JP2007098222A - 流体デバイス - Google Patents

流体デバイス Download PDF

Info

Publication number
JP2007098222A
JP2007098222A JP2005288787A JP2005288787A JP2007098222A JP 2007098222 A JP2007098222 A JP 2007098222A JP 2005288787 A JP2005288787 A JP 2005288787A JP 2005288787 A JP2005288787 A JP 2005288787A JP 2007098222 A JP2007098222 A JP 2007098222A
Authority
JP
Japan
Prior art keywords
concentric
fluid
unit
hexagonal
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005288787A
Other languages
English (en)
Inventor
Norihito Nosaka
教翁 野坂
Mamoru Fujisawa
守 藤澤
Takayuki Fujiwara
隆行 藤原
Yasunori Ichikawa
靖典 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005288787A priority Critical patent/JP2007098222A/ja
Publication of JP2007098222A publication Critical patent/JP2007098222A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】正確な同芯流を形成できると共に、高いメンテナンス性や所望のアスペクト比を容易に得ることができ、しかも特殊な加工技術を必要とせず機械加工で製作できるので、製作が容易であり製作コストが安価な流体デバイスを提供することができる。
【解決手段】流体デバイス12を構成する同芯整流部24は、大径円管30内に、多数本の同径な正六角形な六角管32が密集して収納されたハニカム構造であって、多数本の六角管32のうち1本が大径円管30の中心軸Pと同軸上に配置された構造に形成される。
【選択図】 図4

