JP2007093477A - Method and apparatus of calibrating color measuring device, and color measuring method and device - Google Patents
Method and apparatus of calibrating color measuring device, and color measuring method and device Download PDFInfo
- Publication number
- JP2007093477A JP2007093477A JP2005285235A JP2005285235A JP2007093477A JP 2007093477 A JP2007093477 A JP 2007093477A JP 2005285235 A JP2005285235 A JP 2005285235A JP 2005285235 A JP2005285235 A JP 2005285235A JP 2007093477 A JP2007093477 A JP 2007093477A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- brightness
- correction coefficient
- color
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
Description
本発明は、三刺激値直読型センサ等の色測定装置を基準器に合わせて校正する校正方法および校正装置と、色測定方法、色測定装置に関する。 The present invention relates to a calibration method, a calibration device, a color measurement method, and a color measurement device for calibrating a color measurement device such as a tristimulus value direct-reading sensor according to a reference device.
液晶プロジェクタ、液晶プロジェクションテレビなどの画像表示装置における表示画像の品質を検査するために用いられる色測定装置として、フォトダイオードを用いた三刺激値直読型の色彩計・照度計・輝度計が知られている(例えば特許文献1参照)。 Tristimulus direct-reading color meters, illuminance meters, and luminance meters using photodiodes are known as color measuring devices used to inspect the quality of displayed images in image display devices such as liquid crystal projectors and liquid crystal projection televisions. (For example, refer to Patent Document 1).
この際、製品の生産ラインでは、多数の製品を検査する必要があるため、通常、複数の三刺激値直読型センサを用いて各製品の検査を行っている。この場合、各センサ間で測定値に誤差が発生すると正しい検査が行えないため、各センサ間での誤差を無くすための校正を行う必要がある。 At this time, since it is necessary to inspect a large number of products in the product production line, each product is normally inspected using a plurality of tristimulus value direct reading sensors. In this case, if an error occurs in the measured value between the sensors, a correct inspection cannot be performed. Therefore, it is necessary to perform calibration to eliminate the error between the sensors.
具体的には、ある明るさの赤・緑・青の各単色を、校正対象の三刺激値型センサと、基準器とでそれぞれで測定し、得られる三刺激値XYZから補正係数を算出し、補正値として適用することで校正が行われていた。なお、基準器としては、予め調整された三刺激値型センサを用いることもあるが、通常は、三刺激値型センサに比べて高精度の測定が可能な分光型のセンサが用いられる。 Specifically, each single color of red, green, and blue with a certain brightness is measured with a tristimulus sensor to be calibrated and a reference device, and a correction coefficient is calculated from the obtained tristimulus values XYZ. The calibration was performed by applying it as a correction value. As the reference device, a tristimulus value type sensor that has been adjusted in advance may be used. Usually, a spectroscopic sensor capable of measuring with higher accuracy than the tristimulus value type sensor is used.
しかしながら、従来の校正方法は、ある1点の明るさで求めた補正係数を全ての明るさに対して適用している為、校正点から離れた点に対しては誤差が大きくなってしまうという問題があった。
すなわち、図11に示すように、三刺激値直読型センサの問題点として、受光素子(フォトダイオードなど)の特性が明るさに対して完全には直線でない点が挙げられる。特に暗い光を受光するときには直線性が損なわれる。そのため、ある明るさ1点で補正係数を求めても他の明るさにおいてはその補正係数を適用することで測定値の誤差が大きくなってしまう可能性がある。
However, in the conventional calibration method, the correction coefficient obtained at a certain brightness is applied to all the brightness, so that an error becomes large at a point away from the calibration point. There was a problem.
That is, as shown in FIG. 11, a problem with the tristimulus value direct reading type sensor is that the characteristics of the light receiving element (such as a photodiode) are not completely linear with respect to brightness. In particular, the linearity is lost when receiving dark light. For this reason, even if the correction coefficient is obtained at one point of brightness, the error of the measurement value may increase by applying the correction coefficient at other brightnesses.
また、プロジェクタなどで用いられている液晶パネルは、印加する電圧によって波長に対する透過率の割合が異なる。すると当然、印加する電圧によって出力される光のスペクトル形状も変化してしまう。即ち、明るさによってスペクトルの形状が異なるため、特に色を測定する際、ある1点の校正で得られた補正係数を全ての明るさで適用すると誤差が大きくなってしまうという問題があった。 In addition, liquid crystal panels used in projectors and the like have different transmittance ratios relative to wavelengths depending on the applied voltage. As a matter of course, the spectral shape of the output light also changes depending on the applied voltage. In other words, since the shape of the spectrum differs depending on the brightness, there is a problem that, when measuring a color, in particular, if a correction coefficient obtained by calibration at one point is applied at all brightnesses, the error becomes large.
なお、図11の(A),(B),(C)は、明るさによってスペクトルが変化する液晶パネルにおいて、赤(RED)、緑(GREEN)、青(BLUE)の各単色を測定した際の三刺激値直読型センサと基準器との測定値の関係を示すものである。これらの図において、直線状の点線100部分は各測定値が比例関係となる理想的な状態であり、実線101部分は三刺激値直読型センサおよび基準器の各測定値の関係を表すものである。丸印102はある1点の明るさで測定した測定値であり、この測定値を比例関係となるように前記点線上の点103に補正する補正係数を用いた場合、他の部分は点線104のようになる。この点線104に示すように、従来の補正係数を適用すると、ある1点の明るさでは、三刺激値直読型センサと基準器との測定値は一致するが、他の部分では誤差が発生し、測定精度が低下するという問題があった。 11A, 11B, and 11C are graphs when red (RED), green (GREEN), and blue (BLUE) single colors are measured in a liquid crystal panel whose spectrum changes depending on brightness. 3 shows the relationship between the measured values of the tristimulus value direct reading type sensor and the reference device. In these figures, a straight dotted line 100 portion is an ideal state in which each measured value is in a proportional relationship, and a solid line 101 portion represents a relationship between each measured value of the tristimulus value direct reading type sensor and the reference device. is there. A circle 102 is a measurement value measured at the brightness of one point, and when a correction coefficient for correcting this measurement value to the point 103 on the dotted line so as to have a proportional relationship is used, the other part is a dotted line 104. become that way. As shown by the dotted line 104, when the conventional correction coefficient is applied, the measured values of the tristimulus value direct reading sensor and the reference device coincide with each other at a certain brightness, but an error occurs in other portions. There was a problem that the measurement accuracy was lowered.
本発明は、上述のような課題に鑑みてなされたものであり、三刺激値直読型センサ等の色測定装置を基準器に合わせて校正するための補正を高精度に行うことができる校正方法および校正装置と、基準器に合わせた高精度の測定が可能な色測定方法および色測定装置とを提供することを目的とする。 The present invention has been made in view of the above-described problems, and a calibration method capable of performing correction for calibrating a color measuring device such as a tristimulus value direct-reading sensor according to a reference device with high accuracy. It is another object of the present invention to provide a calibration apparatus and a color measurement method and color measurement apparatus capable of high-precision measurement according to a reference device.
本発明の色測定装置の校正方法は、測定物から出力される光の経路上に校正対象の色測定装置を配置し、測定物の明るさを2段階以上に切り替え、切り替えた明るさ毎の測定値を取得する校正対象測定工程と、測定物から出力される光の経路上に基準器を配置し、測定物の明るさを前記校正対象測定工程と同じ各明るさに切り替えてその明るさ毎の測定値を取得する基準器測定工程と、明るさ毎の校正対象測定値および基準器測定値に基づいて校正対象の色測定装置における明るさ毎の補正係数を算出する補正係数算出工程と、を備えることを特徴とする。 In the color measuring device calibration method of the present invention, the color measuring device to be calibrated is arranged on the path of light output from the measured object, the brightness of the measured object is switched to two or more levels, and the brightness for each switched brightness is changed. Place the reference device on the calibration target measurement process to obtain the measurement value and the light path output from the measurement object, and switch the brightness of the measurement object to the same brightness as the calibration target measurement process. A reference unit measurement step for obtaining each measurement value, a correction factor calculation step for calculating a correction factor for each brightness in the calibration target color measurement device based on the calibration target measurement value for each brightness and the reference unit measurement value, and It is characterized by providing.
このような構成によれば、2点以上の明るさで補正係数を求めているので、1点の明るさのみで補正係数を求めた場合に比べて、測定精度を向上することができる。すなわち、本発明では、明るさによって補正係数を変化させることができるので、従来に比べて、三刺激値直読型センサの受光素子の特性に合った補正係数を得ることができ、高精度な測定を行うことができる。
また、色測定装置の測定対象となるプロジェクタ等の測定物を利用して校正を行っているので、液晶デバイスなどの明るさに応じてスペクトル形状が変化する測定物を検査する色測定装置においても基準器に合わせた高精度な測定を行うことができる。
According to such a configuration, since the correction coefficient is obtained with brightness of two or more points, the measurement accuracy can be improved as compared with the case where the correction coefficient is obtained only with brightness of one point. That is, in the present invention, since the correction coefficient can be changed depending on the brightness, it is possible to obtain a correction coefficient that matches the characteristics of the light receiving element of the tristimulus value direct reading type sensor compared to the prior art, and highly accurate measurement. It can be performed.
In addition, since calibration is performed using a measurement object such as a projector that is a measurement target of the color measurement apparatus, a color measurement apparatus that inspects a measurement object whose spectrum shape changes according to the brightness, such as a liquid crystal device. High-precision measurement can be performed according to the reference device.
この際、前記補正係数算出工程は、明るさ毎の補正対象測定値によって特定される補正平面を表す補正平面係数を、前記補正係数とともに明るさ毎に算出することが好ましい。
補正係数とともに、補正平面係数を算出しておけば、校正された色測定装置を用いてプロジェクタ等の測定物の表示画質の検査等を行う際に、測定値の空間的な位置を補正平面係数と比較し、前記測定値を補正するための補正係数をその明るさに応じて算出することができ、色測定装置の測定精度をより一層向上できる。
At this time, it is preferable that the correction coefficient calculation step calculates a correction plane coefficient representing a correction plane specified by a correction target measurement value for each brightness for each brightness together with the correction coefficient.
If the correction plane coefficient is calculated together with the correction coefficient, the spatial position of the measurement value is corrected when the display image quality of a measured object such as a projector is inspected using a calibrated color measurement device. In comparison with the above, a correction coefficient for correcting the measured value can be calculated according to the brightness, and the measurement accuracy of the color measuring apparatus can be further improved.
