JP2007095985A - Electrode for plasma processing device - Google Patents

Electrode for plasma processing device Download PDF

Info

Publication number
JP2007095985A
JP2007095985A JP2005283316A JP2005283316A JP2007095985A JP 2007095985 A JP2007095985 A JP 2007095985A JP 2005283316 A JP2005283316 A JP 2005283316A JP 2005283316 A JP2005283316 A JP 2005283316A JP 2007095985 A JP2007095985 A JP 2007095985A
Authority
JP
Japan
Prior art keywords
electrode
plasma processing
insulating material
cooling gas
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283316A
Other languages
Japanese (ja)
Inventor
Yutaka Omoto
大本  豊
Shigeru Shirayone
茂 白米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005283316A priority Critical patent/JP2007095985A/en
Publication of JP2007095985A publication Critical patent/JP2007095985A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce generation of abnormal discharge even with high voltage bias applied to work on a semiconductor integrated circuit at high speed, to inhibit the occurrence of working defects due to generation of foreign matters, and to stably apply the high voltage bias. <P>SOLUTION: A structure having a spirally worked groove around its outer periphery is inserted, and the groove around the outer periphery is used as an inlet guide for cooling gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体集積回路の加工に用いられるプラズマ処理装置、特にドライエッチング装置に用いられる電極の構造に関する。   The present invention relates to a plasma processing apparatus used for processing a semiconductor integrated circuit, and more particularly to an electrode structure used for a dry etching apparatus.

半導体集積回路は高密度化の要求に応じて微細化が進展し、構造的に垂直方向の空間の利用の要求が高まってきた。このためエッチング装置には高いバイアスを印加し加工速度を高める必要が生じてきた。ウェハに高電圧を印加するため電極には高い電圧が印加されるが、支持機構やセンサー額、冷媒供給機構に対し高い耐電圧性が要求されるようになってきた。   Semiconductor integrated circuits have been miniaturized in response to the demand for higher density, and there has been a growing demand for structural use of vertical spaces. For this reason, it has become necessary to apply a high bias to the etching apparatus to increase the processing speed. A high voltage is applied to the electrodes in order to apply a high voltage to the wafer, but high voltage resistance has been required for the support mechanism, the sensor frame, and the refrigerant supply mechanism.

特にウェハと電極の熱抵抗を小さくするために導入されるHeなどの冷媒ガス供給機構はその供給ラインの圧力が数kPaと放電開始電圧が低い状態に保たれるため放電が発生しやすくなる。放電によって発生したプラズマは、熱によって供給系の材料を劣化させたり、バイアス電圧に重畳して供給される静電吸着電流をリークさせるなど装置異常を発生させる原因となる。   In particular, a refrigerant gas supply mechanism such as He introduced to reduce the thermal resistance between the wafer and the electrode is likely to cause discharge because the supply line pressure is maintained at a low discharge start voltage of several kPa. The plasma generated by the discharge causes the abnormality of the apparatus such as deterioration of the material of the supply system due to heat or leakage of the electrostatic adsorption current supplied while being superimposed on the bias voltage.

この冷却ガス供給ラインでの異常放電発生を防止するためさまざまな構造的な工夫が施されている。冷却用ガス導入ラインの耐電圧向上のため、いわゆる入れ子を組み合わせた構造にして流路を複雑に折り曲げる方法や、多孔質体を挿入する方法が知られている。
また、特許文献1には、電極を貫通した複数の孔を連通して冷却用媒体を流す環状溝と、該環状溝に連通して前記冷却用媒体を流す複数の放射状溝とを設けたプラズマエッチング装置用電極が記載されている。
特開2005−39098号公報
Various structural measures are taken to prevent the occurrence of abnormal discharge in the cooling gas supply line. In order to improve the withstand voltage of the cooling gas introduction line, there are known a method in which a so-called nested structure is combined and a flow path is bent in a complicated manner and a porous body is inserted.
Further, Patent Document 1 discloses a plasma provided with an annular groove that allows a cooling medium to flow through a plurality of holes penetrating an electrode, and a plurality of radial grooves that allow the cooling medium to flow through the annular groove. An electrode for an etching apparatus is described.
JP 2005-39098 A