Description

本発明は、流体デバイスに係り、特に、供給された複数の流体を流体流通部に流出する際に、同芯流を正確に形成できる同芯整流部を備えた流体デバイスに関する。
近年、化学工業、或いは医薬品・試薬等の製造を行う医薬品工業等の分野において、1本の流路に複数の流体を流して反応をさせることで化学物質を製造する技術が脚光をあびており、その代表例としてマイクロリアクター等の流体デバイスがある。流体デバイスは、微小な流路断面を有する流路に複数の流体を層流状態で流通させながら反応させることで反応生成物である化学物質を連続製造する技術である。この方法は、攪拌タンク等を用いたバッチ式の反応とは異なり、微小空間である流路内を連続的に流れる流体の界面において流体中の反応分子同士が出会うことによって反応が起こるため、反応効率が著しく向上すると共に、微細粒子で単分散性に優れた化学物質を製造することができる。
流体デバイスの一形態としては、複数の流体を同芯流状態で流路に流通させる同芯流タイプがあり、この同芯流タイプの流体デバイスは反応生成物の流路壁面への付着防止に有用である。
同芯流タイプの流体デバイスとしては、例えば特許文献1や特許文献2がある。
特許文献1には、反応流路への導入流路を、3重管構造とした流体デバイスが開示され、3重管はその基端部において支持されている。そして、3重管構造の最内側を流れる流体と最外側を流れる流体に相互に反応する流体を用い、この2つの流体の間に不活性な流体を流すことで、導入流路の流出口に反応による生成物が付着しにくくなるようにしている。
また、特許文献2は、それぞれ円板状の形態の供給プレート、合流プレート、排出プレートで構成された同芯流を形成するための流体デバイスが開示されている。この流体デバイスは上述の各プレートに分解できることから、生成物の付着等による流路不良が発生しても分解して簡単に洗浄することができる。また、分解した後で再び組み立てる場合でも、各プレートは位置決めピン又はインロー構造により互いに位置決めできるようになっている。
特開2002−292274号公報 特開2003−164745号公報
しかしながら、特許文献1のように、導入流路の流出口反対側の基端部において内管を外管に支持する構造では、内管を支持する部分が少なく、内管と外管との中心軸を一致させるための位置決め精度を出しにくいという欠点がある。内管と外管との中心軸を一致させる位置決め精度が悪いと、正確な同芯流を形成することができない。この結果、同芯流に乱れが生じるために、反応流路において層流の同芯流を精度良く得ることができず、流体同士の界面における拡散が不均一になる。これにより、均等な拡散が行われないので、生成される化学物質の純度が悪くなったり、歩留りが悪くなったりするという問題がある。
特許文献2の場合には、特許文献1に比べて正確な同芯流を形成し易いが、機械加工での形成が容易でなく、特殊な加工方法、例えば微細放電加工等を必要とする。これにより、流体デバイスの製作が容易でないという共に製作コストが高くなるという問題がある。また、円板状の各プレートの厚みに制限があるため、高アスペクト比(流路長/等価直径)の流体デバイスを作成するには、複数枚のプレートの積層が必要であり、積層数が多くなると組み付ける際の位置精度が低下するので、正確な同芯流が得られにくくなる。
同芯流が正確に形成できない場合の問題は、上記した化学反応のように反応操作を行う場合に限ったものではなく、流路により流体の単位操作(例えば混合、抽出、分離、加熱、冷却、熱交換、晶析、吸収)を行う装置も同様である。
本発明は、このような事情に鑑みてなされたもので、正確な同芯流を形成できると共に、高いメンテナンス性や所望のアスペクト比を容易に得ることができ、しかも特殊な加工技術を必要とせず機械加工で製作できるので、製作が容易であり製作コストが安価な流体デバイスを提供することを目的とする。
請求項1の発明は前記目的を達成するために、供給された複数の流体を同芯流が形成されるように整流する同芯整流部と、該同芯整流部から流出した同芯流を所望の処理を目的として流通させる流体流通部とを備えた流体デバイスにおいて、前記同芯整流部は、大径円管内に、多数本の同径な正六角形な六角管が密集して収納されたハニカム構造であって、前記多数本の六角管のうち1本が前記大径円管の中心軸と同軸上に配置された構造であることを特徴とする流体デバイスを提供する。
本発明の請求項1は、ハニカム構造の性質を利用して、同芯流を正確に形成できる同芯整流部の構造を示したものである。
本発明の請求項1によれば、大径円管内に、多数本の同径な正六角形の六角管が密集して収納されたハニカム構造であって、多数本の六角管のうち1本が大径円管の中心軸と同軸上に配置されるようにしたので、大径円管の中心軸と同軸上に配置される六角管の外側に残りの六角管を六角環状に配列した六角管環状群が少なくとも1層以上積層されることになる。即ち、中心軸に位置する六角管の中心と、六角管環状群を構成する各六角管の中心を結ぶ仮想六角形の中心とは一致する。これにより、中心軸に位置する六角管と六角管環状群は同じ中心軸上に配置されることになるので、中心軸の六角管内と六角管環状群にそれぞれ種類の異なる流体を供給すれば、正確な同芯流を流体流通部に流出させることができる。六角管の六角形状は、円管等の他の管の形状と比較して、管同士が接触していない領域であるデッドスペースが小さいと共に、管同士の位置決めが一義的に決まる特徴を有する。尚、大径円管内と六角管とは固定しても固定しなくてもよい。固定する方法としては、接着剤、拡散接合、嵌合等の固定手段を利用することができる。
請求項2は請求項1において、前記大径円管の内径は、流体流通部において層流の同芯流を形成できる寸法に設定されていることを特徴とする。
これは、同芯流を正確に形成できる本発明は、層流において一層効果を発揮するからである。流体の流速、粘度等により大径円管の内径は多少変化するが、10mm以下が好ましく、1mm以下がより好ましい。
請求項3は請求項1又は2において、前記大径円管の中心軸と同軸上に配置された六角管の長さが他の六角管の長さと異なることを特徴とする。
