JP2007095477A - Battery and method of manufacturing same - Google Patents

Battery and method of manufacturing same Download PDF

Info

Publication number
JP2007095477A
JP2007095477A JP2005282895A JP2005282895A JP2007095477A JP 2007095477 A JP2007095477 A JP 2007095477A JP 2005282895 A JP2005282895 A JP 2005282895A JP 2005282895 A JP2005282895 A JP 2005282895A JP 2007095477 A JP2007095477 A JP 2007095477A
Authority
JP
Japan
Prior art keywords
battery
sealing material
thermally expandable
expandable microcapsule
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005282895A
Other languages
Japanese (ja)
Inventor
Keiichiro Uenae
圭一郎 植苗
Jun Sato
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005282895A priority Critical patent/JP2007095477A/en
Publication of JP2007095477A publication Critical patent/JP2007095477A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery in which two battery cans are fitted together, in which a power generating element is housed inside, in which adhesion strength of the fitted battery cans is large, and which is high in anti-liquid leakage characteristics. <P>SOLUTION: This is the battery provided with the power generating element, the battery can 1, the battery can 2 of which the bottom area is larger than that of the battery can 1, and a sealing material 3. The battery can 1 and the battery can 2 are opposed and fitted together, they are sealed and adhered between the outside face of the batter can 1 and the inside face of the battery can 2 by the sealing material 3, the power generating element is arranged between the bottom face of the battery can 1 and the bottom face of the battery can 2, and the sealing material 3 includes a thermally expansible microcapsule 3b and a resin 3a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発電要素が電池缶内に収納された電池とその製造方法に関する。   The present invention relates to a battery in which a power generation element is housed in a battery can and a method for manufacturing the same.

近年、ブルーツース(Bluetooth)等の無線通信技術の進歩や集積回路(IC)の高集積化等による、小型なモバイル機器等の携帯機器の発展に伴い、これらの機器に適した特性をもつ電池が、市場から要求されている。すなわち、電気容量が大きく、小型軽量で、耐漏液性等の信頼性が高い電池である。   In recent years, with the development of portable devices such as small mobile devices due to the progress of wireless communication technology such as Bluetooth and the high integration of integrated circuits (IC), batteries having characteristics suitable for these devices have been developed. Is demanded by the market. That is, the battery has a large electric capacity, a small size and a light weight, and high reliability such as leakage resistance.

このような電池として、従来、コイン型電池やラミネート型電池が主として用いられている。しかし、いずれの電池も、上述したような市場の要求を満足するには必ずしも十分ではない。特に、電気容量についての要求と現実との差は大きい。例えばコイン型電池では、かしめ構造を用いており、電池を小型化するに従って、発電要素を収納できないかしめ部分の占める体積の影響が大きくなる。同様に、ラミネート型電池では、ラミネートフィルムの積層封止部分が損失となる。そこで、これらの課題を解決するために、底面の大きさの異なる2つの電池缶を嵌合し、その内部に発電要素を収納した薄型電池が提案されている(例えば、特許文献1、2参照。)。
特開昭55−111060号公報 実開昭58−139668号公報
Conventionally, coin-type batteries and laminate-type batteries are mainly used as such batteries. However, neither battery is necessarily sufficient to satisfy the market demands as described above. In particular, the difference between the demand for electric capacity and the reality is large. For example, a coin-type battery uses a caulking structure, and as the battery is downsized, the influence of the volume occupied by the caulking portion that cannot accommodate the power generation element increases. Similarly, in the laminate type battery, the laminated sealing portion of the laminate film is lost. Therefore, in order to solve these problems, a thin battery in which two battery cans having different bottom sizes are fitted and a power generation element is housed therein has been proposed (see, for example, Patent Documents 1 and 2). .)
JP 55-1111060 A Japanese Utility Model Publication No. 58-139668

一般的に、金属同士を封止材で接着したときの接着強度は、金属の被着表面や封止材の接着表面の状態と、接着時の温度、圧力及び時間によって決まる。すなわち、接着時に、封止材を均一に溶解させるために十分な温度、時間で加熱して、被着表面に垂直な方向に高い圧力をかけながら接着させると、金属と封止材との間に空気が入ることなく、大きな接着強度が得られる。しかし、電池の作製の場合、封止材の溶解に必要な温度、例えば150〜200℃で長時間加熱すると、電池内部の発電要素に悪影響を及ぼす。そこで、数秒程度の短時間に、熱と圧力とを同時に加えて接着させることによって、接着強度を保っている。例えば、上記ラミネート型電池の作製には、封止材を挟む2枚の外装ラミネートフィルムの両外面から高熱と一定の圧力とを加えて接合する方法が用いられる。   In general, the adhesive strength when metals are bonded to each other with a sealing material is determined by the state of the metal deposition surface and the bonding surface of the sealing material, and the temperature, pressure and time during bonding. That is, at the time of bonding, heating at a temperature and time sufficient to uniformly dissolve the encapsulant, and bonding while applying high pressure in a direction perpendicular to the adherend surface, the gap between the metal and the encapsulant A large adhesive strength can be obtained without air entering. However, in the case of manufacturing a battery, if it is heated for a long time at a temperature necessary for melting the sealing material, for example, 150 to 200 ° C., the power generation element inside the battery is adversely affected. Therefore, the adhesive strength is maintained by applying heat and pressure simultaneously in a short time of about several seconds. For example, for the production of the laminate type battery, a method of applying high heat and a constant pressure from both outer surfaces of two exterior laminate films sandwiching a sealing material is used.

しかしながら、上述した特許文献1及び2に開示されているような電池は、一方の電池缶にもう一方の電池缶を被せるように嵌合した構成であるため、電池缶の被着面(側面)に垂直な方向から十分な圧力を加えられない。そこで、一方の電池缶の外側面から温度のみを加えて接着させる方法が用いられる。しかし、この接着方法では十分な接着強度が得られず、電池の耐漏液性が十分でないという課題があった。   However, since the battery as disclosed in Patent Documents 1 and 2 described above has a configuration in which one battery can is fitted over the other battery can, the attachment surface (side surface) of the battery can. Sufficient pressure cannot be applied from the direction perpendicular to. Therefore, a method is used in which only the temperature is applied from the outer surface of one of the battery cans for adhesion. However, this bonding method has a problem that sufficient adhesive strength cannot be obtained, and the battery has insufficient liquid resistance.

本発明は、2つの電池缶を嵌合し、その内部に発電要素を収納した電池であって、電池缶同士の接着強度が大きく、耐漏液性が高い電池を提供する。   The present invention provides a battery in which two battery cans are fitted and a power generation element is housed therein, and the battery can have high adhesion strength and high leakage resistance.

