JP2007096074A - Magnetic memory - Google Patents

Magnetic memory Download PDF

Info

Publication number
JP2007096074A
JP2007096074A JP2005284760A JP2005284760A JP2007096074A JP 2007096074 A JP2007096074 A JP 2007096074A JP 2005284760 A JP2005284760 A JP 2005284760A JP 2005284760 A JP2005284760 A JP 2005284760A JP 2007096074 A JP2007096074 A JP 2007096074A
Authority
JP
Japan
Prior art keywords
magnetization
magnetic
layer
free layer
magnetization free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005284760A
Other languages
Japanese (ja)
Other versions
JP4936701B2 (en
Inventor
Hisanori Aikawa
川 尚 徳 相
Tadashi Kai
斐 正 甲
Akihiro Suzuki
木 哲 広 鈴
Ryusuke Nehashi
橋 竜 介 根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
NEC Corp
Original Assignee
Toshiba Corp
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, NEC Corp filed Critical Toshiba Corp
Priority to JP2005284760A priority Critical patent/JP4936701B2/en
Publication of JP2007096074A publication Critical patent/JP2007096074A/en
Application granted granted Critical
Publication of JP4936701B2 publication Critical patent/JP4936701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic memory capable of decreasing a write current while suppressing miswriting. <P>SOLUTION: The magnetic memory includes a first wire 20, a second wire 30 in crossing with the first wire, and a magneto-resistance effect element 1. The magneto-resistance effect element includes a magnetization fixed layer 4 the direction of magnetization of which is fixed; and a magnetization free layer 2 including at least two or more magnetic layers 2<SB>1</SB>, 2<SB>2</SB>each of planar shape of which comprises a main body 2a the size in the axial direction of easy magnetization is longer than the size in the axial direction of hard magnetization and projections 2b provided in the axial direction of hard magnetization in the middle of the main body 2a, and a nonmagnetic layer 2<SB>3</SB>located between the magnetic layers 2<SB>1</SB>, 2<SB>2</SB>, and the direction of the magnetization of the magnetic layers of which varies with an external magnetic field. The magneto-resistance effect element is arranged in such a way that the direction of the axis of easy magnetization of the magnetization free layer is tilted with respect to the first and second wires, and a ratio of the length in the axial direction of hard magnetization to the length in the axial direction of easy magnetization in each of the magnetic layers of the magnetization free layer is greater than 1 and equal to or less than 1.5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、メモリセルに磁気抵抗効果素子を有する磁気メモリに関する。   The present invention relates to a magnetic memory having a magnetoresistive effect element in a memory cell.

近年、半導体メモリの一種として、トンネル磁気抵抗(TMR:Tunnel Magneto-resistance)効果を利用した磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)が提案されている。   2. Description of the Related Art Recently, a magnetic random access memory (MRAM) using a tunnel magnetoresistance (TMR) effect has been proposed as a kind of semiconductor memory.

このMRAMのメモリセルでは、ビット線とワード線との交差領域に、情報記憶素子として、磁気抵抗効果素子の一種であるMTJ(Magnetic Tunneling Junction)素子が設けられている。このMRAMにおいて、データを書き込む場合は、選択ビット線及び選択ワード線にそれぞれ電流を流し、これらの電流による合成磁界で選択ビット線および選択ワード線の交差領域に位置する選択されたメモリセルのMTJ素子にデータが書き込まれる。一方、データを読み出す場合は、選択されたメモリセルのMTJ素子に読み出し電流を流し、このMTJ素子の磁化状態の抵抗変化によってデータ“1”、“0”が読み出される。   In the memory cell of this MRAM, an MTJ (Magnetic Tunneling Junction) element, which is a kind of magnetoresistive effect element, is provided as an information storage element in an intersection region between a bit line and a word line. In this MRAM, when data is written, currents are supplied to the selected bit line and the selected word line, respectively, and the MTJ of the selected memory cell located in the intersection region of the selected bit line and the selected word line is generated by a combined magnetic field generated by these currents. Data is written to the element. On the other hand, when reading data, a read current is supplied to the MTJ element of the selected memory cell, and data “1” and “0” are read by the resistance change in the magnetization state of the MTJ element.

このようなMRAMにおいては、データ書き込みの際、選択ビット線および選択ワード線の一方のみが選択されたメモリセル、すなわち半選択セルにまで書き込み電流磁界が影響を及ぼしてしまう。このため、半選択セルに誤書き込みが生じるという問題が発生することがある。この問題を回避することは、MRAM開発の最重要課題の一つであると考えられている。   In such an MRAM, when data is written, a write current magnetic field affects a memory cell in which only one of a selected bit line and a selected word line is selected, that is, a half-selected cell. For this reason, there may occur a problem that erroneous writing occurs in the half-selected cell. Avoiding this problem is considered one of the most important issues in MRAM development.

そこで、上記問題の解決策の一つとして、非磁性層を介して反強磁性結合させた2つの磁性層を備えた記録層を用いたトグル方式のMRAMが提案されている(例えば特許文献1参照)。しかし、このトグル方式のMRAMでは、書き込み電流値が汎用メモリとしては非現実的に大きくなるという問題がある。
米国特許第6,545,906号明細書
Therefore, as one of the solutions to the above problem, a toggle type MRAM using a recording layer having two magnetic layers antiferromagnetically coupled via a nonmagnetic layer has been proposed (for example, Patent Document 1). reference). However, this toggle type MRAM has a problem that the write current value becomes unrealistically large as a general-purpose memory.
US Pat. No. 6,545,906

以上説明したように、従来のMRAMでは、誤書き込みを抑制しつつ、書き込み電流の低減を図ることが困難であった。   As described above, in the conventional MRAM, it is difficult to reduce the write current while suppressing erroneous writing.

本発明は、上記事情を考慮してなされたものであって、誤書き込みを抑制しつつ、書き込み電流を低減することのできる磁気メモリを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic memory capable of reducing a write current while suppressing erroneous writing.

