentiometric electrodes on the surface of the ground, passing current so that the order from the current supply apparatus is firstly one electric electrode, the ground and then the other current electrode, acquiring the specific resistance from the electric potential between the potentiometric electrodes and evaluating the permeable properties of the ground from the change of the specific resistance before and after the permeation to the ground. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原位置において汚染地盤の土壌浄化を行う場合の浄化効果を定量的に評価する方法に関する。   The present invention relates to a method for quantitatively evaluating the purification effect in the case of performing soil purification of contaminated ground in the original position.

近年、都市部や市街地に立地していた工場跡地等における重金属や揮発性有機化合物等の有害物質による土壌汚染事例の判明件数の増加が著しい。これらの有害物質を放置すれば人の健康に重大な影響が及ぶことが懸念されるため、平成14年、土壌汚染対策法が制定された。かかる背景の下、技術的、経済的又は社会的諸条件に見合うべく多くの土壌汚染対策の方法が提案又は実施されてきているところである。これらの方法については、汚染土壌を原位置から移動させて浄化処理施設まで搬送し該浄化処理施設内で処理する方法と、汚染土壌を移動させないで原位置で処理する方法とに大別することができる。   In recent years, the number of cases of soil contamination due to harmful substances such as heavy metals and volatile organic compounds in the factory sites and the like located in urban areas and urban areas has increased remarkably. As these hazardous substances are left unattended, there is a concern that they will have a serious effect on human health. In 2002, the Soil Contamination Countermeasures Law was enacted. Against this backdrop, many soil pollution countermeasures have been proposed or implemented to meet technical, economic or social conditions. These methods are roughly divided into a method of moving the contaminated soil from the original position, transporting it to the purification treatment facility and treating it within the purification treatment facility, and a method of treating the contaminated soil in the original position without moving. Can do.

汚染土壌を移動させて処理する方法には、汚染された土壌を掘削し、清浄な土壌と入れ替え、汚染された土壌を最終処分場に搬出する方法や、掘削した汚染土壌を焼却処理あるいは、浄化処理施設により洗浄する方法などがある。他方、土壌を移動させないで原位置で処理する方法は、汚染区域内に注入孔と揚水孔を掘削し、該注入孔から水又は洗浄液を注入し、他方で該揚水孔から地下水を揚水して人為的に地下水流を発生させ、汚染区域を洗浄浄化する方法であり、この地下水流に汚染物質を捕捉、輸送させようとするものである。最後に、前記揚水孔から揚水した汚染物質を含んだ地下水を専用の施設にて処理する方法である(例えば特許文献1参照。)。
特許第3232494号公報
Methods for moving and treating contaminated soil include excavating contaminated soil, replacing it with clean soil, and transporting contaminated soil to the final disposal site, incineration or purification of excavated contaminated soil. There are methods such as cleaning by treatment facilities. On the other hand, the method of processing in situ without moving the soil is to drill an injection hole and a pumping hole in the contaminated area, inject water or cleaning liquid from the injection hole, and pump groundwater from the pumping hole. It is a method that artificially generates a groundwater flow and cleans and purifies the contaminated area. The groundwater flow is intended to capture and transport the pollutants. Finally, it is a method of treating groundwater containing contaminants pumped from the pumping hole in a dedicated facility (see, for example, Patent Document 1).
Japanese Patent No. 3322494

上記原位置で汚染土壌を洗浄処理する方法は、対象地盤の性質や該地盤中の汚染物質の濃度等についてある程度の事前調査が行われているとしても、注入孔から注入した水または洗浄液の浸透域や揚水孔から揚水したときの揚水域などの通水特性を予め定量的に把握することが困難であり、これらの効果は実際に実施して見なければ分からない事が多い。すなわち、注入、揚水孔の位置や規模、さらには本数等を決めるのは殆ど経験に頼っているのが実情であり、実施してみて始めてその効果が判明することが多い。このため効率よく浄化効果を得ることには困難を伴った。   The method of cleaning contaminated soil in the above-mentioned position is based on the penetration of water or cleaning liquid injected from the injection hole, even if a certain amount of preliminary investigation has been conducted on the nature of the target ground and the concentration of contaminants in the ground. It is difficult to quantitatively grasp in advance the water flow characteristics such as the pumping area when pumped from the area and the pumping hole, and these effects are often not understood unless actually implemented. In other words, the actual situation is that most of the injection, the position and size of the pumping holes, and the number of pipes, etc., depend on experience. For this reason, it has been difficult to obtain a purification effect efficiently.