ここで、前記色測定装置は測定対象の明るさに応じて測定レンジを切替可能に構成され、前記校正対象測定工程および基準器測定工程は、各測定レンジ内で2段階以上に明るさを切り替えて測定を行うことが好ましい。
各測定レンジ毎に明るさを2段階以上に切り替えて測定を行えば、各測定レンジにおける補正係数の精度を向上でき、各測定レンジ毎の測定精度も向上できる。
Here, the color measurement device is configured to be able to switch the measurement range according to the brightness of the measurement object, and the calibration target measurement process and the reference instrument measurement process switch the brightness in two or more stages within each measurement range. It is preferable to perform measurement.
If measurement is performed by switching the brightness to two or more levels for each measurement range, the accuracy of the correction coefficient in each measurement range can be improved, and the measurement accuracy for each measurement range can also be improved.
この際、各測定レンジにおいて明るさを設定する際には、測定レンジの切替点の明るさに設定することが好ましい。測定レンジの切替点とは、例えば、低照度領域を測定するレンジ1と、高照度領域を測定するレンジ2とを設定している場合、レンジ1における最も明るい点と、レンジ2における最も暗い点とを意味する。
このようなレンジ1とレンジ2の切替点を校正点としてそれぞれ補正係数を求めれば、切替点における測定値の誤差を小さくすることができ、測定精度をより一層向上できる。
At this time, when setting the brightness in each measurement range, it is preferable to set the brightness at the switching point of the measurement range. For example, when the range 1 for measuring the low illuminance area and the range 2 for measuring the high illuminance area are set, the measurement range switching point is the brightest point in the range 1 and the darkest point in the range 2. Means.
If correction coefficients are obtained using the switching points of Range 1 and Range 2 as calibration points, the measurement value error at the switching point can be reduced, and the measurement accuracy can be further improved.
ここで、前記色測定装置は、三刺激値直読型の色測定装置であり、前記基準器は分光型の色測定装置であることが好ましい。
基準器として分光型の色測定装置を用いれば、基準器の測定精度が向上するため、その基準器に合わせて校正される三刺激値直読型の色測定装置の測定精度も向上できる。
Here, it is preferable that the color measuring device is a tristimulus value direct reading type color measuring device, and the reference unit is a spectral type color measuring device.
If a spectroscopic color measurement device is used as the reference device, the measurement accuracy of the reference device is improved, so that the measurement accuracy of the tristimulus value direct-reading color measurement device calibrated according to the reference device can also be improved.
ここで、前記測定物において赤(RED)、緑(GREEN)、青(BLUE)を個別に点灯する色点灯工程を備え、前記校正対象測定工程および基準器測定工程は、各色を個別に点灯する毎に実行され、前記補正係数算出工程は、各色において各明るさ毎に補正係数を算出することが好ましい。
赤、緑、青の各色の各明るさ毎に補正係数を算出すれば、赤、緑、青の各色の点灯状態を個別に制御することでカラー表示が可能な測定物を高精度に測定できる。
Here, the measurement object includes a color lighting process for individually lighting red (RED), green (GREEN), and blue (BLUE), and the calibration target measurement process and the reference instrument measurement process individually light each color. Preferably, the correction coefficient calculating step calculates the correction coefficient for each brightness in each color.
By calculating the correction coefficient for each brightness of each color of red, green, and blue, it is possible to measure a measurement object capable of color display with high accuracy by individually controlling the lighting state of each color of red, green, and blue. .
本発明の色測定装置の校正装置は、測定物から出力される光の経路上に校正対象の色測定装置および基準器を切り替えて配置する光経路切替手段と、前記測定物の明るさを2段階以上に切り替えて制御する測定物制御手段と、前記色測定装置の測定値を測定物の明るさ毎に取得する校正対象測定値取得手段と、前記基準器の測定値を測定物の明るさ毎に取得する基準器測定値取得手段と、測定物の明るさ毎の校正対象測定値および基準器測定値に基づいて校正対象の色測定装置における明るさ毎の補正係数を算出する補正係数算出手段と、を備えることを特徴とする。 The calibration device for a color measuring apparatus according to the present invention includes a light path switching unit that switches and arranges a color measuring apparatus and a reference device to be calibrated on a path of light output from a measurement object, and the brightness of the measurement object is 2 Measuring object control means for switching and controlling in stages or more, calibration target measurement value acquiring means for acquiring measurement values of the color measuring device for each brightness of the measuring object, and measurement values of the reference device for measuring object brightness Reference unit measurement value acquisition means to be acquired every time, and correction coefficient calculation for calculating the correction coefficient for each brightness in the color measuring device to be calibrated based on the measurement value for the calibration target for each brightness of the measurement object and the reference unit measurement value And means.
本発明の校正装置においても、2点以上の明るさで補正係数を求めているので、1点の明るさのみで補正係数を求めた場合に比べて、測定精度を向上することができる。すなわち、本発明では、明るさによって補正係数を変化させることができるので、従来に比べて、三刺激値直読型センサの受光素子の特性に合った補正係数を得ることができ、高精度な測定を行うことができる。 Also in the calibration apparatus of the present invention, since the correction coefficient is obtained with the brightness of two or more points, the measurement accuracy can be improved as compared with the case where the correction coefficient is obtained with only the brightness of one point. That is, in the present invention, since the correction coefficient can be changed depending on the brightness, it is possible to obtain a correction coefficient that matches the characteristics of the light receiving element of the tristimulus value direct reading type sensor compared to the prior art, and the highly accurate measurement. It can be performed.
本発明の色測定方法は、色測定装置で測定対象を測定して測定値を取得する測定値取得工程と、請求項1から5のいずれかに記載の色測定装置の校正方法において予め求められている明るさ毎の補正係数と、前記取得された測定値の明るさとから前記測定値に対する補正係数を算出する補正係数算出工程と、算出された補正係数を用いて測定値を補正し、補正された測定値を測定データとして出力する測定値算出工程と、を備えることを特徴とする。 The color measurement method of the present invention is obtained in advance in a measurement value acquisition step of measuring a measurement object with a color measurement device and acquiring a measurement value, and a color measurement device calibration method according to any one of claims 1 to 5. A correction coefficient calculating step for calculating a correction coefficient for the measurement value from the correction coefficient for each brightness and the brightness of the acquired measurement value, and correcting the measurement value using the calculated correction coefficient A measurement value calculation step of outputting the measured value as measurement data.
このような本発明においては、2点以上の明るさで補正係数を求めているので、1点の明るさのみで補正係数を求めた場合に比べて、測定精度を向上することができる。すなわち、本発明の色測定方法では、明るさによって補正係数を変化させることができるので、従来に比べて、三刺激値直読型センサの受光素子の特性に合った補正係数を得ることができ、高精度な測定を行うことができる。 In the present invention, since the correction coefficient is obtained with the brightness of two or more points, the measurement accuracy can be improved as compared with the case where the correction coefficient is obtained with only the brightness of one point. That is, in the color measurement method of the present invention, since the correction coefficient can be changed depending on the brightness, it is possible to obtain a correction coefficient that matches the characteristics of the light receiving element of the tristimulus value direct reading type sensor compared to the conventional one, Highly accurate measurement can be performed.
ここで、前記補正係数算出工程は、予め求められている明るさ毎の補正係数に対応する補正平面係数と、前記測定値の測定点との空間的な位置関係に基づいて測定値に対する補正係数を算出することが好ましい。
このような構成では、補正係数のほかに補正平面係数を、校正を行った明るさ毎に記憶しておき、補正係数算出工程において、測定点と各補正平面係数との空間的な位置関係に基づいて補正係数を算出しているので、測定値の明るさが校正時の明るさと異なっている場合にも非常に高精度の補正を行うことができ、より一層高精度の測定を行うことができる。
Here, the correction coefficient calculating step includes a correction coefficient for the measurement value based on a spatial positional relationship between a correction plane coefficient corresponding to a correction coefficient for each brightness obtained in advance and a measurement point of the measurement value. Is preferably calculated.
In such a configuration, the correction plane coefficient in addition to the correction coefficient is stored for each calibrated brightness, and in the correction coefficient calculation step, the spatial positional relationship between the measurement point and each correction plane coefficient is determined. Since the correction coefficient is calculated based on this, even when the brightness of the measured value is different from the brightness at the time of calibration, it is possible to perform very high-precision correction, and to perform higher-precision measurement. it can.
ここで、前記補正係数算出工程は、前記明るさが最も明るい場合の補正平面よりも前記測定点の空間的な位置が大きい場合には、最も明るい場合の補正係数を選択し、前記明るさが最も暗い場合の補正平面よりも前記測定点の空間的な位置が小さい場合には、最も暗い場合の補正係数を選択し、前記測定点の空間的な位置が2つの補正平面間にある場合には、測定点と各補正平面間の距離を算出し、その距離の割合に応じて各補正平面に対応する補正係数を加算して補正係数を算出することが好ましい。 Here, in the correction coefficient calculation step, when the spatial position of the measurement point is larger than the correction plane when the brightness is brightest, the correction coefficient for the brightest case is selected, and the brightness is When the spatial position of the measurement point is smaller than the correction plane in the darkest case, the correction coefficient in the darkest case is selected, and the spatial position of the measurement point is between two correction planes It is preferable to calculate a correction coefficient by calculating a distance between the measurement point and each correction plane and adding a correction coefficient corresponding to each correction plane according to the ratio of the distance.
このような構成によれば、特に測定点の空間的な位置が2つの補正平面間にある場合には、測定点と各補正平面間の距離を算出し、その距離の割合に応じて各補正平面に対応する補正係数を加算して補正係数を算出しているので、その明るさに応じた補正係数を算出でき、色測定時の精度を向上できる。 According to such a configuration, particularly when the spatial position of the measurement point is between two correction planes, the distance between the measurement point and each correction plane is calculated, and each correction is performed according to the ratio of the distance. Since the correction coefficient is calculated by adding the correction coefficient corresponding to the plane, the correction coefficient corresponding to the brightness can be calculated, and the accuracy during color measurement can be improved.