本発明の一態様による磁気メモリは、第1の配線と、前記第1の配線に交差する第2の配線と、前記第1および第2の配線の交差領域に対応して設けられた磁気抵抗効果素子と、を備え、
前記磁気抵抗効果素子は、
磁化の向きが固着された磁化固着層と、
それぞれの平面形状が、磁化容易軸方向が磁化困難軸方向に比べて長い本体部と前記本体部の中央部の磁化困難軸方向に設けられた突出部とを有する少なくとも2層以上の磁性層と、各磁性層との間に設けられた非磁性層と、を含み外部磁界により前記磁性層の磁化の向きが可変の磁化自由層と、
を備え、前記磁気抵抗効果素子は、前記磁化自由層の磁化容易軸の方向が前記第1および第2の配線に対して傾いて配置され、
前記磁化自由層の前記磁性層のそれぞれは、磁化容易軸方向の長さと磁化困難軸方向の長さとの比が1より大きく1.5以下であることを特徴とする。
A magnetic memory according to one aspect of the present invention includes a first wiring, a second wiring that intersects the first wiring, and a magnetoresistor provided corresponding to an intersecting region of the first and second wirings. An effect element,
The magnetoresistive effect element is
A magnetization pinned layer in which the magnetization direction is fixed;
Each planar shape has at least two or more magnetic layers having a main body portion whose easy axis direction is longer than the hard axis direction and a projecting portion provided in the hard axis direction at the center of the main body portion; A non-magnetic layer provided between each magnetic layer, and a magnetization free layer in which the magnetization direction of the magnetic layer is variable by an external magnetic field,
The magnetoresistive effect element is arranged such that the direction of the easy magnetization axis of the magnetization free layer is inclined with respect to the first and second wirings,
Each of the magnetic layers of the magnetization free layer is characterized in that the ratio of the length in the easy axis direction to the length in the hard axis direction is greater than 1 and 1.5 or less.

なお、前記磁化自由層の磁化容易軸の方向の、前記第1および第2の配線に対する傾き角は実質的に45度であってもよい。   The inclination angle of the magnetization easy axis of the magnetization free layer with respect to the first and second wirings may be substantially 45 degrees.

なお、前記磁化自由層の前記磁性層のそれぞれは、磁化容易軸方向の長さと磁化困難軸方向の長さとの比が1より大きく1.33以下であることが好ましい。   In addition, each of the magnetic layers of the magnetization free layer preferably has a ratio of the length in the easy axis direction to the hard axis direction in the range of 1 to 1.33.

なお、前記磁化自由層の各磁性層は、前記本体部と前記突出部との接合部分が尖っていてもよい。   Each magnetic layer of the magnetization free layer may have a sharp junction between the main body portion and the protruding portion.

なお、前記磁化自由層の各磁性層の角部は丸みを帯びていてもよい。   The corners of each magnetic layer of the magnetization free layer may be rounded.

なお、前記磁化自由層の各磁性層は、磁化困難軸方向の長さは、中央部から端部にかけて単調に減少する平面形状であってもよい。   In addition, each magnetic layer of the magnetization free layer may have a planar shape in which the length in the hard magnetization axis direction monotonously decreases from the center to the end.

なお、前記第1および第2の配線に対して傾いて配置された前記磁気抵抗効果素子の前記第1または第2の配線の幅方向の寸法に対して、前記第1および第2の配線の幅は−10%〜+10%の範囲にあってもよい。   Note that the first and second wirings have a dimension in the width direction of the first or second wiring of the magnetoresistive effect element that is disposed to be inclined with respect to the first and second wirings. The width may be in the range of -10% to + 10%.

本発明によれば、誤書き込みを抑制しつつ、書き込み電流を低減することができる。   According to the present invention, it is possible to reduce a write current while suppressing erroneous writing.

以下、本発明の実施形態を、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
本発明の第1実施形態による磁気メモリセルの平面図を図1(a)に、正面図を図1(b)に示す。本実施形態の磁気メモリは、トグル方式の磁気メモリであって、複数のメモリセルを有し、各メモリセルは、ワード線20と、このワード線20と実質的に直交するビット線30との交差領域に配置された磁気抵抗効果素子1を備えている。磁気抵抗効果素子1は、図2に示すように、非磁性金属層2を介して反強磁性結合した磁性層2、2を有し、外部磁界に応じて磁化の向き(磁気モーメント)が変化する磁気記録層となる磁化自由層2と、磁化の向きが固着された磁化固着層4と、磁化自由層2と磁化固着層4との間に設けられたトンネルバリア層3と、磁化固着層4の磁化の向きを固着する反強磁性層5とを備えている。この磁気抵抗効果素子1は、磁化固着層4の磁化の向きと、磁化固着層4に近い、磁化自由層2の磁性層2の磁化の向きとの相対角度によってトンネルバリアを介したトンネルコンダクタンスが変化する。なお、図2に示す磁気抵抗効果素子1は、1重トンネル接合構造であったが、図3に示すように、2重トンネル接合構造を有する磁気抵抗効果素子1であってもよい。この2重トンネル接合構造を有する磁気抵抗効果素子1は、図2に示す1重トンネル接合の磁気抵抗効果素子の磁化自由層2のトンネルバリア層3と反対側にトンネルバリア層6を設け、トンネルバリア層6の磁化自由層2と反対側に磁化固着層7を設け、磁化固着層7のトンネルバリア層6と反対側に磁化固着層7の磁化の向きを固着する反強磁性層8を設けた構成となっている。
(First embodiment)
FIG. 1A is a plan view of the magnetic memory cell according to the first embodiment of the present invention, and FIG. The magnetic memory of the present embodiment is a toggle type magnetic memory, and has a plurality of memory cells. Each memory cell includes a word line 20 and a bit line 30 substantially orthogonal to the word line 20. The magnetoresistive effect element 1 disposed in the intersecting region is provided. The magnetoresistive element 1, as shown in FIG. 2, has a non-magnetic metal layer 2 3 via the antiferromagnetically coupled magnetic layer 2 1, 2 2, the magnetization direction (magnetic moment in response to an external magnetic field ) Is a magnetic recording layer that changes, a magnetization fixed layer 4 in which the magnetization direction is fixed, a tunnel barrier layer 3 provided between the magnetization free layer 2 and the magnetization fixed layer 4, An antiferromagnetic layer 5 that fixes the magnetization direction of the magnetization pinned layer 4. The magnetoresistive element 1 is provided with the direction of magnetization of the magnetization pinned layer 4, close to the magnetization pinned layer 4, a tunnel conductance through the tunnel barrier by the relative angle between the magnetic layer 2 2 of the magnetization direction of the magnetization free layer 2 Changes. 2 has a single tunnel junction structure, it may be a magnetoresistive element 1 having a double tunnel junction structure as shown in FIG. The magnetoresistive effect element 1 having this double tunnel junction structure is provided with a tunnel barrier layer 6 on the side opposite to the tunnel barrier layer 3 of the magnetization free layer 2 of the magnetoresistive effect element of the single tunnel junction shown in FIG. A magnetization pinned layer 7 is provided on the side of the barrier layer 6 opposite to the magnetization free layer 2, and an antiferromagnetic layer 8 is provided on the side of the magnetization pinned layer 7 opposite to the tunnel barrier layer 6 to pin the magnetization direction of the magnetization pinned layer 7. It becomes the composition.

