JP2007093496A - Chemical micro laboratory system - Google Patents

Chemical micro laboratory system Download PDF

Info

Publication number
JP2007093496A
JP2007093496A JP2005285825A JP2005285825A JP2007093496A JP 2007093496 A JP2007093496 A JP 2007093496A JP 2005285825 A JP2005285825 A JP 2005285825A JP 2005285825 A JP2005285825 A JP 2005285825A JP 2007093496 A JP2007093496 A JP 2007093496A
Authority
JP
Japan
Prior art keywords
electrode
specimen
shape
simulation
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285825A
Other languages
Japanese (ja)
Inventor
Mitsuo Hayashibara
光男 林原
Akira Ri
燦 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005285825A priority Critical patent/JP2007093496A/en
Publication of JP2007093496A publication Critical patent/JP2007093496A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro laboratory inspection system hardly affected by variation every device, change over time of the devices, and individual difference of a test body. <P>SOLUTION: The micro laboratory inspection system comprises a device having an electrode to which voltage is applied from the outside, an insulating film formed in an upper part of the electrode, and a structure that can store these in a transparent container and take a reagent and a test body sample from the outside, a means for optically observing a liquid drop in the device, a means for recognizing the shape and position of concerned liquid based on the image data, and a means for simulating the shape and position of at least the liquid drop. The micro laboratory system calculates an applied signal to the electrode based on the deviation between an optical observation result and a simulation result, and controls the liquid drop behavior. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は生化学・免疫検査装置に係り、特にMEMSを活用した、極めて少ない検体サンプルで高速・高精度の検査を行えるマイクロラボシステムに関する。   The present invention relates to a biochemical / immunological test apparatus, and more particularly, to a microlab system that can perform high-speed and high-accuracy tests with very few specimen samples using MEMS.

試験体サンプルから、マイクロリットルあるいはピコリットルの極めて少ない量を取り出し、試験薬と反応させて生化学・免疫検査を行う技術として、MEMSを用いた化学マイクロラボチップと呼ばれるデバイスが注目されている。その中でも、EWOD
(Electro-Wetting on Dielectric) と呼ばれる技術は、微小な液滴を取り出し、それをチップ上で搬送し、試験薬と反応させ、所定の検査を行うチップで、ほんのわずかの検体サンプルでも生化学・免疫検査が可能であるため、次世代の検査技術として注目されている。
As a technique for taking out a very small amount of microliters or picoliters from a specimen sample and reacting with a test drug for biochemical / immunological tests, a device called a chemical microlab chip using MEMS has attracted attention. Among them, EWOD
The technology called (Electro-Wetting on Dielectric) is a chip that takes out minute droplets, transports them on the chip, reacts them with the test drug, and conducts a predetermined test. Because it is possible to perform an immunological test, it is attracting attention as a next-generation test technique.

静電力を用いて液滴を駆動するチップ(デバイス)としては、例えば特開平2004−935号公報の図2(特許文献1)に示す構成が知られている。同様の記載は、特開平
2004−22165号公報(特許文献2)にも見られる。いずれも互いに離間された電極を隣接して設置し、この電極を囲む誘電層を介して、液滴を静電力で駆動する。原理的には、この操作によって、検体サンプルから必要な量の液滴サンプルを取り出し、同様の原理で取り出した試薬と反応させ、その結果を何らかの手法で観察することによって、反応を観察することが可能である。
As a chip (device) for driving droplets using an electrostatic force, for example, a configuration shown in FIG. 2 (Patent Document 1) of Japanese Patent Application Laid-Open No. 2004-935 is known. A similar description can be found in Japanese Patent Application Laid-Open No. 2004-22165 (Patent Document 2). In either case, electrodes spaced apart from each other are provided adjacent to each other, and the droplets are driven by electrostatic force through a dielectric layer surrounding the electrodes. In principle, by this operation, the reaction can be observed by removing the required amount of droplet sample from the specimen sample, reacting with the reagent extracted by the same principle, and observing the result by some method. Is possible.