本発明の色測定装置は、明るさ毎の補正係数が記憶された補正係数記憶手段と、測定対象を測定してその色情報である測定値を取得する測定値取得手段と、前記明るさ毎の補正係数と、前記測定値の明るさとから前記測定値に対する補正係数を算出する補正係数算出手段と、算出された補正係数を用いて測定値を補正し、補正された測定値を測定データとして出力する測定値算出手段と、を備えることを特徴とする。 The color measurement apparatus of the present invention includes a correction coefficient storage unit that stores a correction coefficient for each brightness, a measurement value acquisition unit that measures a measurement target and acquires a measurement value that is color information, and the brightness measurement unit. Correction coefficient calculation means for calculating a correction coefficient for the measurement value from the correction coefficient and the brightness of the measurement value, the measurement value is corrected using the calculated correction coefficient, and the corrected measurement value is used as measurement data. And a measurement value calculation means for outputting.
ここで、前記補正係数記憶手段には、明るさ毎の補正係数と、この補正係数に対応する補正平面係数とが記憶され、前記補正係数算出手段は、色情報空間座標において前記測定値に基づく測定点を求め、この測定点と各補正平面係数との空間的な位置関係に基づいて測定値に対する補正係数を算出することが好ましい。
このような各色測定装置においても、前記色測定方法と同じ作用効果を奏することができる。
Here, the correction coefficient storage means stores a correction coefficient for each brightness and a correction plane coefficient corresponding to the correction coefficient, and the correction coefficient calculation means is based on the measurement value in color information space coordinates. It is preferable to obtain a measurement point and calculate a correction coefficient for the measurement value based on a spatial positional relationship between the measurement point and each correction plane coefficient.
Each of these color measuring devices can achieve the same effects as the color measuring method.
図1は本発明の実施の形態に係る校正装置の構成を示すブロック図である。
図1に示すように、校正装置1は、校正対象となる色測定装置としての三刺激値直読型センサ2および基準器3が載置された校正ステージ4と、測定物としてのプロジェクタ5と、三刺激値直読型センサ2、基準器3、校正ステージ4、プロジェクタ5を制御する制御装置10とを備えて構成されている。
FIG. 1 is a block diagram showing a configuration of a calibration apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the calibration device 1 includes a calibration stage 4 on which a tristimulus value direct-reading sensor 2 and a reference device 3 are mounted as a color measurement device to be calibrated, a projector 5 as a measurement object, A tristimulus value direct-reading sensor 2, a reference device 3, a calibration stage 4, and a control device 10 that controls the projector 5 are configured.
三刺激値直読型センサ2は、図2にも示すように、拡散板21、RGBの各フィルタ22、フォトダイオード(光電変換素子)23、一次補正回路24、二次補正回路25を備えた一般的なものである。
この三刺激値直読型センサ2に向かって照射された光は拡散板21を通り、RGBの各フィルタ22を通過する。そして、各フィルタ22を通った光はフォトダイオード23で電気信号に変換される。変換された電気信号は一次補正回路24上でアンプ調整される。このとき、アンプのゲインにより、測定レンジを決定する。そして、二次補正回路25により、RGB信号を三刺激値XYZへ変換する。この三刺激値XYZは、三刺激値直読型センサ2に設けられた表示画面に適宜表示されるとともに、出力端子から外部の制御装置10に出力可能に構成されている。従って、三刺激値直読型センサ2では、照射された光の色情報を三刺激値XYZとして直読および出力できるように構成されている。
As shown in FIG. 2, the tristimulus value direct reading sensor 2 includes a diffusion plate 21, RGB filters 22, a photodiode (photoelectric conversion element) 23, a primary correction circuit 24, and a secondary correction circuit 25. Is something.
The light emitted toward the tristimulus value direct-reading sensor 2 passes through the diffusion plate 21 and passes through the RGB filters 22. The light passing through each filter 22 is converted into an electrical signal by the photodiode 23. The converted electrical signal is subjected to amplifier adjustment on the primary correction circuit 24. At this time, the measurement range is determined by the gain of the amplifier. Then, the RGB signal is converted into tristimulus values XYZ by the secondary correction circuit 25. The tristimulus values XYZ are appropriately displayed on a display screen provided in the tristimulus value direct reading type sensor 2 and are configured to be output from an output terminal to an external control device 10. Therefore, the tristimulus value direct reading sensor 2 is configured to be able to directly read and output the color information of the emitted light as the tristimulus value XYZ.
基準器3は、三刺激値直読型センサ2に比べて高精度な色測定が可能な分光型の色測定装置が通常用いられるが、基準となる三刺激値直読型センサを用いてもよい。この基準器3の測定データも出力端子を介して制御装置10に出力可能とされている。
なお、三刺激値直読型センサ2を基準器3に合わせて校正する理由は以下の通りである。三刺激値直読型センサ2は、分光型のセンサに比べて安価である。従って、三刺激値直読型センサ2を、プロジェクタ5等の製造ラインにおける検査工程で利用すれば、多くの三刺激値直読型センサ2を用意できて検査工程の効率化が図れる。この際、各三刺激値直読型センサ2を基準器3に合わせて校正しておくことで、各三刺激値直読型センサ2の測定値のばらつき(誤差)を無くすことができ、プロジェクタ5等の検査対象を正しく評価することができる。
As the reference device 3, a spectroscopic color measuring device capable of measuring a color with higher accuracy than the tristimulus value direct reading type sensor 2 is usually used, but a tristimulus value direct reading type sensor serving as a reference may be used. The measurement data of the reference device 3 can also be output to the control device 10 via the output terminal.
The reason why the tristimulus value direct reading sensor 2 is calibrated according to the reference device 3 is as follows. The tristimulus value direct reading type sensor 2 is less expensive than the spectroscopic type sensor. Therefore, if the tristimulus value direct reading type sensor 2 is used in the inspection process in the production line of the projector 5 or the like, many tristimulus value direct reading type sensors 2 can be prepared and the efficiency of the inspection process can be improved. At this time, by calibrating each tristimulus value direct reading type sensor 2 in accordance with the reference device 3, the variation (error) of the measured values of each tristimulus value direct reading type sensor 2 can be eliminated. It is possible to correctly evaluate the inspection object.
校正ステージ4は、制御装置10からの指示により、スライド移動可能に構成されている。これにより、校正ステージ4上の三刺激値直読型センサ2および基準器3を、プロジェクタ5の正面に交互に配置可能にされている。 The calibration stage 4 is configured to be slidable according to an instruction from the control device 10. Thereby, the tristimulus value direct reading type sensor 2 and the reference unit 3 on the calibration stage 4 can be alternately arranged on the front surface of the projector 5.
プロジェクタ5は、校正された三刺激値直読型センサ2によって測定・評価される測定物であり、液晶素子を利用した一般的なプロジェクタであり、校正処理中は制御装置10によって駆動が制御されている。 The projector 5 is a measurement object that is measured and evaluated by the calibrated tristimulus value direct-reading sensor 2, and is a general projector that uses a liquid crystal element. The drive is controlled by the control device 10 during the calibration process. Yes.
ここで、三刺激値直読型センサ2を校正する場合、校正用の光源を用いて校正することも可能である。
しかしながら、プロジェクタ5のような液晶素子を使用しているデバイスを、三刺激値直読型センサ2で測定評価する場合には、本実施形態のように、測定対象となるデバイスを用いて校正することが好ましい。
すなわち、液晶は印加する電圧によって波長に対する透過率が変化するため、印加電圧によって出力される光のスペクトル形状が異なる。光のスペクトル形状まで把握できる分光型センサを用いている場合には問題ないが、三刺激値直読型センサ2を用いて測定する場合には、明るさによってプロジェクタ5から出力される光のRGBバランスが異なるため、得られる測定色度に影響が出る。
そこで、本実施形態では、プロジェクタ5の明るさを2段階以上に切り替えて三刺激値直読型センサ2の校正を行うことで、後述するように各明るさに応じた補正係数を用意することができ、前記問題を解決することができる。従って、測定対象のプロジェクタ5を用いて校正を行っている。
Here, when the tristimulus value direct-reading sensor 2 is calibrated, it is also possible to calibrate using a calibration light source.
However, when measuring and evaluating a device using a liquid crystal element such as the projector 5 with the tristimulus value direct-reading sensor 2, the device to be measured is calibrated as in this embodiment. Is preferred.
That is, since the transmittance of the liquid crystal with respect to the wavelength varies depending on the applied voltage, the spectral shape of the light output varies depending on the applied voltage. There is no problem when a spectral sensor capable of grasping the spectral shape of light is used, but when measuring using the tristimulus direct reading sensor 2, the RGB balance of the light output from the projector 5 depending on the brightness. Will affect the measurement chromaticity obtained.
Therefore, in the present embodiment, the brightness of the projector 5 is switched to two or more stages and the tristimulus value direct-reading sensor 2 is calibrated to prepare a correction coefficient corresponding to each brightness as described later. And the above problem can be solved. Therefore, calibration is performed using the projector 5 to be measured.
制御装置10は、CPU、メモリなどを備える一般的なコンピュータで構成され、所定のプログラムを組み込むことで実行される以下の各手段を備えている。
すなわち、制御装置10は、前記校正ステージ4の移動を制御するステージ制御手段11と、測定物であるプロジェクタ5の点灯状態を制御する測定物制御手段12と、校正対象の色測定装置である三刺激値直読型センサ2の測定値、つまり三刺激値XYZを取得する校正対象測定値取得手段13と、基準器3の測定値を取得する基準器測定値取得手段14と、前記各測定値に基づいて補正係数を算出する補正係数算出手段15と、校正対象測定値取得手段13および基準器測定値取得手段14で取得された校正対象測定値および基準器測定値が記憶される測定値記憶手段16と、補正係数算出手段15で算出された補正係数およびその補正係数を算出した際の測定物制御手段12で設定したプロジェクタ5の明るさが関連付けられて記憶される補正係数記憶手段17とを備えている。
The control device 10 includes a general computer including a CPU, a memory, and the like, and includes the following units that are executed by incorporating a predetermined program.
That is, the control device 10 includes a stage control unit 11 that controls the movement of the calibration stage 4, a measurement object control unit 12 that controls the lighting state of the projector 5 that is a measurement object, and three color measurement devices that are calibration objects. The measurement value acquisition means 13 for acquiring the measurement value of the stimulus value direct-reading sensor 2, that is, the tristimulus value XYZ, the reference device measurement value acquisition means 14 for acquiring the measurement value of the reference device 3, and the measurement values Correction coefficient calculation means 15 for calculating a correction coefficient based on the measurement value storage means for storing the calibration target measurement value and the reference instrument measurement value acquired by the calibration target measurement value acquisition means 13 and the reference instrument measurement value acquisition means 14 16 and the correction coefficient calculated by the correction coefficient calculation means 15 and the brightness of the projector 5 set by the measured object control means 12 when the correction coefficient is calculated are stored in association with each other. That and a correction coefficient storing means 17.