そして、磁気抵抗効果素子1の磁化自由層2の平面形状は、図4に示すように、磁化容易軸方向が磁化困難軸方向に比べて長い本体部2aと、ほぼ中央部に配置された磁化困難軸方向に突出した突出部2bとを備えている。本実施形態においては、磁化自由層2の磁化容易軸方向の長さa(=540nm)と磁化困難軸方向の長さb(=360nm)との比(=a/b)は1.5である。本実施形態においては、磁化自由層2の各磁性層の平面形状は、磁化困難軸方向の長さは、中央部から端部にかけて単調に減少するように構成されている。なお、突出部2bは、図4に示すように磁化容易軸に対して対称であってもよいし、非対称でもよい。これは、トグル方式では磁気モーメントの回転方向は一方向に限られるので、上下が非対称であっても磁気モーメントの回転の仕方はデータが1から0に変化する場合でも0から1に変化する場合でもまったく同じであるからである。また、磁気抵抗効果素子1の磁化自由層2の磁化容易軸は、図1に示すように、ワード線20およびビット線30と実質的に45度の角度をなすように配置される。   Then, as shown in FIG. 4, the planar shape of the magnetization free layer 2 of the magnetoresistive effect element 1 has a main body portion 2a in which the easy axis direction is longer than the hard axis direction, and the magnetization arranged substantially at the center. And a protruding portion 2b protruding in the difficult axis direction. In the present embodiment, the ratio (= a / b) of the length a (= 540 nm) in the easy axis direction of the magnetization free layer 2 to the length b (= 360 nm) in the hard axis direction is 1.5. is there. In the present embodiment, the planar shape of each magnetic layer of the magnetization free layer 2 is configured such that the length in the hard axis direction monotonously decreases from the center to the end. The protrusion 2b may be symmetric with respect to the easy magnetization axis as shown in FIG. 4 or may be asymmetric. This is because in the toggle method, the rotation direction of the magnetic moment is limited to one direction, so even if the top and bottom are asymmetrical, the rotation of the magnetic moment changes from 0 to 1 even when the data changes from 1 to 0. But it is exactly the same. Further, the easy axis of magnetization of the magnetization free layer 2 of the magnetoresistive effect element 1 is arranged so as to form an angle of substantially 45 degrees with the word line 20 and the bit line 30 as shown in FIG.

本実施形態による磁気メモリのトグル方式の書き込みについてLLG(Landau-Lifsiz-Gilbert)シミュレーションを用いて計算した結果を、図5、6を参照して説明する。なお、磁化自由層2の上下の磁性層2、2の膜厚は3nmとし、磁性層2、2の間にある非磁性層2の膜厚は2nm、反強磁性結合定数は0.02erg/cmを仮定した。なお、このシミュレーションにおいては、磁界の計算は静磁界シミュレーターを用いて行った。図5は書込みに使用したビット線30およびワード線20の書込み電流パルスを示し、図6は図5に示す電流パルスをビット線30およびワード線20に流した場合の磁化自由層2の一方の磁性層2の一方向(例えば図2では、左方向)の規格化された磁気モーメントMxの時間変化を示している。電流パルスを流す前の磁化固着層4の磁気モーメントは図2に示すように右側を向き、磁化自由層2の磁性層2の磁気モーメントの向きは図2においては左側、すなわち、磁化固着層4の磁気モーメントとは実質的に180度異なっている向きであり、磁性層2の磁気モーメントの向きは図2においては右側、すなわち、磁化固着層4の磁気モーメントとは実質的に同じ向きとなっている。この状態で、時刻tにおいて、ワード線20に電流を流すと、磁化自由層2の磁性層2の上記一方向の磁気モーメントは小さくなる。すなわち、磁性層2の磁気モーメントの向きは、回転し始める。そして、ワード線を流れる電流が時刻tで所定の電流値に達し、時刻tまで上記所定の電流値に維持すると、その間はこの電流によって発生する磁界と磁性層2の上記一方向に直交する方向の磁気モーメントとが釣り合い、磁性層2の上記一方向の磁気モーメントは一定値に維持される。すなわち、磁性層2の磁気モーメントの回転は停止する。そして、時刻tからビット線30に電流を流し始めると、磁性層2の上記一方向の磁気モーメントはさらに小さくなり、再び回転を開始する。この回転はビット線30を流れる電流が所定値に達する時刻tまで、続く。そして時刻tから時刻tの間に磁性層2の上記一方向の磁気モーメントは0となり、磁化困難軸方向を通過する。時刻t時刻tの間は、ワード線20およびビット線30を流れる電流は所定値となっているので、ワード線20およびビット線30を流れる電流による磁界と磁性層2の磁気モーメントが釣り合い、磁性層2の上記一方向の磁気モーメントは一定値に維持され、磁性層2の磁気モーメントの回転は停止する。時刻tから時刻tにかけて、ビット線30を流れる電流は所定値のままであるが、ワード線20を流れる電流が所定値から0まで減少することにより、磁性層2の上記一方向の磁気モーメントはさらに減少し、磁性層2の磁気モーメントは再び回転を開始する。時刻tから時刻tにかけてビット線30にのみ所定値の大きさの電流が流れているので、この電流によって発生する磁界と磁性層2の上記一方向に直交する方向の磁気モーメントとが釣り合い、磁性層2の上記一方向の磁気モーメントは一定値に維持され、磁性層2の磁気モーメントの回転は停止する。時刻tから時刻tにかけて、ビット線30を流れる電流が所定値から0まで減少することにより、磁性層2の上記一方向の磁気モーメントはさらに減少し、磁性層2の磁気モーメントは再び回転し、時刻tの直前の磁性層2の磁気モーメントと実質的に180度異なる方向の磁気モーメントとなる。すなわち、時刻tの直前の磁性層2の磁化の向きが反転したことになる。なお、上記過程において、磁性層2は磁性層2と反強磁性結合しているため、磁性層2の磁化の向きは磁性層2の磁化の向きとともに回転する。 The result of calculating the toggle-type writing of the magnetic memory according to the present embodiment using an LLG (Landau-Lifsiz-Gilbert) simulation will be described with reference to FIGS. Incidentally, magnetization free layer 2 of the upper and lower magnetic layer 2 1, 2 2 of the thickness was 3 nm, the magnetic layer 2 1, 2 is between 2 non-magnetic layer 2 3 The thickness of 2 nm, an antiferromagnetic coupling constant Assumed 0.02 erg / cm 2 . In this simulation, the magnetic field was calculated using a static magnetic field simulator. 5 shows a write current pulse of the bit line 30 and the word line 20 used for writing. FIG. 6 shows one of the magnetization free layers 2 when the current pulse shown in FIG. (for example, in Figure 2, left) magnetic layer 2 2-way shows the time variation of the normalized magnetic moment Mx of. The magnetic moment of the pinned layer 4 before passing current pulses directed to the right as shown in FIG. 2, the orientation of the magnetic moment of the magnetic layer 2 2 of the magnetization free layer 2 left in FIG. 2, i.e., the magnetization pinned layer the fourth magnetic moments are oriented to differ substantially 180 degrees, substantially the same orientation direction of the magnetic moment of the magnetic layer 2 1 is the right side in FIG. 2, i.e., the magnetic moment of the pinned layer 4 It has become. In this state, at time t 0, when an electric current is applied to the word line 20, the one direction of the magnetic moment of the magnetic layer 2 2 of the magnetization free layer 2 is reduced. That is, the orientation of the magnetic moment of the magnetic layer 2 2 begins to rotate. Then, the current flowing through the word line is reached at time t 1 to a predetermined current value, maintaining the predetermined current value to the time t 2, the during the above one direction of the magnetic field and the magnetic layer 2 2 generated by this current the direction of the magnetic moment perpendicular are balanced, the one direction of the magnetic moment of the magnetic layer 2 2 is maintained at a constant value. That is, the rotation of the magnetic moment of the magnetic layer 2 2 stops. When the time t 2 begins to conduct current to the bit line 30, the one direction of the magnetic moment of the magnetic layer 2 2 is even smaller, it begins to rotate again. This rotation until time t 3 when the current flowing through the bit line 30 reaches a predetermined value, continues. And the one direction of the magnetic moment of the magnetic layer 2 2 between times t 3 from time t 2 0, and the passes through the hard-axis direction. During the time t 3 the time t 4, since the current flowing through the word line 20 and bit line 30 has a predetermined value, the magnetic field and the magnetic layer by the current flowing through the word line 20 and bit line 30 2 2 magnetic moment balancing, the one direction of the magnetic moment of the magnetic layer 2 2 is maintained at a constant value, the rotation of the magnetic moment of the magnetic layer 2 2 stops. And from time t 4 to time t 5, although the current flowing through the bit line 30 remains at a predetermined value, when a current flowing through the word line 20 is decreased to 0 from a predetermined value, the magnetic layer 2 2 of the one-way the magnetic moment is reduced further, the magnetic moment of the magnetic layer 2 2 starts rotating again. Since the magnitude of the current of a predetermined value only from time t 5 to the bit line 30 to time t 6 is flowing, and the direction of the magnetic moment perpendicular to the one direction of the magnetic field and the magnetic layer 2 2 generated by this current balancing, the one direction of the magnetic moment of the magnetic layer 2 2 is maintained at a constant value, the rotation of the magnetic moment of the magnetic layer 2 2 stops. Period from the time t 6 to time t 7, when a current flowing through the bit line 30 decreases to 0 from a predetermined value, the one direction of the magnetic moment of the magnetic layer 2 2 decreases further, the magnetic moment of the magnetic layer 2 2 rotation, the magnetic moment of the magnetic layer 2 2 immediately before time t 0 and substantially 180 ° from the direction of the magnetic moment again. That is, the magnetic layer 2 2 of the magnetization direction immediately before time t 0 will be inverted. In the above process, the magnetic layer 2 1 since antiferromagnetically coupled to the magnetic layer 2 2, the magnetization direction of the magnetic layer 2 1 is rotated together with the magnetization direction of the magnetic layer 2 2.