したがって、本発明は,地盤の通水特性を定量的に評価する方法を開発し、原位置土壌洗浄法の設計(注入孔、揚水孔の位置・本数・分布等の決定)に役立てることを目的としたものである。   Therefore, it is an object of the present invention to develop a method for quantitatively evaluating the water flow characteristics of the ground, and to use it for designing an in-situ soil washing method (determining the position, number, distribution, etc. of injection holes and pumping holes). It is what.

本発明は,原位置において汚染地盤の洗浄浄化を行うにあたり、電流供給装置に電気的に接続された一対の電流電極と電圧測定装置に電気的に接続された複数の電位電極を有し、該一対の電流電極と該複数の電位電極を地表面に設置し、電流供給装置から一方の電流電極、地盤、他方の電流電極の順になるように電流を流し、電位電極間の電位差から比抵抗を求め、地中への通水前後の比抵抗変化から地中の通水特性を推定することを特徴とする汚染土壌の浄化効果の評価方法を提供する。   The present invention has a pair of current electrodes electrically connected to a current supply device and a plurality of potential electrodes electrically connected to a voltage measuring device when cleaning and purifying the contaminated ground at the original position, A pair of current electrodes and the plurality of potential electrodes are installed on the ground surface, current is supplied from the current supply device in the order of one current electrode, the ground, and the other current electrode, and the specific resistance is determined from the potential difference between the potential electrodes. The present invention provides a method for evaluating the purification effect of contaminated soil, characterized by estimating underground water flow characteristics from changes in specific resistance before and after water flow into the ground.

本発明によると,原位置での汚染土壌の洗浄処理を実施した場合の対象地盤の通水特性を予め定量的に把握できる。   According to the present invention, it is possible to quantitatively grasp in advance the water flow characteristics of the target ground when the contaminated soil is washed in situ.

図1は本発明において用いる比抵抗法の原理を説明する図の例であり、地表面1に一対の電流電極C1、C2を設置すると共に、電流電極C1、C2とは離して一対の電位電極P1、P2を地表面1に設置する。2は電流計、3は電圧計である。電流電極C1、C2から直流電流を流し、電圧計3により一対の電位電極P1、P2間の電位差を測定する。大地(地盤)が均質であるとしたとき、流した電流Iと測定される電位差Vとから、大地の比抵抗ρは次式により求められる。
ρ=K・V/I
ここでKは電極配置(ウエンナー配置、シュランベルジャー配置、ダイポール・ダイポール配置等がある)によって決まる係数である。実際は大地は不均質であるため上式により求められる比抵抗は大地の真の比抵抗とはならず、従って上式から求められる比抵抗は見掛比抵抗と呼ばれる(以下、見掛比抵抗を単に比抵抗という)。
FIG. 1 is an example of a diagram illustrating the principle of the specific resistance method used in the present invention. A pair of current electrodes C1 and C2 are installed on the ground surface 1, and a pair of potential electrodes are separated from the current electrodes C1 and C2. P1 and P2 are installed on the ground surface 1. 2 is an ammeter and 3 is a voltmeter. A direct current is passed from the current electrodes C 1 and C 2, and the potential difference between the pair of potential electrodes P 1 and P 2 is measured by the voltmeter 3. Assuming that the ground (ground) is homogeneous, the specific resistance ρ of the ground can be obtained from the following equation from the flowing current I and the measured potential difference V.
ρ = K · V / I
Here, K is a coefficient determined by the electrode arrangement (wenner arrangement, Schlumberger arrangement, dipole / dipole arrangement, etc.). Actually, since the earth is inhomogeneous, the specific resistance calculated by the above formula is not the true specific resistance of the ground, and therefore the specific resistance calculated by the above formula is called the apparent specific resistance (hereinafter, the apparent specific resistance is referred to as the apparent specific resistance. Simply called resistivity).