特開2004−935号公報JP 2004-935 A 特開2004−22165号公報JP 2004-22165 A

EWODを利用したデバイスのなかで起こる現象は、一般に液的が極めて小さくなることに起因して表面張力に極めて敏感である。そのため、製造過程で完全にはコントロールできない誘電体あるいは電極,容器内面の表面状態によって、液滴の挙動が影響を受ける。その結果、デバイスごとのばらつきが無視できず、重要な課題となっている。   Phenomena that occur in devices utilizing EWOD are generally very sensitive to surface tension due to their extremely low liquidity. For this reason, the behavior of the liquid droplets is affected by the dielectric, the electrode, and the surface state of the inner surface of the container that cannot be completely controlled during the manufacturing process. As a result, variations among devices cannot be ignored, which is an important issue.

また、同一デバイスであっても、デバイスが経時変化したときは、液滴の挙動が変わるため、再現性良く制御を行うことができない。さらに、医療検査では、検体の個体差があるため、この点も画一的な制御がうまくいかない一因となっている。   Even in the same device, when the device changes with time, the behavior of the droplet changes, so that control cannot be performed with good reproducibility. Furthermore, in medical examinations, there are individual differences between specimens, and this is also one factor that prevents uniform control.

仮にこれらの点を改善しようとすると、極めて高精度なデバイス製造プロセス,経時変化を起こさない表面処理技術が必要であり、結局のところ高コスト化をまねき、本来、極少サンプルで、安価に検査を提供するといったマイクロラボチップ本来の特徴を損ねる結果となる。   If these points are to be improved, an extremely accurate device manufacturing process and surface treatment technology that does not cause changes over time are necessary, which ultimately leads to higher costs, and is inherently extremely inexpensive with a small sample. The result is a loss of the original characteristics of the microlab chip.

そこで本発明の課題は、従来デバイスで頻発する、デバイスごとの特性ばらつき、デバイス特性の経時変化,検体差による測定ばらつきが無視できないほど大きく、測定に大きな誤差が生じる点を解消し、デバイスごとに結果のばらつきのないマイクロラボシステムを提供することにある。   Therefore, the problem of the present invention is to eliminate the point that the characteristic variation from device to device, the device characteristic variation with time, and the measurement variation due to the specimen difference, which are frequently encountered in conventional devices, are so large that they cannot be ignored. It is to provide a microlab system with no variation in results.

上記課題を解決する第1の手段は、外部より電圧印加が行える電極、該電極の上部に形成した絶縁膜、さらにこれらを透明な容器に格納し、試薬および試験体サンプルを外部から取り入れ可能な構造にしたデバイスと、該デバイスの中の液滴を光学的に観察する手段と、その画像データより注目する液体の形状,位置を認識する手段と、少なくとも液滴の形状,位置をシミュレーションする手段で構成し、電極への印加信号を、光学的観測結果とシミュレーション結果の偏差を基に算出し、液滴挙動を制御する少量液体の観察装置
(マイクロラボシステム)とすることである。
The first means for solving the above-mentioned problem is that an electrode to which voltage can be applied from the outside, an insulating film formed on the electrode, and further, these can be stored in a transparent container so that a reagent and a specimen sample can be taken from the outside. A structured device; a means for optically observing a droplet in the device; a means for recognizing the shape and position of a liquid of interest from the image data; and a means for simulating at least the shape and position of the droplet And an application signal to the electrode is calculated based on the deviation between the optical observation result and the simulation result, and the observation device (microlab system) for a small amount of liquid that controls the droplet behavior.

上記課題を解決する第2の手段は、第1の手段において、液滴の形状,位置をシミュレーションする手段に、液滴の表面圧力,ぬれ張力,接触面での接触角ヒステリシスのシミュレーションするアルゴリズムを組み入れて、形状と位置の偏差をリアルタイムで演算する機能を付与することである。   The second means for solving the above-mentioned problem is that, in the first means, an algorithm for simulating the liquid surface pressure, wetting tension, and contact angle hysteresis at the contact surface is added to the means for simulating the shape and position of the liquid droplet. Incorporating it gives the function of calculating the deviation between shape and position in real time.

上記課題を解決する第3の手段は、上記第2の手段において、液滴の表面張力を算出する際に、液滴表面の6つの格子点から圧力を算出して表面張力を求めるアルゴリズムを用いることである。   A third means for solving the above problem uses an algorithm for calculating the surface tension by calculating the pressure from the six lattice points on the surface of the droplet when calculating the surface tension of the droplet in the second means. That is.

本発明のマイクロラボシステムを、デバイスごとの特性ばらつき、デバイス特性の経時変化,検体差による測定ばらつき少なく、わずかな検体サンプルで高精度な検査が可能である。   The microlab system of the present invention is capable of high-accuracy inspection with a small number of sample samples with little variation in characteristics among devices, changes in device characteristics over time, and measurement variations due to sample differences.

本発明の特徴は、光学的観測結果とシミュレーション結果との情報に基づき、それらの偏差を算出し、その偏差に基づいて液滴挙動を制御することにある。   The feature of the present invention is that the deviation is calculated based on the information of the optical observation result and the simulation result, and the droplet behavior is controlled based on the deviation.

図1は、本発明装置の一構成例である。透明容器1の中に電極2とその表面に形成した絶縁体3でデバイス(マイクロラボチップ)は構成される。電極2はマスキングをしてスパッタリングあるいはゾルゲル法などによって形成し、白金,金などの貴金属で形成する。絶縁体3はSiO,SiNなどの絶縁体をスパッタリング,ゾルゲル法等で形成し、リード線4を介して電圧制御部を有する電源7から電圧印加を行う。   FIG. 1 shows an example of the configuration of the device of the present invention. A device (microlab chip) is composed of the electrode 2 and the insulator 3 formed on the surface thereof in the transparent container 1. The electrode 2 is masked and formed by sputtering or a sol-gel method, and is made of a noble metal such as platinum or gold. The insulator 3 is formed of an insulator such as SiO or SiN by sputtering, sol-gel method or the like, and voltage is applied from a power source 7 having a voltage control unit via a lead wire 4.

透明容器1の中では、検体導入口6から容器内に導入された検体5が静電力によって搬送される。透明容器の上方には光学的観察手段8を配置し、これによって観察部8で液滴の挙動を画像として取り込むとともにデジタル信号化して制御装置9へデータを送る。   In the transparent container 1, the specimen 5 introduced into the container from the specimen introduction port 6 is conveyed by electrostatic force. An optical observation means 8 is disposed above the transparent container, whereby the observation unit 8 captures the behavior of the droplet as an image and converts it into a digital signal to send data to the control device 9.

制御装置9には認識部10,シミュレーション部11,制御部12がある。まず認識部で一般的なデジタル画像処理技術を用いて、液滴の形状と大きさを判定する。次に、シミュレーション部11で前回の(Δt前の)時刻に観測された液滴の形状,位置情報と、印加電圧の情報に基づいて液滴の現在の形状と位置を予測する。認識部(画像処理部)から送られてきた液滴の形状と位置の情報と、シミュレーション部で予測された液滴の形状と位置の情報との偏差を制御部が求める。   The control device 9 includes a recognition unit 10, a simulation unit 11, and a control unit 12. First, the shape and size of a droplet are determined by a recognition unit using a general digital image processing technique. Next, the current shape and position of the droplet are predicted based on the shape and position information of the droplet observed at the previous time (before Δt) and information on the applied voltage by the simulation unit 11. The control unit obtains a deviation between the information on the shape and position of the droplet sent from the recognition unit (image processing unit) and the information on the shape and position of the droplet predicted by the simulation unit.

制御部はその偏差が一定の値以上であれば、電圧印加信号を設定値よりも増やすあるいは減らす等の制御を行い、この処理を繰り返し、一定の偏差に収まる方向に動作の基本となる電圧を変化させる。実際の使用法においては、この演算を常に行い、偏差の算出と印加電圧の調整をリアルタイムでたえず行うことが望ましい。   If the deviation is equal to or greater than a certain value, the control unit performs control such as increasing or decreasing the voltage application signal from the set value, repeats this process, and sets the basic voltage of the operation in a direction that falls within the certain deviation. Change. In actual usage, it is desirable to always perform this calculation and constantly calculate the deviation and adjust the applied voltage in real time.

このような動作を行うことによって、従来の画一的な電圧制御ではなく、常に液滴の状態を観察しながら、リアルタイムのシミュレーションによって、液滴の現象と印加電圧値との相関を補正しながら制御することが可能になる。その結果、デバイスごとのばらつき、デバイスの経時変化,試験体の個体差の影響がかりにあったとしても、所定の液滴挙動(形状,位置制御)を実現できるので、高精度な検査が可能になる。   By performing such an operation, instead of the conventional uniform voltage control, the state of the droplet is always observed, and the correlation between the phenomenon of the droplet and the applied voltage value is corrected by a real-time simulation. It becomes possible to control. As a result, it is possible to achieve predetermined droplet behavior (shape and position control) even if there is an influence of device-to-device variation, device aging, and individual differences between specimens, enabling high-precision inspection. Become.

本発明の別の実施例を以下説明する。基本的な構成は図1と同様にする。シミュレーション部11においては、デバイスを構成する材料の物性値,液滴の物性値を入力パラメータとし、Δtごとに液滴の位置と大きさをシミュレーションによって求める。   Another embodiment of the present invention will be described below. The basic configuration is the same as in FIG. The simulation unit 11 uses the physical property value of the material constituting the device and the physical property value of the droplet as input parameters, and obtains the position and size of the droplet by simulation for each Δt.

この実施例の特徴は、シミュレーションにおいて、液滴の表面圧力,ぬれ張力,接触面での接触角ヒステリシスのシミュレーションするアルゴリズムを組み入れて、形状と位置を算出して、偏差を演算することである。   The feature of this embodiment is that, in the simulation, an algorithm for simulating droplet surface pressure, wetting tension, and contact angle hysteresis at the contact surface is incorporated to calculate the shape and position and calculate the deviation.

上述したように、マイクロラボチップにおいては、液滴がマイクロリットル、ピコリットルと極めて小さな液滴になるため、表面張力,ぬれ張力が液滴挙動のかなりの部分を支配する。そして、デバイスごとのばらつき、デバイスの経時変化といったものは、これらの差や変化によって生じるものである。従って、これらを取り込んだシミュレーションによって、初めて実測と予測と間の偏差からフィードバックが可能になる。   As described above, in the microlab chip, since the droplets are extremely small droplets such as microliters and picoliters, surface tension and wetting tension dominate a considerable part of the droplet behavior. Then, variations among devices, changes with time of devices, and the like are caused by these differences and changes. Therefore, it is possible to feedback from the deviation between the actual measurement and the prediction for the first time by the simulation incorporating these.

例えば、ある時刻tにおいて測定した位置xを基に、現時点での位置を算出し、そこで実測との偏差が生じたとすると、シミュレーションのパラメータである表面張力,接触角等のパラメータを変化させ、現状を最も再現できるデータセットを選ぶ。これを用いて、逆解析で所定の変位を実現できる電圧を逆問題として解析し、その値を制御信号として電極へ印加する。同様の計算を繰り返し、検査をしているデバイスに最も適した電圧制御を行う。   For example, if the current position is calculated based on the position x measured at a certain time t and a deviation from the actual measurement occurs, parameters such as surface tension and contact angle, which are simulation parameters, are changed. Select the data set that can reproduce the most. Using this, a voltage capable of realizing a predetermined displacement by inverse analysis is analyzed as an inverse problem, and the value is applied to the electrode as a control signal. Similar calculations are repeated to perform voltage control most suitable for the device being tested.

さらに実用的な方法としては、デバイスの検体導入部近傍に、予め液滴の動作を予備的に行う領域を設けておき、そこで上記の操作を行って、その後試験薬と反応させることも、測定精度を上げる上で有効である。   In addition, as a practical method, a region for preliminarily operating the droplets is provided in the vicinity of the sample introduction part of the device, and the above operation is performed there, and then the reaction with the test drug is performed. This is effective in increasing accuracy.

また、ある程度偏差とフィードバックするべき電圧の増分減分の関係がわかっているなら、これらをデータセットとして準備しておき、フィードバック制御をすることも可能で、高速に高精度な制御が可能な状態へ高速に収束できる。   Also, if you know the relationship between the deviation and the incremental decrease of the voltage to be fed back to some extent, it is possible to prepare these as a data set and perform feedback control, enabling high-speed and highly accurate control It can converge at high speed.

本実施例によっても、デバイスごとのばらつき、デバイスの経時変化,試験体の個体差の影響を受けにくい、医療用検査装置を実現でき、わずかな試験体で高精度に高速な検査が再現性良く実現できる。   Even in this example, it is possible to realize a medical inspection apparatus that is not easily affected by variations from device to device, aging of devices, and individual differences between test specimens, and high-precision and high-speed inspection with a small number of test specimens with high reproducibility. realizable.

本発明の別の実施例を説明する。基本構成は図1と同様で、シミュレーション部11において演算する液滴の圧力演算部において、圧力を図のように6つの格子点から求めるサブルーチンを用いる。   Another embodiment of the present invention will be described. The basic configuration is the same as in FIG. 1, and a subroutine for calculating pressure from six lattice points as shown in FIG.

ここでまず従来の表面圧力の算出(任意形状)法について説明する。従来は図3の左の図に示す様に、4つの格子点の圧力からそれらの中間点を内挿して求めるものであった。すなわち、点(x,y,z)のポテンシャルE(X,Y,Z)と格子点Iで代表される部分の面積をSiとした時に、
E(X,Y,Z)=νS
S=ΣSi
P=│−∇E│/S/2
Si:iでの圧力
ν:表面張力
P:圧力
この場合、圧力の演算誤差が大きく、表面張力が支配的なマイクロラボチップ内部の液滴挙動をリアルタイムで再現することはできなかった。
Here, a conventional method for calculating the surface pressure (arbitrary shape) will be described first. Conventionally, as shown in the left diagram of FIG. 3, the intermediate points are obtained by interpolating the pressures of the four lattice points. That is, when the area of the portion represented by the potential E (X, Y, Z) and the lattice point I of the point (x, y, z) is Si,
E (X, Y, Z) = νS
S = ΣSi
P = │-∇E│ / S / 2
Si: Pressure at i
ν: surface tension
P: Pressure In this case, it was impossible to reproduce in real time the droplet behavior inside the microlab chip where the pressure calculation error was large and the surface tension was dominant.

本実施例では、図3の右のように、6つの点から内部の圧力を算出する方法を採用した。この場合、
P=│−∇E│/(S/3)
で与えられ、6つの点の中央部の演算誤差は0.01% 以下である。これによって、同一精度を得ようとすると、従来に比べて1000倍の速度で演算できるようになり、マイクロラボチップ内部の液滴のシミュレーションがリアルタイムでできるようになった。
In the present embodiment, as shown on the right side of FIG. 3, a method of calculating the internal pressure from six points was adopted. in this case,
P = │-∇E│ / (S / 3)
The calculation error at the center of the six points is 0.01% or less. As a result, in order to obtain the same accuracy, the calculation can be performed at a speed 1000 times that of the conventional method, and the liquid droplets inside the microlab chip can be simulated in real time.

本発明によってもデバイスごとのばらつき,デバイスの経時変化,試験体の個体差の影響を受けにくい、医療用検査装置を実現でき、わずかな試験体で高精度に高速な検査が再現性良く実現できる。   According to the present invention, it is possible to realize a medical inspection apparatus that is not easily affected by variations among devices, aging of devices, and individual differences of test specimens, and can realize high-precision and high-speed inspection with a small number of specimens with high reproducibility. .

本発明のマイクロラボ検査システムは、わずかな検体でも高精度な検査を可能にする生化学・免疫検査システムに適用できる。   The microlab test system of the present invention can be applied to a biochemical / immunological test system that enables a highly accurate test even with a small number of specimens.

本発明の基本構成図である。(実施例1)1 is a basic configuration diagram of the present invention. Example 1 従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の演算部の特徴を示す図。(実施例3)The figure which shows the characteristic of the calculating part of this invention. (Example 3)

符号の説明Explanation of symbols

1…透明容器、2…電極、3…絶縁体、4…リード線、5…検体(試験体及び試薬)、6…検体導入口、7…電源、8…光学的観察手段(観察部)、9…制御装置、10…認識部、11…シミュレーション部、12…制御部。

DESCRIPTION OF SYMBOLS 1 ... Transparent container, 2 ... Electrode, 3 ... Insulator, 4 ... Lead wire, 5 ... Sample (test body and reagent), 6 ... Sample inlet, 7 ... Power supply, 8 ... Optical observation means (observation part), DESCRIPTION OF SYMBOLS 9 ... Control apparatus, 10 ... Recognition part, 11 ... Simulation part, 12 ... Control part.