これは、中心軸上に位置する六角管と、六角管環状群との流出口の位置が互いにズレている方が、流れが安定し、安定した同芯流を形成し易いためである。
請求項4は請求項1〜3の何れか1において、前記同芯整流部は前記流体流通部を形成する外殻管内の入口に着脱自在に嵌合されていることを特徴とする。
請求項4によれば、同芯整流部は流体流通部を形成する外殻管内の入口に着脱自在に嵌合されているので、同芯整流部に流通不良が発生した場合には、外郭管から取り外して簡単に洗浄することができる。これにより、高いメンテナス性を得ることができる。更には、流体数に合わせて簡単に同芯整流部を交換することができ、便利である。
請求項5は請求項1〜4のいずれか1において、前記流体流通部を形成する前記外殻管内の出口には、前記流体流通部を流れる流体を同芯流として分離する同芯流分離部が着脱自在に嵌合されていることを特徴とする。
請求項5によれば、同芯整流部と同芯分離部との中心軸を一致させることができるので、流体流通部を流れる流体を同芯分離部で同芯流に分離する場合、同芯整流部と同じ中心軸基準で同芯流を分離することができる。即ち、同芯整流部によって例えば正確な3層同芯流を流体流通部に流通させ、3層同芯流の中間層部分に生成物が生成された場合に、生成物を分離する際に同芯分離部の中心軸が同芯整流部の中心軸とズレていたのでは、中間層部分のみを精度良く分離することはできない。請求項5では、同芯整流部と同芯分離部との中心軸を一致させることができるので、中間層部分のみを精度良く分離することができる。この場合、同芯整流部で形成可能な同芯流の層数と、同芯分離部で分離可能な同芯流の層数を異なるようにしてもよい。例えば、同芯整流部で2流体により2層同芯流を形成したが、同芯分離部では3層の同芯流として分離したい場合には、同芯分離部として3層分離可能な構造のものを配置するとよい。更には、同芯分離部も外郭管に着脱自在に嵌合されていることが好ましく、流路不良等が発生したときに簡単に外郭管から取り外して洗浄することができる。
請求項6は請求項5において、前記同芯整流部及び前記同芯分離部は、前記流体流通部を形成する外郭管内に、該外郭管の軸方向に移動自在に嵌合されていることを特徴とする。
請求項6によれば、同芯整流部及び同芯分離部は、流体流通部を形成する管内に移動自在に嵌合されているので、反応の種類等に応じて流体流通部の流路長を簡単に変えることができる。
請求項7は請求項4〜6のいずれか1において、前記外殻管は軸方向に沿って2分割可能であることを特徴とする。
請求項7によれば、外殻管は軸方向に2分割可能であるようにしたので、同芯整流部や同芯分離部を外郭管に対して簡単に着脱することができる。
請求項8は請求項5〜7の何れか1において、前記同芯整流部と前記同芯分離部との中心軸同士を貫通する貫通管が設けられていることを特徴とする。
請求項8によれば、同芯整流部と同芯分離部との中心軸同士を貫通する貫通管を設け
たので、中心軸上の六角管により形成される流体の厚みを薄くすることができるので、拡散効率が良くなる。また、貫通管を設けることで流体流通部に同芯流を形成し易くなる。
以上説明したように、本発明の流体デバイスによれば、正確な同芯流を形成できると共に、高いメンテナンス性や所望のアスペクト比を容易に得ることのでき、しかも特殊な加工技術を必要とせず機械加工で製作できるので、製作が容易であり製作コストが安価な流体デバイスを提供できる。
以下添付図面に従って本発明に係る流体デバイスの好ましい実施の形態について詳説する。
図1は、本発明の流体デバイスを複数本(図1では5本)1組としてユニット化した流体デバイスユニットの全体構成を説明する分解図である。尚、図1で使用する流体デバイスは2種類の流体L1,L2で2層同芯流を形成するタイプの例である。
図1に示すように、流体デバイスユニット10は、主として、複数本の流体デバイス12、12…を支持する四角形状な支持ケース14と、支持ケース14の上側開口14Aと下側開口14Bとに蓋をする一対の蓋板16,16と、支持ケース14の前側(流体デバイス12の流体供給側)に組み付けられ、2種類の流体L1,L2を複数本の流体デバイス12に供給する供給ヘッダ18と、支持ケース14の後側(流体デバイス12の流体排出側)に組み付けられ、複数本の流体デバイス12から排出される処理流体を排出する排出ヘッダ20と、で構成される。図1の矢印Fは流体L1,L2の流れ方向を示す。
図2に示すように、流体デバイス12は、円筒状の外郭管22の入口部内に同芯整流部24が着脱自在に嵌合される共に、出口部内に同芯分離部26が着脱自在に嵌合される。これにより、同芯整流部24と同芯分離部26との間の外郭管22内に、同芯整流部24から流出した同芯流を所望の処理を目的として流通させる流体流通部28が形成される。
このように、外郭管22に対して同芯整流部24及び同芯分離部26を着脱自在に嵌合することで、同芯整流部24や同芯分離部26に流路不良が発生したときに、外郭管22から簡単に取り外して洗浄することができる。また、同芯整流部24や同芯分離部26を外郭管22から取り外せることで、外郭管22の洗浄も容易になる。これにより、高いメンテナンス性を得ることができる。尚、同芯整流部24や同芯分離部26は、必ず着脱自在に限定するものではなく、着脱する必要がない場合には接着剤で固定してもよい。
ここで、所望の処理とは、流体同士が反応する反応操作、及び流体の単位操作(例えば混合、抽出、分離、加熱、冷却、熱交換、晶析、吸収)を意味する。尚、流体流通部28に同芯整流部24と同芯分離部26とを1対設けることに限定されるものではなく、同芯整流部24と同芯分離部26の一対を複数個設けて、整流と分離を多段で行ってもよい。