これらの方法は、製作コストの点、耐電圧の点や流路内に蓄積された異物のクリーニングが困難なためエッチング処理中に異物がウェハ裏面から処理室中に噴出して加工不良などを生じやすく、異常放電の発生によって流路の構造材料が劣化するなどの課題があった。
本発明はこれら課題を解決することを目的とする。
Since these methods are difficult in terms of manufacturing cost, withstand voltage, and cleaning of foreign matter accumulated in the flow path, foreign matter is ejected from the back of the wafer into the processing chamber during the etching process, resulting in processing defects. There was a problem that the structural material of the flow path deteriorated easily due to the occurrence of abnormal discharge.
The present invention aims to solve these problems.

本発明では、供給路途中に絶縁体よりなる、外周にらせん状に溝加工された円筒体を、円筒状の孔が加工された絶縁材の中に挿入した部材を設け、さらに前記円筒体の内部にフエライトなどの高い比透磁率材料を挿入する。   In the present invention, a cylindrical body made of an insulating material and spirally grooved on the outer periphery is provided in the middle of the supply path, and a member inserted into an insulating material in which a cylindrical hole is processed is provided. A high relative permeability material such as ferrite is inserted inside.

本発明によれば、大口径のウェハで半導体集積回路を高い歩留まりで生産できる。   According to the present invention, a semiconductor integrated circuit can be produced with a high yield using a large-diameter wafer.

以下、本発明の実施形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、本発明の実施例1のプラズマ処理装置の電極冷却ガス供給構造の断面図である。
図2において、201は円柱形状の内絶縁体であり、その外周部には、図2に示すようにらせん状に溝加工が行われている。203は電極の高周波電力が供給されて高電圧となる高電圧部を支える基材で、204はチヤンバーに接続され電極自体を支えるベース板でエッチング処理時には203はバイアス電圧と同じ高電圧状態になり、一方204は0Vのグランド電位に保たれている。202はこの間を絶縁する絶縁プレートで内絶縁体201を挿入するための孔が設けてあり、その孔の周りにはシールのための0リング溝が上下に形成されている。冷却ガスHeはベース板204の導入孔207からその上方の内絶縁体201の下部に設けられた空間206に導かれ、内絶縁体201の外周部に設けられた溝201’を通ってらせん状に導かれ基材203と内絶縁体201上面との間の空間206’を介して基材203に設けられた冷却ガス導入孔207’に流れて、電極の所定部分に別の流路を通り流入する。
FIG. 2 is a sectional view of the electrode cooling gas supply structure of the plasma processing apparatus according to the first embodiment of the present invention.
In FIG. 2, reference numeral 201 denotes a cylindrical inner insulator, and the outer periphery thereof is spirally grooved as shown in FIG. Reference numeral 203 denotes a base material that supports a high-voltage portion that is supplied with high-frequency power from the electrode and becomes a high voltage. Reference numeral 204 denotes a base plate that is connected to the chamber and supports the electrode itself. On the other hand, 204 is kept at a ground potential of 0V. Reference numeral 202 denotes an insulating plate that insulates between the holes. A hole for inserting the inner insulator 201 is provided. A 0-ring groove for sealing is formed vertically around the hole. The cooling gas He is guided from the introduction hole 207 of the base plate 204 to the space 206 provided below the inner insulator 201 above, and passes through a groove 201 ′ provided in the outer peripheral portion of the inner insulator 201 to form a spiral shape. To the cooling gas introduction hole 207 ′ provided in the base material 203 through a space 206 ′ between the base material 203 and the upper surface of the inner insulator 201, and passes through another flow path to a predetermined portion of the electrode. Inflow.