従って、測定の結果に基づいて取得される比抵抗データを解析すれば地中の比抵抗分布を求めることができる。上記の原理説明においては説明を用意にする為に電流電極と電位電極は別の場合を例示したが、兼用することもできる。細かく電位差を測定できる点においては電流電極と電位電極は兼用しないほうが好ましい。   Therefore, if the resistivity data acquired based on the measurement result is analyzed, the resistivity distribution in the ground can be obtained. In the above description of the principle, the current electrode and the potential electrode are illustrated as different cases for the purpose of preparing the description, but they can also be used together. In terms of finely measuring the potential difference, it is preferable not to use both the current electrode and the potential electrode.

図2は、本発明に好ましく用いる探査装置の略図である。切換え器4から例えばケーブルを介して、それぞれ1個の棒状電極が電気的に接続されている。「電気的に接続」とは、電気に対して良導体を用いた導線、具体的にはケーブルを用いて接続するのが一般的であるが、電流供給装置から発生する電流を十分に電流電極に伝えられる方法及び材料を用いた接続方法であればケーブルに限定されるものではない。ケーブルAには棒状電極Dが接続され、同様にケーブルA2、A3、A4、・・・にはそれぞれ棒状電極D2、D3、D4、・・・が接続されている。多数の電極を有する探査装置を用いると後述のように電流電極と電位電極の組み合わせを容易に、迅速に且つ任意に選択できるので効率的な評価作業が実施できる点で好ましい。各棒状電極間の距離は好ましくは等間隔となるよう配置され、各棒状電極間の距離は任意に設定できるが、例えば1m間隔という距離が採用される。ケーブルAは、切換え器4に接続され、また、電流供給装置としての送信器5と電圧測定装置としての受信器6とも接続されている。送信器5は電流電極に直流電流を供給するものであり、また受信器6は電位電極間の電位差を測定するものである。ケーブルA1、A2、A3、・・・はそれぞれ切換え器4を介して送信器5または受信器6に接続されており、切換え器4によってケーブルA1、A2、A3、・・・のそれぞれを送信器5に接続したり或いは受信器6に接続したりすることができるようになっている。棒状電極D1、D2、D3、・・・は地盤との電気的な接触状態が良く、設置面積が大きく、接地抵抗が小さいものが望ましく、鉄、金、銀、銅、白金等の金属や合金、またはこれらをコーティングした導電性材料を使用することができる。各棒状電極D1、D2、D3、・・・は、探査の対象地である測定場所に設置され、僅かに地表面1から突出する形で地中に設置される。電流は直流電流を流すのではなく、直流とみなせる長い周期で電源の極性を切換えて矩形波(交替直流)を流す。これは分極を防ぐためであり、具体的には2.5Hz以下の低周波数の交流を流すことが好ましい。 FIG. 2 is a schematic diagram of an exploration device preferably used in the present invention. One rod-like electrode is electrically connected from the switcher 4 via, for example, a cable. “Electrically connected” is generally connected to electricity using a conductor using a good conductor, specifically, a cable, but the current generated from the current supply device is sufficiently supplied to the current electrode. It is not limited to a cable as long as it is a transmitted method and a connection method using materials. The cable A 1 is connected bar electrode D 1, likewise the cable A2, A3, A4, each of the ... rod electrode D2, D3, D4, ··· are connected. Use of an exploration device having a large number of electrodes is preferable in that an efficient evaluation operation can be performed because a combination of current electrodes and potential electrodes can be easily and quickly selected as described later. The distance between the rod-shaped electrodes is preferably arranged at an equal interval, and the distance between the rod-shaped electrodes can be arbitrarily set. For example, a distance of 1 m is adopted. The cable A is connected to the switch 4 and is also connected to a transmitter 5 as a current supply device and a receiver 6 as a voltage measuring device. The transmitter 5 supplies a direct current to the current electrodes, and the receiver 6 measures a potential difference between the potential electrodes. The cables A1, A2, A3,... Are respectively connected to the transmitter 5 or the receiver 6 via the switching device 4, and the cables A1, A2, A3,. 5 or can be connected to the receiver 6. The rod-shaped electrodes D1, D2, D3,... Have good electrical contact with the ground, have a large installation area, and have a low grounding resistance. Metals and alloys such as iron, gold, silver, copper, and platinum Alternatively, conductive materials coated with these can be used. Each of the rod-shaped electrodes D1, D2, D3,... Is installed at a measurement location that is a target site for exploration, and is installed in the ground so as to slightly protrude from the ground surface 1. The current is not a direct current, but a rectangular wave (alternating direct current) is applied by switching the polarity of the power supply in a long cycle that can be regarded as a direct current. This is to prevent polarization, and specifically, it is preferable to flow an alternating current with a low frequency of 2.5 Hz or less.