その後、図5に示す電流パルスをワード線20およびビット線30に再び流すと、磁性層2の上記一方向の磁気モーメントは−1から+1に増加するため、磁性層2の磁気モーメントは回転し、最後に、時刻tの直前の磁性層2の磁気モーメントと実質的に同じ方向の磁気モーメントとなる(図6の右側のグラフ参照)。 Thereafter, the flow again current pulses shown in FIG. 5 to the word line 20 and bit line 30, the one direction of the magnetic moment of the magnetic layer 2 2 to increase from -1 to +1, the magnetic moment of the magnetic layer 2 2 rotated, finally, a magnetic layer 2 2 of the magnetic moment substantially the same direction of the magnetic moment immediately before time t 0 (see the right side of the graph in FIG. 6).

本実施形態において、ワード線20とビット線30に流す電流の大きさを変えて、磁化自由層の磁気モーメントが反転する否かをシミュレーションした結果を図7に示す。横軸はビット線30に流す電流Iを、縦軸はワード線Iに流す電流の大きさを示し、記号「○」は反転したことを示し、記号「×」は反転しなかったことを示している。磁化自由層2の磁化容易軸方向の長さaと磁化困難軸方向の長さbとの比(=a/b)は1.5である本実施形態においては、図7からわかるように、ワード線20およびビット線30に流す電流が10mA以上であれば、磁化自由層2の磁気モーメントは反転し、10mAより小さいと反転しない。そして、ワード線20およびビット線30の一方のみに電流を流しても反転しないことがわかる。 FIG. 7 shows a result of simulating whether or not the magnetic moment of the magnetization free layer is reversed by changing the magnitude of the current passed through the word line 20 and the bit line 30 in the present embodiment. Horizontal axis represents current I B flowing through the bit line 30, it vertical axis represents the magnitude of the current flowing through the word lines I W, the symbol "○" indicates that the inverted symbol "×" as not inverted Is shown. In this embodiment in which the ratio (= a / b) of the length a in the easy axis direction of the magnetization free layer 2 to the length b in the hard axis direction is 1.5, as can be seen from FIG. If the current passed through the word line 20 and the bit line 30 is 10 mA or more, the magnetic moment of the magnetization free layer 2 is reversed, and if it is less than 10 mA, it is not reversed. It can be seen that no reversal occurs even when a current is supplied to only one of the word line 20 and the bit line 30.

次に、図8に示すように、磁化自由層2の平面形状が長方形の場合、すなわち、磁化困難軸方向に突起部がない場合以外は本実施形態と同じ磁気メモリを比較例として、この比較例に対して、ワード線およびビット線に図5に示す電流を流し、磁化自由層の磁気モーメントが反転する否かをシミュレーションした結果を図9に示す。なお、図8に示す磁化自由層2の平面形状の長辺の長さa(=720nm)と短辺の長さb(=240nm)との比(=a/b)は3である。図9からわかるように、この比較例においては、ワード線20およびビット線30に流す電流が14mA以上であれば、磁化自由層2の磁気モーメントは反転し、13mA以下であると反転しない。   Next, as shown in FIG. 8, when the planar shape of the magnetization free layer 2 is a rectangle, that is, when there is no protrusion in the hard axis direction, the same magnetic memory as in this embodiment is used as a comparative example. FIG. 9 shows a result of simulating whether or not the magnetic moment of the magnetization free layer is reversed by passing the current shown in FIG. 5 through the word line and the bit line as an example. The ratio (= a / b) of the length a (= 720 nm) of the long side of the planar shape of the magnetization free layer 2 shown in FIG. 8 to the length b (= 240 nm) of the short side is 3. As can be seen from FIG. 9, in this comparative example, if the current flowing through the word line 20 and the bit line 30 is 14 mA or more, the magnetic moment of the magnetization free layer 2 is reversed, and if it is 13 mA or less, it is not reversed.