従って、本実施形態では、前記校正ステージ4およびステージ制御手段11によって、プロジェクタ5からの光の経路上に、三刺激値直読型センサ2および基準器3を切り替えて配置する光経路切替手段が構成されている。 Therefore, in this embodiment, the calibration stage 4 and the stage control means 11 constitute light path switching means for switching and arranging the tristimulus value direct reading type sensor 2 and the reference unit 3 on the light path from the projector 5. Has been.
次に、本実施形態の校正装置1における三刺激値直読型センサ2の校正方法に関し、図4,5のフローチャートに基づいて説明する。
検査員は、まず、校正ステージ4に、三刺激値直読型センサ2および基準器3をセットする(ステップ1、以下ステップを「S」と略す)。
Next, a calibration method of the tristimulus value direct reading type sensor 2 in the calibration device 1 of the present embodiment will be described based on the flowcharts of FIGS.
First, the inspector sets the tristimulus value direct-reading sensor 2 and the reference device 3 on the calibration stage 4 (step 1, hereinafter, step is abbreviated as “S”).
次に、検査員は、制御装置10を操作して三刺激値直読型センサ2の校正作業を開始する。
制御装置10は、まず、測定物制御手段12によりプロジェクタ5の明るさ(光源ランプの印加電圧)を所定の明るさ1に設定し(S2)、赤(RED)を点灯する(S3)。
続いて、制御装置10は、三刺激値直読型センサ2および基準器3を用いた測定処理工程を行う(S10)。
Next, the inspector operates the control device 10 to start the calibration work of the tristimulus value direct reading type sensor 2.
First, the control device 10 sets the brightness (applied voltage of the light source lamp) of the projector 5 to a predetermined brightness 1 by the measured object control means 12 (S2), and lights red (RED) (S3).
Then, the control apparatus 10 performs the measurement process process using the tristimulus value direct-reading type sensor 2 and the reference device 3 (S10).
測定処理工程S10では、制御装置10のステージ制御手段11は、三刺激値直読型センサ2がプロジェクタ5の正面に来るように校正ステージ4をスライドする(S11)。
そして、制御装置10の校正対象測定値取得手段13は、三刺激値直読型センサ2で測定された測定値、つまり三刺激値XYZを取得し、測定値記憶手段16に記憶する(S12)。
In the measurement processing step S10, the stage control means 11 of the control device 10 slides the calibration stage 4 so that the tristimulus value direct reading type sensor 2 comes to the front of the projector 5 (S11).
Then, the calibration target measurement value acquisition unit 13 of the control device 10 acquires the measurement value measured by the tristimulus value direct reading sensor 2, that is, the tristimulus value XYZ, and stores it in the measurement value storage unit 16 (S12).
次に、制御装置10のステージ制御手段11は、基準器3がプロジェクタ5の正面に来るように校正ステージ4をスライドする(S13)。
そして、制御装置10の基準器測定値取得手段14は、基準器3で測定された測定値、つまり三刺激値XYZを取得し、測定値記憶手段16に記憶する(S14)。
以上により、所定の明るさ(例えば明るさ1)でかつ所定の色(例えばRED)の三刺激値直読型センサ2および基準器3による各測定値が取得・記憶され、測定処理工程S10が終了する。
Next, the stage control means 11 of the control device 10 slides the calibration stage 4 so that the reference unit 3 comes to the front of the projector 5 (S13).
Then, the reference unit measurement value acquisition unit 14 of the control device 10 acquires the measurement value measured by the reference unit 3, that is, the tristimulus value XYZ, and stores it in the measurement value storage unit 16 (S14).
As described above, the measured values obtained by the tristimulus value direct reading sensor 2 and the reference device 3 having a predetermined brightness (for example, brightness 1) and a predetermined color (for example, RED) are acquired and stored, and the measurement processing step S10 is completed. To do.
続いて、制御装置10の測定物制御手段12は、プロジェクタ5を制御し、所定の明るさ1のままで緑(GREEN)を点灯する(S4)。
そして、制御装置10は、三刺激値直読型センサ2および基準器3を用いた測定処理工程を再度行う(S10)。これにより、明るさ1でかつGREENの三刺激値直読型センサ2および基準器3による各測定値が取得・記憶される。
Subsequently, the measured object control means 12 of the control device 10 controls the projector 5 to light green (GREEN) with the predetermined brightness 1 (S4).
And the control apparatus 10 performs again the measurement process process using the tristimulus value direct reading type | mold sensor 2 and the reference | standard device 3 (S10). As a result, the measurement values obtained by the tristimulus value direct reading sensor 2 and the reference unit 3 of GREEN having the brightness 1 are acquired and stored.
次に、制御装置10の測定物制御手段12は、プロジェクタ5を制御し、所定の明るさ1のままで青(BLUE)を点灯する(S5)。
そして、制御装置10は、三刺激値直読型センサ2および基準器3を用いた測定処理工程を再度行う(S10)。これにより、明るさ1でかつBLUEの三刺激値直読型センサ2および基準器3による各測定値が取得・記憶される。
Next, the measured object control means 12 of the control device 10 controls the projector 5 to light blue (BLUE) with the predetermined brightness 1 (S5).
And the control apparatus 10 performs again the measurement process process using the tristimulus value direct reading type | mold sensor 2 and the reference | standard device 3 (S10). Thereby, each measurement value by the tristimulus value direct-reading sensor 2 and the reference unit 3 of brightness 1 and BLUE is acquired and stored.
次に、制御装置10は、測定物制御手段12によって制御されるプロジェクタ5の明るさが「明るさ1」であるかを判定する(S6)。
そして、明るさ1である場合には、測定物制御手段12によって制御されるプロジェクタ5の明るさを「明るさ2」に設定する(S7)。
Next, the control device 10 determines whether the brightness of the projector 5 controlled by the measured object control means 12 is “brightness 1” (S6).
If the brightness is 1, the brightness of the projector 5 controlled by the measured object control means 12 is set to “brightness 2” (S7).
そして、制御装置10は、前記S3〜S6を再度実行する。すなわち、「明るさ2」で赤、緑、青の各色を順次点灯し、測定処理工程S10を繰り返すことで、「明るさ2」の各色(R,G,B)の測定値(三刺激値)が取得され、測定値記憶手段16に記憶される。
S6では、明るさは「明るさ2」であるため、「No」と判断される。
And the control apparatus 10 performs said S3-S6 again. That is, by sequentially turning on each color of red, green, and blue at “brightness 2” and repeating the measurement processing step S10, measured values (tristimulus values) of each color (R, G, B) of “brightness 2” ) Is acquired and stored in the measured value storage means 16.
In S6, since the brightness is “brightness 2”, “No” is determined.
すると、制御装置10は、補正係数算出手段15によって補正係数および補正平面係数を算出する(S8)。すなわち、補正係数算出手段15は、測定値記憶手段16に記憶された三刺激値直読型センサ2の測定値および基準器3の測定値から補正係数となる色変換マトリクスMと、補正平面係数a,b,c,dを求める。
例えば、補正係数算出手段15は、RED,GREEN,BLUE単色において「明るさ1」で測定したときの色変換マトリクスM1を以下の式(1)にて求める。
Then, the control apparatus 10 calculates a correction coefficient and a correction plane coefficient by the correction coefficient calculation means 15 (S8). That is, the correction coefficient calculation means 15 includes a color conversion matrix M that becomes a correction coefficient from the measurement value of the tristimulus value direct reading sensor 2 and the measurement value of the reference device 3 stored in the measurement value storage means 16, and the correction plane coefficient a. , B, c, d are obtained.
For example, the correction coefficient calculation means 15 obtains the color conversion matrix M 1 when measured with “brightness 1” in RED, GREEN, and BLUE single colors by the following equation (1).
ただし、式(1)では、RED測定時の測定値をX1-R,Y1-R,Z1-R、GREEN測定時の測定値をX1-G,Y1-G,Z1-G、BLUE測定時の測定値をX1-B,Y1-B ,Z1-Bとし、そのときの基準器の測定値をそれぞれXREF1-R,YREF1-R,ZREF1-R,XREF1-G,YREF1-G,ZREF1-G, XREF1-B,YREF1-B ,ZREF1-Bとする。 However, in the equation (1), the measured value at the time of RED measurement is X 1-R , Y 1-R , Z 1-R , and the measured value at the time of GREEN measurement is X 1-G , Y 1-G , Z 1- The measurement values at the time of G and BLUE measurement are X 1-B , Y 1-B and Z 1-B, and the measurement values of the reference devices at that time are X REF1-R , Y REF1-R , Z REF1-R , respectively. Let XREF1-G , YREF1-G , ZREF1-G , XREF1-B , YREF1-B , and ZREF1-B .
また、RED,GREEN,BLUE単色において「明るさ1」で測定したときの補正平面計数a1,b1,c1,d1を式(2)のように定義した。 Further, correction plane counts a 1 , b 1 , c 1 , and d 1 when measured at “brightness 1” in RED, GREEN, and BLUE single colors are defined as shown in Expression (2).
次に、補正係数算出手段15は、「明るさ2」で測定した測定値を用いて、色変換マトリクスM2および補正平面計数a2,b2,c2,d2を求める。
なお、さらに他の明るさで測定している場合には、同様に、測定したすべての明るさ毎に、色変換マトリクスMおよび補正平面係数a,b,c,dを求める。
Next, the correction coefficient calculation means 15 obtains the color conversion matrix M 2 and the correction plane counts a 2 , b 2 , c 2 , and d 2 using the measurement values measured at “brightness 2”.
In the case where measurement is performed at other brightness, the color conversion matrix M and the correction plane coefficients a, b, c, d are similarly obtained for every measured brightness.