通水特性の測定は、例えば以下の手法により測定する。電流電極C1、C2に対応する電極が接続されたケーブルA1とA4を切換え器4を介して送信器5に接続し、電位電極P1、P2に対応する電極が接続されたケーブルA2、A3を切換え器4を介して受信器6に接続する。これにより、図1に示したとおり、棒状電極D1、D4は電流電極となり、D2、D3は電位電極となる。送信器5より電流を供給し、棒状電極D1、D4より地中に電流を流し、棒状電極D2、D3間の電位差を受信器6にて計測する。この電位差の測定により比抵抗が求めることができる。以下、電流電極と電位電極との組み合わせを変化させて、同時に各電極間の距離を順次変化させて、接続を順次切換えて、逐次測定を行い、測線方向ならびに深度方向における2次元の比抵抗分布を求めることができる。図3に示すように1つの測線7による測定が終了したら、他の測線7の測定を順次行っていき、該測線における2次元比抵抗分布を求めることができる。該操作を繰り返し実施することで、対象地盤8の3次元の比抵抗を求めることができる。更にこれを対象地盤8に通水する前後に測定を行うことで通水前後の3次元の比抵抗を求めることができ、通水前後の比抵抗の変化から対象地盤8の通水特性の評価が可能になる。   For example, the water flow characteristics are measured by the following method. The cables A1 and A4 connected to the electrodes corresponding to the current electrodes C1 and C2 are connected to the transmitter 5 through the switching device 4, and the cables A2 and A3 connected to the electrodes corresponding to the potential electrodes P1 and P2 are switched. Connect to the receiver 6 via the device 4. Thereby, as shown in FIG. 1, the rod-shaped electrodes D1 and D4 become current electrodes, and D2 and D3 become potential electrodes. A current is supplied from the transmitter 5, a current is passed through the ground from the rod-shaped electrodes D 1 and D 4, and a potential difference between the rod-shaped electrodes D 2 and D 3 is measured by the receiver 6. The specific resistance can be obtained by measuring this potential difference. Below, change the combination of current electrode and potential electrode, simultaneously change the distance between each electrode sequentially, switch the connection sequentially, perform sequential measurement, two-dimensional resistivity distribution in the direction of the line and the depth direction Can be requested. As shown in FIG. 3, when the measurement by one survey line 7 is completed, the other survey lines 7 are sequentially measured, and the two-dimensional resistivity distribution in the survey line can be obtained. By repeating this operation, the three-dimensional specific resistance of the target ground 8 can be obtained. Furthermore, by measuring this before and after passing water through the target ground 8, the three-dimensional specific resistance before and after water flow can be obtained, and evaluation of water flow characteristics of the target ground 8 from the change in specific resistance before and after water flow. Is possible.