同芯整流部24及び同芯分離部26は、同様の構造に形成され、大径円管30内に、多数本の同径な正六角形の六角管32が密集して収納されたハニカム構造であって、多数本の六角管32のうち1本が大径円管30の中心軸Pと同軸上に配置される。そして、大径円管30の中心に位置する六角管32(以下、中心六角管32Aという)には連結用供給管38が接続されると共に、同芯分離部26の中心に位置する中心小径円管32Aに連結用排出管40が接続される。図2は、かかる構造に形成された流体デバイス12において、同芯整流部24の中心六角管32A内に流体L1を供給し、六角管環状群34に流体L2を供給する場合である。
また、図3に示すように、外郭管22を2分割可能な構造として、同芯整流部24や同芯分離部26を外郭管22に着脱する際に、外郭管22を2分割できると更にメンテナンスにおいて便利である。即ち、外郭管22分割した一方の半円片22Aと他方の半円片22Bとの嵌合部にそれぞれ凸部22aと凹部22bとを形成し、凸部22aと凹部22bとを嵌め合わせるようにするとよい。嵌合して外郭管22を形成した後、外郭管22の長さ方向における前後位置をリング状の固定部材29で固定するとよい。しかし嵌め合わせ構造及び固定部材は、これに限定するものではなく、要は外郭管22から流体が漏洩しない構造であればよい。
図1に示す支持ケース14の前側面と後側面にはそれぞれ、流体デバイス12の数に対応する複数個の丸孔44が開口されており、この丸孔44に流体デバイス12の前後部分が嵌合する。これにより、複数本の流体デバイス12が支持ケース14の前側面と後側面から部分的に突出した状態で、支持ケース14に支持される。この状態で、一対の蓋板16がパッキン17を介して支持ケース14の上側開口14Aと下側開口14Bに被せられてボルト46で締結される。また、支持ケース14の前側と後側に供給ヘッダ18と排出ヘッダ20とがパッキン19を介して被せられ、ボルト48により接続される。これにより、支持ケース14内に水密な密封空間が形成される。
供給ヘッダ18は、支持ケース14側の面が開放された箱形状をしており、支持ケース14の反対面には、前述した連結用供給管38が貫通する丸孔50が流体デバイス12の数に対応して複数個開口されている。この丸孔50から連結用供給管38が突出され、連結用供給管38に第1カプラー(ワンタッチジョイント)の雄部材52が接続される。そして、流体L1を供給する流体ポンプ(図示せず)から延設された供給チューブ(図示せず)先端に設けられた第1カプラーの雌部材(図示せず)を連結することで、同芯整流部24の中心に位置する小径円管32に流体L1が供給される。また、供給ヘッダ18の側面に形成された丸孔54には、第2カプラーの雄部材56が接続され、流体L2を供給する流体ポンプ(図示せず)から延設された供給チューブ(図示せず)先端に設けられた第2カプラーの雌部材(図示せず)を連結することで、供給ヘッダ18内を介して同芯整流部24の環状グループ管42に流体L2が供給される。
排出ヘッダ20は、その構造が供給ヘッダ18と同様に形成される。即ち、排出ヘッダ20は支持ケース14側の面が開放された箱形状をしており、支持ケース14の反対面には、上述した連結用排出管40が貫通する丸孔58が流体デバイス12の数に対応して複数個開口されている。この丸孔58から連結用排出管40が突出され、連結用排出管40に第3カプラーの雄部材60が接続される。そして、排出チューブ(図示せず)の先端に設けた第3カプラーの雌部材(図示せず)が連結される。これにより、流体流通部28を流通して化学反応等の所望の処理が成された処理流体は同芯分離部26において同芯流として分離され、分離された同芯流のうちの内層を形成する流体L3が排出される。また、排出ヘッダ20の側面に形成された丸孔62には、第4カプラーの雄部材64が接続され、排出チューブ(図示せず)の先端に設けた第4カプラーの雌部材(図示せず)を連結することで、同芯分離部26で同芯流として分離された外層の流体L4が排出ヘッダ20内を介して排出される。
また、上述した水密性を有する支持ケース14の側面2カ所に丸孔66が形成され、一方の丸孔66に第5カプラーの雄部材68が設けられると共に、他方の丸孔66に第6カプラーの雄部材68が設けられる。そして、図示しない熱媒体循環装置からの一対のチューブ(図示せず)先端にそれぞれ取り付けられた第5カプラー及び第6カプラーの雌部材(図示せず)が雄部材68接続される。これにより、所定温度の熱媒体を支持ケース14内と媒体循環装置との間で循環して、流体デバイス12を温調するための温調用循環ラインが形成される。
上記の如く構成された流体デバイスユニット10において、流体デバイス12の同芯整流部24は、大径円管30内に、多数本の同径で正六角形の六角管32が密集して収納されたハニカム構造であって、多数本の六角管32のうち中心六角管32Aが大径円管30の中心軸Pと同軸上に配置される構造に形成されている。これにより、図4に示すように、中心六角管32Aの外側に残りの六角管32を六角環状に配列した六角管環状群34が1層積層されることになる。即ち、中心六角管32Aの中心と、六角管環状群34を構成する各六角管32の中心を結ぶ仮想六角形33(仮想六角形33により集合される六角管32の集合体を六角管環状群34と称することにする)の中心とは一致するので、中心六角管32Aと六角管環状群34は同じ中心軸P上に配置されることになる。しかも、同芯整流部24の長さ方向(軸方向)の何れの位置で同芯整流部24を径方向に切断しても、その断面における中心六角管32Aと六角管環状群34の中心軸Pとは一致する。このように、同芯整流部24の長さ方向の何れの位置でも中心六角管32Aと六角管環状群34の中心軸Pとを一致させることで、円筒形な外郭管22内に形成される流体流通部28には、図5に示すように、流体L1(内層)と流体L2(外層)とから成る正確な円形状の2層同芯流を形成することができる。この場合、図6のように、同芯整流部24と同芯分離部26との中心軸P上に、同芯整流部24と同芯分離部26とをつなぐ貫通管72を設けると、流体L1(内層)の厚みを薄くできるので、流体L1(内層)と流体L2(外層)との間の拡散効率が良くなる。