Claims (3)

外部より電圧印加を行う電極と、該電極に接して設けられる絶縁膜と、前記電極及び絶縁膜と、内部に試薬および試験体を格納可能な容器とを有するデバイス部と、液状の該試験体を光学的手段により観察する観察部と、前記観察部より得られる情報に基づき前記液状の試験体の形状及び位置を認識する認識部と、前記液状の試験体の形状及び位置をシミュレーションするシミュレーション部を有し、
前記認識部及びシミュレーション部から得られる情報に基づいて前記電極への電圧印加を制御する制御部を有することを特徴とするマイクロラボシステム。
A device part having an electrode for applying a voltage from the outside, an insulating film provided in contact with the electrode, the electrode and the insulating film, and a container capable of storing a reagent and a test body therein, and the liquid test body An observation unit for observing the liquid specimen by an optical means, a recognition unit for recognizing the shape and position of the liquid specimen based on information obtained from the observation section, and a simulation section for simulating the shape and position of the liquid specimen Have
A microlab system comprising a control unit that controls voltage application to the electrode based on information obtained from the recognition unit and the simulation unit.
請求項1において、前記シミュレーション部は試験体の表面張力,ぬれ張力,接触面での接触角ヒステリシスを使用するアルゴリズムを有することを特徴とするマイクロラボシステム。   2. The microlab system according to claim 1, wherein the simulation unit has an algorithm that uses surface tension, wetting tension, and contact angle hysteresis on a contact surface of a specimen. 請求項2において、前記シミュレーション部は試験体の表面張力を試験体表面の6つの格子点より算出するアルゴリズムを有することを特徴とするマイクロラボシステム。
3. The microlab system according to claim 2, wherein the simulation unit has an algorithm for calculating the surface tension of the specimen from six lattice points on the specimen surface.
JP2005285825A 2005-09-30 2005-09-30 Chemical micro laboratory system Pending JP2007093496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285825A JP2007093496A (en) 2005-09-30 2005-09-30 Chemical micro laboratory system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285825A JP2007093496A (en) 2005-09-30 2005-09-30 Chemical micro laboratory system

Publications (1)

Publication Number Publication Date
JP2007093496A true JP2007093496A (en) 2007-04-12

Family

ID=37979386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285825A Pending JP2007093496A (en) 2005-09-30 2005-09-30 Chemical micro laboratory system

Country Status (1)

Country Link
JP (1) JP2007093496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015016083A1 (en) * 2013-07-29 2017-03-02 国立研究開発法人産業技術総合研究所 Method for measuring contact angle distribution of liquid droplet and apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015016083A1 (en) * 2013-07-29 2017-03-02 国立研究開発法人産業技術総合研究所 Method for measuring contact angle distribution of liquid droplet and apparatus using the same

Similar Documents

Publication Publication Date Title
EP3341733B1 (en) Method and system for performing an amoebocyte lysate (lal) based assay in a droplet microfluidic device
US11536710B2 (en) Droplet microfluidic device and methods of sensing the result of an assay therein
JP4773157B2 (en) Sample manipulator
DE60208313T2 (en) Microelectronic detector on a chip
US20050037507A1 (en) Titration method
JP2009526549A (en) Biological or chemical sample temperature control device and method of use thereof
KR20040009059A (en) Micro-magnetoelastic biosensor arry for detection of DNA hybridization and fabricating method thereof
US9539573B1 (en) EWOD device with calibrated serial dilution function
EP2960637B1 (en) Design and interface of a microfabricated scanning force sensor for combined force and position sensing
JPH1010088A (en) Capillary electrophoretic device
US20080230389A1 (en) Electrochemical Detector Integrated on Microfabricated Capillary Electrophoresis Chip and Method of Manufacturing the Same
CN110579652B (en) Method and device for measuring surface bound charges
JP2019027980A (en) Biological sample analyzer and method
JP2007093496A (en) Chemical micro laboratory system
Gast et al. Profile. The development of integrated microfluidic systems at GeSiM
Lee et al. High-radix microfluidic multiplexer with pressure valves of different thresholds
US10843191B2 (en) Molecule detecting system
JP3374973B2 (en) Measuring method and measuring device for output pressure of constant section working body
KR100676694B1 (en) Rbc deformation measuring device using piezoelectric
JP4141442B2 (en) Sensor and protein detection device
Chung et al. Enhancement of microcantilever beams fabrication and determination of their mechanical properties using nanoindentation
Lai et al. Development and Validation of a Novel Reliable Method for Wet Testing on Biochemical Chip
Leichle et al. A closed-loop MEMS-based spotter integrating position sensors with nanometric precision for the control of droplet uniformity
WO2020195413A1 (en) Current measuring method
Li Portable High Throughput Digital Microfluidics and On-Chip Bacteria Cultures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330