また、対象地盤中に電解質水溶液を注入すると地盤の比抵抗が低下する。用いる電解質水溶液としては、比抵抗が低下するものであれば、特に限定されず、例えば、塩化ナトリウム、塩化カリウム等の任意の電解質水溶液を用いることができるが、地盤中に注入しても無害な塩化ナトリウムが好ましい。電解質水溶液の注入方法は制限されるものではないが、薬液注入工法の単管注入工法などを用いることができる。電解質水溶液を注入したときの地盤中の比抵抗分布を測定し、注入前後の比抵抗と比較すると、電解質水溶液の存在する領域では、比抵抗が低下するため、この変化を捉えることにより、地盤内の電解質水溶液の存在状況を確認することができる。すなわち、地盤の通水特性をより詳細に把握することができる。   Moreover, when the electrolyte aqueous solution is injected into the target ground, the specific resistance of the ground is lowered. The electrolyte aqueous solution to be used is not particularly limited as long as the specific resistance is lowered. For example, any aqueous electrolyte solution such as sodium chloride and potassium chloride can be used, but it is harmless even if injected into the ground. Sodium chloride is preferred. The method of injecting the electrolyte aqueous solution is not limited, but a single tube injection method of a chemical solution injection method or the like can be used. By measuring the specific resistance distribution in the ground when the electrolyte aqueous solution was injected and comparing it with the specific resistance before and after injection, the specific resistance decreased in the region where the electrolyte aqueous solution exists. The presence of the electrolyte aqueous solution can be confirmed. That is, it is possible to grasp the water flow characteristics of the ground in more detail.

図4に示すように、比抵抗分布の一例によれば、比抵抗領域9が最も比抵抗の変化率が大きいため、電解質溶液が存在している領域、通水しやすい領域と推定できる。また、比抵抗領域10は比抵抗変化率が小さいため、通水しにくい領域と推定できる。したがって、図4の結果から、各位置での通水特性を定量的に評価することができる。   As shown in FIG. 4, according to an example of the specific resistance distribution, since the specific resistance region 9 has the largest change rate of the specific resistance, it can be estimated that the region where the electrolyte solution exists and the region where water easily flows. Moreover, since the specific resistance area | region 10 has a small specific resistance change rate, it can be estimated that it is an area | region where water flow is difficult. Therefore, the water flow characteristics at each position can be quantitatively evaluated from the results of FIG.

本発明によると,原位置での汚染土壌の洗浄処理を実施した場合の対象地盤の通水特性を予め定量的に把握できる。したがって、この計測結果を基にして,注入、揚水孔の規模・本数・配置等を決定することができ、従来の経験に頼っていた原位置での汚染土壌の洗浄浄化を成果の確実な方法に改変することができる。具体的には通水特性を定量的に評価できることで汚染土壌の浄化を行う際に、例えば通水しにくい領域には注入孔となる井戸の数を多く、又は井戸の径を大きくすること等が好ましい。逆に通水しやすい領域はこの逆の措置を取ることにより原位置土壌洗浄法の設計に大いに役立てることができる。   According to the present invention, it is possible to quantitatively grasp in advance the water flow characteristics of the target ground when the contaminated soil is washed in situ. Therefore, based on this measurement result, the scale, number, arrangement, etc. of injection and pumping holes can be determined, and it is a reliable method for cleaning and purifying contaminated soil in situ that relied on previous experience. Can be modified. Specifically, when purifying contaminated soil by quantitatively evaluating the water flow characteristics, for example, increasing the number of wells serving as injection holes or increasing the diameter of the wells in areas where water flow is difficult Is preferred. Conversely, areas that are easy to pass water can greatly help in the design of in-situ soil cleaning methods by taking the opposite measures.

本発明において用いる比抵抗法の原理を説明する図である。It is a figure explaining the principle of the specific resistance method used in this invention. 探査装置を用いて比抵抗分布を求める測定方法を説明する図である。It is a figure explaining the measuring method which calculates | requires specific resistance distribution using an exploration apparatus. 3次元の比抵抗分布を求める測定方法を説明する図である。It is a figure explaining the measuring method which calculates | requires three-dimensional specific resistance distribution. 比抵抗変化率の一例を示す略図である。It is a schematic diagram showing an example of a specific resistance change rate.