補正係数算出手段15は、求めた補正係数(色変換マトリクスM)および補正平面係数を補正係数記憶手段17に記憶する(S8)。
なお、三刺激値直読型センサ2内部に補正係数記憶手段を設けて補正係数や補正平面係数を三刺激値直読型センサ2に直接記憶してもよい。
さらに、プロジェクタ5の製造ラインに配置された三刺激値直読型センサ2を制御する検査制御装置が設けられている場合には、その検査制御装置に補正係数記憶手段を設けて補正係数や補正平面係数を記憶してもよい。すなわち、市販されている一般的な三刺激値直読型センサの場合、補正係数記憶手段は通常用意されていない。このため、三刺激値直読型センサ2を制御する検査制御装置に補正係数記憶手段を設ければよい。なお、前記制御装置10をそのまま検査制御装置として兼用してもよい。
The correction coefficient calculation means 15 stores the obtained correction coefficient (color conversion matrix M) and correction plane coefficient in the correction coefficient storage means 17 (S8).
Note that correction coefficient storage means may be provided inside the tristimulus value direct reading sensor 2 so that the correction coefficient and the correction plane coefficient may be directly stored in the tristimulus value direct reading sensor 2.
Further, in the case where an inspection control device for controlling the tristimulus value direct-reading sensor 2 arranged on the production line of the projector 5 is provided, a correction coefficient storage means is provided in the inspection control device so that a correction coefficient or a correction plane is provided. The coefficient may be stored. That is, in the case of a commercially available general tristimulus value direct reading type sensor, a correction coefficient storage means is not usually prepared. For this reason, the correction coefficient storage means may be provided in the inspection control apparatus that controls the tristimulus value direct reading type sensor 2. The control device 10 may be used as an inspection control device as it is.
このような補正係数を算出することにより、図6に示すように、明るさ1,2の各測定点111,112は、それぞれ点線100上の点113,114に補正され、三刺激値直読型センサ2の測定値を基準器3に合わせることができる。
以上により、三刺激値直読型センサ2の測定値を基準器3の測定値に合わせる校正処理が完了する。従って、本実施形態では、図4,5に示す各フローチャートにおいて、S2〜S7,S11,S12で校正対象測定工程が構成され、同様に、S2〜S7,S13,S14で基準器測定工程が構成され、S8で補正係数算出工程が構成されている。
By calculating such a correction coefficient, as shown in FIG. 6, the measurement points 111 and 112 having brightness 1 and 2 are corrected to points 113 and 114 on the dotted line 100, respectively, and the tristimulus value direct reading type is obtained. The measured value of the sensor 2 can be adjusted to the reference device 3.
Thus, the calibration process for matching the measured value of the tristimulus value direct reading sensor 2 with the measured value of the reference device 3 is completed. Therefore, in this embodiment, in each flowchart shown in FIGS. 4 and 5, the calibration target measurement process is configured by S2 to S7, S11, and S12, and similarly, the reference instrument measurement process is configured by S2 to S7, S13, and S14. In S8, the correction coefficient calculation step is configured.
次に、校正作業が完了した三刺激値直読型センサ2を用いた色の測定方法に関して説明する。
本実施形態では、図7に示すように、市販の一般的な三刺激値直読型センサ2を用い、その三刺激値直読型センサ2からの出力値(三刺激値)をコンピュータで構成された検査制御装置30で処理する構成とされている。
このため、検査制御装置30は、検査対象のプロジェクタ5Aを制御する検査対象制御手段31と、校正された三刺激値直読型センサ2の補正係数および補正平面係数が記憶される補正係数記憶手段32と、三刺激値直読型センサ2の測定値(三刺激値)を取得する測定値取得手段33と、補正係数記憶手段32に記憶された補正係数や補正平面係数と前記取得された測定値とを利用して補正係数を算出する補正係数算出手段34と、算出された補正係数を用いて測定値を補正し、この補正により算出された測定データを出力する測定値算出手段35とを備える。
さらに、検査制御装置30には、測定値算出手段35で出力された測定値(三刺激値)を表示などするディスプレイやプリンタ等の検査結果出力装置36が接続されている。
Next, a color measurement method using the tristimulus value direct-reading sensor 2 for which calibration work has been completed will be described.
In this embodiment, as shown in FIG. 7, a commercially available general tristimulus value direct reading sensor 2 is used, and an output value (tristimulus value) from the tristimulus value direct reading sensor 2 is configured by a computer. The inspection control device 30 performs processing.
Therefore, the inspection control device 30 includes an inspection target control unit 31 that controls the projector 5A to be inspected, and a correction coefficient storage unit 32 that stores the corrected correction coefficient and correction plane coefficient of the tristimulus value direct-reading sensor 2. A measurement value acquisition means 33 for acquiring a measurement value (tristimulus value) of the tristimulus value direct reading sensor 2, a correction coefficient or a correction plane coefficient stored in the correction coefficient storage means 32, and the acquired measurement value A correction coefficient calculation means 34 for calculating a correction coefficient using the correction value, and a measurement value calculation means 35 for correcting the measurement value using the calculated correction coefficient and outputting the measurement data calculated by the correction.
Further, an inspection result output device 36 such as a display or a printer for displaying the measurement values (tristimulus values) output by the measurement value calculation means 35 is connected to the inspection control device 30.
なお、補正係数記憶手段32には、「明るさ1」および「明るさ2」の2点で校正を行った際の補正係数、補正平面係数が記憶されているものとする。この際、「明るさ1」に比べて「明るさ2」のほうが、照度が高いものとする。 It is assumed that the correction coefficient storage means 32 stores a correction coefficient and a correction plane coefficient when calibration is performed at two points of “brightness 1” and “brightness 2”. At this time, it is assumed that “brightness 2” has higher illuminance than “brightness 1”.
検査制御装置30は、まず、検査対象制御手段31によってプロジェクタ5Aの駆動を制御する(S31)。
次に、測定値取得手段33は、三刺激値直読型センサ2で測定された検査対象(プロジェクタ5A)の色情報(測定値)を取得する(S32)。そして、補正係数算出手段34は、取得した色情報(三刺激値XYZ)と、補正係数記憶手段32に記憶された補正係数や補正平面係数とを用いて補正係数(色変換マトリクスM)を算出する(S33)。そして、測定値算出手段35は、算出された補正係数を用いて測定値を補正して算出し、算出された測定値を検査結果出力装置36に出力する(S34)。
従って、本実施形態では、S32で色測定方法の測定値取得工程が構成され、S33で補正係数算出工程が構成され、S34で測定値算出工程が構成されている。
The inspection control device 30 first controls the driving of the projector 5A by the inspection object control means 31 (S31).
Next, the measurement value acquisition means 33 acquires the color information (measurement value) of the inspection object (projector 5A) measured by the tristimulus value direct reading sensor 2 (S32). The correction coefficient calculation unit 34 calculates a correction coefficient (color conversion matrix M) using the acquired color information (tristimulus value XYZ) and the correction coefficient and correction plane coefficient stored in the correction coefficient storage unit 32. (S33). Then, the measurement value calculation means 35 calculates the measurement value by correcting it using the calculated correction coefficient, and outputs the calculated measurement value to the inspection result output device 36 (S34).
Therefore, in this embodiment, the measurement value acquisition step of the color measurement method is configured in S32, the correction coefficient calculation step is configured in S33, and the measurement value calculation step is configured in S34.
次に、補正係数算出手段34で実行される補正係数算出工程S33に関し説明する。
「明るさ1」の校正で得た色変換マトリクス(補正係数)をM1、「明るさ2」の校正で得た色変換マトリクスをM2としたとき、色変換マトリクスMは図9のように3パターンに場合分けする。このとき、それぞれの補正平面は上記補正平面係数a,b,c,dにより表すことができる。「明るさ2」で得た補正平面よりも測定値の空間的な位置が大きいときはM=M1、明るさ1で得た補正平面よりも測定値の空間的な位置が小さいときはM=M2、測定点の空間的な位置が明るさ1で得た補正平面と明るさ2で得た補正平面の間のときはM1とM2の間で中間的な補正値Mを算出する。
Next, the correction coefficient calculation step S33 executed by the correction coefficient calculation means 34 will be described.
When the color conversion matrix (correction coefficient) obtained by the “brightness 1” calibration is M 1 and the color conversion matrix obtained by the “brightness 2” calibration is M 2 , the color conversion matrix M is as shown in FIG. The case is divided into 3 patterns. At this time, each correction plane can be expressed by the correction plane coefficients a, b, c, and d. M = M 1 when the spatial position of the measurement value is larger than the correction plane obtained with “brightness 2”, and M when the spatial position of the measurement value is smaller than the correction plane obtained with the brightness 1 = M 2 , when the spatial position of the measurement point is between the correction plane obtained with brightness 1 and the correction plane obtained with brightness 2, an intermediate correction value M is calculated between M 1 and M 2 To do.
そして、測定値算出手段35は、測定値算出工程S34において、場合分けされた色変換マトリクスMを式(3)に適用し、最終的に補正された測定値XOUT,YOUT,ZOUTを求める。ただし、得られた測定値をX,Y,Zとする。 Then, in the measurement value calculation step S34, the measurement value calculation means 35 applies the case-dependent color conversion matrix M to the equation (3), and finally calculates the corrected measurement values X OUT , Y OUT , Z OUT . Ask. However, the measured values obtained are X, Y, and Z.
以下、補正係数算出手段34による色変換マトリクスMの具体的な算出方法について説明する。
色変換マトリクスMを算出する為には、測定した点が補正平面に対してどの位置にあるのかを把握しなくてはならない。そのため、図10に示すように、得られた測定値(測定点P)をXYZの空間座標にプロットする。このとき、測定点Pから各補正平面に向けて垂線を降ろしたときの交点P1,P2を求める。
すなわち、上記で得られた測定値をP=(X,Y,Z)とし、測定点Pから「明るさ1」の補正平面へ垂線を降ろしたときの交点P1は以下の式(4)の連立方程式を解くことで求めることができる。
Hereinafter, a specific calculation method of the color conversion matrix M by the correction coefficient calculation unit 34 will be described.
In order to calculate the color conversion matrix M, it is necessary to know where the measured point is relative to the correction plane. Therefore, as shown in FIG. 10, the obtained measurement value (measurement point P) is plotted in the XYZ space coordinates. At this time, intersection points P 1 and P 2 when a perpendicular is dropped from the measurement point P toward each correction plane are obtained.
That is, the measurement value obtained above is P = (X, Y, Z), and the intersection point P 1 when the perpendicular is dropped from the measurement point P to the “brightness 1” correction plane is expressed by the following equation (4). It can be obtained by solving the simultaneous equations.