電極への高電圧印加によって生じる電界は、基材203からベース板204に向かう方向に生じるが、らせん状の溝構造はバイアス電圧の電界方向に対して満幅分(実施例では約2mm)で電界を寸断するため加速された電子の衝突による荷電粒子の増殖を抑制するとともに、発生した荷電粒子を壁との衝突により消滅損出させる効果を得ることができる。また、放電の開始には偶発的に生じるサージ電圧が大きな役割を果たすが、サージ電圧の発生によって生じる高速の電流に対してらせん状の溝201’がインダクタンスとして働き、逆電圧を生じて電流量を制限し、放電開始を阻害する。このため本実施例1では、らせん状の溝201’の巻回数を6回とした。   The electric field generated by applying a high voltage to the electrode is generated in the direction from the base material 203 toward the base plate 204, but the spiral groove structure is a full width (about 2 mm in the embodiment) with respect to the electric field direction of the bias voltage. In order to cut off the electric field, it is possible to suppress the proliferation of charged particles due to the collision of the accelerated electrons, and to obtain the effect of causing the generated charged particles to disappear due to the collision with the wall. In addition, an accidental surge voltage plays a major role in starting discharge, but the spiral groove 201 ′ acts as an inductance against a high-speed current generated by the generation of the surge voltage, and generates a reverse voltage to generate a current amount. Limiting the start of discharge. For this reason, in Example 1, the number of turns of the spiral groove 201 'was set to six.

本発明の実施例2は、内絶縁体201の中に、フエライトなどの高透磁率材料205を設けるものである。本実施例2では、フエライトなどの高透磁率材料205を設けるによって、放電開始を阻害する効果を大きくすることができ、異常な放電の発生確率をさらに低下させることができる。また、この構造はバイアス電圧だけでなく、チヤンバーにプラズマを発生させる高周波ソース電力の電極へのリークに対しても有効に作用し、卒わせて、He配管内の放電の発生および維持過程の阻害に効果を示す。   In the second embodiment of the present invention, a high magnetic permeability material 205 such as ferrite is provided in the inner insulator 201. In the second embodiment, by providing the high permeability material 205 such as ferrite, the effect of inhibiting the start of discharge can be increased, and the probability of occurrence of abnormal discharge can be further reduced. In addition, this structure works not only for bias voltage but also for leakage of high-frequency source power to the electrode that generates plasma in the chamber. Show the effect.

本発明の実施例3は、この冷却ガス導入機構を、図1に示すエッチング装置に組み込んだものである。その効果を確認した結果を図3及び図4に示す。   In the third embodiment of the present invention, this cooling gas introduction mechanism is incorporated in the etching apparatus shown in FIG. The results of confirming the effect are shown in FIGS.

図1に、本発明の実施例3であるUHF−ECRを用いたプラズマエッチング装置の槻略断面図を示す。ここで、101は真空処理室で、石英窓102は後述するアンテナ107からの電界を真空処理室101内に通過させるために真空処理室101上方でアンテナ107下方に配置され真空処理室101の天井をなすよう設けられ、電極103は石英窓102に対向して真空処理室101内下方に配置され、半導体集積回路が形成されるウェハ104をその上に載置し、バイアス電圧を発生させるための高周波電源105が接続されている。また、電極103にはウェハ104を熱を電極103へ伝導して冷却するための冷却ガスを供給する配管106が接続されており、電極内の冷却ガス供給機構113を通ってウェハ104の裏面に供給される。アンテナ107は石英窓102上方で、その上面に連結されUHF電源110からの電界を真空処理室101内に導入する。ソレノイドコイル108は真空処理室101内に磁場を形成する。ガス分散板109は電極103上方でウェハ104と対向して配置され、設けられた複数の貫通孔からエッチングレシピにしたがってマスフローコントローラ111から供給されたガスを真空処理室内101に分散させ均一に導入する。   FIG. 1 shows a schematic cross-sectional view of a plasma etching apparatus using UHF-ECR which is Embodiment 3 of the present invention. Here, reference numeral 101 denotes a vacuum processing chamber, and a quartz window 102 is disposed above the vacuum processing chamber 101 and below the antenna 107 in order to pass an electric field from an antenna 107 described later into the vacuum processing chamber 101. The electrode 103 is disposed below the vacuum processing chamber 101 so as to face the quartz window 102, and a wafer 104 on which a semiconductor integrated circuit is to be formed is placed thereon to generate a bias voltage. A high frequency power source 105 is connected. The electrode 103 is connected to a pipe 106 for supplying a cooling gas for cooling the wafer 104 by conducting heat to the electrode 103, and is connected to the back surface of the wafer 104 through the cooling gas supply mechanism 113 in the electrode. Supplied. The antenna 107 is connected to the upper surface of the quartz window 102 and introduces an electric field from the UHF power source 110 into the vacuum processing chamber 101. The solenoid coil 108 forms a magnetic field in the vacuum processing chamber 101. The gas dispersion plate 109 is disposed above the electrode 103 so as to face the wafer 104, and the gas supplied from the mass flow controller 111 is dispersed and uniformly introduced into the vacuum processing chamber 101 from a plurality of through holes provided according to the etching recipe. .