符号の説明Explanation of symbols

1 地表面
2 電流計
3 電圧計
C1、C2 電流電極
P1、P2 電位電極
A1、A2、A3、A4、・・・ ケーブル
D1、D2、D3、D4、・・・ 棒状電極
4 切換え器
5 送信器
6 受信器
7 測線
8 測定対象範囲(対象地盤)
9、10 比抵抗領域
DESCRIPTION OF SYMBOLS 1 Ground surface 2 Ammeter 3 Voltmeter C1, C2 Current electrode P1, P2 Potential electrode
A1, A2, A3, A4, ... Cable D1, D2, D3, D4, ... Rod electrode 4 Switch
5 Transmitter 6 Receiver 7 Survey line 8 Measurement range (target ground)
9, 10 Resistivity region

Claims (5)

電流供給装置に電気的に接続された一対の電流電極と電圧測定装置に電気的に接続された複数の電位電極を有し、該一対の電流電極と該複数の電位電極を地表面に設置し、電流供給装置から一方の電流電極、地盤、他方の電流電極の順になるように電流を流し、電位電極間の電位差から比抵抗を求め、地中への通水前後の比抵抗変化から地中の通水特性を推定することを特徴とする汚染土壌の浄化効果の評価方法。   A pair of current electrodes electrically connected to the current supply device and a plurality of potential electrodes electrically connected to the voltage measuring device; and the pair of current electrodes and the plurality of potential electrodes are installed on the ground surface The current is supplied from the current supply device in the order of one current electrode, the ground, and the other current electrode, the specific resistance is obtained from the potential difference between the potential electrodes, and from the specific resistance change before and after water flow into the ground, A method for evaluating the purification effect of contaminated soil, characterized by estimating the water flow characteristics of the soil. 地盤内に電解質水溶液を注入し、該地盤内の比抵抗を低下させることにより比抵抗の変化を測定することを特徴とする請求項1記載の汚染土壌の浄化効果の評価方法。   The method for evaluating the purification effect of contaminated soil according to claim 1, wherein a change in specific resistance is measured by injecting an aqueous electrolyte solution into the ground and lowering the specific resistance in the ground. 電流電極と電位電極の組み合わせを順次変化させながら、電位差の測定を行うことを特徴とする請求項1又は2記載の汚染土壌の浄化効果の評価方法。   3. The method for evaluating a purification effect of contaminated soil according to claim 1, wherein the potential difference is measured while sequentially changing the combination of the current electrode and the potential electrode. 電極間距離を順次変化させながら電位差の測定を行うことを特徴とする請求項1〜3のいずれか1項記載の汚染土壌の浄化効果の評価方法。   The method for evaluating a purification effect of contaminated soil according to any one of claims 1 to 3, wherein a potential difference is measured while sequentially changing a distance between electrodes. 多数の電極を有する探査装置を用いることを特徴とする請求項1〜4のいずれか1項記載の汚染土壌の浄化効果の評価方法。   The exploration device having a large number of electrodes is used. The method for evaluating the purification effect of contaminated soil according to any one of claims 1 to 4.
JP2005292293A 2005-10-05 2005-10-05 Evaluation method of purification efficacy of contaminated soil Pending JP2007098300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292293A JP2007098300A (en) 2005-10-05 2005-10-05 Evaluation method of purification efficacy of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292293A JP2007098300A (en) 2005-10-05 2005-10-05 Evaluation method of purification efficacy of contaminated soil

Publications (1)

Publication Number Publication Date
JP2007098300A true JP2007098300A (en) 2007-04-19

Family

ID=38025758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292293A Pending JP2007098300A (en) 2005-10-05 2005-10-05 Evaluation method of purification efficacy of contaminated soil

Country Status (1)