正確な同芯流を形成するには、同芯整流部24の長さ方向の何れの位置で切断しても、中心六角管32Aと六角管環状群34との同芯度(互いの中心軸Pのズレ量)が100μm以内であることが好ましく、50μm以内がより、10μm以内が特に好ましい。前記同芯度は、正六角形の精度の高い六角管を使用して同芯整流部24を上記した構造に形成することで達成できる。これにより、流体流通部28を流れる同芯流に乱れが発生しないので、層流の同芯流を精度良く得ることができる。従って、流体L1、L2同士の界面における拡散が均一に行われるので、例えば化学反応操作の場合には生成される化学物質の純度や歩留りが向上する。
また、同芯整流部24と同様の構造を有する同芯分離部26を外郭管22の出口部内に設けることで、流体流通部28を流れる流体を同芯流として分離することができる。この場合に、同芯整流部と24同芯分離部26との中心軸Pを一致させることができるので、流体流通部28を流れる流体を同芯分離部26で同芯流に分離する際に、同芯整流部24と同じ中心軸基準で分離することができる。即ち、同芯整流部24によって例えば正確な3層同芯流を流体流通部28に流通させ、3層同芯流の中間層部分に生成物が生成された場合に、生成物を分離する際に同芯分離部26の中心軸Pが同芯整流部24の中心軸Pに対してズレがあると、中間層部分のみを精度良く分離することはできない。しかし、本発明のように、同芯整流部24と同芯分離部26との中心軸Pを一致させることができるので、中間層部分を精度良く分離することができる。これは、3層同芯流の内層や外層を精度良く分離したい場合も同様であり、多層同芯流に適用できる。この場合、図7に示すように、同芯整流部24と同芯分離部26において、中心六角管32Aと六角管環状群34との流出口の位置をズラして流体流通部28側に突出させるようにすると、流れが安定化し、安定した同芯流を形成できる。また、同芯分離部26での分離性能も向上する。
尚、図7では、中心六角管32Aを流体流通部28側に突出させるようにしたが、逆に六角管環状群34の流出口位置より凹ますようにしてもよい。更には、同芯整流部24では中心六角管32Aを突出させ、同芯分離部26では中心六角管32Aを凹ましてもよく、あるいは同芯分離部4では中心六角管32Aを凹ませ、同芯分離部26では中心六角管32Aを突出させてもよい。
上述した本発明における同芯整流部24と同芯分離部26との特徴は、化学反応に限らず、流体の単位操作(例えば混合、抽出、分離、加熱、冷却、熱交換、晶析、吸収)を行う際にも適用できる。また、上述の同芯整流部4は2層同芯流を形成するタイプであるが、多層同芯流を形成する場合も考え方は同じである。
次に、図8〜図10において、同芯整流部24の好ましい各種の態様を説明するが、同芯分離部26として使用してもよい。
図8の同芯整流部24は、既に図7で説明したように同芯整流部24の中心六角管32Aと六角管環状群34との流出口位置をズラして、中心六角管32Aを流体流通部28側に突出させた態様であり、図9は中心六角管32Aの流出口を六角管環状群34の流出口の位置から凹ませた態様である。
図10の同芯整流部24は、3種類の流体(L1、L2、L3)により3層同芯流を形成するのに好適な態様であり、大径円管30内に、多数本の同径な正六角形の六角管32が密集して収納されたハニカム構造であって、中心六角管32Aの外側に第1六角管環状群34Aと第2六角管環状群34Bとの2層が積層された構造である。これにより、中心六角管32A内に流体L1を供給し、第1六角管環状群34Aに流体L2を供給し、第2六角管環状群34Bに流体L3を供給すれば、正確な3層同芯流を流体流通部28に流出させることができる。尚、同芯流を形成する層数に応じて六角管環状群34の積層数を適宜設定することができる。また、図10は、3種類の流体L1,L2,L3の3層同芯流を形成するのに好適な態様であるが、3種類の流体に限定するものではなく、2種類の流体の同芯流を形成する場合にも適用できる。即ち、上記した3流体L1,L2,L3のうち、流体L1と流体L2に同じ種類の流体を使用することで2層同芯流としてもよく、流体L2と流体L3に同じ種類の流体を使用することで2層同芯流を形成してもよい。これにより、2層同芯流を構成する際の各層の厚みを変えることができる。
尚、同芯整流部24と同芯分離部26とは同じ構造である必要はなく、同芯流を形成する場合、図4と図10で説明した構造のもの、更には六角管環状群34を3層以上積層させたものを任意に組み合わせることができる。
次に、図2の2層同芯流を形成する流体デバイス12の例で、流体デバイス12を製作する工程について説明する。図11(A)〜図11(C)は同芯整流部24及び同芯整流部26を製作する工程であり、図11(D)は製作した同芯整流部24と同芯分離部26とを流体流通部28を形成する外郭管22に組み付けた図である。尚、同芯整流部24と同芯分離部26とは、基本的に構造が同じあり、同じ製作方法で製作するので、ここでは同芯整流部24を製作する例で説明する。
同芯整流部24の製作は、主として、原形体製作工程と、伸長工程と、切断工程とで構成される。
原形体製作工程では、図11(A)に示すように、大径円管30内に、多数本の同径で正六角形の六角管32が密集して収納されたハニカム構造であって、多数本の六角管32のうち中心六角管32Aが大径円管30の中心軸Pと同軸上に配置される構造の原形体90を製作する。この原形体90は、同芯整流部24の最終的に必要な径よりも大径に予め製作する。かかる構造の原形体90は、図11(A)から分かるように、大径円管30内に六角管32がハニカム構造に密に収納されており、しかも大径円管90の中心軸を中心として中心六角管32A及び六角管環状群34が同芯上に配置されている。従って、次の伸長工程で伸長しても全体が細くなるだけで、径方向の断面形状は同じになる。原形体90における大径円管30の径としては、例えば10mm〜50mm程度の範囲であることが好ましい。管の材質としては金属(例えばスレンレス材)、樹脂、ガラス等を好適に使用できる。