本発明の電池は、発電要素と、電池缶aと、前記電池缶aよりも底面積の大きい電池缶bと、封止材とを備えた電池であって、前記電池缶aと前記電池缶bとは、対向して嵌合され、前記電池缶aの外側面と前記電池缶bの内側面との間は、前記封止材によって封止かつ接着され、前記発電要素は、前記電池缶aの底面と前記電池缶bの底面との間に配置され、前記封止材は、熱膨張性マイクロカプセルと樹脂とを含むことを特徴とする。   The battery of the present invention is a battery comprising a power generation element, a battery can a, a battery can b having a larger bottom area than the battery can a, and a sealing material, the battery can a and the battery can b is fitted oppositely, and the outer surface of the battery can a and the inner surface of the battery can b are sealed and bonded by the sealing material, and the power generation element is the battery can It is arrange | positioned between the bottom face of a, and the bottom face of the said battery can b, The said sealing material contains a thermally expansible microcapsule and resin, It is characterized by the above-mentioned.

また、本発明の電池の製造方法は、発電要素と、電池缶aと、前記電池缶aよりも底面積の大きい電池缶bとを備え、前記電池缶aと前記電池缶bとは対向して嵌合され、前記発電要素は前記電池缶aの底面と前記電池缶bの底面との間に配置された電池の製造方法であって、(A)前記電池缶aの外側面と前記電池缶bの内側面との間に、熱膨張性マイクロカプセルと樹脂とを含む封止材を配置する工程と、(B)前記封止材を加熱することにより、前記樹脂を溶解又は軟化させるとともに、前記熱膨張性マイクロカプセルを膨張させる工程と、(C)前記(B)工程の後に前記封止材を硬化させることにより、前記電池缶aの外側面及び前記電池缶bの内側面に、前記封止材を接着させる工程とを含むことを特徴とする。   The battery manufacturing method of the present invention includes a power generation element, a battery can a, and a battery can b having a larger bottom area than the battery can a. The battery can a and the battery can b face each other. And the power generation element is disposed between the bottom surface of the battery can a and the bottom surface of the battery can b, and (A) the outer surface of the battery can a and the battery A step of disposing a sealing material including a thermally expandable microcapsule and a resin between the inner surface of the can b; and (B) heating or sealing the sealing material to dissolve or soften the resin. The step of expanding the thermally expandable microcapsule, and (C) by curing the sealing material after the step (B), the outer surface of the battery can a and the inner surface of the battery can b, And a step of adhering the sealing material.

本発明の電池によれば、嵌合された電池缶同士の接着強度が大きく、耐漏液性が高い電池を提供することができる。   According to the battery of the present invention, it is possible to provide a battery having high adhesive strength between the fitted battery cans and high leakage resistance.

また、本発明の電池の製造方法によれば、嵌合された電池缶同士の接着強度が大きく、耐漏液性が高い電池を製造することができる。   Moreover, according to the battery manufacturing method of the present invention, it is possible to manufacture a battery having high adhesion strength between the battery cans fitted together and high leakage resistance.

本発明の電池は、発電要素と、電池缶aと、電池缶aよりも底面積の大きい電池缶bと、封止材とを備えた電池である。また、上記電池缶aと上記電池缶bとは、対向して嵌合され、上記電池缶aの外側面と上記電池缶bの内側面との間は、上記封止材によって封止かつ接着されている。さらに、上記発電要素は、上記電池缶aの底面と上記電池缶bの底面との間に配置され、上記封止材は、熱膨張性マイクロカプセルと樹脂とを含んでいる。このような構成により、電池缶aと電池缶bとの接着強度が大きく、耐漏液性が高い電池にすることができる。すなわち、封止材が熱膨張性マイクロカプセルを含めば、電池の製造時において、熱膨張性マイクロカプセルを加熱によって膨張させることにより、電池缶同士の接着強度を大きくでき、耐漏液性が高い電池にすることができる。   The battery of the present invention is a battery including a power generation element, a battery can a, a battery can b having a larger bottom area than the battery can a, and a sealing material. Further, the battery can a and the battery can b are fitted to face each other, and the outer surface of the battery can a and the inner surface of the battery can b are sealed and bonded by the sealing material. Has been. Furthermore, the power generation element is disposed between the bottom surface of the battery can a and the bottom surface of the battery can b, and the sealing material includes a thermally expandable microcapsule and a resin. With such a configuration, a battery having high adhesive strength between the battery can a and the battery can b and having high leakage resistance can be obtained. In other words, if the encapsulant includes a thermally expandable microcapsule, the battery can have high leakage resistance by increasing the adhesive strength between the battery cans by expanding the thermally expandable microcapsule by heating at the time of manufacturing the battery. Can be.

上記熱膨張性マイクロカプセルは、熱可塑性樹脂からなる殻壁を備えた微小球からなり、この微小球の内部に、沸点が80℃以上250℃以下の揮発性膨張剤を内包していることが好ましい。これにより、電池の製造時において、熱膨張性マイクロカプセルをより効率的に膨張させることができる。   The thermally expandable microcapsule is composed of a microsphere having a shell wall made of a thermoplastic resin, and a volatile expansion agent having a boiling point of 80 ° C. or higher and 250 ° C. or lower is included in the microsphere. preferable. Thereby, at the time of manufacture of a battery, a thermally expansible microcapsule can be expanded more efficiently.

上記封止材における熱膨張性マイクロカプセルの含有率は、5体積%以上20体積%以下であることが好ましい。熱膨張性マイクロカプセルの含有率がこの範囲内であれば、電池缶同士の接着強度を適度に保つことができる。   The content of the thermally expandable microcapsule in the sealing material is preferably 5% by volume or more and 20% by volume or less. If the content rate of a thermally expansible microcapsule exists in this range, the adhesive strength of battery cans can be kept moderate.

上記封止材に含まれる樹脂は、ポリプロピレン、ポリエチレン、ポリアミドイミド及びフッ素樹脂から選ばれる少なくとも1つの熱可塑性樹脂を含むことが好ましい。このような熱可塑性樹脂は、電池缶との接着性がより良好だからである。   The resin contained in the sealing material preferably contains at least one thermoplastic resin selected from polypropylene, polyethylene, polyamideimide, and fluororesin. This is because such a thermoplastic resin has better adhesion to the battery can.