Country Link
JP (1) JP2007098300A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222668A (en) * 2008-03-18 2009-10-01 Ritsumeikan Method for estimating oil contamination distribution of soil and applying result thereof to bioremediation
CN102854390A (en) * 2012-10-12 2013-01-02 宁波市鄞州供电局 Soil resistivity measuring method
KR101288603B1 (en) 2011-04-13 2013-07-22 (주)평화엔지니어링 Pollution level measuring apparatus for water treatment equipment
JP2014023711A (en) * 2012-07-26 2014-02-06 Asahi Kasei Corp Skin electric activity measuring device
CN105158301A (en) * 2015-10-16 2015-12-16 上海岩土工程勘察设计研究院有限公司 Polluted soil detection method based on cross-hole resistivity CT method
CN107228884A (en) * 2017-06-09 2017-10-03 中国地质大学(武汉) The laboratory testing rig and method of a kind of multi-electrode test soil body resistivity
CN107905789A (en) * 2017-12-20 2018-04-13 中国地质大学(武汉) A kind of measuring device and method of rock exposure resistivity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222668A (en) * 2008-03-18 2009-10-01 Ritsumeikan Method for estimating oil contamination distribution of soil and applying result thereof to bioremediation
KR101288603B1 (en) 2011-04-13 2013-07-22 (주)평화엔지니어링 Pollution level measuring apparatus for water treatment equipment
JP2014023711A (en) * 2012-07-26 2014-02-06 Asahi Kasei Corp Skin electric activity measuring device
CN102854390A (en) * 2012-10-12 2013-01-02 宁波市鄞州供电局 Soil resistivity measuring method
CN105158301A (en) * 2015-10-16 2015-12-16 上海岩土工程勘察设计研究院有限公司 Polluted soil detection method based on cross-hole resistivity CT method
CN107228884A (en) * 2017-06-09 2017-10-03 中国地质大学(武汉) The laboratory testing rig and method of a kind of multi-electrode test soil body resistivity
CN107228884B (en) * 2017-06-09 2019-05-31 中国地质大学(武汉) A kind of laboratory testing rig and method of multi-electrode test soil body resistivity
CN107905789A (en) * 2017-12-20 2018-04-13 中国地质大学(武汉) A kind of measuring device and method of rock exposure resistivity
CN107905789B (en) * 2017-12-20 2019-06-25 中国地质大学(武汉) A kind of measuring device and method of rock exposure resistivity

Similar Documents

Publication Publication Date Title
Orozco et al. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging
JP2007098300A (en) Evaluation method of purification efficacy of contaminated soil
Molinari et al. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy
US6255551B1 (en) Method and system for treating contaminated media
CA2645091A1 (en) Assessment and remediation process for contaminated sites
Sparrenbom et al. Investigation of chlorinated solvent pollution with resistivity and induced polarization
JP2006284519A (en) Method of installing nonpolarizable electrode to bed rock or ground, and electric survey method or electromagnetic survey method using the same
WO2011109342A1 (en) Methods and systems for electrochemically induced reduction of contaminants in groundwater, soils and low permeability media
JP2006346549A (en) In-situ purification method of contaminated soil
US6086739A (en) Electrokinetic remediation prefield test methods
Prostov et al. Diagnostics of oil pollution zones by electro-physical method
Mattson et al. Electrokinetic ion transport through unsaturated soil:: 2. Application to a heterogeneous field site
Han et al. Real-time monitoring of in situ chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling
KR102518022B1 (en) Complex sensor system for detcting underground contamination
US5495175A (en) Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids
JP2004198385A (en) Method of surveying oil contamination in soil
US20230381842A1 (en) Method and kit for remediation of environments contaminated with halogenated organic compounds
Nivorlis et al. Temporal filtering and time-lapse inversion of geoelectrical data for long-term monitoring with application to a chlorinated hydrocarbon contaminated site
Jackson et al. A remedial investigation of an organically polluted outwash aquifer
CN100429507C (en) Experimental parameter investigating method for electric restoring polluted soil and groundwater
Lévy et al. Managing the remediation strategy of contaminated megasites using field-scale calibration of geo-electrical imaging with chemical monitoring
Johansson et al. Field application of resistivity and spectral time domain IP to investigate geoelectrical signatures of free-phase PCE
Xie et al. On the electrokinetic remediation of Pb-contaminated soil: A coupled electro-transport-reaction modelling study based on chemical reaction kinetics
Badhafere et al. Detection of Iron Disulfide Materials in Geological Porous Media Using Spectral Induced Polarization Method
Davis et al. Self‐potential signatures associated with an injection experiment at an in situ biological permeable reactive barrier