以上説明したように、本実施形態によれば、書き込み電流を低減することができる。また、トグル方式の磁気メモリであるので、誤書き込みを抑制することができる。   As described above, according to the present embodiment, the write current can be reduced. Further, since it is a toggle type magnetic memory, erroneous writing can be suppressed.

(第2実施形態)
次に、本発明の第2実施形態による磁気メモリを図10乃至16を参照して説明する。本実施形態の磁気メモリは、第1実施形態の磁気メモリにおいて、磁化自由層2の平面形状を図10に示す形状としたものである。すなわち、磁化自由層2の平面形状は、磁化容易軸方向が磁化困難軸方向に比べて長い本体部2aと、ほぼ中央部に配置された磁化困難軸方向に突出した突出部2bとを備え、磁化容易軸方向の長さa(=480nm)と磁化困難軸方向の長さb(=360nm)との比(=a/b)が1.33である。なお、磁化自由層2の平面形状以外は、第1実施形態と同じ構成となっている。
(Second Embodiment)
Next, a magnetic memory according to a second embodiment of the present invention will be described with reference to FIGS. The magnetic memory of this embodiment is the same as the magnetic memory of the first embodiment, except that the planar shape of the magnetization free layer 2 is the shape shown in FIG. That is, the planar shape of the magnetization free layer 2 includes a main body portion 2a in which the easy axis direction is longer than the hard axis direction, and a protruding portion 2b that protrudes in the hard axis direction and is disposed substantially at the center. The ratio (= a / b) of the length a (= 480 nm) in the easy axis direction to the length b (= 360 nm) in the hard axis direction is 1.33. The configuration is the same as that of the first embodiment except for the planar shape of the magnetization free layer 2.

本実施形態において、図5に示す電流パルスの組をワード線およびビット線に2回流した場合の磁化自由層2の磁性層2の一方向(例えば図2では、左方向)の規格化された磁気モーメントMxの時間変化を図11に示す。この図11からわかるように、第1実施形態と同様に、磁化自由層2の磁化モーメントは、最初の電流パルスの組によって、180度回転し、次の電流パルスの組によって更に180度回転して、元に戻っている。 In the present embodiment, (For example, in FIG. 2, left) direction magnetization of the free layer 2 of the magnetic layer 2 2 when two swirling flow to a word line and a bit line of a set of current pulses shown in FIG. 5 is normalized FIG. 11 shows the time change of the magnetic moment Mx. As can be seen from FIG. 11, as in the first embodiment, the magnetization moment of the magnetization free layer 2 is rotated 180 degrees by the first set of current pulses and further rotated 180 degrees by the next set of current pulses. And back.

また、本実施形態において、ワード線20とビット線30に流す電流の大きさを変えて、磁化自由層の磁気モーメントが反転する否かをシミュレーションした結果を図12に示す。横軸はビット線30に流す電流Iを、縦軸はワード線Iに流す電流の大きさを示し、記号「○」は反転したことを示し、記号「×」は反転しなかったことを示している。磁化容易軸方向の長さaと磁化困難軸方向の長さbとの比(=a/b)は1.33である本実施形態においては、図12からわかるように、ワード線20およびビット線30に流す電流が7mA以上であれば、磁化自由層2の磁気モーメントは反転し、7mAより小さいと反転しない。そして、ワード線20およびビット線30の一方のみに電流を流しても反転しないことがわかる。このように、ワード線20およびビット線30の一方のみに電流を流しても磁気モーメントを反転させることはできず、誤書き込みが起こらないため、書込みマージンを大きく取れる。磁化反転する際、その磁化パターンを調べた結果、一斉回転的に磁化反転を起こしており、C型磁区のような複雑な磁区構造は取っていない。 Further, FIG. 12 shows the result of simulating whether or not the magnetic moment of the magnetization free layer is reversed by changing the magnitude of the current passed through the word line 20 and the bit line 30 in this embodiment. Horizontal axis represents current I B flowing through the bit line 30, it vertical axis represents the magnitude of the current flowing through the word lines I W, the symbol "○" indicates that the inverted symbol "×" as not inverted Is shown. The ratio of the length a in the easy axis direction to the length b in the hard axis direction (= a / b) is 1.33. In this embodiment, as shown in FIG. 12, the word line 20 and the bit If the current passed through the line 30 is 7 mA or more, the magnetic moment of the magnetization free layer 2 is reversed, and if it is smaller than 7 mA, it is not reversed. It can be seen that no reversal occurs even when a current is supplied to only one of the word line 20 and the bit line 30. As described above, even if a current is supplied to only one of the word line 20 and the bit line 30, the magnetic moment cannot be reversed and erroneous writing does not occur, so that a large write margin can be obtained. As a result of examining the magnetization pattern at the time of magnetization reversal, the magnetization reversal occurred simultaneously, and a complicated magnetic domain structure such as a C-type magnetic domain is not taken.

以上説明したように、本実施形態の磁気メモリは第1実施形態の磁気メモリよりも、磁化自由層の磁気モーメントを反転するための電流が低い。そこで、磁化自由層2の磁化容易軸方向の長さaと磁化困難軸方向の長さbとの比(=a/b)を変えたときの、磁化自由層の磁気モーメントを反転するに必要な電流(反転電流)をシミュレーションによって求めた結果を図13に示す。図13からわかるように、比a/bが1.33より大きくなると反転電流も大きくなっていることがわかる。なお、図13において、比a/bが3のデータは第1実施形態の場合であり、比a/bが3のデータは磁化自由層2の平面形状が図8に示す長方形の場合である。したがって、比a/bは、1より大きく、1.5以下であれば、反転電流、すなわち書込み電流を小さくすることができる。なお、比a/bは、1より大きく、1.33以下であることがより好ましい。   As described above, the magnetic memory of this embodiment has a lower current for reversing the magnetic moment of the magnetization free layer than the magnetic memory of the first embodiment. Therefore, it is necessary to reverse the magnetic moment of the magnetization free layer when the ratio (= a / b) of the length a in the magnetization easy axis direction a and the length b in the magnetization difficult axis direction of the magnetization free layer 2 is changed. FIG. 13 shows the result of obtaining a simple current (reversal current) by simulation. As can be seen from FIG. 13, when the ratio a / b is greater than 1.33, the inversion current is also increased. In FIG. 13, the data with the ratio a / b of 3 is for the first embodiment, and the data with the ratio a / b of 3 is for the case where the planar shape of the magnetization free layer 2 is the rectangle shown in FIG. . Therefore, if the ratio a / b is greater than 1 and 1.5 or less, the inversion current, that is, the write current can be reduced. The ratio a / b is more preferably greater than 1 and less than or equal to 1.33.