図2に示す構成は冷却ガス供給機構113の一部をなす冷却ガスの供給経路と接続の構造である。
ここで、冷却ガス供給機構として従来の入れ子構造のものと、本発明の実施例1の、図2によって説明した供給機構を用いた場合の試験結果を説明する。
The configuration shown in FIG. 2 is a cooling gas supply path and connection structure forming part of the cooling gas supply mechanism 113.
Here, the test results in the case of using the conventional nested structure as the cooling gas supply mechanism and the supply mechanism described in FIG. 2 according to the first embodiment of the present invention will be described.

図3は、バイアス電圧に対する異常放電耐性を見たもので、グラフの横軸は両ピーク間バイアス電圧、縦軸はバイアス電圧に重畳して供給されている静電吸着電源のピーク電流値を示したものである。従来の方式の場合は、2.5kV以上で電流値が増加し冷却ガス供給流路内で放電が発生したことを示しているが、本発明の構造を用いた場合はバイアス電圧4kVの範囲内では電流の急激な増加が見られず高電圧部を貫通または接続された冷却ガスの供給経路であっても異常放電が発生していないことがわかる。   FIG. 3 shows the abnormal discharge resistance against the bias voltage. The horizontal axis of the graph shows the bias voltage between the peaks, and the vertical axis shows the peak current value of the electrostatic chucking power source supplied superimposed on the bias voltage. It is a thing. In the case of the conventional method, the current value increases at 2.5 kV or more and discharge is generated in the cooling gas supply flow path. However, in the case of using the structure of the present invention, the bias voltage is within the range of 4 kV. Thus, it can be seen that there is no sudden increase in current, and that no abnormal discharge has occurred even in the cooling gas supply path penetrating or connected to the high voltage portion.

図4は、ウェハ処理枚数に対する加工欠陥発生割合のトレンドを見たグラフである。従来の入れ子構造の場合は散発的に発生異物が管理許容値を超えているが、本発明の冷却ガス供給構造を用いたものは異物数が管理値以下で安定に推移している。入れ子構造のものは大気開放して行うクリーニング時に用いる加圧空気の流れに対していわゆる澱みが発生しやすく、これらの場所に残留した異物が処理中に移動し、冷却ガスの流れによってウェハ裏面を経てウェハ表面に落下したことによって生じたものと思われる。この欠陥発生数については多孔質体のものも入れ子構造のものと同様の傾向を示しており、同様に、ブローオフクリーニングに対して十分なクリーニングが行われにくいことが原因と考えられる。   FIG. 4 is a graph showing a trend of the processing defect occurrence ratio with respect to the number of processed wafers. In the case of the conventional nesting structure, sporadically generated foreign substances exceed the management allowable value, but those using the cooling gas supply structure according to the present invention have a stable transition with the number of foreign substances below the management value. In the nested structure, so-called stagnation tends to occur in the flow of pressurized air used for cleaning performed by opening to the atmosphere, and foreign matters remaining in these places move during processing, and the wafer back surface is moved by the flow of cooling gas. It seems that it was caused by dropping on the wafer surface. Regarding the number of defects, the porous material also shows the same tendency as that of the nested structure. Similarly, it is considered that sufficient cleaning is difficult to perform for the blow-off cleaning.