同様に測定点Pから「明るさ2」の補正平面へ垂線を降ろしたときの交点P2を求め、得られた交点P1,P2から測定点Pがどの位置にあるかを検定する。具体的には、測定点P、交点P1,P2において原点からの距離D,D1,D2を計算し、その大小関係により測定点と補正平面との位置関係を求める。 Similarly, the intersection point P 2 when a perpendicular is dropped from the measurement point P to the “brightness 2” correction plane is obtained, and the position of the measurement point P from the obtained intersection points P 1 and P 2 is verified. Specifically, the distances D, D 1 and D 2 from the origin are calculated at the measurement point P and the intersection points P 1 and P 2 , and the positional relationship between the measurement point and the correction plane is obtained based on the magnitude relationship.
上記より得られた距離D,D1,D2からそれぞれの色変換マトリクスMを次の式(5)により求める。ただし、e1は測定点Pと低照度(明るさ1)補正平面との距離、e2は測定点Pと高照度(明るさ2)補正平面との距離とする。 From the distances D, D 1 and D 2 obtained as described above, the respective color conversion matrices M are obtained by the following equation (5). Here, e 1 is the distance between the measurement point P and the low illuminance (brightness 1) correction plane, and e 2 is the distance between the measurement point P and the high illuminance (brightness 2) correction plane.
得られた色変換マトリクスMを式(3)に採用することで、三刺激値直読型センサ2で測定された測定値を、基準器3に合わせた測定値に補正することができ、最終的な三刺激値XOUT,YOUT,ZOUTを得ることができる。 By adopting the obtained color conversion matrix M in the equation (3), the measured value measured by the tristimulus value direct reading type sensor 2 can be corrected to the measured value matched with the reference device 3, and finally Tristimulus values X OUT , Y OUT and Z OUT can be obtained.
本実施形態によれば、次のような効果がある。
(1)三刺激値直読型センサ2を基準器3に合わせて校正する際に、従来のように、1つの明るさのみで測定値を求めて校正するのではなく、複数の明るさに切り替えて各明るさ毎に三刺激値直読型センサ2および基準器3で測定し、明るさ毎に補正係数を算出しているので、三刺激値直読型センサ2の受光素子(フォトダイオード23)の特性に合った補正係数を得ることができる。このため、1つの明るさのみで校正を行っていた従来に比べて、三刺激値直読型センサ2の測定誤差を小さくでき、より高精度な測定を実現できる。
According to this embodiment, there are the following effects.
(1) When the tristimulus value direct-reading sensor 2 is calibrated according to the reference device 3, the measured value is not calibrated and calibrated with only one brightness as in the prior art, but switched to a plurality of brightness levels. The tristimulus value direct-reading sensor 2 and the reference device 3 measure each brightness, and the correction coefficient is calculated for each brightness. Therefore, the light receiving element (photodiode 23) of the tristimulus value direct-reading sensor 2 is calculated. A correction coefficient suitable for the characteristics can be obtained. For this reason, the measurement error of the tristimulus value direct-reading sensor 2 can be reduced and more accurate measurement can be realized as compared with the conventional case where calibration is performed with only one brightness.
(2)また、測定対象となるプロジェクタ5からの光を、三刺激値直読型センサ2および基準器3で測定することで三刺激値直読型センサ2の校正処理を行っており、測定対象のプロジェクタ5を利用して校正している。このため、液晶パネルのような階調を可変させると出力される光のスペクトル形状が変化するようなデバイスを測定するようなときでも、そのスペクトル形状の変化も反映させた状態で校正することができる。従って、本実施形態で校正された三刺激値直読型センサ2は、測定対象のプロジェクタ5に対して高精度な色度測定を実現できる。 (2) Further, the tristimulus value direct reading sensor 2 is calibrated by measuring the light from the projector 5 to be measured by the tristimulus value direct reading type sensor 2 and the reference device 3, and the measurement target Calibration is performed using the projector 5. For this reason, even when measuring devices such as liquid crystal panels that change the spectral shape of the output light when the gradation is varied, calibration can be performed in a state that reflects the change in the spectral shape. it can. Therefore, the tristimulus value direct-reading sensor 2 calibrated in this embodiment can realize highly accurate chromaticity measurement for the projector 5 to be measured.
(3)さらに、本実施形態では、三刺激値直読型センサ2を校正する際に、各明るさ1,2毎の補正平面係数も記憶しておき、校正された三刺激値直読型センサ2で測定対象を測定した場合、その測定値をXYZの空間座標にプロットし、各補正平面と測定点Pとの位置関係を求め、その位置関係に応じて色変換マトリクスMを求めている。このため、実際の測定対象の明るさが、校正時の明るさ1,2と異なっていても、その明るさに応じた補正係数(色変換マトリクスM)を線形補間で算出して利用しているので、高精度な色度測定を実現できる。 (3) Furthermore, in this embodiment, when the tristimulus value direct reading sensor 2 is calibrated, the correction plane coefficients for the respective brightnesses 1 and 2 are also stored, and the calibrated tristimulus value direct reading sensor 2 is stored. When the measurement target is measured, the measured values are plotted in XYZ spatial coordinates, the positional relationship between each correction plane and the measurement point P is obtained, and the color conversion matrix M is obtained according to the positional relationship. For this reason, even if the brightness of the actual measurement object is different from the brightness 1 and 2 at the time of calibration, a correction coefficient (color conversion matrix M) corresponding to the brightness is calculated and used by linear interpolation. Therefore, highly accurate chromaticity measurement can be realized.
(4)また、測定時の明るさに応じて補正係数を算出しているので、三刺激値直読型センサ2を基準器3に合わせて校正する場合の明るさの切替は、本実施形態のように2段階でも十分な効果が得られる。従って、3段階以上に明るさを切り替えて校正処理を行う必要がなく、三刺激値直読型センサ2の校正処理も容易にかつ短時間に行うことができる。 (4) Since the correction coefficient is calculated according to the brightness at the time of measurement, the brightness switching when the tristimulus value direct-reading sensor 2 is calibrated according to the reference device 3 is the same as that of the present embodiment. Thus, sufficient effects can be obtained even in two stages. Therefore, it is not necessary to perform the calibration process by switching the brightness to three or more levels, and the calibration process of the tristimulus value direct reading type sensor 2 can be performed easily and in a short time.
なお、本発明は、前記実施形態に限らない。
例えば、前記実施形態では、2段階の明るさ1,2のみで校正を行っていたが、3段階以上に明るさを切り替えて校正処理を行ってもよい。明るさの段階が多くなればなるほど、校正処理に時間がかかるが、補正係数の精度が向上し、校正された三刺激値直読型センサ2によってより高精度の色度測定ができる。
但し、前記実施形態では、明るさ1,2の間では、線形補間によって色変換マトリクスMを補正しているので、2点の明るさ1,2のみで校正しても十分な測定精度を確保できる。
The present invention is not limited to the above embodiment.
For example, in the above-described embodiment, the calibration is performed only with the two levels of brightness 1 and 2, but the calibration process may be performed by switching the brightness to three or more levels. The more brightness steps, the longer the calibration process takes, but the accuracy of the correction coefficient is improved, and the calibrated tristimulus value direct reading sensor 2 can perform chromaticity measurement with higher accuracy.
However, in the above-described embodiment, the color conversion matrix M is corrected by linear interpolation between the brightness levels 1 and 2, so that sufficient measurement accuracy is ensured even if calibration is performed with only the brightness levels 1 and 2 at two points. it can.
前記実施形態では、測定値が明るさ1,2の間の場合には、測定点Pから各補正平面までの距離に基づく線形補間によって色変換マトリクスMを算出しているが、二次補間、スプライン補間などの他の補間方式を採用してもよい。 In the embodiment, when the measured value is between brightness 1 and 2, the color conversion matrix M is calculated by linear interpolation based on the distance from the measurement point P to each correction plane. Other interpolation methods such as spline interpolation may be employed.
前記実施形態では、明るさを「明るさ1」に設定した後に、各色を順次切り替えて測定処理工程S10を実施していたが、例えば赤を点灯している状態で、各明るさ1,2を切り替えて測定処理工程S10を行い、その後、点灯色を変更して明るさを順次切り替えて測定処理工程S10を実施してもよい。
さらには、校正対象の三刺激値直読型センサ2において、各明るさおよび色を順次切り替えて測定値を取得した後に、校正ステージ4を移動して基準器3における測定を行ってもよい。
要するに、各色および明るさ毎に三刺激値直読型センサ2、基準器3の測定値が取得できればよく、その順序は前記実施形態に限定されない。
In the embodiment, after setting the brightness to “brightness 1”, each color is sequentially switched to perform the measurement processing step S10. For example, in the state where red is lit, each brightness 1, 2 is set. The measurement processing step S10 may be performed while switching the lighting, and then the measurement processing step S10 may be performed by changing the lighting color and sequentially switching the brightness.
Furthermore, in the tristimulus value direct-reading sensor 2 to be calibrated, after the measurement values are acquired by sequentially switching the brightness and color, the calibration stage 4 may be moved to perform the measurement in the reference device 3.
In short, it is only necessary to obtain the measured values of the tristimulus value direct-reading sensor 2 and the reference device 3 for each color and brightness, and the order is not limited to the above embodiment.
光経路切替手段は、校正ステージ4を移動するものに限らず、プロジェクタ5側を移動したり、プロジェクタ5からの光の経路を切り替える反射鏡等を用いたものでよい。 The light path switching means is not limited to the one that moves the calibration stage 4, but may be one that uses a reflecting mirror or the like that moves on the projector 5 side or switches the light path from the projector 5.
また、三刺激値直読型センサ2が測定レンジを切替可能に構成されている場合には、各測定レンジ毎に2段階以上に明るさを切り替えて測定を行って校正処理を行ってもよい。
この場合、測定レンジの切替点の明るさに設定して校正処理を行うことが好ましい。例えば、三刺激値直読型センサ2が、低照度領域を測定するレンジ1と、高照度領域を測定するレンジ2とに切替可能に構成されている場合、レンジ1では最も明るい点とそれ以外の点(好ましくは明るさの変化が大きくなるように最も暗い点あるいはその近傍の点)に切り替え、レンジ2では最も暗い点とそれ以外の点(好ましくは明るさの変化が大きくなるように最も明るい点あるいはその近傍の点)に切り替えて、三刺激値直読型センサ2および基準器3で測定して校正処理を行えばよい。
このようなレンジ1とレンジ2の切替点を校正点としてそれぞれ補正係数を求めれば、切替点における測定値の誤差を小さくすることができ、測定精度をより一層向上できる。
Further, when the tristimulus value direct-reading sensor 2 is configured to be able to switch the measurement range, the calibration process may be performed by switching the brightness in two or more steps for each measurement range.