次に、本実施形態において、磁気抵抗効果素子の磁化自由層のサイズおよび形状を変えないで、ワード線20とビット線30の配線幅を変えた場合の反転電流の変化を図14に示す。この実施形態においては、ワード線20およびビット線30の配線幅が460nmのときに反転電流が最小となっている。このときの平面図を図15に示す。すなわち、ワード線20およびビット線30に対して実質的に45度傾いて磁気抵抗効果素子が配置されている。さらに、磁気抵抗効果素子の本体部の対角線の方向に相対抗する角部それぞれがワード線20およびビット線30の側面に実質的に一致し、かつ磁気抵抗効果素子がワード線20およびビット線30に過不足なく覆われているときに、反転電流が最小となっている。なお、本明細書においては、磁気抵抗効果素子の本体部の対角線の方向に相対抗する角部間の長さを磁気抵抗効果素子の対角線の長さという。   Next, in this embodiment, FIG. 14 shows the change of the inversion current when the wiring width of the word line 20 and the bit line 30 is changed without changing the size and shape of the magnetization free layer of the magnetoresistive effect element. In this embodiment, the reversal current is minimized when the wiring width of the word line 20 and the bit line 30 is 460 nm. A plan view at this time is shown in FIG. In other words, the magnetoresistive effect element is disposed at a substantially 45 ° inclination with respect to the word line 20 and the bit line 30. Further, the corner portions of the magnetoresistive element that are opposed to the diagonal direction substantially coincide with the side surfaces of the word line 20 and the bit line 30, and the magnetoresistive element is the word line 20 and the bit line 30. The reversal current is at a minimum when it is covered without excess or deficiency. In the present specification, the length between the corners opposed to the direction of the diagonal line of the main body part of the magnetoresistive effect element is referred to as the length of the diagonal line of the magnetoresistive effect element.

トグル方式の磁気メモリにおいては、磁化自由層の磁性層の磁化(磁気モーメント)が反転するためには、各磁性層の磁化が一斉に動く必要がある。しかし、ワード線およびビット線の配線幅が、図15に示すようにワード線20に対して実質的に45度傾いて配置された磁気抵抗効果素子の対角線の長さ460nmよりも狭くなると、磁性層の一部分のみの磁化が優先的に回転しようとするが、反転するには磁性層の磁化が回転する必要があるため、反転する電流は大きくなる(図14参照)。また、ワード線およびビット線の配線幅が磁気抵抗効果素子の対角線の長さ460nmよりも大きくなると、ワード線またはビット線に流れる電流による磁界から磁化自由層2が遠ざかり、このため、反転電流も大きくなる。以上のことから、ワード線およびビット線の幅は、磁気抵抗効果素子の対角線の長さ(本実施形態においては460nm(図15参照))の−10%〜+10%の範囲にあれば、反転電流(書込み電流)を小さくすることができる。   In the toggle type magnetic memory, in order to reverse the magnetization (magnetic moment) of the magnetic layer of the magnetization free layer, the magnetization of each magnetic layer needs to move all at once. However, when the wiring width of the word line and the bit line becomes narrower than the length 460 nm of the diagonal line of the magnetoresistive effect element disposed substantially inclined by 45 degrees with respect to the word line 20 as shown in FIG. The magnetization of only a part of the layer tends to rotate preferentially, but since the magnetization of the magnetic layer needs to be rotated for reversal, the reversal current increases (see FIG. 14). Further, when the wiring width of the word line and the bit line becomes larger than the length of the diagonal line of the magnetoresistive effect element, 460 nm, the magnetization free layer 2 moves away from the magnetic field caused by the current flowing through the word line or the bit line, and therefore, the inversion current is also reduced. growing. From the above, if the width of the word line and the bit line is in the range of −10% to + 10% of the length of the diagonal line of the magnetoresistive element (460 nm (see FIG. 15 in this embodiment)), it is inverted. The current (write current) can be reduced.

以上説明したように、第2実施形態によれば、誤書き込みを抑制しつつ、書き込み電流を低減することができる。   As described above, according to the second embodiment, it is possible to reduce the write current while suppressing erroneous writing.

なお、本発明の各実施形態おいて、磁化自由層を所望の形状にパターニングすることは重要である。サイズが0.1μm程度の素子を作成するのであれば、光リソグラフィーを用いることができる。使用する波長にあわせて近接効果を考慮にいれたフォトマスクを用意すれば、最終的に露光された形状を所望のものとすることができる。   In each embodiment of the present invention, it is important to pattern the magnetization free layer into a desired shape. If an element having a size of about 0.1 μm is produced, photolithography can be used. If a photomask that takes the proximity effect into consideration in accordance with the wavelength to be used is prepared, the final exposed shape can be made desired.

突出部と本体部の接合部を尖らせるためには、図16(a)、(b)に示すように、マスクを二回に分けてパターニングする2ステップ法が有効である。すなわち、第一のマスク51を用いて本体部2aをパターニングする。そして、パターニングした本体部の周辺に薄く側壁を選択的に形成した後、第二のマスク52を用いて側壁をパターニングして突出部を形成すれば両者の交叉する部分は極めてシャープに尖ることになる。このとき、ハードマスク材料の下部のストッパ層にハードマスクとの選択比が大きい材料を選択することが重要となる。ハードマスクのエッチングにTaを用い、ストッパ層にAlを用い、エッチングガスCFを導入したRIEを用いて加工すれば通常10以上の選択比をとることができる。なお、本体部にTaからなるハードマスクのパターンを転写し、ストッパ層に突出部に対応するレジストパターンを設け、このレジストパターンとハードマスクとを用いて、ストッパ層を加工してもよい。 In order to sharpen the joint between the protrusion and the main body, as shown in FIGS. 16A and 16B, a two-step method of patterning the mask in two steps is effective. That is, the main body 2 a is patterned using the first mask 51. Then, after selectively forming a thin side wall around the patterned main body, and then patterning the side wall using the second mask 52 to form a protruding portion, the crossing portion of both is very sharp. Become. At this time, it is important to select a material having a large selection ratio with respect to the hard mask for the stopper layer below the hard mask material. If processing is performed using RIE using Ta for etching the hard mask, Al for the stopper layer, and introducing the etching gas CF 4 , a selection ratio of usually 10 or more can be obtained. Alternatively, a hard mask pattern made of Ta may be transferred to the main body, a resist pattern corresponding to the protruding portion may be provided on the stopper layer, and the stopper layer may be processed using the resist pattern and the hard mask.