以上、各実施例で説明したように、本発明を用いることによって高いバイアス電圧を印加した場合でも異常放電の発生を防止でき、さらには加工欠陥の発生数を低く抑制できるので、高集積度の半導体素子を安定的に高歩留まりで生産できる。   As described above, as described in each embodiment, even when a high bias voltage is applied by using the present invention, the occurrence of abnormal discharge can be prevented, and the number of processing defects can be suppressed to a low level. Semiconductor elements can be produced stably and with high yield.

本発明の実施例3を説明するプラズマ処理装置の断面図。Sectional drawing of the plasma processing apparatus explaining Example 3 of this invention. 本発明の実施例1及び実施例2のプラズマ処理装置の電極冷却ガス供給構造の断面図。Sectional drawing of the electrode cooling gas supply structure of the plasma processing apparatus of Example 1 and Example 2 of this invention. 本発明による耐電圧性能を示す図である。It is a figure which shows the withstand voltage performance by this invention. 本発明による異物発生抑制性能を示す図。The figure which shows the foreign material generation | occurrence | production suppression performance by this invention.

符号の説明Explanation of symbols

101 真空処理室
102 石英窓
103 電極
104 ウェハ
105 高周波電源
106 配管
107 アンテナ
108 ソレノイドコイル
109 ガス分散板
110 UHF電源
111 マスフローコントローラ
113 冷却ガス供給機構
201 内絶縁体
201’ らせん状の溝
202 絶縁プレート
203 支持基材
204 ベース板
205 高透磁率材料
206 内絶縁体の下部空間
207 ベース板の導入孔
207’ 支持基材の導入孔
DESCRIPTION OF SYMBOLS 101 Vacuum processing chamber 102 Quartz window 103 Electrode 104 Wafer 105 High frequency power supply 106 Piping 107 Antenna 108 Solenoid coil 109 Gas distribution plate 110 UHF power supply 111 Mass flow controller 113 Cooling gas supply mechanism 201 Inner insulator 201 'Spiral groove
202 Insulating plate 203 Support base material 204 Base plate 205 High magnetic permeability material 206 Lower space of inner insulator 207 Base plate introduction hole 207 ′ Support base material introduction hole

Claims (5)

高電圧印加部と接地電位部の間を絶縁する絶縁材に開口部を有し、前記開口部内に、外周部にらせん状に溝加工された内挿絶縁材が、前記外周部の表面と前記開口部の表面が接するよう内挿された絶縁材構造物を有するプラズマ処理装置用電極。   The insulating material that insulates between the high-voltage applying portion and the ground potential portion has an opening, and the insertion insulating material spirally grooved in the outer peripheral portion is formed in the opening portion, and the surface of the outer peripheral portion and the The electrode for plasma processing apparatuses which has the insulating material structure inserted so that the surface of an opening part may contact | connect. 請求項1記載のプラズマ処理装置用電極において、前記絶縁材構造物がウェハ冷却ガスの流路であるプラズマ処理装置用電極。   2. The electrode for a plasma processing apparatus according to claim 1, wherein the insulating material structure is a flow path for wafer cooling gas. 請求項1記載のプラズマ処理装置用電極において、前記内挿絶縁体が高透磁率材料を有するものであるプラズマ処理装置用電極。   The electrode for a plasma processing apparatus according to claim 1, wherein the interpolating insulator has a high magnetic permeability material. 請求項2記載のプラズマ処理装置用電極において、前記内挿絶縁体が高透磁率材料を有するものであるプラズマ処理装置用電極。   The electrode for a plasma processing apparatus according to claim 2, wherein the interpolated insulator has a high magnetic permeability material. 高電圧印加部と接地電位部の間を絶縁する絶縁材に開口部を有し、前記開口部内に、外周部にらせん状に溝加工された内挿絶縁材が、前記外周部の表面と前記開口部の表面が接するよう内挿された絶縁材構造物を有するプラズマ処理装置用電極と、前記絶縁材構造物のウェハ冷却ガスの流路に接続する冷却ガス導入用の配管と、を備えたことを特徴とするプラズマ処理装置。   The insulating material that insulates between the high-voltage applying portion and the ground potential portion has an opening, and the insertion insulating material spirally grooved in the outer peripheral portion is formed in the opening portion, and the surface of the outer peripheral portion and the An electrode for a plasma processing apparatus having an insulating material structure inserted so that the surface of the opening is in contact, and a piping for introducing a cooling gas connected to a wafer cooling gas flow path of the insulating material structure A plasma processing apparatus.
JP2005283316A 2005-09-29 2005-09-29 Electrode for plasma processing device Pending JP2007095985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283316A JP2007095985A (en) 2005-09-29 2005-09-29 Electrode for plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283316A JP2007095985A (en) 2005-09-29 2005-09-29 Electrode for plasma processing device

