JP2007093990A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2007093990A
JP2007093990A JP2005283029A JP2005283029A JP2007093990A JP 2007093990 A JP2007093990 A JP 2007093990A JP 2005283029 A JP2005283029 A JP 2005283029A JP 2005283029 A JP2005283029 A JP 2005283029A JP 2007093990 A JP2007093990 A JP 2007093990A
Authority
JP
Japan
Prior art keywords
liquid crystal
backlight
display device
correction
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283029A
Other languages
Japanese (ja)
Inventor
Kazuteru Yoshida
一輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Sanyo Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Epson Imaging Devices Corp filed Critical Sanyo Epson Imaging Devices Corp
Priority to JP2005283029A priority Critical patent/JP2007093990A/en
Publication of JP2007093990A publication Critical patent/JP2007093990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform proper display according to light quantity of a back light. <P>SOLUTION: A back light control signal is supplied to a video signal processing circuit 20. Thereis stored γ correction data according to the light quantity of the back light in a γ correction memory 22. The video signal processing circuit 20 reads corresponding γ correction data from the γ correction memory 22 according to the light quantity of the back light and corrects a video signal using the γ correction data. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶表示装置におけるγ補正に関する。   The present invention relates to γ correction in a liquid crystal display device.

従来より、液晶表示装置が知られており、薄型低消費電力の表示装置として広く普及している。一方、テレビ画面などの表示においては、輝度変化を示す信号と人間の視覚との差を補償するために映像信号をγ補正して表示が行われ、液晶表示装置においてもこのγ補正が行われる。   Conventionally, liquid crystal display devices are known and widely used as thin and low power consumption display devices. On the other hand, in the display of a television screen or the like, the video signal is displayed with γ correction to compensate for the difference between the signal indicating the luminance change and human vision, and this γ correction is also performed in the liquid crystal display device. .

一方、液晶表示装置には、透過型、反射型、半透過型があり、半透過型では、バックライトからの透過光を利用する透過表示と、入射光を利用する反射表示の両方が行え、暗い場所では透過表示、明るい場所では反射表示を行うことができる。   On the other hand, there are transmissive, reflective, and transflective liquid crystal display devices. In the transflective type, both transmissive display using transmitted light from the backlight and reflective display using incident light can be performed. Transparent display can be performed in dark places and reflective display in bright places.

ここで、透過表示と反射表示において、γ補正を変更することについて特許文献1に記載がある。この特許文献1では、バックライトの照明時と非点灯時とでγ補正のやり方を切り替えて、表示を行っている。   Here, Patent Document 1 describes changing γ correction in transmissive display and reflective display. In this Patent Document 1, display is performed by switching the γ correction method between when the backlight is illuminated and when it is not lit.

特開2003−222836号公報JP 2003-2222836 A

ここで、周囲の明るさには、種々の段階があり、その段階に応じて適切な表示を行えれば、より適切な表示が行えると考えられる。特に、周囲がそれほど明るくない場合には、バックライトと反射光の両方を利用する場合もあり、その場合において適切な表示を行うことが要求される。   Here, there are various levels of ambient brightness, and it is considered that more appropriate display can be performed if appropriate display can be performed according to the level. In particular, when the surroundings are not so bright, both the backlight and the reflected light may be used. In that case, it is required to display appropriately.

本発明は、第1基板および第2基板の間に液晶を封入し、マトリクス状に配置した画素毎に液晶に印加する電圧を制御して表示を行う液晶表示装置であって、各画素には、反射膜が設けられた反射領域と、反射膜が設けられていない透過領域が設けられた半透過型であり、透過領域の背面側にはバックライトが設けられるとともに、バックライトの光量は調整可能であり、かつ、各画素に供給するデータ信号についてのγ補正量は、バックライトの光量に応じて変更されることを特徴とする。   The present invention is a liquid crystal display device that performs display by enclosing liquid crystal between a first substrate and a second substrate and controlling a voltage applied to the liquid crystal for each pixel arranged in a matrix. The semi-transmissive type is provided with a reflective area with a reflective film and a transmissive area with no reflective film. A backlight is provided on the back side of the transmissive area, and the amount of light from the backlight is adjusted. The γ correction amount for the data signal supplied to each pixel can be changed in accordance with the light amount of the backlight.