また、本発明の電池の製造方法は、発電要素と、電池缶aと、電池缶aよりも底面積の大きい電池缶bとを備え、上記電池缶aと上記電池缶bとは対向して嵌合され、上記発電要素は上記電池缶aの底面と上記電池缶bの底面との間に配置された電池の製造方法であり、上記電池缶aの外側面と上記電池缶bの内側面との間に、熱膨張性マイクロカプセルと樹脂とを含む封止材を配置する(A)工程と、上記封止材を加熱することにより、上記樹脂を溶解又は軟化させるとともに、上記熱膨張性マイクロカプセルを膨張させる(B)工程と、上記(B)工程の後に上記封止材を硬化させることにより、上記電池缶aの外側面及び上記電池缶bの内側面に、上記封止材を接着させる(C)工程とを含む。このような製造方法により、電池缶同士の接着強度が大きく、耐漏液性が高い電池を製造することができる。   The battery manufacturing method of the present invention includes a power generation element, a battery can a, and a battery can b having a larger bottom area than the battery can a, and the battery can a and the battery can b face each other. The battery generating method is a method of manufacturing a battery that is fitted between the bottom surface of the battery can a and the bottom surface of the battery can b, the outer surface of the battery can a and the inner surface of the battery can b And (A) the step of disposing a sealing material containing thermally expandable microcapsules and a resin, and heating the sealing material to dissolve or soften the resin, and The step (B) of expanding the microcapsules and the step of curing the sealing material after the step (B) allow the sealing material to be applied to the outer surface of the battery can a and the inner surface of the battery can b. (C) making it adhere | attach. With such a manufacturing method, a battery having high adhesion strength between battery cans and high leakage resistance can be manufactured.

上記熱膨張性マイクロカプセルの膨張開始温度は、上記(A)工程における上記封止材の温度より高く、上記(B)工程における上記封止材の加熱温度以下の温度であれば、熱膨張性マイクロカプセルをより効率的に膨張させることができるので、より好ましい。   If the expansion start temperature of the thermally expandable microcapsule is higher than the temperature of the encapsulant in the step (A) and is equal to or lower than the heating temperature of the encapsulant in the step (B), the thermal expandability It is more preferable because the microcapsules can be expanded more efficiently.

上記熱膨張性マイクロカプセルは、熱可塑性樹脂からなる殻壁を備えた微小球からなり、この微小球の内部に揮発性膨張剤を内包し、この揮発性膨張剤の沸点は、上記(A)工程における上記封止材の温度より高く、上記(B)工程における上記封止材の加熱温度以下の温度であることが好ましい。これにより、熱膨張性マイクロカプセルをより効率的に膨張させることができる。   The thermally expandable microcapsule is composed of a microsphere having a shell wall made of a thermoplastic resin, and a volatile expansion agent is included inside the microsphere, and the boiling point of the volatile expansion agent is the above (A). It is preferable that the temperature is higher than the temperature of the sealing material in the step and not more than the heating temperature of the sealing material in the step (B). Thereby, a thermally expansible microcapsule can be expanded more efficiently.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の電池の一例を示す断面図である。以下、図1に示す電池の製造方法について説明する。   FIG. 1 is a cross-sectional view showing an example of the battery of the present invention. A method for manufacturing the battery shown in FIG. 1 will be described below.

まず、電池缶1及び/又は電池缶2の内側の底面に発電要素を配置し、電池缶1と電池缶2とを対向させて嵌合する。このとき、電池缶1の外側面及び/又は電池缶2の内側面に、熱膨張性マイクロカプセル3bと樹脂3aとを含む封止材3を配置する(以下、(A)工程という。)。なお、電池缶2は、電池缶1よりも底面積の大きい電池缶である。   First, the power generation element is arranged on the bottom surface inside the battery can 1 and / or the battery can 2, and the battery can 1 and the battery can 2 are opposed and fitted. At this time, the sealing material 3 including the thermally expandable microcapsule 3b and the resin 3a is disposed on the outer surface of the battery can 1 and / or the inner surface of the battery can 2 (hereinafter referred to as the step (A)). The battery can 2 is a battery can having a larger bottom area than the battery can 1.

(A)工程を、より具体的に説明すると、例えば、電池缶1の内側の底面に負極4を配置し、電池缶2の内側の底面に正極6と絶縁板7とを配置し、正極6の上にセパレーター5を配置する。また、電池缶2の内側面に封止材3を配置する。そして、負極4とセパレーター5とが接するように、電池缶1と電池缶2とを対向させて嵌合する。   The step (A) will be described more specifically. For example, the negative electrode 4 is disposed on the bottom surface inside the battery can 1, the positive electrode 6 and the insulating plate 7 are disposed on the bottom surface inside the battery can 2, and the positive electrode 6 The separator 5 is arranged on the top. Further, the sealing material 3 is disposed on the inner surface of the battery can 2. Then, the battery can 1 and the battery can 2 are fitted to face each other so that the negative electrode 4 and the separator 5 are in contact with each other.

次に、封止材3を加熱することにより、樹脂3aを溶解又は軟化させるとともに、熱膨張性マイクロカプセル3bを膨張させる(以下、(B)工程という。)。最後に、封止材3を硬化させることにより、電池缶1の外側面及び電池缶2の内側面に、封止材3を接着させ(以下、(C)工程という。)、本実施形態の電池が完成する。   Next, the sealing material 3 is heated to dissolve or soften the resin 3a and expand the thermally expandable microcapsule 3b (hereinafter referred to as (B) step). Finally, the sealing material 3 is cured to adhere the sealing material 3 to the outer surface of the battery can 1 and the inner surface of the battery can 2 (hereinafter referred to as (C) step). The battery is complete.

このような製造方法では、熱膨張性マイクロカプセルの膨張により、電池缶は封止材により加圧されるので、電池缶と封止材との間に空気が入りにくい。すなわち、電池缶同士の接着強度が大きく、耐漏液性が高い電池を製造することができる。   In such a manufacturing method, since the battery can is pressurized by the sealing material due to the expansion of the thermally expandable microcapsule, it is difficult for air to enter between the battery can and the sealing material. That is, it is possible to manufacture a battery having high adhesion strength between battery cans and high leakage resistance.

電池缶1及び電池缶2は、電池缶2を電池缶1の開口部に被せるように、対向させて嵌合させればよい。電池缶2は、電池缶1よりも底面積の大きな電池缶であり、その底面の形状は、電池缶1の底面の形状と相似することが好ましい。電池缶1及び2の底面の形状は、例えば円形、角形等とすることができる。電池缶1及び2の材料、サイズ等は特に限定されない。一般的に電池に用いられる材料、例えば、ステンレス鋼、ニッケル、鉄、アルミニウム等の金属を用いることができる。   The battery can 1 and the battery can 2 may be fitted to face each other so that the battery can 2 covers the opening of the battery can 1. The battery can 2 is a battery can having a larger bottom area than the battery can 1, and the shape of the bottom surface thereof is preferably similar to the shape of the bottom surface of the battery can 1. The shape of the bottom surfaces of the battery cans 1 and 2 can be, for example, circular, rectangular, or the like. The material, size, etc. of the battery cans 1 and 2 are not particularly limited. Materials generally used for batteries, for example, metals such as stainless steel, nickel, iron, and aluminum can be used.