次に、伸長工程では、図11(B)に示すように、製作した原形体90を長手方向に伸長して最終的に必要な径寸法になるように原形体90の断面積を縮小する。この場合、使用する管の材質、例えばステンレス材、樹脂材、ガラス材等により、原形体90を伸長し易い温度に加熱しておくとよい。これにより、伸長原形体90‘を製作する。この伸長原形体90‘の径としては、流体流通部28において層流の同芯流を形成できる径寸法であることが好ましく、伸長後の大径円管30‘において10mm以下が好ましく、1mm以下がより好ましい。
次に、切断工程では、図11(C)に示すように、伸長原形体90‘を同芯整流部24の必要長さに切断する。これにより、同芯整流部24が製作される。同芯整流部24は複数製作されるので、その中の一つを同芯分離部26として使用してもよく、上述した図10や3層以上の六角管環状群34を別途製作して使用してもよい。
そして、図11(D)に示すように、製作した同芯整流部24を、外郭管22の入口部内に着脱自在に嵌合すると共に、外郭管22の出口部内に同芯分離部26を着脱自在に嵌合する。これにより、流体デバイス12が製作される。
これにより、径が10mm以下のマイクロな同芯整流部24や同芯流26であっても、機械加工により容易に製作することができ、特殊な加工方法、例えば微細放電加工等を必要としない。従って、マイクロな流路を有する流体デバイス12を容易且つ低コストで製作することができる。また、原形体90を伸長工程で伸長する伸長率を変えることによって、同芯整流部24や同芯分離部26の径寸法を簡単に変えることができる。更には、高アスペクト比(流路長/等価直径)の流体デバイス12を作成する場合には、伸長工程での伸長率と切断工程で切断する切断長さを調整することで容易に対応することができる。
尚、本実施の形態では、六角管を使用して大径円管内にハニカム構造を形成することで記載したが、本発明の応用例として大径円管内にハニカム構造を一体構造として形成することによっても、正確な同芯流を形成するための同芯整流部を形成できる。
次に、3種類の流体L1(内層)、L2(中間層)、L3(外層)で3層同芯流を形成する例で本発明の実施例を説明する。流体デバイス12は、流体流通部28を形成する外郭管22の入口部内と出口部内とに、図10に示した構造の同芯整流部24と同芯分離部26とをそれぞれ嵌合させたものを使用した。同芯整流部24と同芯分離部26は、上記製作方法により製作し、切断工程では伸長した伸長原形体90‘を長さ5mmに切断した。製作された同芯整流部24及び同芯分離部26は、外径2.5mm、内径2.0mmの大径円管30内に、中心六角管32A、第1六角管環状群34、及び第2六角管環状群34から成るハニカム構造を密に形成した。大径円管30及び六角管32ともに管の材質はSUS316を使用した。
製作された同芯整流部24と同芯分離部26について特に精密位置決めすることなく、長さ方向の複数箇所で切断して、中心六角管32Aと第1六角管環状群34と第2六角管環状群34との同芯度(互いの中心軸Pのズレ量)を測定したところ、7μm以内であった。
そして、5本の流体デバイス12を支持ケース14に組み付け、流体デバイスユニット10を完成させ、感光性乳剤を製造する試験を行った。
試験において、流体L1として硝酸銀水溶液、流体L2としてゼラチン水溶液、流体L3としてハロゲン塩水溶液を使用した。硝酸銀水溶液L1とハロゲン塩水溶液L3とは、体積換算で1:1の比で反応が完結する濃度に調整した。また、同芯整流部24から流出して流体流通部28を層流化された同芯流として流れる各流体L1、L2、L3において、硝酸銀水溶液L1とハロゲン塩水溶液L3とが、同じ流速且つ同じタイミングでゼラチン水溶液L2との反応を完結するように設定した。また各流体L1、L2、L3の粘度の影響や、流体流通部28の内壁面との間に生じる剪断抵抗力等により、硝酸銀水溶液L1とハロゲン塩水溶液L3とに流速差が生じる場合には、濃度や流体を供給する圧力を調整してゼラチン水溶液L2での反応条件を最適化した。
このように実施された実施例によれば、同芯整流部24により、各流体L1、L2、L3は正確な層流の3層同芯流として流体流通部28に流出され、流体流通部28を流れていく過程で、3層同芯流を構成する内層の硝酸銀水溶液L1と外層のハロゲン塩水溶液L3とが、中間層のゼラチン水溶液L2に拡散して反応し、反応物である感光性乳剤を生成した。同芯分離部26では、内層、中間層、外層の3層を同芯流として分離し、中間層部分に高純度の感光性乳剤を得ることができた。
また、感光性乳剤を生成する際に、同芯整流部24の流出口や流体流通部28の内壁に生成された感光性乳剤が付着することがなく、安定した製造を行うことができた。
更には、本発明の3流体タイプの流体デバイス12と、従来技術の特許文献2で説明した流体デバイスとの製作コスト比較では、本発明の流体デバイス12は約1/2であることから、低コストで感光性乳剤を製造することができた。
本発明の流体デバイスを複数本組み付けた流体デバイスユニットの全体構成を説明する分解図 本発明の流体デバイスの一例であり、2層同芯流の形成に好適な流体デバイスの説明図 流体流通部を形成する外郭管を2分割構造にした説明図 同芯整流部を側方から見た側面図 同芯整流部により形成される2層同芯流を説明する説明図 同芯整流部と同芯分離部との中心軸を貫通する貫通管を設けた場合の流体流通部の断面図 流体デバイスの別の態様を説明する説明図 中心六角管と六角管環状群との流出口位置をズラした場合の説明図 中心六角管と六角管環状群との流出口位置をズラした別態様の説明図 3層同芯流を形成するのに好適な同芯整流部を側方から見た側面図 同芯整流部の製作方法を説明する説明図
符号の説明
10…流体デバイスユニット、12…流体デバイス、14…支持ケース、16…蓋板、18…供給ヘッダ、20…排出ヘッダ、22…外郭管、24…同芯整流部、26…同芯分離部、28…流体流通部、30…大径円管、32…六角管、32A…中心六角管、34…六角管環状群、38…連結用供給管、40…連結用排出管、44、50、54、58、62、66…丸孔、46、48…ボルト、52、56、60、64、68、70…カプラーの雄部材、90…原形体、90‘…伸長原形体