なお、上記各実施形態において、磁化自由層の磁性層の平面形状は、本体部と突出部との接合部は外側に丸みを帯びていても良いし、内側にくびれた曲線形状を有していてもよい。また、磁化自由層の磁性層の平面形状は、十字形状であってもよい。また、磁化自由層の磁性層の角部は丸みを帯びていてもよい。   In each of the embodiments described above, the planar shape of the magnetic layer of the magnetization free layer may be such that the joint portion between the main body portion and the projecting portion is rounded outward or has a curved shape constricted inward. May be. Further, the planar shape of the magnetic layer of the magnetization free layer may be a cross shape. The corners of the magnetic layer of the magnetization free layer may be rounded.

また、上記各実施形態においては、磁化固着層の平面形状も磁化自由層の平面形状と同一であってもよいし、異なっていてもよい。   In each of the above embodiments, the planar shape of the magnetization pinned layer may be the same as or different from the planar shape of the magnetization free layer.

なお、上記実施形態の磁気メモリのデータの読み出しは、背景技術に記載した特許文献1に記載の方法によって読み出すことができる。   In addition, the data of the magnetic memory of the above embodiment can be read by the method described in Patent Document 1 described in the background art.

以上述べたように、本発明の各実施形態によれば、磁化反転に必要な磁界を小さくし、磁化反転電流を低減することが可能となるトグル方式の磁気メモリを提供できる。したがって、本発明の各実施形態の磁気メモリでは,消費電力を低減するとともに,書き込みマージンを広く取れることができる。   As described above, according to each embodiment of the present invention, it is possible to provide a toggle type magnetic memory capable of reducing a magnetic field necessary for magnetization reversal and reducing a magnetization reversal current. Therefore, in the magnetic memory according to each embodiment of the present invention, power consumption can be reduced and a wide write margin can be obtained.

本発明の第1実施形態による磁気メモリの構成を示す図。The figure which shows the structure of the magnetic memory by 1st Embodiment of this invention. 本発明の各実施形態に用いられる磁気抵抗効果素子の構成を示す断面図。Sectional drawing which shows the structure of the magnetoresistive effect element used for each embodiment of this invention. トンネル2重接合の構造を有する磁気抵抗効果素子の構成を示す断面図。Sectional drawing which shows the structure of the magnetoresistive effect element which has a structure of a tunnel double junction. 第1実施形態による磁気メモリの磁化自由層の平面形状を示す図。The figure which shows the planar shape of the magnetization free layer of the magnetic memory by 1st Embodiment. 第1実施形態の磁気メモリの書込み電流の波形図。The wave form diagram of the write current of the magnetic memory of 1st Embodiment. 図5に示す電流を第1実施形態のワード線およびビット線に流した場合の磁化自由層を構成する一方の磁性層の一方向の規格化された磁気モーメントMxの時間変化を示す図。The figure which shows the time change of the one-way normalized magnetic moment Mx which comprises the magnetization free layer when the electric current shown in FIG. 5 is sent through the word line and bit line of 1st Embodiment. 第1実施形態の磁気メモリのワード線およびビット線に加える電流の大きさを変えた場合の磁化自由層の磁気モーメントが反転可能か否かを調べた結果を示す図。The figure which shows the result of having investigated whether the magnetic moment of the magnetization free layer at the time of changing the magnitude | size of the electric current added to the word line and bit line of the magnetic memory of 1st Embodiment is reversible. 第1実施形態の比較例による磁気メモリの磁化自由層の平面形状を示す図。The figure which shows the planar shape of the magnetization free layer of the magnetic memory by the comparative example of 1st Embodiment. 比較例の磁気メモリのワード線およびビット線に加える電流の大きさを変えた場合の磁化自由層の磁気モーメントが反転可能か否かを調べた結果を示す図。The figure which shows the result of having investigated whether the magnetic moment of the magnetization free layer at the time of changing the magnitude | size of the electric current added to the word line and bit line of the magnetic memory of a comparative example is reversible. 本発明の第2実施形態による磁気メモリの磁化自由層の平面形状を示す図。The figure which shows the planar shape of the magnetization free layer of the magnetic memory by 2nd Embodiment of this invention. 図5に示す電流を第2実施形態のワード線およびビット線に流した場合の磁化自由層を構成する一方の磁性層の一方向の規格化された磁気モーメントMxの時間変化を示す図。The figure which shows the time change of the unidirectional normalized magnetic moment Mx of one magnetic layer which comprises the magnetization free layer when the electric current shown in FIG. 5 is sent through the word line and bit line of 2nd Embodiment. 第2実施形態の磁気メモリのワード線およびビット線に加える電流の大きさを変えた場合の磁化自由層の磁気モーメントが反転可能か否かを調べた結果を示す図。The figure which shows the result of having investigated whether the magnetic moment of the magnetization free layer at the time of changing the magnitude | size of the electric current added to the word line and bit line of the magnetic memory of 2nd Embodiment is reversible. 磁化自由層の磁化容易軸方向の長さと磁化困難軸方向の長さとの比を変えたときの反転電流の変化を示す図。The figure which shows the change of a reversal current when changing the ratio of the length of the magnetization easy axis direction of a magnetization free layer, and the length of a magnetization difficult axis direction. 第2実施形態において、磁気抵抗効果素子のサイズを変えずにワード線およびビット線の幅を変えた場合の反転電流の変化を示す図。The figure which shows the change of the inversion current at the time of changing the width of a word line and a bit line, without changing the size of a magnetoresistive effect element in 2nd Embodiment. 第2実施形態において、最適な幅を有するワード線と磁気抵抗効果素子の平面図。The top view of the word line which has the optimal width | variety, and a magnetoresistive effect element in 2nd Embodiment. 第2実施形態において、磁化自由層のパターニングを説明する図。The figure explaining patterning of a magnetization free layer in 2nd Embodiment.

符号の説明Explanation of symbols

1 磁気抵抗効果素子
2 磁化自由層(磁気記録層)
21、22 磁性層
23 非磁性層
4 磁化固着層
5 反強磁性層
20 ワード線
30 ビット線
1 Magnetoresistive element 2 Magnetization free layer (magnetic recording layer)
21, 22 Magnetic layer 23 Nonmagnetic layer 4 Magnetization pinned layer 5 Antiferromagnetic layer 20 Word line 30 Bit line

Claims (7)