In this case, it is preferable to perform the calibration process by setting the brightness of the measurement range switching point. For example, when the tristimulus value direct-reading sensor 2 is configured to be switchable between a range 1 for measuring a low illuminance region and a range 2 for measuring a high illuminance region, the brightest point in the range 1 and the other points Switch to a point (preferably the darkest point or its neighboring point so that the change in brightness is large), and in range 2 the darkest point and other points (preferably the brightest so that the change in brightness is large) Switching to a point or a point in the vicinity thereof, and the calibration process may be performed by measuring with the tristimulus value direct reading sensor 2 and the reference unit 3.
If correction coefficients are obtained using the switching points of Range 1 and Range 2 as calibration points, the measurement value error at the switching point can be reduced, and the measurement accuracy can be further improved.
また、前記実施形態では、測定対象のプロジェクタ5を利用して校正を行っていたが、標準光源などを三刺激値直読型センサ2および基準器3で測定することで校正を行ってもよい。但し、液晶プロジェクタ5、液晶プロジェクションテレビ、液晶モニターなどの液晶製品のように、明るさによってスペクトルが変化するようなものを測定対象としている場合には、前記実施形態のように、その測定対象を用いて校正を行うことで、スペクトル変化などを考慮した校正を行える点で、特に効果を発揮する。 In the above embodiment, calibration is performed using the projector 5 to be measured. However, calibration may be performed by measuring a standard light source or the like with the tristimulus value direct-reading sensor 2 and the reference unit 3. However, when a measurement object whose spectrum changes according to brightness, such as a liquid crystal product such as a liquid crystal projector 5, a liquid crystal projection television, or a liquid crystal monitor, is to be measured as in the above embodiment. This is particularly effective in that it can be calibrated taking into account changes in the spectrum.
前記実施形態では、検査制御装置30を設け、検査制御装置30の補正係数算出手段34や測定値算出手段35で測定値の明るさに応じた補正係数の算出や、算出した補正係数の測定値への適用処理を行っていたが、三刺激値直読型センサ2に補正係数記憶手段32や補正係数算出手段34、測定値算出手段35を設け、三刺激値直読型センサ2において補正係数の算出や測定値への適用処理を行ってもよい。
但し、前記実施形態のように検査制御装置30を用いれば、補正係数記憶手段32や補正係数算出手段34、測定値算出手段35が内蔵されていない一般的な三刺激値直読型センサ2を用いることができ、様々な種類の三刺激値直読型センサ2において測定値を精度よく補正できる利点がある。
In the above-described embodiment, the inspection control device 30 is provided, and the correction coefficient calculation unit 34 and the measurement value calculation unit 35 of the inspection control device 30 calculate the correction coefficient according to the brightness of the measurement value and the measurement value of the calculated correction coefficient. The tristimulus value direct reading sensor 2 is provided with the correction coefficient storage means 32, the correction coefficient calculation means 34, and the measurement value calculation means 35, and the tristimulus value direct reading sensor 2 calculates the correction coefficient. Application processing to the measurement value may also be performed.
However, when the inspection control device 30 is used as in the above-described embodiment, a general tristimulus value direct-reading sensor 2 that does not include the correction coefficient storage unit 32, the correction coefficient calculation unit 34, and the measurement value calculation unit 35 is used. Therefore, there is an advantage that the measured values can be accurately corrected in various types of tristimulus value direct reading type sensors 2.
本発明によって校正される三刺激値直読型センサ2は、液晶製品の品質評価に用いられるものに限らず、様々なものの色評価などに利用できる。
さらに、本発明の校正方法は、三刺激値直読型の色彩計に限らず、三刺激値直読型の照度計・輝度計、3CCDカメラの色度校正などに適用可能である。
The tristimulus value direct-reading sensor 2 calibrated according to the present invention is not limited to the one used for quality evaluation of liquid crystal products, but can be used for color evaluation of various things.
Furthermore, the calibration method of the present invention is not limited to a tristimulus value direct-reading color meter, but can be applied to a tristimulus value direct-reading illuminometer / luminance meter, chromaticity calibration of 3 CCD cameras, and the like.
また、本発明の校正方法は、三刺激値直読型の色測定装置の校正に限定されず、他の方式の色測定装置の校正にも利用できる。
要するに、本発明の校正方法、校正装置や色測定方法、色測定装置は、液晶パネルやプラズマディスプレイ、ELディスプレイなどの表示デバイス、ならびにそれらを使用した表示装置・製品の検査に利用することができるものであり、これらに使用した場合でも本発明の範囲から除外されるものでないことはいうまでもない。
Further, the calibration method of the present invention is not limited to the calibration of the tristimulus value direct-reading type color measuring apparatus, but can be used for the calibration of other types of color measuring apparatuses.
In short, the calibration method, calibration device, color measurement method, and color measurement device of the present invention can be used for inspection of display devices such as liquid crystal panels, plasma displays, and EL displays, and display devices and products using them. Needless to say, even if these are used, they are not excluded from the scope of the present invention.
1…校正装置、2…三刺激値直読型センサ、3…基準器、4…校正ステージ、5…プロジェクタ、10…制御装置、11…ステージ制御手段、12…測定物制御手段、13…校正対象測定値取得手段、14…基準器測定値取得手段、15…補正係数算出手段、16…測定値記憶手段、17…補正係数記憶手段、30…検査制御装置、31…検査対象制御手段、32…補正係数記憶手段、33…測定値取得手段、34…補正係数算出手段、35…測定値算出手段、36…検査結果出力装置。 DESCRIPTION OF SYMBOLS 1 ... Calibration apparatus, 2 ... Tristimulus value direct reading type sensor, 3 ... Reference | standard, 4 ... Calibration stage, 5 ... Projector, 10 ... Control apparatus, 11 ... Stage control means, 12 ... Measuring object control means, 13 ... Calibration object Measurement value acquisition means, 14 ... reference device measurement value acquisition means, 15 ... correction coefficient calculation means, 16 ... measurement value storage means, 17 ... correction coefficient storage means, 30 ... inspection control device, 31 ... inspection object control means, 32 ... Correction coefficient storage means 33... Measurement value acquisition means 34. Correction coefficient calculation means 35. Measurement value calculation means 36.
Claims (11)
測定物から出力される光の経路上に基準器を配置し、測定物の明るさを前記校正対象測定工程と同じ各明るさに切り替えてその明るさ毎の測定値を取得する基準器測定工程と、
明るさ毎の校正対象測定値および基準器測定値に基づいて校正対象の色測定装置における明るさ毎の補正係数を算出する補正係数算出工程と、
を備えることを特徴とする色測定装置の校正方法。 A calibration target measurement step of arranging a color measuring device to be calibrated on the path of light output from the measurement object, switching the brightness of the measurement object to two or more levels, and obtaining a measurement value for each switched brightness;
A reference device measuring step that arranges a reference device on the path of light output from the measured object, switches the brightness of the measured object to the same brightness as the calibration target measuring step, and acquires a measurement value for each brightness When,
A correction coefficient calculation step of calculating a correction coefficient for each brightness in the color measuring device to be calibrated based on the measurement values for calibration and the reference unit measurement values for each brightness;
A method for calibrating a color measuring apparatus, comprising:
前記補正係数算出工程は、明るさ毎の補正対象測定値によって特定される補正平面を表す補正平面係数を、前記補正係数とともに明るさ毎に算出することを特徴とする色測定装置の校正方法。 The color measuring device calibration method according to claim 1,
The color correction apparatus calibration method, wherein the correction coefficient calculation step calculates a correction plane coefficient representing a correction plane specified by a correction target measurement value for each brightness for each brightness together with the correction coefficient.
前記色測定装置は測定対象の明るさに応じて測定レンジを切替可能に構成され、
前記校正対象測定工程および基準器測定工程は、各測定レンジ内で2段階以上に明るさを切り替えて測定を行うことを特徴とする色測定装置の校正方法。 In the calibration method of the color measuring device according to claim 1 or 2,
The color measuring device is configured to be able to switch the measurement range according to the brightness of the measurement object,
A calibration method for a color measuring apparatus, wherein the calibration target measurement step and the reference device measurement step perform measurement by switching the brightness in two or more steps within each measurement range.
前記色測定装置は、三刺激値直読型の色測定装置であり、前記基準器は分光型の色測定装置であることを特徴とする色測定装置の校正方法。 In the calibration method of the color measuring device according to any one of claims 1 to 3,
The color measuring apparatus is a tristimulus value direct reading type color measuring apparatus, and the reference device is a spectral type color measuring apparatus.
前記測定物において赤、緑、青を個別に点灯する色点灯工程を備え、
前記校正対象測定工程および基準器測定工程は、各色を個別に点灯する毎に実行され、
前記補正係数算出工程は、各色の明るさ毎に補正係数を算出することを特徴とする色測定装置の校正方法。 In the calibration method of the color measuring device according to any one of claims 1 to 4,
A color lighting process for individually lighting red, green, and blue in the measurement object,
The calibration object measurement step and the reference device measurement step are executed each time each color is lit individually,
The color correction apparatus calibration method, wherein the correction coefficient calculation step calculates a correction coefficient for each color brightness.