Claims (8)

  1. 供給された複数の流体を同芯流が形成されるように整流する同芯整流部と、該同芯整流部から流出した同芯流を所望の処理を目的として流通させる流体流通部とを備えた流体デバイスにおいて、
    前記同芯整流部は、大径円管内に、多数本の同径な正六角形の六角管が密集して収納されたハニカム構造であって、前記多数本の六角管のうち1本が前記大径円管の中心軸と同軸上に配置された構造であることを特徴とする流体デバイス。
  2. 前記大径円管の内径は、流体流通部において層流の同芯流を形成できる寸法に設定されていることを特徴とする請求項1の流体デバイス。
  3. 前記大径円管の中心軸と同軸上に配置された六角管の長さが他の六角管の長さと異なることを特徴とする請求項1又は2の流体デバイス。
  4. 前記同芯整流部は前記流体流通部を形成する外殻管内の入口に着脱自在に嵌合されていることを特徴とする請求項1〜3のいずれか1の流体デバイス。
  5. 前記流体流通部を形成する前記外殻管内の出口には、前記流体流通部を流れる流体を同芯流として分離する同芯流分離部が着脱自在に嵌合されていることを特徴とする請求項1〜4のいずれか1の流体デバイス。
  6. 前記同芯整流部及び前記同芯分離部は、前記流体流通部を形成する外郭管内に、該外郭管の軸方向に移動自在に嵌合されていることを特徴とする請求項5の流体デバイス。
  7. 前記外殻管は軸方向に沿って2分割可能であることを特徴とする請求項4〜6のいずれか1の流体デバイス。
  8. 前記同芯整流部と前記同芯分離部との中心軸同士を貫通する貫通管が設けられていることを特徴とする請求項5〜7のいずれか1の流体デバイス。
JP2005288787A 2005-09-30 2005-09-30 流体デバイス Pending JP2007098222A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288787A JP2007098222A (ja) 2005-09-30 2005-09-30 流体デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288787A JP2007098222A (ja) 2005-09-30 2005-09-30 流体デバイス

Publications (1)

Publication Number Publication Date
JP2007098222A true JP2007098222A (ja) 2007-04-19

Family

ID=38025690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288787A Pending JP2007098222A (ja) 2005-09-30 2005-09-30 流体デバイス

Country Status (1)

Country Link
JP (1) JP2007098222A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311070A (zh) * 2018-01-30 2018-07-24 中国科学院上海高等研究院 一种微通道反应板、气固反应器及气固反应系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311070A (zh) * 2018-01-30 2018-07-24 中国科学院上海高等研究院 一种微通道反应板、气固反应器及气固反应系统

Similar Documents

Publication Publication Date Title
JP4792268B2 (ja) 流体デバイス
US7434982B2 (en) Micro mixing and reaction device
JP4432104B2 (ja) マイクロリアクター
US9962678B2 (en) Micro-reactor system assembly
JP4407177B2 (ja) マイクロリアクターを用いた反応方法
WO2010024123A1 (ja) 反応装置及び反応プラント
JP4257795B2 (ja) マイクロリアクタ
JP2006239638A (ja) 混合器および混合方法
JP2011504221A (ja) マイクロ流体の自励発振ミキサおよび装置ならびにその使用方法
JP2003159527A (ja) 積層物に基づく管型反応器
JP2007029887A (ja) マイクロリアクタ
JP2007098222A (ja) 流体デバイス
JP2007098226A (ja) 流体デバイス
JP2007090227A (ja) 流体デバイスの製作方法
JP2007268488A (ja) マイクロ科学装置の流体操作方法、及びマイクロ科学装置
JP5345750B2 (ja) 流体デバイス
JP4592644B2 (ja) マイクロリアクタ
JP2010172803A (ja) マイクロリアクタモジュール及びその製造方法
JP2007007570A (ja) マイクロリアクタ
CN219150078U (zh) 一种可拆卸层叠式错孔混合芯子微反应器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070117