第1の配線と、前記第1の配線に交差する第2の配線と、前記第1および第2の配線の交差領域に対応して設けられた磁気抵抗効果素子と、を備え、
前記磁気抵抗効果素子は、
磁化の向きが固着された磁化固着層と、
それぞれの平面形状が、磁化容易軸方向が磁化困難軸方向に比べて長い本体部と前記本体部の中央部の磁化困難軸方向に設けられた突出部とを有する少なくとも2層以上の磁性層と、各磁性層との間に設けられた非磁性層と、を含み外部磁界により前記磁性層の磁化の向きが可変の磁化自由層と、
を備え、前記磁気抵抗効果素子は、前記磁化自由層の磁化容易軸の方向が前記第1および第2の配線に対して傾いて配置され、
前記磁化自由層の前記磁性層のそれぞれは、磁化容易軸方向の長さと磁化困難軸方向の長さとの比が1より大きく1.5以下であることを特徴とする磁気メモリ。
A first wiring, a second wiring intersecting with the first wiring, and a magnetoresistive effect element provided corresponding to an intersection region of the first and second wirings,
The magnetoresistive effect element is
A magnetization pinned layer in which the magnetization direction is fixed;
Each planar shape has at least two or more magnetic layers having a main body portion whose easy axis direction is longer than the hard axis direction and a projecting portion provided in the hard axis direction at the center of the main body portion; A non-magnetic layer provided between each magnetic layer, and a magnetization free layer in which the magnetization direction of the magnetic layer is variable by an external magnetic field,
The magnetoresistive effect element is arranged such that the direction of the easy magnetization axis of the magnetization free layer is inclined with respect to the first and second wirings,
Each of the magnetic layers of the magnetization free layer is characterized in that the ratio of the length in the easy axis direction to the hard axis direction is greater than 1 and 1.5 or less.
前記磁化自由層の磁化容易軸の方向の、前記第1および第2の配線に対する傾き角は実質的に45度であることを特徴とする請求項1記載の磁気メモリ。   2. The magnetic memory according to claim 1, wherein an inclination angle of the magnetization free axis direction of the magnetization free layer with respect to the first and second wirings is substantially 45 degrees. 前記磁化自由層の前記磁性層のそれぞれは、磁化容易軸方向の長さと磁化困難軸方向の長さとの比が1より大きく1.33以下であることを特徴とする請求項1または2記載の磁気メモリ。   3. The ratio of the length in the easy magnetization axis direction to the hard magnetization axis direction in each of the magnetic layers of the magnetization free layer is greater than 1 and less than or equal to 1.33. 3. Magnetic memory. 前記磁化自由層の各磁性層は、前記本体部と前記突出部との接合部分が尖っていることを特徴とする請求項1乃至3のいずれかに記載の磁気メモリ。   4. The magnetic memory according to claim 1, wherein each magnetic layer of the magnetization free layer has a sharp junction between the main body and the protrusion. 5. 前記磁化自由層の各磁性層の角部は丸みを帯びていることを特徴とする請求項1乃至4のいずれかに記載の磁気メモリ。   5. The magnetic memory according to claim 1, wherein corners of the magnetic layers of the magnetization free layer are rounded. 前記磁化自由層の各磁性層は、磁化困難軸方向の長さは、中央部から端部にかけて単調に減少する平面形状であることを特徴とする請求項1乃至5のいずれかに記載の磁気メモリ。   6. The magnetism according to claim 1, wherein each magnetic layer of the magnetization free layer has a planar shape in which a length in a hard magnetization axis direction monotonously decreases from a central portion to an end portion. memory. 前記第1および第2の配線に対して傾いて配置された前記磁気抵抗効果素子の前記第1または第2の配線の幅方向の寸法に対して、前記第1および第2の配線の幅は−10%〜+10%の範囲にあることを特徴とする請求項1乃至6のいずれかに記載の磁気メモリ。   The width of the first and second wirings with respect to the dimension in the width direction of the first or second wiring of the magnetoresistive effect element arranged to be inclined with respect to the first and second wirings is The magnetic memory according to claim 1, wherein the magnetic memory is in a range of −10% to + 10%.
JP2005284760A 2005-09-29 2005-09-29 Magnetic memory Active JP4936701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284760A JP4936701B2 (en) 2005-09-29 2005-09-29 Magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284760A JP4936701B2 (en) 2005-09-29 2005-09-29 Magnetic memory

Publications (2)

Publication Number Publication Date
JP2007096074A true JP2007096074A (en) 2007-04-12
JP4936701B2 JP4936701B2 (en) 2012-05-23

Family

ID=37981399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284760A Active JP4936701B2 (en) 2005-09-29 2005-09-29 Magnetic memory

Country Status (1)

Country Link
JP (1) JP4936701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118417A (en) * 2007-02-13 2013-06-13 Nec Corp Magnetoresistance effect element and magnetic random access memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118239A (en) * 2000-07-21 2002-04-19 Hewlett Packard Co <Hp> Optimum write conductor layout for improving performance of mram
JP2004128067A (en) * 2002-09-30 2004-04-22 Toshiba Corp Magnetoresistive effect element and magnetic memory
JP2005142508A (en) * 2003-11-10 2005-06-02 Sony Corp Magnetic storage element and magnetic memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118239A (en) * 2000-07-21 2002-04-19 Hewlett Packard Co <Hp> Optimum write conductor layout for improving performance of mram
JP2004128067A (en) * 2002-09-30 2004-04-22 Toshiba Corp Magnetoresistive effect element and magnetic memory
JP2005142508A (en) * 2003-11-10 2005-06-02 Sony Corp Magnetic storage element and magnetic memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118417A (en) * 2007-02-13 2013-06-13 Nec Corp Magnetoresistance effect element and magnetic random access memory

Also Published As

Publication number Publication date
JP4936701B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP3769241B2 (en) Magnetoresistive element and magnetic memory
JP4594839B2 (en) Magnetic random access memory, method for manufacturing magnetic random access memory, and data writing method for magnetic random access memory
JP3684225B2 (en) Magnetoresistive element and magnetic memory
KR20040058244A (en) Writing to a scalable MRAM element
JP2007503670A (en) Multi-state magnetic random access memory cell
JP2007027415A (en) Magnetic storage device
WO2012002156A1 (en) Magnetic memory element, magnetic memory
JP5652472B2 (en) Magnetic memory element, magnetic memory, and manufacturing method thereof
JP5278769B2 (en) Magnetic recording apparatus and magnetization fixing method
JP2007027414A (en) Magneto-resistance effect element and magnetic memory
JP4900647B2 (en) Magnetic random access memory
JP4936701B2 (en) Magnetic memory
US7885094B2 (en) MRAM with cross-tie magnetization configuration
JPWO2007099874A1 (en) Magnetoresistive element and magnetic random access memory
JP2004296858A (en) Magnetic memory element and magnetic memory device
JP3977816B2 (en) Magnetic random access memory and data writing method of the magnetic random access memory
JP2007067064A (en) Magnetic random access memory
JP4594694B2 (en) Magnetoresistive effect element
JP2003198001A (en) Magnetoresistive effect device and memory using the same
JP2004152449A (en) Magnetic memory
JP2006135292A (en) Magnetoresistive element
JP4110132B2 (en) Magnetoresistive effect element
JP2006108565A (en) Magnetoresistive effect element and magnetic storage device
JP2007027424A (en) Magneto-resistance effect element and magnetic random access memory
JP2007281229A (en) Magnetic resistance random access memory, its writing method and test method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350