負極4、セパレーター5、正極6及び絶縁板7は、それぞれ一般的に電池に用いられるものであり、その材質や構成等によって特に限定されない。また、図示されていないが、負極4、セパレーター5及び正極6は、液体の電解質を含んでいる。   The negative electrode 4, the separator 5, the positive electrode 6, and the insulating plate 7 are generally used for batteries, and are not particularly limited by the material, configuration, or the like. Moreover, although not shown in figure, the negative electrode 4, the separator 5, and the positive electrode 6 contain the liquid electrolyte.

封止材3は、熱膨張性マイクロカプセル3bと樹脂3aとを含み、電池缶と接着できればよい。具体的には、100重量部の樹脂3aに対して、3重量部以上12重量部以下、好ましくは5重量部以上10重量部以下、より好ましくは6重量部以上8重量部以下の熱膨張性マイクロカプセル3bを含む封止材を用いることができる。加熱前の封止材3の形態は、特に限定されず、例えば液状、シート状、ブロック状、フィルム状等とすることができる。また、封止材3は、添加剤、有機溶剤等をさらに含んでいてもよいし、封止材3がシート状、フィルム状等である場合には、電池缶との接着表面に表面処理が施されていてもよい。   The sealing material 3 includes the thermally expandable microcapsule 3b and the resin 3a, and may be bonded to the battery can. Specifically, 3 parts by weight or more and 12 parts by weight or less, preferably 5 parts by weight or more and 10 parts by weight or less, more preferably 6 parts by weight or more and 8 parts by weight or less with respect to 100 parts by weight of the resin 3a. A sealing material including the microcapsule 3b can be used. The form of the sealing material 3 before heating is not particularly limited, and can be, for example, liquid, sheet-like, block-like, or film-like. Moreover, the sealing material 3 may further contain an additive, an organic solvent, or the like. When the sealing material 3 is in the form of a sheet, a film, or the like, the surface treatment is performed on the adhesive surface with the battery can. It may be given.

樹脂3aは、熱膨張性マイクロカプセル3bを分散させることができ、かつ、電池の使用環境温度で固形の樹脂であり、一般的には熱可塑性樹脂である。特に、ポリプロピレン、ポリエチレン、ポリアミドイミド及びフッ素樹脂から選ばれる少なくとも一つの樹脂を含むと、封止材と電池缶との接着性が高くなるので、より好ましい。   The resin 3a can disperse the heat-expandable microcapsules 3b and is a solid resin at the use environment temperature of the battery, and is generally a thermoplastic resin. In particular, the inclusion of at least one resin selected from polypropylene, polyethylene, polyamideimide, and fluororesin is more preferable because the adhesiveness between the sealing material and the battery can is increased.

熱膨張性マイクロカプセル3bは、常温において液体の物質及びこの物質を内包する殻壁からなり、加熱されて膨張する微小球とすることができる。また、一般的には粒径が、約1μm〜30μmの微小球であり、加熱するとその体積が最大で200倍程度まで膨張する微小球である。さらに、上記熱膨張性マイクロカプセルの膨張開始温度が、上記(A)工程における上記封止材の温度より高く、上記(B)工程における上記封止材の加熱温度以下の温度であれば、熱膨張性マイクロカプセルをより効率的に膨張させることができるので、より好ましい。   The heat-expandable microcapsule 3b includes a substance that is liquid at normal temperature and a shell wall that contains the substance, and can be microspheres that expand when heated. In general, it is a microsphere having a particle diameter of about 1 μm to 30 μm and expands up to about 200 times the volume when heated. Furthermore, if the expansion start temperature of the thermally expandable microcapsule is higher than the temperature of the sealing material in the step (A) and is equal to or lower than the heating temperature of the sealing material in the step (B), It is more preferable because the expandable microcapsule can be expanded more efficiently.

特に、この熱膨張性マイクロカプセル3bは、熱可塑性樹脂からなる殻壁を備えた微小球からなり、微小球の内部に揮発性膨張剤を内包し、さらに、この揮発性膨張剤の沸点は、上記(A)工程における上記封止材の温度より高く、上記(B)工程における上記封止材の加熱温度以下の温度であることが好ましい。これにより、熱膨張性マイクロカプセル3bをより効率的に膨張させることができ、耐漏液性のより高い電池を製造することができる。   In particular, the thermally expandable microcapsule 3b is composed of microspheres having a shell wall made of a thermoplastic resin, encapsulating a volatile expansion agent inside the microsphere, and the boiling point of the volatile expansion agent is: It is preferable that the temperature is higher than the temperature of the sealing material in the step (A) and not higher than the heating temperature of the sealing material in the step (B). Thereby, the thermally expandable microcapsule 3b can be expanded more efficiently, and a battery with higher leakage resistance can be manufactured.

ここで、上記熱可塑性樹脂からなる殻壁を備えた微小球をより具体的に説明する。   Here, the microsphere provided with the shell wall made of the thermoplastic resin will be described more specifically.

上記殻壁を構成する上記熱可塑性樹脂は、例えば、ニトリル系モノマー15重量%以上と、非ニトリル系モノマーと、架橋剤と、必要に応じて重合開始剤とを用いて合成された共重合体である。   The thermoplastic resin constituting the shell wall is, for example, a copolymer synthesized using 15% by weight or more of a nitrile monomer, a non-nitrile monomer, a crosslinking agent, and a polymerization initiator as necessary. It is.

上記ニトリル系モノマーとしては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマロニトリル、これらの化合物の任意の混合物等を用いることができる。特に、アクリロニトリル及び/又はメタクリロニトリルを用いることが好ましい。   Examples of the nitrile monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile, any mixture of these compounds, and the like. In particular, it is preferable to use acrylonitrile and / or methacrylonitrile.

上記非ニトリル系モノマーとしては、例えば、塩化ビニリデン、メタクリル酸エステル類、アクリル酸エステル類等を用いることができる。特に、塩化ビニリデン、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチルを用いることが好ましい。   As the non-nitrile monomer, for example, vinylidene chloride, methacrylic acid esters, acrylic acid esters and the like can be used. In particular, it is preferable to use vinylidene chloride, methyl methacrylate, ethyl methacrylate, or methyl acrylate.

上記架橋剤としては、例えば、ジビニルベンゼン、ジメタクリル酸エチレングリコール、ジメタクリル酸トリエチレングリコール、トリアクリルホルマール、トリメタクリル酸トリメチロールプロパン、メタクリル酸アリル、ジメタクリル酸1,3−ブチルグリコール、トリアリルイソシアネート等を用いることができる。特に、トリアクリルホルマール、トリメタクリル酸トリメチロールプロパン等の三官能基性架橋剤を用いることが好ましい。また、上記架橋剤の使用量は、原料の全重量に対して、例えば0.1〜3重量%とすればよい。   Examples of the crosslinking agent include divinylbenzene, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, triacryl formal, trimethylolpropane trimethacrylate, allyl methacrylate, 1,3-butyl glycol dimethacrylate, Allyl isocyanate and the like can be used. In particular, it is preferable to use a trifunctional crosslinking agent such as triacryl formal or trimethylolpropane trimethacrylate. Moreover, what is necessary is just to let the usage-amount of the said crosslinking agent be 0.1 to 3 weight% with respect to the total weight of a raw material.

上記重合開始剤としては、例えば、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t−ブチルパーオキサイド、2,2’−アゾビス(2,4−ジメチルワレロニトリル)等を用いることができる。   Examples of the polymerization initiator include azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxide, 2,2′-azobis (2,4-dimethylvalero). Nitrile) or the like can be used.

また、上記微小球に内包された揮発性膨張剤としては、例えば、プロパン、プロピレン、ブテン、ノルマルブタン、イソブタン、イソペンタン、ネオペンタン、ノルマルペンタン、ヘキサン、ヘプタン、エーテル類、メタンのハロゲン化物(例えば、塩化メチル、メチレンクロリド、CCl3F、CCl22等。)、テトラアルキルシラン(例えば、テトラメチルシラン、トリメチルエチルシラン等。)等の低沸点液体、加熱により熱分解してガス状になるAIBN等の化合物を用いることができる。特に、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、エーテル類等の炭化水素を用いることが好ましい。 Examples of the volatile swelling agent encapsulated in the microspheres include propane, propylene, butene, normal butane, isobutane, isopentane, neopentane, normal pentane, hexane, heptane, ethers, and methane halides (for example, Low boiling point liquid such as methyl chloride, methylene chloride, CCl 3 F, CCl 2 F 2, etc.), tetraalkylsilane (eg, tetramethylsilane, trimethylethylsilane, etc.), etc. A compound such as AIBN can be used. In particular, it is preferable to use hydrocarbons such as isobutane, normal butane, normal pentane, isopentane, and ethers.

また、上記殻壁を備え、上記揮発性膨張剤を内包した微小球の製造方法は、特に限定されるものではなく、常法に従えばよい。例えば、上記ニトリル系モノマー、上記非ニトリル系モノマー、上記架橋剤、上記揮発性膨張剤及び上記重合開始剤を混合し、この混合物を乳化分散助剤等を含む水性媒体中で懸濁重合させることにより形成できる。上記水性媒体も特に限定されるものではなく、例えば、シリカ、リン酸カルシウム、炭酸カルシウム、塩化ナトリウム、硫酸ナトリウム等のほかに有機添加剤(例えばジエタノールアミン−アジピン酸縮合物、ゼラチン、メチルセルロース、ポリビニルアルコール、ポリエチレンオキサイド、ジオクチルスルホサクシネート、ソルビタンエステル等。)を脱イオン水に適宜配合して、pHを約3〜4に調整したものを用いればよい。   Moreover, the manufacturing method of the microsphere provided with the said shell wall and including the said volatile swelling agent is not specifically limited, What is necessary is just to follow a conventional method. For example, the nitrile monomer, the non-nitrile monomer, the crosslinking agent, the volatile swelling agent and the polymerization initiator are mixed, and the mixture is subjected to suspension polymerization in an aqueous medium containing an emulsifying dispersion aid and the like. Can be formed. The aqueous medium is not particularly limited. For example, in addition to silica, calcium phosphate, calcium carbonate, sodium chloride, sodium sulfate and the like, organic additives (for example, diethanolamine-adipic acid condensate, gelatin, methylcellulose, polyvinyl alcohol, polyethylene) Oxide, dioctylsulfosuccinate, sorbitan ester, etc.) may be appropriately blended in deionized water and the pH adjusted to about 3-4.

上記熱膨張性マイクロカプセル3bは、上記封止材3に均一に分散されていることが好ましい。(B)工程において、この熱膨張性マイクロカプセル3bが膨張する力の一部は、電池缶1又は2の被着表面に封止材3を押さえつける力となる。そこで、このような封止材3であれば、上記被着表面に対して圧力が均等にかかるからである。また、(B)及び(C)工程において、電池缶2を外側から電池の内部方向に押さえれば、上記膨張する力によって電池缶が歪んで形成されるのを防ぐことができるので好ましい。   The thermally expandable microcapsules 3b are preferably uniformly dispersed in the sealing material 3. In the step (B), a part of the force that expands the thermally expandable microcapsule 3 b becomes a force that presses the sealing material 3 against the adherend surface of the battery can 1 or 2. Therefore, with such a sealing material 3, the pressure is evenly applied to the adherend surface. In the steps (B) and (C), it is preferable to hold the battery can 2 from the outside toward the inside of the battery because the battery can is prevented from being distorted and formed by the expanding force.

なお、上記発電要素は、化学エネルギーを電気エネルギーに変換するための手段であり、一般的には、正極、負極、電解質及びセパレーターが含まれる。しかし、電池の種類によって、発電要素は、添加剤等がさらに含まれる場合もあるし、固体電解質を用いることによってセパレーターが含まれない場合もある。すなわち、本発明の電池の製造方法は、発電要素を電池缶で封止する工程に主な特徴があり、この方法で製造される電池は、一次電池であっても二次電池であってもよい。例えば、酸化銀一次電池、リチウムイオン二次電池、リチウム一次電池、アルカリ電池等の電池を製造することができる。   The power generation element is a means for converting chemical energy into electrical energy, and generally includes a positive electrode, a negative electrode, an electrolyte, and a separator. However, depending on the type of battery, the power generation element may further contain an additive or the like, or the separator may not be included by using a solid electrolyte. That is, the battery manufacturing method of the present invention has a main feature in the step of sealing the power generation element with a battery can. The battery manufactured by this method may be a primary battery or a secondary battery. Good. For example, a battery such as a silver oxide primary battery, a lithium ion secondary battery, a lithium primary battery, or an alkaline battery can be manufactured.

上述のように製造された本実施形態の電池は、電池缶同士の接着強度が大きく、耐漏液性が高い電池である。   The battery of the present embodiment manufactured as described above is a battery having high adhesive strength between battery cans and high leakage resistance.

封止材3における熱膨張性マイクロカプセル3bの含有率は、5体積%以上20体積%以下、好ましくは8体積%以上17体積%以下であることが好ましい。熱膨張性マイクロカプセルの含有率が低すぎると十分な接着強度が得られず、熱膨張性マイクロカプセルの含有率が高すぎると膨張力が大きくなりすぎ、電池にひずみが生じる原因となりうる。しかし、このような封止材を用いれば、電池缶同士の接着強度が大きく、ひずみのない電池にすることができる。   The content of the thermally expandable microcapsule 3b in the sealing material 3 is 5% by volume or more and 20% by volume or less, preferably 8% by volume or more and 17% by volume or less. If the content of the heat-expandable microcapsules is too low, sufficient adhesive strength cannot be obtained, and if the content of the heat-expandable microcapsules is too high, the expansion force becomes too large, which may cause distortion of the battery. However, if such a sealing material is used, the battery can have a high bond strength between battery cans and no distortion.

なお、本発明の電池は、電池缶を封止する封止材に主な特徴があり、この電池は、発電要素や電池の形状等によって特に限定されない。具体的には、一次電池であっても二次電池であってもよく、偏平型電池であっても薄型電池であってもよい。特に、リチウムイオン二次電池の薄型電池であれば、市場の需要が高く、薄くて高容量で、耐漏液性に優れた電池を提供できるので、より好ましい。   The battery of the present invention is mainly characterized by the sealing material for sealing the battery can, and the battery is not particularly limited by the power generation element, the shape of the battery, and the like. Specifically, it may be a primary battery or a secondary battery, and may be a flat battery or a thin battery. In particular, a thin battery of a lithium ion secondary battery is more preferable because it has a high market demand, and can provide a thin, high-capacity battery with excellent leakage resistance.

以下、実施例を用いて、本発明をより具体的に説明する。なお、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.

(実施例1)
正極活物質であるLiCoO2と、導電助剤であるカーボンブラックとを、重量比83:10で混合して正極合剤を作製した。次に、ポリフッ化ビニリデン(PVDF)を7重量%含むN−メチル−2−ピロリドン(NMP)溶液に、上記正極合剤を混合し、十分攪拌することによって、塗料を作製した。この塗料を乾燥させて溶剤を除去し、乳鉢で粉砕した後、直径15mm、厚さ0.9mmのペレットに成型して、正極を得た。また、負極として黒鉛と、PVDFとを、重量比93:7で混合して負極合剤を作製した。上述した正極と同様に、この負極合剤を用いて、直径16mm、厚さ0.7mmのペレットに成型して負極を得た。
Example 1
A positive electrode mixture was prepared by mixing LiCoO 2 as a positive electrode active material and carbon black as a conductive additive at a weight ratio of 83:10. Next, the positive electrode mixture was mixed with an N-methyl-2-pyrrolidone (NMP) solution containing 7% by weight of polyvinylidene fluoride (PVDF), and the mixture was sufficiently stirred to prepare a coating material. The paint was dried to remove the solvent, pulverized in a mortar, and then molded into a pellet having a diameter of 15 mm and a thickness of 0.9 mm to obtain a positive electrode. Moreover, graphite and PVDF were mixed as a negative electrode by weight ratio 93: 7, and the negative mix was produced. Similarly to the positive electrode described above, this negative electrode mixture was used to form a negative electrode by molding into a pellet having a diameter of 16 mm and a thickness of 0.7 mm.

次に、上記正極を正極電池缶(外径20mmのステンレス鋼(SUS)缶)に、上記負極を負極電池缶(外径16.5mmのSUS缶)に、それぞれ固定した。また、負極電池缶の外側面に、厚さ100μmの封止材を配置した。上記封止材は、ポリエチレン(PE)に対して、熱膨張性マイクロカプセル“熱膨張性マイクロスフェアH850”(大日精化工業社製、粒径:10〜30μm、殻壁軟化点:155℃、155℃における体積膨張率:120)を25重量%混合してフィルム状に成形したものである。   Next, the positive electrode was fixed to a positive electrode battery can (stainless steel (SUS) can having an outer diameter of 20 mm), and the negative electrode was fixed to a negative electrode battery can (SUS can having an outer diameter of 16.5 mm). A sealing material having a thickness of 100 μm was disposed on the outer surface of the negative battery can. The sealing material is polyethylene (PE), thermally expandable microcapsule “thermally expandable microsphere H850” (manufactured by Dainichi Seika Kogyo Co., Ltd., particle size: 10-30 μm, shell wall softening point: 155 ° C., A volume expansion coefficient at 155 ° C .: 120) was mixed by 25% by weight and formed into a film shape.

次に、正極及び負極に、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを重量比1:4で混合した溶媒に、LiPF6を1M溶解させた電解液を注入した。その後、正極と負極とが、厚さ25μmのポリイミド製セパレーターを介するように、上記正極電池缶と上記負極電池缶とを嵌合した。 Next, an electrolyte solution in which 1 M of LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a weight ratio of 1: 4 was injected into the positive electrode and the negative electrode. Then, the said positive electrode battery can and the said negative electrode battery can were fitted so that a positive electrode and a negative electrode might pass through a 25-micrometer-thick polyimide separator.

最後に、正極電池缶の外側面を固定し、高周波誘導加熱機を用いて170℃で4秒間加熱し、その後放冷することによって、電池缶同士を接着した。   Finally, the outer surface of the positive electrode battery can was fixed, heated at 170 ° C. for 4 seconds using a high-frequency induction heater, and then allowed to cool, thereby bonding the battery cans together.

なお、本実施例の電池は、同一外径、同一厚さの従来のかしめ構造の電池よりも約20%容量が大きいことがわかった。   The battery of this example was found to have a capacity of about 20% larger than that of a conventional caulking structure battery having the same outer diameter and the same thickness.

(実施例2)
封止材と、電池缶を接着させる加熱温度と時間とを除いて、実施例1と同様にして本実施例の電池を作製した。
(Example 2)
A battery of this example was fabricated in the same manner as in Example 1 except for the sealing material and the heating temperature and time for bonding the battery can.

本実施例の封止材として、変性オレフィン系ホットメルト接着剤“1501SG30”(東亜合成社製、軟化点:150℃)に対して、熱膨張性マイクロカプセル“マツモトマイクロスフェアーF30”(松本油脂社製、粒径:10〜20μm、殻壁軟化点:85℃、85℃における体積膨張率:200)を30重量%混合したものを、負極電池缶の外側面に塗布して用いた。   As a sealing material of this example, a thermally expandable microcapsule “Matsumoto Microsphere F30” (Matsumoto Yushi) against a modified olefin hot melt adhesive “1501SG30” (manufactured by Toa Gosei Co., Ltd., softening point: 150 ° C.). A mixture of 30% by weight of a particle size of 10 to 20 μm, a softening point of shell wall: 85 ° C., and a volume expansion coefficient at 200 ° C. of 200 ° C. at 200 ° C. was applied to the outer surface of the negative electrode battery can.

本実施例の電池缶を接着させる加熱温度と時間は、150℃、5秒間とした。   The heating temperature and time for bonding the battery can of this example were 150 ° C. and 5 seconds.

(比較例1)
封止材に熱膨張性マイクロカプセルを混合しなかったことを除いて、実施例1と同様にして本比較例の電池を作製した。
(Comparative Example 1)
A battery of this comparative example was fabricated in the same manner as in Example 1 except that the heat-expandable microcapsules were not mixed in the sealing material.

(比較例2)
封止材に熱膨張性マイクロカプセルを混合しなかったことを除いて、実施例2と同様にして本比較例の電池を作製した。
(Comparative Example 2)
A battery of this comparative example was fabricated in the same manner as in Example 2 except that the heat-expandable microcapsules were not mixed in the sealing material.

実施例1、2及び比較例1、2の電池について、それぞれ30個の電池を作製した。これらの電池を充電電圧4.0V、放電電圧2.0V、充電電流密度1mA/cm2に固定して2サイクル充放電させた後、4.0Vまで充電させた状態で、温度60℃、相対湿度90%の雰囲気中に貯蔵した。20日おきに漏液した電池の数を、光学顕微鏡を用いて目視により調べ、その結果を表1に示した。なお、一般的にこの試験は、20日間漏液しなければ室温で1年間の耐漏液性があると判断できる促進試験である。 Regarding the batteries of Examples 1 and 2 and Comparative Examples 1 and 2, 30 batteries were produced. These batteries were charged at a charge voltage of 4.0 V, a discharge voltage of 2.0 V, a charge current density of 1 mA / cm 2 and charged and discharged for 2 cycles, and then charged to 4.0 V at a temperature of 60 ° C., relative Stored in an atmosphere of 90% humidity. The number of batteries that leaked every 20 days was visually examined using an optical microscope, and the results are shown in Table 1. In general, this test is an accelerated test that can be judged to have a leak resistance of 1 year at room temperature if the liquid does not leak for 20 days.

Figure 2007095477
Figure 2007095477

表1より明らかなように、比較例1及び2の電池は20日経過後から漏液する電池があったのに対して、実施例1及び2の電池は100日経過しても漏液しなかった。従って、熱膨張性マイクロカプセルを含む封止材を用いた本実施例の電池は、電池缶同士の接着強度が大きく、耐漏液性が高いことがわかる。   As is clear from Table 1, the batteries of Comparative Examples 1 and 2 leaked after 20 days, whereas the batteries of Examples 1 and 2 did not leak even after 100 days. It was. Therefore, it can be seen that the battery of this example using the sealing material including the thermally expandable microcapsule has a high adhesive strength between the battery cans and a high leakage resistance.

以上説明したように、本発明は、底面の大きさが異なる2つの電池缶が対向して嵌合された電池において、電池缶同士の接着強度が大きく、耐漏液性が高い電池とその製造方法を提供することができ、その工業的価値は大である。   As described above, the present invention relates to a battery in which two battery cans having different bottom sizes are fitted to face each other, a battery having high adhesive strength between the battery cans and high leakage resistance, and a method for manufacturing the same. And its industrial value is great.

本発明の電池の一例を示す断面図である。It is sectional drawing which shows an example of the battery of this invention.

符号の説明Explanation of symbols

1、2 電池缶
3 封止材
3a 樹脂
3b 熱膨張性マイクロカプセル
4 負極
5 セパレーター
6 正極
7 絶縁板
DESCRIPTION OF SYMBOLS 1, 2 Battery can 3 Sealing material 3a Resin 3b Thermal expansion microcapsule 4 Negative electrode 5 Separator 6 Positive electrode 7 Insulation board

Claims (8)