Publications (1)

Publication Number Publication Date
JP2007095985A true JP2007095985A (en) 2007-04-12

Family

ID=37981319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283316A Pending JP2007095985A (en) 2005-09-29 2005-09-29 Electrode for plasma processing device

Country Status (1)

Country Link
JP (1) JP2007095985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219729A (en) * 2015-05-26 2016-12-22 サムコ株式会社 Substrate temperature adjustment mechanism for plasma processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131680A (en) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd Substrate dry etching device
JP2000315682A (en) * 1999-05-06 2000-11-14 Tokyo Electron Ltd Plasma treatment apparatus
WO2003046969A1 (en) * 2001-11-30 2003-06-05 Tokyo Electron Limited Processing device, and gas discharge suppressing member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131680A (en) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd Substrate dry etching device
JP2000315682A (en) * 1999-05-06 2000-11-14 Tokyo Electron Ltd Plasma treatment apparatus
WO2003046969A1 (en) * 2001-11-30 2003-06-05 Tokyo Electron Limited Processing device, and gas discharge suppressing member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219729A (en) * 2015-05-26 2016-12-22 サムコ株式会社 Substrate temperature adjustment mechanism for plasma processing apparatus

Similar Documents

Publication Publication Date Title
KR102098698B1 (en) Plasma processing apparatus
KR102467659B1 (en) Chamber with flow-through source
US11764040B2 (en) Placing table and substrate processing apparatus
JP4995907B2 (en) Apparatus for confining plasma, plasma processing apparatus and semiconductor substrate processing method
US20100193130A1 (en) Plasma processing apparatus
JP2007067037A (en) Vacuum processing device
KR20190049589A (en) Plasma processing apparatus
JP3787079B2 (en) Plasma processing equipment
JP2007311613A (en) Sample stand and plasma processing device with it
JP2019109980A (en) Plasma processing apparatus
JP2008117850A (en) Electrode for placing wafer
US9978566B2 (en) Plasma etching method
JP3957719B2 (en) Plasma processing apparatus and plasma processing method
US11705307B2 (en) Plasma system and filter device
JP2007095985A (en) Electrode for plasma processing device
JP4527432B2 (en) Plasma processing method and plasma processing apparatus
TWI642083B (en) Hammerhead tcp coil support and plasma processing system and chamber using the same
KR20200051505A (en) Placing table and substrate processing apparatus
JP2009224526A (en) Testpiece mounting electrode for plasma processing apparatus
KR101040697B1 (en) Electrostatic Chuck
JP5055801B2 (en) Sputtering apparatus and sputtering method
CN114360995A (en) Apparatus and method for processing substrate
JP2006060073A (en) Plasma processing equipment
KR101406203B1 (en) Microwave Plasma Applicator and Remote Plasma Semiconductor Etching Apparatus
JP2007103622A (en) Plasma processing method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004