また、バックライトの光量と、γ補正量の関係を記憶するメモリを有することが好適である。   It is also preferable to have a memory that stores the relationship between the amount of backlight light and the amount of γ correction.

このように、本発明によれば、バックライトの光量に応じてγ補正を変更するため、周囲の明るさに応じてバックライト光量を変更する場合においても、適切なγ補正を行うことができる。   As described above, according to the present invention, since the γ correction is changed according to the light amount of the backlight, even when the backlight light amount is changed according to the ambient brightness, an appropriate γ correction can be performed. .

図1に本発明の実施形態に係る液晶表示装置におけるビデオ信号処理をするための構成の一例を示す。ドライバIC10は、外部のマイクロコンピュータ(マイコン)などから供給されてくるデジタルのビデオ信号について所定の信号処理を行い、これを表示パネル12に供給する。   FIG. 1 shows an example of a configuration for performing video signal processing in a liquid crystal display device according to an embodiment of the present invention. The driver IC 10 performs predetermined signal processing on a digital video signal supplied from an external microcomputer (microcomputer) or the like, and supplies the signal to the display panel 12.

ドライバIC10には、ビデオ信号処理回路20が設けられており、外部からのビデオ信号はこのビデオ信号処理回路20に供給される。ビデオ信号処理回路20には、γ補正メモリ22が接続されており、ビデオ信号処理回路20は、γ補正メモリ22に記憶されている内容を利用してビデオ信号のγ補正を行う。   The driver IC 10 is provided with a video signal processing circuit 20, and an external video signal is supplied to the video signal processing circuit 20. A γ correction memory 22 is connected to the video signal processing circuit 20, and the video signal processing circuit 20 performs γ correction of the video signal by using the contents stored in the γ correction memory 22.

また、バックライト調整回路24には、表示装置に設けられているバックライト調整用つまみの調整などに応じて決定されるバックライト調整信号が供給されている。なお、外光の照度を検出する照度センサを設け、この照度センサの出力に応じてバックライト調整信号を生成してもよい。すなわち、周囲が明るい場合には、バックライトを弱めるようにバックライト調整信号を発生する。   The backlight adjustment circuit 24 is supplied with a backlight adjustment signal that is determined according to adjustment of a backlight adjustment knob provided in the display device. An illuminance sensor that detects the illuminance of external light may be provided, and a backlight adjustment signal may be generated according to the output of the illuminance sensor. That is, when the surroundings are bright, a backlight adjustment signal is generated so as to weaken the backlight.

そして、バックライト調整回路24は、供給されるバックライト調整信号に応じて、表示パネル12におけるバックライトの強度を調整するバックライト制御信号を生成し、これを表示パネル12に供給する。従って、表示パネル12では、バックライトの光量をバックライト制御信号に応じて制御する。   Then, the backlight adjustment circuit 24 generates a backlight control signal for adjusting the backlight intensity in the display panel 12 according to the supplied backlight adjustment signal, and supplies the backlight control signal to the display panel 12. Therefore, the display panel 12 controls the amount of light of the backlight according to the backlight control signal.

ここで、本実施形態では、バックライト制御信号によって、点灯時におけるバックライト電流が1,5,10,15mAの4段階のいずれかに制御される。なお、点灯時のバックライト電流の制御は2段階以上であれば、何段階でもよい。   Here, in this embodiment, the backlight current at the time of lighting is controlled in any one of four stages of 1, 5, 10, and 15 mA by the backlight control signal. Note that the backlight current during lighting may be controlled in any number of steps as long as it is at least two steps.

バックライト制御信号は、ビデオ信号処理回路20にも供給され、ビデオ信号処理回路20はバックライト制御信号に応じてγ補正の補正量を変更する。   The backlight control signal is also supplied to the video signal processing circuit 20, and the video signal processing circuit 20 changes the correction amount of γ correction according to the backlight control signal.

図2には、ビデオ信号の階調レベルと、輝度の関係が示されている。一番下の実線がγ=2.2の値であり、この曲線に乗るようにビデオ信号がγ補正される。なお、これはバックライトを考慮しない場合の曲線である。また、γは通常2.2であるが、2.2以外の値であってもよく、所定のγ曲線に乗るようにビデオ信号がγ補正される。   FIG. 2 shows the relationship between the gradation level of the video signal and the luminance. The bottom solid line has a value of γ = 2.2, and the video signal is γ-corrected so as to be on this curve. This is a curve when the backlight is not considered. Further, γ is normally 2.2, but may be a value other than 2.2, and the video signal is γ-corrected so as to be on a predetermined γ curve.

一方、バックライトを点灯した場合には、実際の見え方が異なる。図2には、半透過型の表示パネルにおいて、バックライト電流を4段階に変更した場合におけるビデオ信号と輝度の関係を示してある。このように、バックライト電流に応じてγが変化している。そこで、本実施形態においては、バックライト電流によらず常にγ=2.2の曲線に乗るように、ビデオ信号のγ補正を行う。また、γは通常2.2であるが、2.2以外の値であってもよく、所定のγ曲線に乗るようにビデオ信号がγ補正される。   On the other hand, when the backlight is turned on, the actual appearance is different. FIG. 2 shows the relationship between the video signal and the luminance when the backlight current is changed in four stages in the transflective display panel. Thus, γ changes according to the backlight current. Therefore, in the present embodiment, γ correction of the video signal is performed so as to always be on the curve of γ = 2.2 regardless of the backlight current. Further, γ is normally 2.2, but may be a value other than 2.2, and the video signal is γ-corrected so as to be on a predetermined γ curve.

例えば、γ補正メモリ22のバックライト電流に応じた補正係数のテーブルや補正式を記憶しておき、バックライト制御信号に応じて補正方法を変更する。   For example, a correction coefficient table or correction equation corresponding to the backlight current in the γ correction memory 22 is stored, and the correction method is changed according to the backlight control signal.

このように、本実施形態によれば、バックライト電流の大きさに応じて、γ補正のやり方を変更する。これによって、バックライトの強度によらず、適切なγ補正が行える。   Thus, according to the present embodiment, the γ correction method is changed according to the magnitude of the backlight current. Thus, appropriate γ correction can be performed regardless of the backlight intensity.

なお、図2の実験は、ノーマリーホワイト液晶を用いた半透過型表示パネルを用いて行った実験結果であるが、これに限定されるものではなくノーマリーブラックなど各種のものが利用可能である。   The experiment of FIG. 2 is the result of an experiment performed using a transflective display panel using normally white liquid crystal, but is not limited to this, and various types such as normally black can be used. is there.

ここで、本実施形態は、半透過型の表示パネルを利用している。そこで、この半透過型液晶表示装置の構成について、説明する。   Here, the present embodiment uses a transflective display panel. Therefore, the configuration of this transflective liquid crystal display device will be described.

図3は、液晶表示装置(LCD)として半透過型の液晶表示装置を用いた場合の1画素のTFT付近の概略断面構成を示している。   FIG. 3 shows a schematic sectional configuration in the vicinity of a TFT of one pixel when a transflective liquid crystal display device is used as the liquid crystal display device (LCD).

液晶表示装置1において、所定ギャップを隔てて貼り合わされたTFT基板100と対極基板200との間に液晶層30が封入されて構成されている。TFT基板100及び対極基板200としてはガラス基板やプラスチック基板などの透明基板が採用される。   In the liquid crystal display device 1, a liquid crystal layer 30 is sealed between a TFT substrate 100 and a counter electrode substrate 200 bonded together with a predetermined gap. As the TFT substrate 100 and the counter electrode substrate 200, a transparent substrate such as a glass substrate or a plastic substrate is employed.

TFT基板100の液晶側の面には、各画素ごとに薄膜トランジスタ(TFT:Thin film Transistor)40が形成されている。TFT基板100上の反射領域には、反射機能を備えたAl、Ag等の反射層111が形成されている。反射領域の反射層111及び透過領域のTFT基板100上には第1電極として、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透明導電材料が用いられた画素電極115が形成されている。この画素電極115上に液晶層30の初期配向を制御するためのポリイミドなどからなる配向膜(図示せず)が形成されている。   A thin film transistor (TFT) 40 is formed for each pixel on the liquid crystal side surface of the TFT substrate 100. In the reflective region on the TFT substrate 100, a reflective layer 111 of Al, Ag or the like having a reflective function is formed. A pixel electrode 115 using a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is formed as a first electrode on the reflective layer 111 in the reflective region and the TFT substrate 100 in the transmissive region. Yes. An alignment film (not shown) made of polyimide or the like for controlling the initial alignment of the liquid crystal layer 30 is formed on the pixel electrode 115.

TFT基板100と対向配置される対極基板200の液晶側にはカラーフィルタ(R,G,B)222が形成されている。反射領域のカラーフィルタ222の上には対極突起224が形成され、対極突起224及び透過領域のカラーフィルタ222の上に第2電極として、ITO,IZO等の透明導電材料が用いられた共通電極225が形成されている。なお、アクティブマトリクス型において、この共通電極225は複数画素(通常は全画素)に対する共通電極として形成されている。またこの共通電極225の上には、TFT基板側と同様の配向膜(図示せず)が形成されている。   A color filter (R, G, B) 222 is formed on the liquid crystal side of the counter electrode substrate 200 disposed to face the TFT substrate 100. A counter electrode protrusion 224 is formed on the color filter 222 in the reflective area, and a common electrode 225 using a transparent conductive material such as ITO or IZO as the second electrode on the counter electrode protrusion 224 and the color filter 222 in the transmission area. Is formed. In the active matrix type, the common electrode 225 is formed as a common electrode for a plurality of pixels (usually all pixels). An alignment film (not shown) similar to that on the TFT substrate side is formed on the common electrode 225.

TFT基板100に形成されるTFT40は、各画素電極115への電圧供給を制御する。なお、反射領域の画素電極115をアルミなどの金属で形成することにより、反射層111を省略してもよい。   The TFT 40 formed on the TFT substrate 100 controls voltage supply to each pixel electrode 115. Note that the reflective layer 111 may be omitted by forming the pixel electrode 115 in the reflective region from a metal such as aluminum.

カラーフィルタ222は、画素毎に設けられ、RGBのいずれかの光のみを透過する。従って、これらのカラーフィルタによって、画素の表示色が限定される。カラーフィルタ222は、各画素に対応して設けられており、画素同士の間隙には、ブラックマトリクス226が配置されている。なお、カラーフィルタ222を設けないW(ホワイト)の画素を設けてもよいし、RGB以外の色、例えばC(シアン)のカラーフィルタの画素を設けてもよい。   The color filter 222 is provided for each pixel and transmits only one of RGB light. Therefore, the display color of the pixels is limited by these color filters. The color filter 222 is provided corresponding to each pixel, and a black matrix 226 is disposed in the gap between the pixels. Note that W (white) pixels without the color filter 222 may be provided, or pixels of colors other than RGB, for example, C (cyan) color filters may be provided.

そして、各画素電極115の電位を個別に制御することで、各画素電極115と共通電極225間の液晶に画素毎に異なる電位を印加して、液晶の光学特性を変化させて表示を行うことができる。   Then, by controlling the potential of each pixel electrode 115 individually, a different potential is applied to the liquid crystal between each pixel electrode 115 and the common electrode 225 for each pixel, and display is performed by changing the optical characteristics of the liquid crystal. Can do.

対極突起224は、反射領域の液晶層30の厚さを調整して、反射領域と透過領域の光路差を揃えるために設けられるもので、透明のアクリル系の樹脂等により構成される。   The counter electrode protrusion 224 is provided to adjust the thickness of the liquid crystal layer 30 in the reflective region so as to align the optical path difference between the reflective region and the transmissive region, and is made of a transparent acrylic resin or the like.

このような構成によって、反射領域においては、対極基板200側から入射してくる光を反射する。従って、カラーフィルタ222を2度通過し、各画素の液晶によって変調された反射光が観察側に得られる。一方、透過領域においては、TFT基板100側から入射してくるバックライトからの光が液晶層30を透過する。従って、各画素の液晶によって変調された透過光が観察側に得られる。   With such a configuration, light incident from the counter substrate 200 side is reflected in the reflection region. Therefore, reflected light that has passed through the color filter 222 twice and is modulated by the liquid crystal of each pixel is obtained on the observation side. On the other hand, in the transmissive region, light from the backlight incident from the TFT substrate 100 side is transmitted through the liquid crystal layer 30. Therefore, transmitted light modulated by the liquid crystal of each pixel is obtained on the observation side.

次に、TFT基板100の構成を説明する。アクティブマトリクス型LCDでは、表示領域内にマトリクス状に複数の画素が設けられ、各画素に対してここでは、スイッチ素子としてTFT40が設けられている。   Next, the configuration of the TFT substrate 100 will be described. In an active matrix LCD, a plurality of pixels are provided in a matrix within a display area, and here, a TFT 40 is provided as a switch element for each pixel.

このTFT40は、Poly−Si膜50を有し、このPoly−Si膜50によりドレイン領域、チャネル領域、ソース領域が形成される。Poly−Si膜50を覆って、ゲート絶縁膜58が形成され、このゲート絶縁膜58上であって、チャネル領域の上方に当たる部位にゲート電極56が形成されている。そして、ゲート絶縁膜58、ゲート電極56を覆って、層間絶縁膜62が形成される。層間絶縁膜62上にはドレイン電極52及びソース電極54が配置され、このドレイン電極52及びソース電極54が層間絶縁膜62およびゲート絶縁膜58を貫通するコンタクトを介してそれぞれTFT40のドレイン領域及びソース領域に接続されている。また、ソース電極54上のパッシベーション膜64及び平坦化膜66にはコンタクト68が形成され、ここに画素電極115の一部が伸び電気的に接続されている。   The TFT 40 has a Poly-Si film 50, and a drain region, a channel region, and a source region are formed by the Poly-Si film 50. A gate insulating film 58 is formed so as to cover the Poly-Si film 50, and a gate electrode 56 is formed on the gate insulating film 58 and in a portion that is above the channel region. Then, an interlayer insulating film 62 is formed so as to cover the gate insulating film 58 and the gate electrode 56. A drain electrode 52 and a source electrode 54 are disposed on the interlayer insulating film 62, and the drain electrode 52 and the source electrode 54 are connected to the interlayer insulating film 62 and the gate insulating film 58 through contacts, respectively. Connected to the region. A contact 68 is formed on the passivation film 64 and the planarization film 66 on the source electrode 54, and a part of the pixel electrode 115 extends and is electrically connected thereto.

なお、上記構成において、ドレイン電極52はデータラインに接続され、ゲート電極56は、ゲートラインに接続される。ドレイン電極52をデータラインの一部を用いて形成したり、ゲート電極56をゲートラインを用いて形成することも好適である。さらに、Poly−Si膜50はソース領域を越えて伸張されており、この伸張部分においてゲート絶縁膜58を介し容量ライン60が対向配置されて保持容量が形成されている。   In the above configuration, the drain electrode 52 is connected to the data line, and the gate electrode 56 is connected to the gate line. It is also preferable to form the drain electrode 52 by using a part of the data line and to form the gate electrode 56 by using the gate line. Further, the Poly-Si film 50 is extended beyond the source region, and the storage line is formed by opposing the capacitance line 60 via the gate insulating film 58 in the extended portion.

ビデオ信号を処理するための構成を示す図である。It is a figure which shows the structure for processing a video signal. γ補正を説明する図である。It is a figure explaining (gamma) correction. 反射型LCDの画素部の構造を示す図である。It is a figure which shows the structure of the pixel part of reflection type LCD.

符号の説明Explanation of symbols

1 液晶表示装置、10 ドライバIC、12 表示パネル、20 ビデオ信号処理回路、22 γ補正メモリ、24 バックライト調整回路、30 液晶層、40 TFT、50 Poly−Si膜、52 ドレイン電極、54 ソース電極、56 ゲート電極、58 ゲート絶縁膜、60 容量ライン、62 層間絶縁膜、64 パッシベーション膜、66 平坦化膜、68 コンタクト、100 TFT基板、111 反射層、115 画素電極、200 対極基板、222 カラーフィルタ、224 対極突起、225 共通電極、226 ブラックマトリクス。   DESCRIPTION OF SYMBOLS 1 Liquid crystal display device, 10 Driver IC, 12 Display panel, 20 Video signal processing circuit, 22 γ correction memory, 24 Backlight adjustment circuit, 30 Liquid crystal layer, 40 TFT, 50 Poly-Si film, 52 Drain electrode, 54 Source electrode 56 gate electrode, 58 gate insulating film, 60 capacitor line, 62 interlayer insulating film, 64 passivation film, 66 planarization film, 68 contact, 100 TFT substrate, 111 reflective layer, 115 pixel electrode, 200 counter electrode substrate, 222 color filter 224, counter electrode protrusion, 225 common electrode, 226 black matrix.

Claims (2)

第1基板および第2基板の間に液晶を封入し、マトリクス状に配置した画素毎に液晶に印加する電圧を制御して表示を行う液晶表示装置であって、
各画素には、反射膜が設けられた反射領域と、反射膜が設けられていない透過領域が設けられた半透過型であり、
透過領域の背面側にはバックライトが設けられるとともに、バックライトの光量は調整可能であり、
かつ、各画素に供給するデータ信号についてのγ補正量は、バックライトの光量に応じて変更されることを特徴とする液晶表示装置。
A liquid crystal display device that performs display by enclosing liquid crystal between a first substrate and a second substrate and controlling a voltage applied to the liquid crystal for each pixel arranged in a matrix,
Each pixel is a transflective type in which a reflective area provided with a reflective film and a transmissive area provided with no reflective film are provided.
A backlight is provided on the back side of the transmissive area, and the amount of the backlight can be adjusted.
The liquid crystal display device is characterized in that the γ correction amount for the data signal supplied to each pixel is changed according to the amount of light of the backlight.
請求項1に記載の液晶表示装置において、
バックライトの光量と、γ補正量の関係を記憶するメモリを有することを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1.
A liquid crystal display device having a memory for storing a relationship between a light amount of a backlight and a γ correction amount.
JP2005283029A 2005-09-28 2005-09-28 Liquid crystal display device Pending JP2007093990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283029A JP2007093990A (en) 2005-09-28 2005-09-28 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283029A JP2007093990A (en) 2005-09-28 2005-09-28 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2007093990A true JP2007093990A (en) 2007-04-12

Family

ID=37979799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283029A Pending JP2007093990A (en) 2005-09-28 2005-09-28 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2007093990A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028341A1 (en) * 2007-08-27 2009-03-05 Sharp Kabushiki Kaisha Methods for adjusting image characteristics
US7768496B2 (en) 2004-12-02 2010-08-03 Sharp Laboratories Of America, Inc. Methods and systems for image tonescale adjustment to compensate for a reduced source light power level
US7782405B2 (en) 2004-12-02 2010-08-24 Sharp Laboratories Of America, Inc. Systems and methods for selecting a display source light illumination level
US7800577B2 (en) 2004-12-02 2010-09-21 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics
US7826681B2 (en) 2007-02-28 2010-11-02 Sharp Laboratories Of America, Inc. Methods and systems for surround-specific display modeling
US7839406B2 (en) 2006-03-08 2010-11-23 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics with ambient illumination input
US7924261B2 (en) 2004-12-02 2011-04-12 Sharp Laboratories Of America, Inc. Methods and systems for determining a display light source adjustment
US7961199B2 (en) 2004-12-02 2011-06-14 Sharp Laboratories Of America, Inc. Methods and systems for image-specific tone scale adjustment and light-source control
US7982707B2 (en) 2004-12-02 2011-07-19 Sharp Laboratories Of America, Inc. Methods and systems for generating and applying image tone scale adjustments
US8004511B2 (en) 2004-12-02 2011-08-23 Sharp Laboratories Of America, Inc. Systems and methods for distortion-related source light management
US8111265B2 (en) 2004-12-02 2012-02-07 Sharp Laboratories Of America, Inc. Systems and methods for brightness preservation using a smoothed gain image
US8155434B2 (en) 2007-10-30 2012-04-10 Sharp Laboratories Of America, Inc. Methods and systems for image enhancement
US8165724B2 (en) 2009-06-17 2012-04-24 Sharp Laboratories Of America, Inc. Methods and systems for power-controlling display devices
US8169431B2 (en) 2007-12-26 2012-05-01 Sharp Laboratories Of America, Inc. Methods and systems for image tonescale design
US8179363B2 (en) 2007-12-26 2012-05-15 Sharp Laboratories Of America, Inc. Methods and systems for display source light management with histogram manipulation
US8203579B2 (en) 2007-12-26 2012-06-19 Sharp Laboratories Of America, Inc. Methods and systems for backlight modulation with image characteristic mapping
US8207932B2 (en) 2007-12-26 2012-06-26 Sharp Laboratories Of America, Inc. Methods and systems for display source light illumination level selection
US8223113B2 (en) 2007-12-26 2012-07-17 Sharp Laboratories Of America, Inc. Methods and systems for display source light management with variable delay
US8345038B2 (en) 2007-10-30 2013-01-01 Sharp Laboratories Of America, Inc. Methods and systems for backlight modulation and brightness preservation
US8378956B2 (en) 2007-11-30 2013-02-19 Sharp Laboratories Of America, Inc. Methods and systems for weighted-error-vector-based source light selection
US8416179B2 (en) 2008-07-10 2013-04-09 Sharp Laboratories Of America, Inc. Methods and systems for color preservation with a color-modulated backlight
US8531379B2 (en) 2008-04-28 2013-09-10 Sharp Laboratories Of America, Inc. Methods and systems for image compensation for ambient conditions
US8913089B2 (en) 2005-06-15 2014-12-16 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics with frequency-specific gain
US8922594B2 (en) 2005-06-15 2014-12-30 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics with high frequency contrast enhancement
US8947465B2 (en) 2004-12-02 2015-02-03 Sharp Laboratories Of America, Inc. Methods and systems for display-mode-dependent brightness preservation
US9083969B2 (en) 2005-08-12 2015-07-14 Sharp Laboratories Of America, Inc. Methods and systems for independent view adjustment in multiple-view displays
US9177509B2 (en) 2007-11-30 2015-11-03 Sharp Laboratories Of America, Inc. Methods and systems for backlight modulation with scene-cut detection
US9330630B2 (en) 2008-08-30 2016-05-03 Sharp Laboratories Of America, Inc. Methods and systems for display source light management with rate change control

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947465B2 (en) 2004-12-02 2015-02-03 Sharp Laboratories Of America, Inc. Methods and systems for display-mode-dependent brightness preservation
US7768496B2 (en) 2004-12-02 2010-08-03 Sharp Laboratories Of America, Inc. Methods and systems for image tonescale adjustment to compensate for a reduced source light power level
US7782405B2 (en) 2004-12-02 2010-08-24 Sharp Laboratories Of America, Inc. Systems and methods for selecting a display source light illumination level
US7800577B2 (en) 2004-12-02 2010-09-21 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics
US7924261B2 (en) 2004-12-02 2011-04-12 Sharp Laboratories Of America, Inc. Methods and systems for determining a display light source adjustment
US7961199B2 (en) 2004-12-02 2011-06-14 Sharp Laboratories Of America, Inc. Methods and systems for image-specific tone scale adjustment and light-source control
US7982707B2 (en) 2004-12-02 2011-07-19 Sharp Laboratories Of America, Inc. Methods and systems for generating and applying image tone scale adjustments
US8004511B2 (en) 2004-12-02 2011-08-23 Sharp Laboratories Of America, Inc. Systems and methods for distortion-related source light management
US8111265B2 (en) 2004-12-02 2012-02-07 Sharp Laboratories Of America, Inc. Systems and methods for brightness preservation using a smoothed gain image
US8120570B2 (en) 2004-12-02 2012-02-21 Sharp Laboratories Of America, Inc. Systems and methods for tone curve generation, selection and application
US8913089B2 (en) 2005-06-15 2014-12-16 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics with frequency-specific gain
US8922594B2 (en) 2005-06-15 2014-12-30 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics with high frequency contrast enhancement
US9083969B2 (en) 2005-08-12 2015-07-14 Sharp Laboratories Of America, Inc. Methods and systems for independent view adjustment in multiple-view displays
US7839406B2 (en) 2006-03-08 2010-11-23 Sharp Laboratories Of America, Inc. Methods and systems for enhancing display characteristics with ambient illumination input
US7826681B2 (en) 2007-02-28 2010-11-02 Sharp Laboratories Of America, Inc. Methods and systems for surround-specific display modeling
WO2009028341A1 (en) * 2007-08-27 2009-03-05 Sharp Kabushiki Kaisha Methods for adjusting image characteristics
US8155434B2 (en) 2007-10-30 2012-04-10 Sharp Laboratories Of America, Inc. Methods and systems for image enhancement
US8345038B2 (en) 2007-10-30 2013-01-01 Sharp Laboratories Of America, Inc. Methods and systems for backlight modulation and brightness preservation
US9177509B2 (en) 2007-11-30 2015-11-03 Sharp Laboratories Of America, Inc. Methods and systems for backlight modulation with scene-cut detection
US8378956B2 (en) 2007-11-30 2013-02-19 Sharp Laboratories Of America, Inc. Methods and systems for weighted-error-vector-based source light selection
US8169431B2 (en) 2007-12-26 2012-05-01 Sharp Laboratories Of America, Inc. Methods and systems for image tonescale design
US8223113B2 (en) 2007-12-26 2012-07-17 Sharp Laboratories Of America, Inc. Methods and systems for display source light management with variable delay
US8207932B2 (en) 2007-12-26 2012-06-26 Sharp Laboratories Of America, Inc. Methods and systems for display source light illumination level selection
US8203579B2 (en) 2007-12-26 2012-06-19 Sharp Laboratories Of America, Inc. Methods and systems for backlight modulation with image characteristic mapping
US8179363B2 (en) 2007-12-26 2012-05-15 Sharp Laboratories Of America, Inc. Methods and systems for display source light management with histogram manipulation
US8531379B2 (en) 2008-04-28 2013-09-10 Sharp Laboratories Of America, Inc. Methods and systems for image compensation for ambient conditions
US8416179B2 (en) 2008-07-10 2013-04-09 Sharp Laboratories Of America, Inc. Methods and systems for color preservation with a color-modulated backlight
US9330630B2 (en) 2008-08-30 2016-05-03 Sharp Laboratories Of America, Inc. Methods and systems for display source light management with rate change control
US8165724B2 (en) 2009-06-17 2012-04-24 Sharp Laboratories Of America, Inc. Methods and systems for power-controlling display devices

Similar Documents

Publication Publication Date Title
JP2007093990A (en) Liquid crystal display device
US7876304B2 (en) Thin film panel, driving device, and liquid crystal display having the same
US7777840B2 (en) Transflective liquid crystal display device having first and second data drivers and generating first and second signals of different voltage values
JP4854207B2 (en) Liquid crystal display device and driving device thereof
JP4514674B2 (en) Display device, display panel substrate, and display panel substrate manufacturing method
US10209589B2 (en) Display apparatus
JP2008040488A (en) Liquid crystal display device
US20060221277A1 (en) Transreflective liquid crystal display
US20120044224A1 (en) Liquid crystal display device
US20060139522A1 (en) Transflective liquid crystal display device with balanced chromaticity
JP2007171674A5 (en)
JP2018194592A (en) Display device
US8154504B2 (en) Liquid crystal display device capable of automatically switching to a mode and method for driving the same
WO2010087049A1 (en) Liquid crystal display device
JP4797521B2 (en) Electro-optical device, illuminance detection method of electro-optical device, and electronic apparatus
US20180113367A1 (en) Display substrate and driving method thereof, and display device
JP4863758B2 (en) LCD display system
JP2007304520A (en) Color liquid crystal display
JP2008064828A (en) Liquid crystal device and electronic apparatus
JP2008287068A (en) Display device
JP2007018768A (en) Light emitting device, manufacturing method of the same, and liquid crystal display device
US8264438B2 (en) Liquid crystal display device, mobile electronic apparatus, in-vehicle electronic apparatus
KR20070042803A (en) Gamma reference voltage circuit and liquid crystal display having the same
JPH05232450A (en) Liquid crystal display device
JP2009204899A (en) Electrooptical device, elecronic equipment and driving method of electrooptical device