発電要素と、電池缶aと、前記電池缶aよりも底面積の大きい電池缶bと、封止材とを備えた電池であって、
前記電池缶aと前記電池缶bとは、対向して嵌合され、
前記電池缶aの外側面と前記電池缶bの内側面との間は、前記封止材によって封止かつ接着され、
前記発電要素は、前記電池缶aの底面と前記電池缶bの底面との間に配置され、
前記封止材は、熱膨張性マイクロカプセルと樹脂とを含むことを特徴とする電池。
A battery comprising a power generation element, a battery can a, a battery can b having a larger bottom area than the battery can a, and a sealing material,
The battery can a and the battery can b are fitted to face each other,
Between the outer surface of the battery can a and the inner surface of the battery can b is sealed and bonded by the sealing material,
The power generation element is disposed between the bottom surface of the battery can a and the bottom surface of the battery can b,
The battery, wherein the sealing material includes a thermally expandable microcapsule and a resin.
前記熱膨張性マイクロカプセルは、熱可塑性樹脂からなる殻壁を備えた微小球からなり、前記微小球の内部に、沸点が80℃以上250℃以下の揮発性膨張剤を内包している請求項1に記載の電池。   The heat-expandable microcapsule comprises microspheres having a shell wall made of a thermoplastic resin, and a volatile expansion agent having a boiling point of 80 ° C. or higher and 250 ° C. or lower is encapsulated inside the microsphere. 1. The battery according to 1. 前記封止材における熱膨張性マイクロカプセルの含有率は、5体積%以上20体積%以下である請求項1に記載の電池。   The battery according to claim 1, wherein the content of the thermally expandable microcapsule in the sealing material is 5% by volume or more and 20% by volume or less. 前記樹脂は、ポリプロピレン、ポリエチレン、ポリアミドイミド及びフッ素樹脂から選ばれる少なくとも1つの熱可塑性樹脂を含む請求項1に記載の電池。   The battery according to claim 1, wherein the resin includes at least one thermoplastic resin selected from polypropylene, polyethylene, polyamideimide, and fluororesin. 発電要素と、電池缶aと、前記電池缶aよりも底面積の大きい電池缶bとを備え、前記電池缶aと前記電池缶bとは対向して嵌合され、前記発電要素は前記電池缶aの底面と前記電池缶bの底面との間に配置された電池の製造方法であって、
(A)前記電池缶aの外側面と前記電池缶bの内側面との間に、熱膨張性マイクロカプセルと樹脂とを含む封止材を配置する工程と、
(B)前記封止材を加熱することにより、前記樹脂を溶解又は軟化させるとともに、前記熱膨張性マイクロカプセルを膨張させる工程と、
(C)前記(B)工程の後に前記封止材を硬化させることにより、前記電池缶aの外側面及び前記電池缶bの内側面に、前記封止材を接着させる工程とを含むことを特徴とする電池の製造方法。
A power generation element, a battery can a, and a battery can b having a larger bottom area than the battery can a, wherein the battery can a and the battery can b are fitted to face each other, and the power generation element is the battery A method of manufacturing a battery disposed between a bottom surface of a can a and a bottom surface of the battery can b,
(A) Disposing a sealing material including a thermally expandable microcapsule and a resin between the outer surface of the battery can a and the inner surface of the battery can b;
(B) heating the sealing material to dissolve or soften the resin and expand the thermally expandable microcapsule;
(C) including the step of adhering the sealing material to the outer side surface of the battery can a and the inner side surface of the battery can b by curing the sealing material after the step (B). A battery manufacturing method.
前記熱膨張性マイクロカプセルの膨張開始温度は、前記(A)工程における前記封止材の温度より高く、前記(B)工程における前記封止材の加熱温度以下の温度である請求項5に記載の電池の製造方法。   The expansion start temperature of the thermally expandable microcapsule is higher than the temperature of the encapsulant in the step (A) and is equal to or lower than the heating temperature of the encapsulant in the step (B). Battery manufacturing method. 前記熱膨張性マイクロカプセルは、熱可塑性樹脂からなる殻壁を備えた微小球からなり、前記微小球の内部に揮発性膨張剤を内包し、前記揮発性膨張剤の沸点は、前記(A)工程における前記封止材の温度より高く、前記(B)工程における前記封止材の加熱温度以下の温度である請求項5に記載の電池の製造方法。   The thermally expandable microcapsule is composed of a microsphere having a shell wall made of a thermoplastic resin, and a volatile expansion agent is included inside the microsphere, and the boiling point of the volatile expansion agent is (A) The battery manufacturing method according to claim 5, wherein the temperature is higher than a temperature of the sealing material in the step and is equal to or lower than a heating temperature of the sealing material in the step (B). 前記樹脂は、ポリプロピレン、ポリエチレン、ポリアミドイミド及びフッ素樹脂から選ばれる少なくとも1つの熱可塑性樹脂を含む請求項5に記載の電池。   The battery according to claim 5, wherein the resin includes at least one thermoplastic resin selected from polypropylene, polyethylene, polyamideimide, and fluororesin.
JP2005282895A 2005-09-28 2005-09-28 Battery and method of manufacturing same Withdrawn JP2007095477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282895A JP2007095477A (en) 2005-09-28 2005-09-28 Battery and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282895A JP2007095477A (en) 2005-09-28 2005-09-28 Battery and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2007095477A true JP2007095477A (en) 2007-04-12

Family

ID=37980924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282895A Withdrawn JP2007095477A (en) 2005-09-28 2005-09-28 Battery and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2007095477A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273413B1 (en) * 2011-05-04 2013-06-11 율촌화학 주식회사 Cell pouch with explosion stability and method for manufacturing the same
KR101374849B1 (en) 2012-09-11 2014-03-19 주식회사 루트제이드 Case for secondary battery having bending part
WO2014042417A1 (en) * 2012-09-11 2014-03-20 주식회사 루트제이드 Secondary battery case provided with fastening strengthening unit
KR101464220B1 (en) 2012-09-11 2014-11-24 주식회사 루트제이드 Case for secondary battery having locking part
US11679613B2 (en) 2017-03-07 2023-06-20 Casio Computer Co., Ltd. Thermally expandable sheet production method and shaped object production method
US11685139B2 (en) 2017-03-07 2023-06-27 Casio Computer Co., Ltd. Thermally expandable sheet production method and shaped object production method
US11801659B2 (en) 2017-03-07 2023-10-31 Casio Computer Co., Ltd. Thermally expandable sheet production method and shaped object production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273413B1 (en) * 2011-05-04 2013-06-11 율촌화학 주식회사 Cell pouch with explosion stability and method for manufacturing the same
KR101374849B1 (en) 2012-09-11 2014-03-19 주식회사 루트제이드 Case for secondary battery having bending part
WO2014042417A1 (en) * 2012-09-11 2014-03-20 주식회사 루트제이드 Secondary battery case provided with fastening strengthening unit
KR101464220B1 (en) 2012-09-11 2014-11-24 주식회사 루트제이드 Case for secondary battery having locking part
US11679613B2 (en) 2017-03-07 2023-06-20 Casio Computer Co., Ltd. Thermally expandable sheet production method and shaped object production method
US11685139B2 (en) 2017-03-07 2023-06-27 Casio Computer Co., Ltd. Thermally expandable sheet production method and shaped object production method
US11801659B2 (en) 2017-03-07 2023-10-31 Casio Computer Co., Ltd. Thermally expandable sheet production method and shaped object production method

Similar Documents

Publication Publication Date Title
JP2007095477A (en) Battery and method of manufacturing same
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
US7442465B2 (en) Jelly-roll type electrode assembly, lithium secondary battery having the same, and method for manufacturing the same
KR100560158B1 (en) Lithium secondary battery with high safety and manufacturing method thereof
WO2005112150A1 (en) Lithium ion secondary battery and method for producing same
WO2021189399A1 (en) Separator, electrode assembly, battery, and electronic device
KR20170085053A (en) Double-sided tape for electrode constituent body immobilization, and secondary battery
KR20160102465A (en) Method for producing thermally expandable microspheres and use of same
JP2008226807A (en) Non-aqueous electrolyte secondary battery
WO2005104270A1 (en) Lithium ion secondary battery and method for producing same
KR20140071951A (en) Heat resistant porous membrane, separator for nonaqueous cell, and nonaqueous cell
KR101370674B1 (en) Separator for electrochemical device, method for producing the same, and electrochemical device
JP2006080064A (en) Lithium secondary battery
JP2009140904A (en) Non-aqueous electrolyte battery
CN102412378A (en) Polymer electrolyte isolating membrane, preparation method and use thereof
KR20160109604A (en) A manufacturing method of all-solid battery using wet-dry process
JP4274805B2 (en) Pack battery
TW529189B (en) Thin secondary battery
JP2007305453A (en) Lithium ion polymer battery
JP2023554151A (en) Batteries, electronic devices, and mobile devices
CN102569703A (en) Diaphragm and lithium ion battery applying diaphragm
CN113270661A (en) Pole piece and battery
JPWO2017115647A1 (en) Heat sensitive layer for lithium ion secondary battery
JP6303785B2 (en) Positive electrode for lithium ion secondary battery, method for producing positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005332809A (en) Lithium-ion secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202