前記測定物の明るさを2段階以上に切り替えて制御する測定物制御手段と、
前記色測定装置の測定値を測定物の明るさ毎に取得する校正対象測定値取得手段と、
前記基準器の測定値を測定物の明るさ毎に取得する基準器測定値取得手段と、
測定物の明るさ毎の校正対象測定値および基準器測定値に基づいて校正対象の色測定装置における明るさ毎の補正係数を算出する補正係数算出手段と、
を備えることを特徴とする色測定装置の校正装置。 A light path switching means for switching and arranging the color measuring device and the reference device to be calibrated on the light path output from the measurement object;
A measured object control means for controlling the brightness of the measured object by switching between two or more stages;
Calibration target measurement value acquisition means for acquiring the measurement value of the color measurement device for each brightness of the measurement object;
Reference device measurement value acquisition means for acquiring the measurement value of the reference device for each brightness of the measurement object;
A correction coefficient calculating means for calculating a correction coefficient for each brightness in the color measuring device to be calibrated based on the measurement value for calibration and the measurement value for the reference device for each brightness of the measurement object;
A calibration apparatus for a color measuring apparatus, comprising:
請求項1から5のいずれかに記載の色測定装置の校正方法において予め求められている明るさ毎の補正係数と、前記取得された測定値の明るさとから前記測定値に対する補正係数を算出する補正係数算出工程と、
算出された補正係数を用いて測定値を補正し、補正された測定値を測定データとして出力する測定値算出工程と、
を備えることを特徴とする色測定方法。 A measurement value acquisition step of measuring a measurement object with a color measurement device and acquiring a measurement value;
6. The correction coefficient for the measurement value is calculated from the correction coefficient for each brightness obtained in advance in the color measuring device calibration method according to claim 1 and the brightness of the acquired measurement value. A correction coefficient calculation step;
A measurement value calculation step of correcting the measurement value using the calculated correction coefficient, and outputting the corrected measurement value as measurement data;
A color measuring method comprising:
前記補正係数算出工程は、予め求められている明るさ毎の補正係数に対応する補正平面係数と、前記測定値の測定点との空間的な位置関係に基づいて測定値に対する補正係数を算出することを特徴とする色測定方法。 The color measurement method according to claim 7,
The correction coefficient calculation step calculates a correction coefficient for a measurement value based on a spatial positional relationship between a correction plane coefficient corresponding to a correction coefficient for each brightness obtained in advance and a measurement point of the measurement value. A color measurement method characterized by the above.
前記補正係数算出工程は、
前記明るさが最も明るい場合の補正平面よりも前記測定点の空間的な位置が大きい場合には、最も明るい場合の補正係数を選択し、
前記明るさが最も暗い場合の補正平面よりも前記測定点の空間的な位置が小さい場合には、最も暗い場合の補正係数を選択し、
前記測定点の空間的な位置が2つの補正平面間にある場合には、測定点と各補正平面間の距離を算出し、その距離の割合に応じて各補正平面に対応する補正係数を加算して補正係数を算出することを特徴とする色測定方法。 The color measurement method according to claim 8,
The correction coefficient calculation step includes
When the spatial position of the measurement point is larger than the correction plane when the brightness is brightest, select the correction coefficient for the brightest case,
When the spatial position of the measurement point is smaller than the correction plane when the brightness is the darkest, select the correction coefficient for the darkest case,
When the spatial position of the measurement point is between two correction planes, the distance between the measurement point and each correction plane is calculated, and a correction coefficient corresponding to each correction plane is added according to the ratio of the distance. And a correction coefficient is calculated.
測定対象を測定してその色情報である測定値を取得する測定値取得手段と、
前記明るさ毎の補正係数と、前記測定値の明るさとから前記測定値に対する補正係数を算出する補正係数算出手段と、
算出された補正係数を用いて測定値を補正し、補正された測定値を測定データとして出力する測定値算出手段と、
を備えることを特徴とする色測定装置。 Correction coefficient storage means for storing a correction coefficient for each brightness;
A measurement value acquisition means for measuring a measurement object and acquiring a measurement value that is color information;
Correction coefficient calculation means for calculating a correction coefficient for the measurement value from the correction coefficient for each brightness and the brightness of the measurement value;
A measurement value calculating means for correcting the measurement value using the calculated correction coefficient and outputting the corrected measurement value as measurement data;
A color measuring device comprising:
前記補正係数記憶手段には、明るさ毎の補正係数と、この補正係数に対応する補正平面係数とが記憶され、
前記補正係数算出手段は、色情報空間座標において前記測定値に基づく測定点を求め、この測定点と各補正平面係数との空間的な位置関係に基づいて測定値に対する補正係数を算出することを特徴とする色測定装置。 The color measuring device according to claim 10.
The correction coefficient storage means stores a correction coefficient for each brightness and a correction plane coefficient corresponding to the correction coefficient,
The correction coefficient calculation means calculates a measurement point based on the measurement value in color information space coordinates, and calculates a correction coefficient for the measurement value based on a spatial positional relationship between the measurement point and each correction plane coefficient. Characteristic color measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005285235A JP2007093477A (en) | 2005-09-29 | 2005-09-29 | Method and apparatus of calibrating color measuring device, and color measuring method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005285235A JP2007093477A (en) | 2005-09-29 | 2005-09-29 | Method and apparatus of calibrating color measuring device, and color measuring method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007093477A true JP2007093477A (en) | 2007-04-12 |
Family
ID=37979368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005285235A Withdrawn JP2007093477A (en) | 2005-09-29 | 2005-09-29 | Method and apparatus of calibrating color measuring device, and color measuring method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007093477A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010249548A (en) * | 2009-04-10 | 2010-11-04 | Konica Minolta Sensing Inc | Color measuring device and method, and liquid crystal display system |
WO2014196029A1 (en) * | 2013-06-05 | 2014-12-11 | Necディスプレイソリューションズ株式会社 | Color measurement value correction device, display device, and color measurement value correction method |
JP2016099176A (en) * | 2014-11-20 | 2016-05-30 | コニカミノルタ株式会社 | Color inspection method and color inspection device |
WO2016169055A1 (en) * | 2015-04-24 | 2016-10-27 | 华为技术有限公司 | Calibration method and apparatus for brightness detection value and chrominance detection value of optical camera |
WO2017145994A1 (en) * | 2016-02-24 | 2017-08-31 | コニカミノルタ株式会社 | Two-dimensional colorimetric device, two-dimensional colorimetric system, and two-dimensional colorimetric method |
JP2018132354A (en) * | 2017-02-14 | 2018-08-23 | コニカミノルタ株式会社 | Device, method, and system for correcting color measurement |
JP2018205021A (en) * | 2017-05-31 | 2018-12-27 | コニカミノルタ株式会社 | Two-dimensional colorimetry device |
WO2021230452A1 (en) * | 2020-05-14 | 2021-11-18 | (주)에이앤아이 | Color and brightness measuring device including filter unit |
-
2005
- 2005-09-29 JP JP2005285235A patent/JP2007093477A/en not_active Withdrawn
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010249548A (en) * | 2009-04-10 | 2010-11-04 | Konica Minolta Sensing Inc | Color measuring device and method, and liquid crystal display system |
US8373722B2 (en) | 2009-04-10 | 2013-02-12 | Konica Minolta Sensing, Inc. | Color measuring apparatus and method and liquid crystal display system |
WO2014196029A1 (en) * | 2013-06-05 | 2014-12-11 | Necディスプレイソリューションズ株式会社 | Color measurement value correction device, display device, and color measurement value correction method |
JP2016099176A (en) * | 2014-11-20 | 2016-05-30 | コニカミノルタ株式会社 | Color inspection method and color inspection device |
WO2016169055A1 (en) * | 2015-04-24 | 2016-10-27 | 华为技术有限公司 | Calibration method and apparatus for brightness detection value and chrominance detection value of optical camera |
CN106662484A (en) * | 2015-04-24 | 2017-05-10 | 华为技术有限公司 | Calibration method and apparatus for brightness detection value and chrominance detection value of optical camera |
WO2017145994A1 (en) * | 2016-02-24 | 2017-08-31 | コニカミノルタ株式会社 | Two-dimensional colorimetric device, two-dimensional colorimetric system, and two-dimensional colorimetric method |
JPWO2017145994A1 (en) * | 2016-02-24 | 2018-12-20 | コニカミノルタ株式会社 | Two-dimensional color measuring device, two-dimensional color measuring system, and two-dimensional color measuring method |
EP3415883A4 (en) * | 2016-02-24 | 2019-04-03 | Konica Minolta, Inc. | Two-dimensional colorimetric device, two-dimensional colorimetric system, and two-dimensional colorimetric method |
JP2018132354A (en) * | 2017-02-14 | 2018-08-23 | コニカミノルタ株式会社 | Device, method, and system for correcting color measurement |
JP2018205021A (en) * | 2017-05-31 | 2018-12-27 | コニカミノルタ株式会社 | Two-dimensional colorimetry device |
WO2021230452A1 (en) * | 2020-05-14 | 2021-11-18 | (주)에이앤아이 | Color and brightness measuring device including filter unit |
KR20210140880A (en) * | 2020-05-14 | 2021-11-23 | (주)에이앤아이 | Color and luminance measuring device |
KR102419806B1 (en) | 2020-05-14 | 2022-07-14 | (주)에이앤아이 | Color and luminance measuring device |
US11422035B2 (en) | 2020-05-14 | 2022-08-23 | Ani. Co. Ltd | Color and luminance measuring device including filter unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10088364B2 (en) | Colorimetry system for display testing | |
JP6529936B2 (en) | Fast calibration of displays with multicolor cameras colorimetrically calibrated based on spectra | |
TWI495857B (en) | High accuracy imaging colorimeter by special designed pattern closed-loop calibration assisted by spectrograph | |
JP2007093477A (en) | Method and apparatus of calibrating color measuring device, and color measuring method and device | |
JP2008304362A (en) | Color measuring technique, color measuring device, and gauge for directly reading tristimulus value | |
JP2010139324A (en) | Color irregularity measuring method and color irregularity measuring device | |
JP6919339B2 (en) | Two-dimensional colorimeter | |
JP2021167814A (en) | Analysis system for display device and color analysis method thereof | |
CN116884326A (en) | Display light field radiation measurement method | |
TWI384159B (en) | Method of calibrating a light source | |
JP2008157782A (en) | Calibration method of tristimulus value direct reading type measuring device, calibration system, color measuring method and color measuring device | |
JP2007322203A (en) | Calibration method for tristimulus-value direct reading instrument, calibration system, color-measuring method, color-measuring instrument, and tristimulus-value direct reading instrument | |
JP2007292659A (en) | Chromaticity measuring method and chromaticity measuring device | |
CN113889028A (en) | Correction method and device for display screen box body | |
KR102571243B1 (en) | Colorimetry device and method | |
CN108344509B (en) | Colorimeter correction method, device and system | |
JP6729578B2 (en) | Optical characteristic measuring device and method for setting optical characteristic measuring device | |
Wolf et al. | 72‐2: a high‐speed 2‐in‐1 imaging colorimeter for display production applications | |
JP4547208B2 (en) | Display calibration method, calibration apparatus, calibration table and program | |
JP2017146513A (en) | Adjustment method and adjustment device for liquid crystal display device | |
OMORI et al. | A High-Speed Imaging Colorimeter LumiCol 1900 for Display Measurements | |
JP2010181170A (en) | Method and apparatus for measuring color unevenness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070704 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070813 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |